Game Forms for Coalition Effectivity Functions

Colm Baston and Venanzio Capretta

School of Computer Science, University of Nottingham
{colm.baston,venanzio.capretta}@nottingham.ac.uk

Introduction Coalition logic, introduced by Pauly,! is a multi-agent modal logic for reasoning
about what groups of agents can achieve if they act collectively, as a coalition. The semantics
for coalition logic is based on game forms, which are essentially perfect-information strategic
games where the players act simultaneously. From a game form, we can derive an effectivity
function which defines which subsets of outcomes a particular coalition of players can guarantee,
regardless of how all other players act.

Pauly proves that there is a set of properties, playability, that precisely describe when an
arbitrary effectivity function is the effectivity function for some strategic game. Our goal is to
formalise this equivalence in the logic of a type-theoretic proof assistant, specifically Coq and
Agda. Proving the playability of an effectivity function that is derived from a game form is
straightforward, provided that we develop good libraries for decidable subsets of agents and
states. The other direction is more complex, requiring the construction of a game form from a
playable effectivity function, then proving that the derived effectivity function is equivalent to
the function that we started with. We believe that Pauly’s proof of the second direction can
be simplified in addition to adapting it for type-theoretic formalisation, and we give a sketch
of this below.

Game Forms A game form G is a tuple (N, {A4;}ien, S, 0) where: N is a finite, non-empty
set of agents (for n agents, we simply use the natural numbers {0,...,n — 1}); {A;}ien is a
family of non-empty sets of actions for each agent ¢ (a strategy profile o : Il;cn.A; is a choice
of actions for every agent); S is a set of possible outcome states; o is a function (Il;en.A4;) — S
that selects an outcome for every strategy profile.

A coalition C is a decidable subset of N. Let o¢ : Il;cc.A; be a strategy profile for C' and
oz : 1,5 A; a strategy profile for the complement coalition C = N\C. We denote by oc G og
the global strategy profile which joins the actions of both coalitions.

The effectivity function for game form G is a function Eg : Pgec(N) — P(Pdec(S)) which
associates each coalition with a set of goals: each goal is a decidable set of states that the
coalition can achieve by working together; that is, X € Eq(C) iff there is a strategy profile for
C that guarantees an outcome in X. The effectivity function for a game form G is therefore
defined by:

Eg(C) = {X € Pdec(S) ‘ Hac,VJa, O(O'C D 06) S X}

In the semantics of coalition logic, it is very convenient to work abstractly with an effectivity
function rather than directly with the game definition. Therefore we need a characterisation of
those effectivity functions that come from games.

Playable Effectivity Functions An effectivity function E : Pgec(N) — P(Pgec(S)) is
playable iff it satisfies the following properties: For any C C N, @ ¢ E(C); For any C C N,
S € E(C); E is N-mazimal: for any X C S, X ¢ E(2) = X € E(N); E is outcome-monotonic:
for any C C N and any X; C X5 C S, X; € E(C) = X, € E(C); E is superadditive: for any

IMarc Pauly, “A modal logic for coalitional power in games”, J. of Logic and Computation, 12, 02 2002.

Game Forms for Coalition Effectivity Functions Baston and Capretta

disjoint pair Cy,Cy C N, and any pair X;1,Xo C S, X; € E(C1) AN X2 € E(Cy) = X1 NX, €
E(ChLUCy).

Two more properties follow from from the above: E is reqular: for any C C N and any X C
S, X € E(C) = X € E(C); E is coalition-monotonic: for any C; C Co C N, E(Cy) C E(Cy).

The class of playable effectivity functions consists exactly of those functions that come from
some game. Proving that for a game form G, Eg is playable is just a routine question of
checking the properties. The inverse requires that for every playable E we construct a game
form G such that E = Eg. The original construction by Pauly is rather involved and would be
difficult to formalise in type theory. We have found a simpler way of constructing the game.

Game Form Construction Given sets NV and S and a playable effectivity function E :
Paec(N) — P(Pyec(S)), we construct a game form G such that Eg = E. The set of agents
and the set of states remain unchanged from N and S respectively, so we just need to define a
family of sets of actions {A;};en, and an outcome function o.

An action for an agent ¢ € N consists of a choice of a coalition C' that ¢ would like to be
part of, a goal X that ¢ would like the coalition to aim for, a selected outcome z € X, and a
natural number ¢ which will be used in determining which agent gets to make the final decision:

A, ={(C,X,z,t) | CC N,ie C.X € E(C),z € X,t € N}

Let a strategy profile o be given: we have a choice o; = (Cy, X;, z;,t;) for every i € N. A
coalition C' C N is called o-cooperative if for every i € C, C; = C and for every i,j € C,
Xi = X;. Let X¢ = X, for any ¢ € C. Intuitively, a coalition C' is o-cooperative if all its
members want to be in the coalition, and they agree on the goal X they want to aim for.

Let (C4,...,Cy,) be all the o-cooperative coalitions and let Cy be the set of agents that are
not in a o-cooperative coalition. (Cy,...,C,,) is a partition of N. For every k = 1...m, we
already defined X¢, = X, for any i € C. Define X¢, = S and

O(o) = m Xo, = m Xe,
k=0 k=1

The outcome of the game will be defined to be a state in O(co). The choice of the specific state
will depend again on 0. We use the numbers ¢; to determine an agent that will make the final
decision: let d = (}_;cyt:;) mod |[N|. The outcome will be the state chosen by this agent, 4.
However, this is not guaranteed to be an element of O(o): it is an element of Xy which is a
superset of O(o). In case it isn’t we revert to an arbitrary choice function H : Ilxcp(n)X. This
exists constructively because by definition of playable effectivity function every X € E(N) is
non-empty.
We can prove that O(c) € E(N), so we can define:

x if zq € O(0o)
o(o) = { HEl(O(a)) othgrwise

Theorem. Fg = F

