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Abstract 

Generic and high-performance feedback control is still challenging for tendon-driven continuum robots. Conventional 

model-based controllers, based on the piecewise constant curvature (PCC) assumption, explicitly require the arc 

parameters (bending angle and direction angle) to link the task (in Cartesian coordinates) and actuation spaces. However, 

the approaches' effectiveness remains to be explored when robot shapes deviate from circular arcs. This paper proposed a 

hybrid scheme for novel kinematic control of continuum robots. The error led by the slack state has been avoided through 

tension supervision, while analytical differential kinematics is further developed to avoid the explicit call of arc parameters 

by importing Cylindrical coordinates into task space and applying accurate piecewise linear approximation. Comparison 

between a conventional PCC-based controller and the proposed controller has been done by implementing them to a twin-

pivot joint-based continuum section. An overall tip positioning accuracy of ±0.35mm has been reached, and a result of root-

mean-square-error (RMSE): 0.3mm and Max error: 0.97mm has been observed when running two predefined path 

tracking. Further, in order to evaluate the versatility of the proposed controller, a dual-revolute joint-based and a 3D-

printed continuum section were used to test for path tracking to prove the effectiveness of the controller on a wide range 

of continuum robotic systems.  
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1 Introduction 

Continuum robots outperform conventional rigid-link robots in terms of the ability to have access to 

confined environments owing to their compliant mechanical property achieved by various structural designs.  It 
can be classified into two categories based on their actuation mechanism: intrinsic actuation and extrinsic 

actuation[1]. In extrinsically actuated continuum robots, the actuators are typically positioned at the base of the 

backbone. Examples of such robots include tendon-driven continuum robots and concentric tube continuum 

robots. Among them, tendon-driven continuum robots have been designed with various structures[2], such as 

flexible backbone [3], twin-pivot [4]/dual-revolute joint [5] and elastic flexible material [6]. Regarding 

intrinsically actuated continuum robots, their actuators are distributed along their backbone. This distribution 

allows for various actuation methods, including pneumatic, hydraulic, shape-memory alloy (SMA), electrical 

polymer actuation, and hygroscopic actuation[7]. Compared to hydraulic/pneumatic method, the tendon-driven 

approach has faster responding speed, and allows large length-diameter-ratio structural design, enabling more 

promising applications in confined environments, for example, minimally invasive surgery [3, 8, 9] and in-situ 

maintenance of aero-engines [4, 5]. 

Open-loop control and Close-loop control have both been developed for continuum robots. The former 

approach offers less dimensional limitations by freeing from the use of the integrated sensor. The significant 

reliance of the actuation accuracy to the model inversion bloomed the improvement of accurate modellings. Ref. 
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[10] applied a reinforcement learning method with Markov Decision Process to learn open-loop control strategy 

from simulation on a 300mm-long pneumatic manipulator, achieving a mean error of 30.5mm for positioning. 

Having a clearer comparison to the conventional approach, ref. [11] proposed a feed-forward method employing 

neural network to learn the inverse statics of a 280mm-long soft robot. The experiments demonstrate that the 

learning method outperforms the model-based Jacobian approach in terms of positional accuracy (mean error of 

feedforward neural network (NN): 7.35mm; that of model-based Jacobian approach: 15.12mm). Overall, the 

implementation of machine learnings from both works shows necessity of dealing with the hard-to-predict 

factors such as potential frictions, dimensional errors, and actuation cable. 

With respect to close-loop control of continuum robots, both model-based and model-less approaches have 

been developed. The model-based methods, also called quantitative approaches, are induced from the physical 

model of different robotic systems. Owing to the briefness and efficacy, the piecewise constant curvature (PCC) 

assumption [12-14] is still the most common kinematic model applied for the feedback control of continuum 

robots. As examples,  optimal control was employed on a 170mm-long continuum robot with two extensible 

modules for smooth path tracking by minimizing the overall cable displacements [15], which can keep the 

maximum tracking error less than 3mm for a circular path. Orientation control is performed in [16] on a single-

section pneumatic robot (4.9mm in diameter and 20mm in length) in joint space, achieving average errors of 

0.01º and 0.4º in bending angle and direction angle, respectively. Also, the weighted Jacobian controller is 

realized in [17] by fuzzy-control rules on a 3 degree of freedoms (DoFs) cable-driven continuum manipulator 

(length: 143mm; maximum contraction rate: 30%) for spatial linear path tracking, achieving 0.72mm positioning 

accuracy at the end point. Performing the lumped parameter formulation to drive the dynamic model of a 2-DoF 

cable-driven soft manipulator (length: 80mm) with additional 1-DoF for linear insertion in [18], the maximum 

following error from 50mm (open-loop) to 18mm has been reduced at an average velocity of 16.7mm/s. 

The model-less control of continuum and soft robots could be classified into two approaches: online learning 

and off-line learning. Based on online learning, [19] applied real-time Jacobian estimation on a planar cable-

driven robot (length: 280mm) with linear feed-in mechanism, which reaches 1.22±0.93mm accuracy tracking a 

square trajectory in free space. However, this work takes the assumption that tendon tensions  are proportional 

to tendon displacements, which neglects the disturbances of frictions and hence restricts its further application 

on other cable-driven robotic systems. Similar method is implemented in [20] on a novel 5-section pneumatic 

manipulator with each section constructed by four groups of inflatable airbags, realizing 5mm accuracy for 

point-to-point motion at 1 Hz feedback frequency. Another case is shown in [21], which uses locally weighted 

projection regression to learn the global controller from multiple controllers in local regions for orientation 

control of a 2-DoF pneumatic soft manipulator (length: 93mm), achieving ±4.24º maximum absolute error in 

first cycle and ±1.92º after several cycles. Additionally, Kalman filter is also applied for Jacobian estimation to 

deal with system uncertainty and external disturbances (by assuming process and measurement noise as white 

Gaussian noise) on a 2-section extensible pneumatic manipulator (original full length: 400mm) in [22], which 

can reach 2.31mm average root-mean-square-error (RMSE) when tracking a circular path. 

Off-line learning, especially neural network (NN), is a more widely used approach for the continuum robot. 

In [23], adaptive neural network control is realized on compact bionic handling assistant, a 2-section inextensible 

pneumatic manipulator (length: 360mm). The controller consists of two sub-controllers: the distal supervised 

learning controller is for forward and inverse kinematic models offline training while the adaptive controller is 

designed to learn controller by multilayer perceptron and emulator by modified Elman neural network and 

reaches ±5mm average error for path tracking. Also, an example is given in [24] where neural network is utilized 

on a 2-section inextensible cable-driven continuum robot (length: 405mm) and the learnt model is integrated 

into the feedback control, realizing 9.67mm mean error for point-to-point motion and 23mm average error for 

line following. Overall, for those model-based methods, they are developed on explicit models and thus can be 

analysed theoretically and modified for different tasks; however, they cannot deal with the uncertainty and 

nonlinearity of continuum robots, so that the model uncertainties/errors are usually difficult to compensate for 

[11, 25]. In terms of model-less methods, the control policies are usually learnt from massive data or developed 

based on other algorithms, which can be directly deployed on different continuum robots, but their unclear 

working mechanism makes it difficult for further optimisation and unsuitable for dynamic control especially 

under external disturbances[26]. 

Aiming to combine the advantages of both model-based and model-less approaches, a generic controller 

was developed in this paper. By describing the tip position using Cylindrical coordinates and applying piecewise 

linear fitting, a novel analytical differential kinematics directly from task space to actuation space was derived 

based on the conventional PCC model, which avoids the explicit call of arc parameters (bending angle 𝜃 and 

direction angle 𝜑). On the other hand, after the analysis of control schemes of tendon-driven continuum robots, 



 

tension supervision was integrated into the controller design by setting a threshold value to the cable tension to 

eliminate cables from being slack, which decouples the cable control and avoids the backlash in robot operation. 

As a  comparison, the proposed and PCC-based hybrid controllers are both implemented on the twin-pivot design 

[27] for tip positioning and path tracking. Then, the proposed controller is further implemented on a dual-

revolute joint based continuum section and a 3D-printed based continuum section to prove the versatility of the 

proposed controller. 

The rest of the paper is organized as follows. Chapter II proposes the innovative hybrid control scheme and 

presents the formulation of the novel differential kinematics. Then, test-rig setup and experimental results on 

different prototypes are given in Chapter III. Finally, Chapter IV goes to the conclusion and further discussion. 

2 Control Methodology 

In this section, a model-based controller is developed, which can avoid the explicit call of arc parameters 

and keeps the analytical form directly from task (desired position) to actuation space (cable displacement). 

Further, the proposed controller is integrated with tension supervision to keep all driving cables in tension, thus 

avoiding the robot backlash. 

2.1 Analysis of different control schemes 

In general, the controller design of tendon-driven continuum robots is mostly based on cable displacements 

(Fig. 1 (a)), which are the only variables controlled directly at the hardware level. This control mode is used in 

most of the research for close-loop control of continuum robots as it is easy to implement and control. Besides, 

considering that the shape deformation of continuum robots is essentially the result of the interactions between 

the robots and driving cables, an alternative control mode of continuum robots is by cable tensions (Fig. 1(b)). 

However, this mode is hardly applied in feedback control owing to the great challenge of designing controllers 

for the robot shape (tip position/orientation) and cable tensions, especially for multi-section continuum robots 

where complex mechanics interactions exist between sections and cables.  

Regarding single-section continuum robots, the tension loss of driving cables is negligible. As such, the 

actual cable tensions can be measured relatively accurately with load cells at the actuation end. Therefore, cable 

tensions can also be utilized to design controllers for single-section continuum robots. An example is given in 

Fig. 1(c) to illustrate the schematic diagram of hybrid control. For the robot configuration indicated in the figure, 

the red cable dominates the section’s bending motion, while the other two cables (green and blue) are responsible 

for the circumferential motion. However, it is obvious that there is no need to control the green and blue cables 

simultaneously for circumferential motion. The section motion can be fully operated with two active cables at 

any moment, with the third passive cable in a proper tension to keep the robot structure compact. With such a 

control scheme, the displacements of three driving cables can be decoupled in a kinematic level. More 

importantly, by importing the tension supervision, ill cables states, such as over-tension or slack, can be avoided. 

 
Fig. 1 Different control modes for tendon-driven continuum robots: (a) by cable displacements (∆𝐿1, ∆𝐿2, ∆𝐿3); (b) 

by cable tensions (∆𝑇1 , ∆𝑇2 , ∆𝑇3); (c) combination of cable displacements and tensions (∆𝐿1&∆𝑇1 , ∆𝐿2&∆𝑇2 , 
∆𝐿3&∆𝑇3). 

  



 

2.2 Formulation of the novel differential kinematics 

The classical kinematic model is shown in Fig. 2(a), which consists of three levels in hierarchy, namely, 

actuation space(𝐿1 , 𝐿2 , 𝐿3), configuration space(𝜃, 𝜑) and task space(𝑥, 𝑦, 𝑧). Configuration space is the bridge 

to build the mapping between actuation and task space with a constant-curvature assumption. This kinematic 

model provides a brief and effective way to describe and model the shape of continuum robots, based on which, 

different model-based close-loop controllers are designed and validated on various prototypes of continuum 

robots. However, this model introduced two additional variables which are actually unmeasurable intermediates. 

This method would lead to singularity when the continuum section is in a zero bending angle. Also, it requires 

an inverse calculation to the constructed Jacobian matrix. 

 
Fig. 2 Schematic of (a) the conventional PCC-based kinematic model and (b) the modified kinematic model. 

Based on the above discussion, a modified kinematic model is proposed in this section to address the above -

mentioned challenges of the conventional model. As shown in Fig. 2(b), the tip position is described with 

Cylindrical coordinates(𝑝, 𝜙, 𝑧)  instead of Cartesian coordinates (𝑥, 𝑦, 𝑧) in Fig. 2(a). Further, since single 

section of inextensible continuum robots have only 2-DoF, the variables (𝑝, 𝜙, 𝑧) in task space are not totally 

independent from each other. Once (𝑝, 𝜙) is chosen, the value of 𝑧 is determined, even though the explicit 

expression of the function 𝑧 = 𝑓(𝑝,𝜙)  is unknown. Hence, the parameter pair of (𝑝, 𝜙)  is necessary and 

sufficient for the derivation of the modified kinematic model.  

Based on the constant-curvature assumption, the kinematics from configuration to task space can be written 

as: 

 
[
𝑝
𝜙] = [

𝑆 ∙
1 − cos 𝜃

𝜃
𝜑

] (1) 

where 𝑆 denotes the backbone length of the continuum robot. 

The red curve in Fig. 3(a) is the function of 𝑓(𝜃) =
1−cos 𝜃

𝜃
(𝜃 ∈ [0,

𝜋

2
]), which is nonlinear but highly 

positively related to 𝜃 . Thus, a linear fitting approach is considered to linearize 𝑓(𝜃)  for the following 

derivation. To reach low deviation ratio 𝑒(𝜃) = 𝑚𝑎𝑥 (|
𝑓(𝜃)−𝑙(𝜃)

𝑓(𝜃)
| , ∀𝜃 ∈ [0,

𝜋

2
]), a piece-wise line with three 

segments is adopted for the curve fitting. The whole variation range of 𝜃 is divided into three subsets: 𝑈1 =

[0,
𝜋

6
), 𝑈2 = [

𝜋

6
,
𝜋

3
), 𝑈3 = [

𝜋

3
,
𝜋

2
]. In each subset, 𝑓(𝜃) is approximated by single segment whose endpoints overlap 

with those of 𝑓(𝜃). Fig. 3(b) gives the deviation ratio in the full range, of which the maximum deviation ratio 

(2.26%) is below 2.5%. Obviously, the maximum deviation ratio can be further reduced by dividing the range 

of 𝜃 into more subsets. However, considering the balance of simplicity and accuracy, the division using three 

segmented lines is finally adopted. 



 

 
(a) 

 
(b) 

Fig. 3 Curve fitting of the function 𝑓(𝜃) =
𝑝

𝑆
=

1−𝑐𝑜𝑠 𝜃

𝜃
: (a) 𝑓(𝜃) is approximated by three segmented lines 𝑙(𝜃); 

(b) fitting error with respect to bending angle ∈ [0,
𝜋

2
] 

Thus, 𝑓(𝜃) can be linearized with high accuracy as below: 

 𝑓(𝜃) = 𝑘𝑗𝜃 + 𝑏𝑗 , 𝜃 ∈ 𝑈𝑗(𝑗 = 1,2,3) (2) 

where [

𝑘1 𝑏1
𝑘2 𝑏2
𝑘3 𝑏3

] = [
0.4887 0
0.4232 0.0343
0.304 0.1592

]. 

Combining (1) and (2), the expression of the radial coordinate 𝑝 can be rewritten as: 

 𝑝 = 𝑆 ∙ (𝑘𝑗𝜃 + 𝑏𝑗), 𝜃 ∈ 𝑈𝑗(𝑗 = 1,2,3) (3) 

Hence, the derivative of 𝑝 with respect to the bending angle 𝜃 can be obtained: 

 𝑑𝑝

𝑑𝜃
= 𝑆𝑘𝑗 , 𝜃 ∈ 𝑈𝑗(𝑗 = 1,2,3) (4) 

Eq. (5) gives the kinematics from configuration space (𝜃,𝜑) to cable displacements in actuation space 

(𝐿1 , 𝐿2 , 𝐿3): 

 

[

𝐿1
𝐿2
𝐿3

] = 𝑆 − 𝑟𝜃 ∙ [

cos(𝛼1 − 𝜑)

cos(𝛼2 − 𝜑)

cos(𝛼3 − 𝜑)
] (5) 

where 𝑟 denotes the radius of circle on which all the driving cables are distributed while 𝛼1 , 𝛼2 , 𝛼3 are the phase 

angles with respect to X axis in the XY plane indicating the location of each cable.  

Since continuum robots are usually initialized to be straight, the initial values of 𝐿1, 𝐿2 and 𝐿3 are all equal 

to 𝑆. Therefore, the increment of all the cables within the continuum robot can be written as below:  

 

[

𝛿𝐿1
𝛿𝐿2
𝛿𝐿3

] = [

𝐿1
𝐿2
𝐿3

] − 𝑆 

 

(6) 

Putting (5) into (6), we can get: 

 

[

𝛿𝐿1
𝛿𝐿2
𝛿𝐿3

] = −𝑟𝜃 ∙ [

cos(𝛼1 − 𝜑)

cos(𝛼2 − 𝜑)

cos(𝛼3 − 𝜑)
] (7) 

Then, we can start to derive the differential kinematics from task space (𝑝, 𝜑) to actuation space (𝐿1 , 𝐿2 , 𝐿3), 
based on which the feedback controller is designed. The derivative of the cable displacement changes 𝑑𝛿𝐿𝑖  with 

respect to the Cylindrical coordinates 𝑝 and 𝜙 can be written as below: 

 
𝑑𝛿𝐿𝑖 =

𝜕𝛿𝐿𝑖
𝜕𝑝

∙ 𝑑𝑝 +
𝜕𝛿𝐿𝑖
𝜕𝜙

∙ 𝑑𝜙, 𝑖 = 1,2,3 (8) 



 

According to the chain rule for derivative and (4), the first coefficient on the right side of (8) can be 

computed as: 

 𝜕𝛿𝐿𝑖

𝜕𝑝
=

𝜕𝛿𝐿𝑖

𝜕𝜃

𝑑𝑝

𝑑𝜃
⁄ = −

𝑟

𝑆𝑘𝑗
∙ cos(𝛼𝑖 − 𝜙), j = 1, 2, 3 (9) 

It should be noticed that 𝜃 is not explicitly called in (9), which is achieved by the linearization of 𝑝 in (3). 

The interval mapping relationship of 𝜃 and 𝑝 is given below: 

 

𝑈1 = [0,
𝜋

6
) ↔ 𝛺1 = 𝑆 ∙ [0,0.2559) 

𝑈2 = [
𝜋

6
,
𝜋

3
) ↔ 𝛺2 = 𝑆 ∙ [0.2559,0.4775) 

𝑈3 = [
𝜋

3
,
𝜋

2
] ↔ 𝛺3 = 𝑆 ∙ [0.4775,0.6366] 

 

There, we obtain the explicit expression of the differential kinematics directly from task space to actuation 

space: 

 
𝑑𝛿𝐿𝑖 =

𝑟

𝑘𝑗
∙ [−

cos(𝛼𝑖 − 𝜙)

𝑆
∙ 𝑑𝑝 + (

𝑝

𝑆
− 𝑏𝑗) ∙ sin(𝛼𝑖 − 𝜙) ∙ 𝑑𝜙] (10) 

Here, it can be found that a direct mapping between actuation and task space is established, while the 

bending and direction angles are not involved. 

Further, since Cartesian coordinate system is more intuitive and commonly used for both input and feedback, 

the following transformations are necessary for algorithm implementation:  

                                                             

{
  
 

  
 𝑝 = √𝑥𝑑

2 + 𝑦𝑑
2

𝜙 = 𝑎𝑡𝑎𝑛2(𝑦𝑑 , 𝑥𝑑)

𝑑𝑝 = √𝑥𝑎
2 + 𝑦𝑎

2 − √𝑥𝑑
2 + 𝑦𝑑

2

𝑑𝜙 = 𝑎𝑡𝑎𝑛2(𝑦𝑎 , 𝑥𝑎) − 𝑎𝑡𝑎𝑛2(𝑦𝑑 , 𝑥𝑑)

                                                        (11) 

where (𝑥𝑑 , 𝑦𝑑) denotes the desired tip position while (𝑥𝑎 , 𝑦𝑎) is the actual tip position. 

Therefore, the inverse kinematic model could be obtained by substituting eq (11) for eq (10). In the 

experiments, the actual tip position (𝑥𝑎, 𝑦𝑎) are measured by a vision-based tracking system as a feedback of the 

controller, while the bending angle 𝜃 is not used.  

In addition, since the angular coordinate 𝜙 ∈ (−𝜋,𝜋], the domain of 𝑑𝜑 becomes discontinuous for quadrant 

switch between quadrant 2 and quadrant 4, which can be solved by the rules shown below:  

 
𝑑𝜙 < −𝜋, 𝑑𝜙 + 2𝜋 → 𝑑𝜙 

𝑑𝜙 > 𝜋, 𝑑𝜙 − 2𝜋 → 𝑑𝜙 
 

By utilizing the derived model, the motion control of the continuum robot (p and 𝜑) can be decoupled and 

linearized by controlling the variations of the three cables (L1, L2 and L3). Therefore, the sign (positive or 

negative) of the control inputs can be correctly obtained from this model, ensuring the closed loop system to be 

always stable. 

2.3 Construction of the hybrid feedback controller 

In the previous sub-section, the differential kinematics directly from task space (𝑝,𝜙) to actuation space 

(𝐿1 , 𝐿2 , 𝐿3) was derived, based on which a universal controller for various arc-like tendon driven continuum 

robots can be developed. However, the slack state of driving cables is still inevitable as the errors accumulate 

owing to the factors like robot shape deviation, cable elongation caused by friction etc., which can result in 

backlash during robot manipulation. To solve the problem, tension supervision is integrated into the developed 

controller to keep all the driving cables in tension. It is worth mentioning that maintaining a certain cable with 

a constant tension cannot be achieved for the control of continuum robots since the state switching between 

active/passive cables in Section II.A occurs to all three cables when the robot moves in the whole workspace 

and the movement direction of the section tip varies. Instead, a lower limit 𝜏 is set to the tensions 𝑇𝑖  of all the 

cables to prevent them from being slack, which can be expressed in the form of  pseudo-code:  

𝑖𝑓(𝑇𝑖 ≤ 𝜏 & 𝑑𝛿𝐿𝑖 > 0), 𝑡ℎ𝑒𝑛 𝑑𝛿𝐿𝑖 = 0 (𝑖 = 1,2,3). 

where the setting of the tension threshold is to select the largest possible value after considering the friction 

between the cable and vertebrae and the design of the robot. 



 

For comparison, the proposed controller, as well as the PCC-based approach are both implemented with the 

tension supervision integrated. Fig. 4(a) shows the control diagram of the conventional PCC-based static 

controller [29]. As shown in the figure, the desired cable length 𝐿𝑑  and actual cable length 𝐿𝑎  are computed 

utilizing the inverse kinematics from the task space to the configuration space (“T.S-C.S IK”) and from the 

configuration space to the actuation space (“C.S-A.S IK”), whose difference ∆𝐿 will then be multiplied by the 

gain coefficient 𝐾(∈ (0,1])  and be regulated by the tension supervision block. In aspect to the proposed 

controller in Fig. 4(b), the target position (𝑥𝑑 , 𝑦𝑑) and the actual position (𝑥𝑎, 𝑦𝑎) are firstly converted to 

(𝑝𝑑 , 𝜑𝑑)  and (𝑝𝑎 , 𝜑𝑎) from the Cartesian coordinates to the Cylindrical coordinates. Then the desired position 

(𝑝𝑑 , 𝜑𝑑) and position error (∆𝑝, ∆𝜑) are used as the input of the modified differential inverse kinematics directly 

from the task space to the actuation space (“T.S-A.S Differential IK”), whose output, the cable displacements 

∆𝐿, will be multiplied by the gain coefficient 𝜂(∈ (0,1]) and be regulated by the tension supervision block. 

 
Fig. 4 Control architectures of (a) the PCC-based static controller and (b) the proposed controller. In the PCC-based 

controller, the arc parameters in configuration space are used as a transition to perform the differential inverse 

kinematics from task space to actuation space, while in the proposed controller, the target tip position is converted 

from Cartesian coordinates to cylindrical coordinates, with which the direct inverse kinematics is implemented 

without the explicit call of arc parameters. Additionally, tension supervision is integrated into both controllers at the 

level of cable displacement control. Where the abbreviations where as follow: T.S.: task space, CS: configuration 

space, AS: actuation space, and IK: inverse kinemactics.  

3 Experimental Validation 

In this section, a series of experiments are conducted to validate the hybrid controllers developed in the 

previous section. The test-rig is first introduced, which will be used as the platform to test continuum robots with 

various designs. Then, for the purpose of comparison, both the PCC-based and proposed hybrid controllers are 

implemented on the twin-pivot design for tip positioning and path tracking. Further experiments are also 

conducted on the other two prototypes (dual-revolute design and soft robot) to prove the versatility of the 

proposed controller. 

3.1 Test-rig Setup 



 

 

Fig. 5 (a) Test-rig setup, (b) 3D-printed cable adapter and (c) single motor module. 

The whole test-rig is shown in Fig. 5(a), which consists of a host controller, a visual feedback device and 

an actuation pack. The host controller is a 64-bit Windows 7 based computer with an Intel Xeon E5-1620 

processor @3.5 GHz and 16 GB RAM, and the VICON system is deployed as the visual feedback device to 

track the tip position and stream data at the frequency of 100 Hz. The main control program runs the proposed 

controller and sends commands to the motor controllers for cable displacement control while the data acquisition 

program reads the data from VICON and computes the real-time tip position for the main program to read. Two 

traceable objects are set for Vicon to respectively capture the position of the continuum section tip and root. The 

object for the continuum section root has a 100mm horizontal offset to avoid the robot body blocking the capture 

of the object. The mentioned horizontal offset and the vertical offset of the object for continuum tip, which 

caused by the thickness of the object base, have latterly been compensated for during the data processing. 

The actuation system consists of a cable adapter (Fig. 5(b)) and three sets of motor modules (Fig. 5(c)). The 

adapter is 3D printed by PLA with three channels (ϕ4mm) inside to guide the driving cables (ϕ0.8mm includes the 

clear plastic protection tube) from the robot to the motor modules with negligible friction. Each motor module is 

made up of a Maxon DC motor, an EPOS2 50/5 position controller and a load cell (LCM201-200N). Two rods fixed 

on the stand pass through the slider on the motor shaft to prevent it from rotation so that the slider can only do linear 

motion along the shaft, which is precisely controlled by the motor controller. In addition, the load cell is taken as the 

intermediate between the slider and the driven cable, with one side mounted on the slider and the other side connected 

to the cable for tension measurement. 



 

 

Fig. 6 Various prototypes of continuum robots for experiments: (a) twin-pivot design (2-DoF; length: 80mm; 

diameter: 15mm, cable hole size 1mm); (b) dual-revolute design (2-DoF; length: 55mm; diameter: 12.5mm, cable 

hole size 1mm), (c) soft robot by 3D printing (3-DoF; length: 80mm; diameter: 15mm, cable hole size 1mm). 

The prototypes of single-section continuum robots utilized for experiments are shown in Fig. 6(a), and Fig. 6(b) 

illustrate the structure of the twin-pivot design in [4] and the dual-revolute design in [5], respectively. Both designs 

adopt NiTi rods for the connection between disks and to obtain compliant capability for bending motion. The soft-

robot design is given in Fig. 6(c), which is 3D printed by resin and can be compressed along the length direction. The 

hybrid controllers are to be implemented on those designs for experimental validation. 

3.2 Experiment I: tip positioning 

a) Comparison of both controllers 

The PCC-based method is widely accepted as a fundamental model-based approach in the entire field of 

continuum robotics, since it can represent the shape of continuum sections with minimal errors and computing 

time. Hence, the PCC-based method is usually selected as the baseline method to compare when new approaches 

are developed.  

To achieve the optimal performance, the parameter tuning process is needed for the gain coefficients K in 

the PCC-based controller and η in the proposed controller before the comprehensive experiments . Comparing 

the response curves of positioning experiments under different controller parameters , 0.1 and 0.02 were taken 

as the best parameters through this comparative process. 

Further comparisons of tip positioning were made between both controllers after the parameter tuning 

process. Eight sets of motions are chosen within the workspace for testing, among which the results of two tests 

(Fig.7 (a)) shows that both controllers perform well for the motion (−30,35) → (−35,35). However, when the 

motion comes to the boundary of the workspace ((−35,35) → (−40,40)), oscillation occurs to the PCC-based 

controller while the proposed controller keeps steady with fast converging speed.  



 

 

Fig. 7 Experimental comparison between the PCC-based and proposed hybrid controllers for tip positioning: (a) 

(−30,30)→(−35,35); (b) (−35,35)→(−40,40) (This set of experiments was taken by VICON system. The static error 

of the system is ±0.15 ± 0.025𝑚𝑚 [30].) 

Overall, both controllers behave similarly to each other for most of the target points within the workspace, 

demonstrating the effectiveness of both kinematic models within most of the workspace. However, the proposed 

differential kinematic model is superior in terms of the global stability near the workspace boundary. This is due 

to the fact that when the tip position of the continuum robot is close to the workspace boundary, the deviation 

between the actual shape of the robot and circular arc becomes nonnegligible. Therefore, model error will be 

imported into the kinematic model resulting from the conversion between arc parameters and tip position, 

resulting in the oscillation of the PCC-based controller in the neighbourhood of certain target point. On the 

contrary, the proposed controller is developed based on the novel differential kinematics, which abandons the 

arc parameters and thus avoids the conversion error. 

b) Overall positioning performance 

After the comparison with the PCC-based approach, a comprehensive set of tests were performed to 

characterize the overall positioning performance of the proposed controller. 

As is shown in Fig. 8(a), the scanning path covering the whole workspace of the continuum robot was 

divided into four quadrants mainly owing to the measuring range and stability of the VICON system, which are 

marked using different colors (red, green, blue, and black). Fig. 8(b) gives the top view of the scanning paths, 

which are composed of discrete points whose projection in the XY plane are evenly distributed in the region 

Ω = {(𝑥, 𝑦)| 𝑥, 𝑦 ∈ [−40,40]} in the interval of 2.5𝑚𝑚. And the time interval for updating the target point is 

3.5s in the experiment. 

 

Fig. 8 Overall positioning performance of the proposed controller: (a) scanning path of tip position in 3D space; (b) 

top view of the scanning path with the tip position indicated by coloured dots; (c) desired workspace and actual 

workspace; (d) scatter diagram of the positioning error in X and Y axes for all 1088 test points. (This set of 

experiments was taken by VICON system. The static error of the system is ±0.15 ± 0.025𝑚𝑚 [30].) 

Fig. 8(c) compares the actual workspace with the theoretical workspace. It can be observed that there is a 

positive offset in the Z axis between the actual and theoretical workspaces, and the offset value becomes larger 



 

as the bending angle increases. The factor contributing to this phenomenon is that all the disks are incompressible 

rigid bodies, which cannot deform elastically as the NiTi rods do to form an arc-like shape. While Fig. 8(d) 

shows the scatter diagram of the positioning error (Δ𝑋, ΔY) for all target points. According to [30], the static 

error of the motion capture system used in this paper is 0.15mm. Which illustrates that the overall positioning 

accuracy is ±0.35 ± 0.15𝑚𝑚 in the XY plane, and ±0.18𝑚𝑚 control accuracy can be reached for over 60% 

of the tested points. 

3.3 Experiment II: path tracking 

This section presents the experimental results of path tracking. First, comparisons are conducted between 

the PCC-based and the proposed controllers with the twin-pivot design. Then, the proposed controller is also 

implemented on the dual-revolute (Fig. 6(b)) and soft-robot (Fig. 6(c)) designs for comprehensive performance 

characterization. 

The numerical comparisons of both controllers are given using RMSE (root mean square error) and 

maximum error as the performance indices. The RMSE of the PCC-based approach is slightly smaller than the 

proposed method, whose performance exceeds the former one in aspect of maximum error. 

Two different spatial trajectories are used for the experiments of path tracking: the first path (Path I) is a 

segmented curve whose projection is a 20mm×20mm square centered at (−15,15) in the XY plane while the 

second path (Path II) is a smooth curve whose projection is a 20mm-diameter circle centered at (−15,15). Since 

both approaches are essentially static controllers, each path is discretized into a series of points, and the path 

tracking is achieved by updating the target position in a constant time interval (1s). In addition, both controllers 

are running at the frequency of 20 Hz, which is mainly restricted by the communication speed and execution 

time of the actuation system. 

 
Fig. 9 Experimental comparison of both controllers tracking Path I: (a) desired trajectory (dotted line in black), actual 

trajectories based on the PCC-based controller (line in blue) and the proposed controller (dashed line in red); (b) 

positioning error in X and Y axes; (c) cable tensions with proposed controller; (d) cable tensions with PCC-based 

controller. (This set of experiments was taken by VICON system. The dynamic error of the system is 0.3mm [30].) 

Fig.9 gives the experimental results of Path I. The desired path for reference and the actual trajectories 

obtained by the PCC-based and the proposed controllers are shown in Fig.9 (a). Also, the tracking errors 

(∆𝑋, ∆𝑌) of both controllers in the X and Y axes are plotted in Fig.9 (b). Furthermore, the real-time changes of 

cable tensions are monitored for both controllers, which are given in Fig.9 (c) and (d), respectively. The 

fluctuations of cable tensions for the proposed controller are much smoother than the PCC-based controller. 

Likewise, the experimental results of Path II are illustrated in Fig. 10. 



 

 
Fig. 10 Experimental comparison of both controllers tracking Path II: (a) desired trajectory (dotted line in black), 

actual trajectories based on the PCC-based controller (line in blue) and the proposed controller (dashed line in red); 

(b) positioning error in X and Y axes; (c) cable tensions with proposed controller; (d) cable tensions with PCC-based 

controller. (This set of experiments was taken by VICON system. The dynamic error of the system is 0.3mm [30].) 

The numerical comparisons of both controllers are given in Table I, including RMSE (root mean square 

error) and maximum error. The RMSE of the PCC-based approach is slightly smaller than the proposed method, 

whose performance exceeds the former one in terms of maximum tracking error. Furthermore, as shown in Table 

II, the performance of the proposed controller has also been characterized on the dual -revolute and soft-robot 

designs. 

Table I: Numerical comparison of both controllers on the twin-pivot design for path tracking 

 Path I Path II 

RMSE Max error RMSE Max error 

PCC-based controller 0.17 mm 0.67 mm 0.21 mm 0.97 mm 

Proposed controller 0.21 mm 0.47 mm 0.31 mm 0.72 mm 

 

In order to demonstrate the robustness of the controller, we used one optimized design (twin-pivot design) 

(Table I) and two unoptimized designs (a dual-revolute design and a soft-robot design) to demonstrate the 

performance of the controller (Table II). It can be noted that the numerical performance of the three designs are 

incomparable due to the intrinsic issue of the dual-revolute based and soft continuum sections. Specifically, the 

dual-revolute design and the soft-robot design have a higher tracking error compared with the twin-pivot design. 

This is caused by the design of these two prototypes. For the dual-revolute design, the friction between the rigid 

joints is significant, which added an extra challenge for the controller. Similarly, the compression and the torsion 

of the soft section introduced more uncertainties for the control. Hence, the errors of these two designs are higher 

than the optimized twin-pivot design. 

Table II: Path tracking performance of the dual-revolute and soft-robot designs with the proposed controller 

 Path I Path II 

RMSE Max error RMSE Max error 

Dual-revolute design 0.7 mm 2.14 mm 1.04 mm 2.02 mm 

Soft-robot design 0.4 mm 1.62 mm 0.53 mm 1.13 mm 

 

In conclusion, the effectiveness of the novel proposed controller is experimentally validated on the twin -

pivot, the dual-revolute and the soft-robot designs. Among the three prototypes, the best control performance 

(RMSE and max error) has been achieved on the twin-pivot design. Furthermore, strictly speaking, the proposed 



 

controller is unsuitable for the soft robot, since the differential kinematics does not work if the backbone length 

variable 𝑆 is not a constant. However, since the controllers are all developed for quasi-static control, together 

with the fact that the compression rate of the soft robot is quite low (under 6%, the maximum shrink length is 

around 5mm, and the original full length is 80mm), the backbone length can be approximated as constant in the 

short term of operation. Therefore, the proposed controller can still be applied on the soft robot, as demonstrated 

in the experiments. 

4 Conclusion 

This paper presents a novel model-based hybrid controller for the high-performance control of various 

single-section continuum robots, which has two main features: firstly, an analytical differential kinematic model 

, directly from task space to actuation space, is developed by describing the tip position in Cylindrical coordinate 

system instead of the Cartesian coordinate system and applying piecewise linear approximation . This avoids the 

explicit call of arc parameters. Secondly, based on the preliminary analysis of common control modes for 

tendon-driven continuum robots and combining the advantage of single-section continuum robots, a hybrid 

control scheme is proposed to decouple the control of cable displacements so that tension supervision can be 

achieved to avoid slack or over-tension states of driving cables. 

Further, for evaluating the controllers, a set of experimental validation is carried out from two aspects, i.e., 

stability and versatility. On one hand, the proposed hybrid controller is compared with the PCC-based one on 

the twin-pivot-based continuum robot. It turns out that both controllers are mostly equivalent to each other, but 

the proposed controller outperforms the PCC-based one in terms of global stability for tip positioning and the 

tension fluctuations for path tracking. On the other hand, comprehensive experiments are conducted on three 

prototypes of continuum robots for the performance characterization of the proposed controller. The versatility 

of the proposed controller is demonstrated. Also, it can be found that the controller performs best o n the twin-

pivot design in aspects of RMSE (0.31 mm) and maximum deviation error (0.72 mm) for path tracking.  

Future work will include extending hybrid control scheme for multi-section continuum robots and 

developing dynamic controller with the modified kinematic model. The combination of cable 

displacement/tension control can further be implemented to operate extra DoF of soft robots owing to the 

elasticity of the fabricating material. In addition, since the state space equation can be obtained based on the 

proposed differential kinematics, dynamic control can also be developed for smooth/continuous trajectory 

following. 

Acknowledgment 

The research leading to these results has received funding from Innovate UK under CHIMERA - Robotic 

Inspection of Pressure Vessels (104823), China Scholarship Council (CSC) and University of Nottingham. 

References 

[1] M. Russo et al., "Continuum Robots: An Overview," Advanced Intelligent Systems, vol. 5, 
no. 5, p. 2200367, 2023, doi: https://doi.org/10.1002/aisy.202200367. 

[2] S. Li and G. Hao, "Current Trends and Prospects in Compliant Continuum Robots: A 
Survey," Actuators, vol. 10, no. 7, p. 145, 2021. [Online]. Available: 
https://www.mdpi.com/2076-0825/10/7/145. 

[3] M. C. Yip, J. A. Sganga, and D. B. Camarillo, "Autonomous control of continuum robot 
manipulators for complex cardiac ablation tasks," Journal of Medical Robotics Research, 
vol. 2, no. 01, p. 1750002, 2017. 

[4] X. Dong et al., "Development of a slender continuum robotic system for on-wing 
inspection/repair of gas turbine engines," Robotics and Computer-Integrated 
Manufacturing, vol. 44, pp. 218-229, 2017. 

[5] M. Wang, D. Palmer, X. Dong, D. Alatorre, D. Axinte, and A. Norton, "Design and 
development of a slender dual-structure continuum robot for in-situ aeroengine repair," in 
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: 
IEEE, pp. 5648-5653.  

[6] O. Lakhal, A. Melingui, and R. Merzouki, "Hybrid approach for modeling and solving of 
kinematics of a compact bionic handling assistant manipulator," IEEE/ASME Transactions 
on Mechatronics, vol. 21, no. 3, pp. 1326-1335, 2015. 

[7] I. A. Seleem, H. El-Hussieny, and H. Ishii, "Recent Developments of Actuation Mechanisms 

https://doi.org/10.1002/aisy.202200367
https://www.mdpi.com/2076-0825/10/7/145


 

for Continuum Robots: A Review," International Journal of Control, Automation and 
Systems, vol. 21, no. 5, pp. 1592-1609, 2023/05/01 2023, doi: 10.1007/s12555-022-0159-8. 

[8] D. Baek, Y.-H. Nho, and D.-S. Kwon, "ViO-Com: Feed-Forward Compensation Using Vision-
Based Optimization for High-Precision Surgical Manipulation," IEEE Robotics and 
Automation Letters, vol. 7, no. 1, pp. 263-270, 2021. 

[9] D. Nguyen et al., "A Hybrid Concentric Tube Robot for Cholesteatoma Laser Surgery," IEEE 
Robotics and Automation Letters, vol. 7, no. 1, pp. 462-469, 2021. 

[10] S. Satheeshbabu, N. K. Uppalapati, G. Chowdhary, and G. Krishnan, "Open Loop Position 
Control of Soft Continuum Arm Using Deep Reinforcement Learning," in 2019 
International Conference on Robotics and Automation (ICRA), 2019: IEEE, pp. 5133-5139.  

[11] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi, "Neural network and 
jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant 
curvature," IEEE Transactions on Robotics, vol. 31, no. 4, pp. 823-834, 2015. 

[12] B. A. Jones and I. D. Walker, "Practical kinematics for real-time implementation of 
continuum robots," IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1087-1099, 2006. 

[13] R. J. Webster III and B. A. Jones, "Design and kinematic modeling of constant curvature 
continuum robots: A review," The International Journal of Robotics Research, vol. 29, no. 
13, pp. 1661-1683, 2010. 

[14] C. Escande, T. Chettibi, R. Merzouki, V. Coelen, and P. M. Pathak, "Kinematic calibration of 
a multisection bionic manipulator," IEEE/ASME transactions on mechatronics, vol. 20, no. 
2, pp. 663-674, 2015. 

[15] M. Li, R. Kang, S. Geng, and E. Guglielmino, "Design and control of a tendon-driven 
continuum robot," Transactions of the Institute of Measurement and Control, vol. 40, no. 
11, pp. 3263-3272, 2018. 

[16] Y. Bailly, Y. Amirat, and G. Fried, "Modeling and control of a continuum style microrobot 
for endovascular surgery," IEEE Transactions on Robotics, vol. 27, no. 5, pp. 1024-1030, 
2011. 

[17] P. Qi, C. Liu, A. Ataka, H.-K. Lam, and K. Althoefer, "Kinematic control of continuum 
manipulators using a fuzzy-model-based approach," IEEE Transactions on Industrial 
Electronics, vol. 63, no. 8, pp. 5022-5035, 2016. 

[18] R. S. Penning, J. Jung, J. A. Borgstadt, N. J. Ferrier, and M. R. Zinn, "Towards closed loop 
control of a continuum robotic manipulator for medical applications," in Robotics and 
Automation (ICRA), 2011 IEEE International Conference on, 2011: IEEE, pp. 4822-4827.  

[19] M. C. Yip and D. B. Camarillo, "Model-less feedback control of continuum manipulators in 
constrained environments," IEEE Transactions on Robotics, vol. 30, no. 4, pp. 880-889, 
2014. 

[20] Y. Jin et al., "Model-less feedback control for soft manipulators," in Intelligent Robots and 
Systems (IROS), 2017 IEEE/RSJ International Conference on, 2017: IEEE, pp. 2916-2922.  

[21] K.-H. Lee et al., "Nonparametric Online Learning Control for Soft Continuum Robot: An 
Enabling Technique for Effective Endoscopic Navigation," Soft robotics, vol. 4, no. 4, pp. 
324-337, 2017. 

[22] M. Li, R. Kang, D. T. Branson, and J. S. Dai, "Model-free control for continuum robots based 
on an adaptive Kalman filter," IEEE/ASME Trans. Mechatron, vol. 23, no. 1, pp. 286-297, 
2018. 

[23] A. Melingui, O. Lakhal, B. Daachi, J. B. Mbede, and R. Merzouki, "Adaptive neural network 
control of a compact bionic handling arm," IEEE/ASME Transactions on Mechatronics, vol. 
20, no. 6, pp. 2862-2875, 2015. 

[24] T. George Thuruthel, E. Falotico, M. Manti, A. Pratesi, M. Cianchetti, and C. Laschi, 
"Learning closed loop kinematic controllers for continuum manipulators in unstructured 
environments," Soft robotics, vol. 4, no. 3, pp. 285-296, 2017. 

[25] X. Li, J. Zhang, J. Zhao, G. Zhang, and C. Shi, "A Model-Free Method-Based Shape 
Reconstruction for Cable-Driven Continuum Manipulator Using Artificial Neural Network," 



 

in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 6-8 Dec. 
2019 2019, pp. 1424-1429, doi: 10.1109/ROBIO49542.2019.8961822.  

[26] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, "Control Strategies for Soft 
Robotic Manipulators: A Survey," Soft Robotics, vol. 5, no. 2, pp. 149-163, 2018/04/01 2018, 
doi: 10.1089/soro.2017.0007. 

[27] X. Dong, M. Raffles, S. Cobos-Guzman, D. Axinte, and J. Kell, "A novel continuum robot 
using twin-pivot compliant joints: design, modeling, and validation," Journal of 
Mechanisms and Robotics, vol. 8, no. 2, p. 021010, 2016. 

[28] W. Ba, X. Dong, A. Mohammad, M. Wang, D. Axinte, and A. Norton, "Design and validation 
of a novel fuzzy-logic-based static feedback controller for tendon-driven continuum robots," 
IEEE/ASME Transactions on Mechatronics, 2021. 

[29] R. S. Penning, J. Jung, N. J. Ferrier, and M. R. Zinn, "An evaluation of closed-loop control 
options for continuum manipulators," in 2012 IEEE International Conference on Robotics 
and Automation, 2012: IEEE, pp. 5392-5397.  

[30] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier, "A Study of Vicon System 
Positioning Performance," Sensors, vol. 17, no. 7, doi: 10.3390/s17071591. 

 


	Abstract
	1 Introduction
	2 Control Methodology
	2.1 Analysis of different control schemes
	2.2 Formulation of the novel differential kinematics
	2.3 Construction of the hybrid feedback controller

	3 Experimental Validation
	3.1 Test-rig Setup
	3.2 Experiment I: tip positioning
	a) Comparison of both controllers
	b) Overall positioning performance

	3.3 Experiment II: path tracking

	4 Conclusion
	Acknowledgment
	References

