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PURPOSE. Albinism is a congenital disorder affecting pigmentation levels, structure, and
function of the visual system. The identification of anatomical changes typical for
people with albinism (PWA), such as optic chiasm malformations, could become an
important component of diagnostics. Here, we tested an application of convolutional
neural networks (CNNs) for this purpose.

METHODS. We established and evaluated a CNN, referred to as CHIASM-Net, for the
detection of chiasmal malformations from anatomic magnetic resonance (MR) images
of the brain. CHIASM-Net, composed of encoding and classification modules, was devel-
oped using MR images of controls (n = 1708) and PWA (n = 32). Evaluation involved
8-fold cross validation involving accuracy, precision, recall, and F1-score metrics and was
performed on a subset of controls and PWA samples excluded from the training. In addi-
tion to quantitative metrics, we used Explainable AI (XAI) methods that granted insights
into factors driving the predictions of CHIASM-Net.

RESULTS. The results for the scenario indicated an accuracy of 85 ± 14%, precision
of 90 ± 14% and recall of 81 ± 18%. XAI methods revealed that the predictions of
CHIASM-Net are driven by optic-chiasm white matter and by the optic tracts.

CONCLUSIONS. CHIASM-Net was demonstrated to use relevant regions of the optic chiasm
for albinism detection from magnetic resonance imaging (MRI) brain anatomies. This
indicates the strong potential of CNN-based approaches for visual pathway analysis and
ultimately diagnostics.

Keywords: albinism, optic chiasm, artificial intelligence (AI), neuroimaging, chiasmal
malformations

A lbinism is a rare congenital disorder that affects pigmen-
tation levels,1,2 as well as the development and organi-

zation of human visual system.3 The changes in the visual
system include chiasmal misrouting, that is, enhanced nerve
crossing at the chiasm. The detection of chiasmal misrout-
ing is a relevant criterion for albinism diagnosis, particularly
in individuals with mild or absent skin and hair involve-
ment.4 Currently, optic nerve misrouting at the chiasm is
assessed using visually evoked potentials (VEPs),5,6 which
requires patient cooperation and can be affected by the
degree of visual impairment.6 Recognition of these limita-
tions prompted the development of alternative methods for

a direct, anatomy-based detection of optic nerve misrouting
at the chiasm.7

The first wave of methods for anatomy-based detection
of optic nerve misrouting relied on diffusion magnetic reso-
nance imaging (dMRI),8 which is based on the detection
of the diffusion of water molecules in the tissue. In addi-
tion to quantifying microstructural properties of tissues,9

dMRI can be also used for tractography,10 that is, reconstruc-
tion of neural pathways from the optic nerves to the visual
cortex and beyond.11 Given this utility, dMRI was expected
to capture and indicate an excessive proportion of cross-
ing nerves in the chiasm in people with albinism (PWA), as
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opposed to the normal ratio of 53% in healthy controls.12

Indeed, dMRI captured differences in nerve crossing in the
chiasm between healthy controls and PWA at the group
level,13 and with further improvements, indicated potential
for robust albinism diagnostics at the individual level.14 The
dMRI-based diagnostics, however, are limited by consider-
able data acquisition time (approximately 45 minutes as for
the protocol used by Puzniak et al.14) and demanding data
analysis, restricting its applicability in clinical routine.

In consideration of these limitations of economically
and technically expensive dMRI data, we have previously
used an alternative approach for the detection of chias-
mal misrouting using the clinically prevalent T1-weighted
(T1w) images, which reflects the spatial location of differ-
ent tissue types (e.g. white matter and grey matter).15 The
rationale behind this approach was to leverage on poten-
tial structural abnormalities of the optic chiasm induced by
nerve misrouting. In particular, earlier morphological stud-
ies of the chiasm in PWA revealed that albinism is char-
acterized by reduced width of the optic nerves and the
optic chiasm,16–18 with Schmitz et al. additionally report-
ing wider angles between optic tracts for PWA. The impor-
tance of these features for diagnostics of misrouting in
the chiasm is still unclear, primarily due to (1) conflicting
studies reporting no significant differences in the chiasm’s
morphology between healthy controls and PWA,19 and
(2) the lack of attempts to classify healthy controls and
PWA based on the reported distinguishing chiasm features.
Recently, however, this uncharted area for the detection
of chiasmal malformations from T1w images has been
investigated with a deep learning (DL) approach.15 Specif-
ically, it was demonstrated that a convolutional neural
network (CNN), trained on control data for segmentation
of the chiasm, underperforms when applied to T1w brain
images of PWA. This confirmed that the different struc-
tural configuration of the optic chiasm in healthy controls
versus PWA can be utilized for diagnostics via DL-based
approaches. At the same time, the study did not investi-
gate the specific nature of the features distinguishing normal
from abnormal chiasms, nor did it attempt to use classifier
CNNs to assess the potential of applying DL-based meth-
ods for the detection of chiasmal malformations from T1w
images.

In the present study, we aim to fill this gap by: (a) devel-
oping the first classification CNN to detect the presence
of chiasmal malformations from T1w images, and (b) eval-
uating the CNN’s performance quantitatively and qualita-
tively. The quantitative evaluation involves the assessment
of performance of the established CNN on unseen data of
PWA and healthy controls. Our findings are expected to
provide important insight into the applicability of artificial
intelligence (AI)-methods to the problem of detecting chias-
mal malformations from T1w images. The qualitative evalu-
ation involves the application of a range of Explainable AI
(XAI)20 methods in order to identify the features relevant
for outcome prediction. This type of assessment provides
additional means to validate the established CNN. Further,
it provides valuable insights into the specific anatomic
features that distinguish normal and abnormal chiasms, as
in PWA.

METHODS

For the above objectives, we established a CNN referred to
as CHIASM-Net which uses patches of T1w images, includ-

ing the human optic chiasm for classification as either
normal or albinotic chiasms, depending on the presence of
anatomic malformations typical for albinism. The magnetic
resonance imaging (MRI) data used in the study originate
from publicly available datasets containing T1w images of
healthy controls21–26 and PWA27 as well as a non-public
PWA data set.13 For detailed information on the data and its
pre-processing pipeline, see “Supplement 1: Data sources”
and “Supplement 2: Preprocessing of T1w MRI images.”
The general overview of the development of CHIASM-Net
is provided in the subsection Implementation, with the
detailed information on the identification of the architec-
ture and its training in “Supplement 3: Feature extraction
module” and “Supplement 4: Classification module.” The
methods for evaluation and validation of the established
CHIASM-Net are described in the subsection: Evaluation
metrics.

Implementation

This section describes the primary motivation for the
creation of a custom CNN (design), the architecture of the
outcome CHIASM-Net (architecture), and the segregation of
training and evaluation data (data splits).

Design. To reduce the model size and the impact of
structures other than optic chiasm on the classification
metrics, the CNN was designed to operate on small patches
of T1w images (dimensions: 24 × 24 × 8 mm), encompass-
ing the optic chiasm. The size ensured the optic chiasm
(average width and height of 15.0 mm and 3.5 mm, respec-
tively28) to be completely contained within the patch, even
if subjected to data augmentation and transformations, such
as translation or rotation. The patches were defined with
a combination of techniques (automated, semi-automated,
and manual), with each patch receiving a subsequent direct
check to ensure a full coverage of the chiasm (see “Supple-
ment 2: Preprocessing of T1w MRI images”). The small input
size prevented us from using well-established CNN architec-
tures, designed typically for medical images of larger dimen-
sions. Accordingly, we designed a custom CNN (CHIASM-
Net) governed by the classical structure and rules of classi-
fying CNNs.

Architecture. CHIASM-Net comprises of two main
components. The first one, the feature extraction module,
encodes (extracts) the relevant features of the original input
and outputs them for further processing. The second compo-
nent, the classification module, digests the encoding and
based on it assigns a score between 0 and 1 (with 0
indicating control and 1 indicating PWA). Supplementary
Table S2 provides a detailed overview of the CHIASM-
Net architecture. “Supplement 3: Feature extraction module”
and “Supplement 4: Classification module” describes the
optimization-analyses in the design of CHIASM-Net. The
results of those analyses and their consequences for the
architecture are presented respectively in “Supplement 6:
Results for feature extraction module” and “Supplement 7:
Results for classification module.”

Data Splits. The details on data splits and training of
feature extraction module are provided in “Supplement 3:
Feature extraction module.” For the training and evaluation
of the classification module of the CHIASM-Net, we split the
data into 2 groups for training: (1) the TRAIN group and
(2) the DEV_TRAIN group, and 2 groups for evaluation: (1)
the TEST1 and (2) the TEST2, which were used in 2 distinct
scenarios, respectively.
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1. The TRAIN data (1274 controls and 23 PWA; Supple-
mentary Table S3) were used exclusively for train-
ing of weights of the classification layer. Importantly,
due to a high-class imbalance (i.e. unequal number
of control and PWA samples), the samples from
the minority dataset (PWA) in the TRAIN data were
upsampled by a matching factor (approximately 55)
to balance the two existing classes, which allows for
stable training.

2. The DEV_TRAIN (216 controls and 4 PWA) data were
used to monitor the performance of the network over
training and ultimately select the best set of weights
for the classification layer. Similar to the TRAIN data,
the DEV_TRAIN data was upsampled by an appropri-
ate factor to prevent bias introduced by a class imbal-
ance.

3. The TEST1 (4 controls and 4 PWA) contained an equal
number of samples for controls and PWA (with 3
samples in each group coming from the Ather et al.
dataset and remaining one from the CHIASM dataset).
This allowed for the evaluation of the network’s
performance on a balanced set of data excluded from
training, although acquired from the same source as
the training data.

4. The TEST2 (214 controls and 1 PWA) sample emulated
the real-life scenario. Although we were not able to
simulate the true proportions of albinism to controls
(approximately between 1:14000 and 1:200004,29), we
used a single PWA sample from the CHIASM dataset
and remaining samples (not involved in training) from
all control datasets to obtain a proportion of 1:214. It
should be noted that, due to the presence of only a
single albinism sample, the results for TEST2 cannot
provide a meaningful validation of performance. At
the same time, however, a weak performance on
TEST2 sample, for example, due to high number of
false positive results, would indicate critical shortcom-
ing of proposed approach. For this reason, we decided
to include the test on 214 controls and single PWA in
the analysis.

The above-described data splits were used exclusively for
training of the classification module and are fundamentally
different from those used for training of the feature extrac-
tion module. Importantly, although both modules were
trained on the images of the same individuals, we modi-
fied the input images to prevent data leakage. Specifically,
the training of the feature extraction module was performed
on the images with the exclusion of the optic chiasm,
whereas classification was trained on extracted patches with
optic chiasm only. For more details on differences between
training data for both modules refer to “Supplement 3:
Feature extraction module” and “Supplement 4: Classifica-
tion module.”

Importantly, training and evaluation of the CHIASM-Net
with above defined splits (TRAIN, DEV_TRAIN, TEST1, and
TEST2) was repeated eight times, as we used an eight-fold
validation approach to obtain more robust performance esti-
mates. Specifically, the samples (both controls and PWA)
from each dataset were divided into eight equal subsets
(except for the CHIASM, which was divided as 9 subsets).
Out of those:

• six subsets from each dataset were included in the
TRAIN group (resulting in 1274 controls and 23 PWA,
as described in (1));

• one subset from each dataset was included in the
DEV_TRAIN group (resulting in 216 controls and
4 PWA, as described in (2));

• TEST1 group included the remaining one subset from
Ather et al. and one out of two remaining subsets
for CHIASM (resulting in 4 controls and 4 PWA, as
described in (3));

• TEST2 group included the remaining subset of CHIASM
and a remaining single subset from all other datasets
(resulting in 216 controls and 1 PWA, as described in
(4)).

The selection of k = 8 for k-fold validation was moti-
vated by finding a trade-off between the training sample
size (essential due to high variability of optic chiasm malfor-
mations in albinism) and the testing set sample size that is
sufficient for meaningful conclusions. With eight-fold valida-
tion, we effectively used 87.5% of data for training (75% for
training and 12.5% for training validation) and the remain-
ing 12.5% for testing. The whole procedure being repeated
eight times, enhanced the statistical power calculated across
the folds.

Subsequently, we performed the training with TRAIN and
DEV_TRAIN groups and evaluated the CHIASM-Net perfor-
mance using the defined TEST1 and TEST2 groups. By
averaging the evaluation metrics from the repetitions, we
gained insight into the general capabilities of the proposed
CHIASM-Net, which is less dependent on one-time selection
of training and test data. For more details on the preparation
of the training data, for example, preprocessing and upsam-
pling steps, refer to “Supplement 4: Classification module.”

Evaluation Metrics

In the presented study, the evaluations were performed
at two separate stages. The first stage involved testing a
range of autoencoders for creating a feature extraction
module. Because the description of the development of this
module is provided entirely in the supplementary mate-
rial, we provide the description of applied metrics in the
supplement also (“Supplement 5: Evaluation of the feature
extraction module”). The second stage involved the evalua-
tion of the trained classification module. This corresponds to
the evaluation of the full network and provides meaningful
performance estimates for the established CHIASM-Net. We
used two distinct approaches:

Quantitative Metrics. The quality of the network
predictions was described by a range of quantitative metrics
that are standardly used for evaluation of machine learning
classifiers. Specifically, given the true positives (TPs), false
positives (FPs; type I error), false negatives (FNs; type II
error), and true negatives (TNs), they are defined as:

Accuracy = T P + T N
T P + FP + FN + TN

Precision = T P
T P + FP

Recall or Sensitivity = T P
T P + FN

F1 = 2
1

Recall + 1
Precision

= 2 · T P
2 · T P + FP + FN

(1)

Explainable AI Methods. Importantly, an applied
CNN-model can show a strong quantitative performance,
although it may not be directly driven by the physiolog-
ically plausible and relevant data features, but instead by
factors that indirectly or by chance correlate with the rele-
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vant features. The resulting model would be error-prone
and consequently of no relevance for applications in medi-
cal imaging. Therefore, whereas positive quantitative metrics
are indispensable, they must be corroborated by feature-
identification methods. For this purpose, we applied XAI
methods to understand whether the predictions are indeed
driven by optic chiasm structure, or other factors present
in the image. For instance, intensity of neighboring blood
vessels might indirectly indicate presence of malforma-
tions. We used a range of XAI method provided by the
Captum library,30 specifically: saliency maps,31 DeepLIFT,32

and Occlusion.33

Supplementary Material. For detailed information
see Supplementary Material.34–57

RESULTS

The results in this section present the evaluation outcome of
the fully trained CHIASM-Net.

Quantitative Metrics

We evaluated the CHIASM-Net performance on two separate
testing datasets, TEST1 and TEST2 (see the Methods section).
TEST1 comprised an equal number of images of healthy
controls and PWA, whereas TEST2 comprised 214 images
of healthy controls and a single image of PWA. The evalua-
tion of TEST1 and TEST2 was repeated 8 times for different
combinations of training and testing data (8-fold validation).
The quantitative metrics, expressed by area under receiver
operator characteristic (AUROC), accuracy, precision, and
recall, were obtained by taking the average from all eight
folds (see Supplementary Fig. S3), and the optimal decision
threshold (maximizing the difference between the true posi-
tive and false positive rates) was separately calculated for
each fold.

For the TEST1 group, we report a good performance of
CHIASM-Net with an overall accuracy of 85 ± 14 % (Table 1).
The comparatively large standard deviation is presumably
attributed to a lower performance in two out of eight folds
(see Supplementary Fig. S3).

When expressing the results obtained for TEST1
(composed of 4 healthy controls and 4 PWA) as a confu-
sion matrix (Table 2) we observed on average 3.125 TPs
(PWA samples assigned as PWA; 0 corresponds to worst
performance, and 4 to best), 3.125 TNs (controls classified
as controls), 0.375 FPs (controls classified as PWA), and 0.75
FNs (PWA classified as controls).

The main drawback of the estimations based on the
TEST1 sample is the balance of classes (healthy controls
and PWA), which is not representative of real-world scenar-
ios. For this reason, we additionally evaluated the model’s

TABLE 1. CHIASM-Net Performance on the TEST1 and TEST2 Data
(Averaged Across All Folds)

CNN With Fine-Tuned Classifier

TEST1 TEST2

Mean, % Standard Dev., % Mean, % Standard Dev., %

Accuracy 85 14 100 1
Precision 90 14 84 31
Recall 81 18 100 0
F1-score 85 14 88 25

TABLE 2. Average of Confusion Matrices For CHIASM-Net Results
on TEST1 and TEST2 Data

Prediction

TEST1 TEST2

Control Albinism Control Albinism

True Control 3.125 0.375 209.4 0.6
Albinism 0.75 3.125 0.0 1.0

performance on a second sample TEST2 with the highest
class imbalance of 1:≈214 (PWA versus controls, respec-
tively) that could be created with the available data. It is
essential to keep in mind that (a) this experiment is a mere
approximation of the actual rarity of albinism (approxi-
mately between 1:14000 and 1:20000) and (b) its purpose
is to attempt to falsify rather than verify the model’s perfor-
mance. In this experiment, the CHIASM-Net achieved perfect
recall of 100 ± 0% and precision of 84 ± 31%. Because
the measured accuracy of 100 ± 1% is biased due to large
number of false samples, the overall performance of the
model is better expressed with F1-score, equal to 88 ±
25% (see Table 1). When analyzing the confusion matrix
(see Table 2) we observed an average of 209.4 TPs with
an average of 0.6 FPs, and an ideal average of 1.0 TN
with 0.0 FNs.

Explanation of Predictions With XAI

In this section, we report the qualitative findings from our
investigation to determine whether the network’s predic-
tions are driven by apprehensible properties of input (for
e.g. voxels belonging to optic chiasm rather than blood
vessels).

Comparison of Averaged Images for Both
Healthy Controls and PWA. Before inspecting the deci-
sion making process behind CHIASM-Net’s predictions, we
first analyzed the general properties of the input. For this
purpose, we calculated two averaged input images for both
classes (healthy controls and PWA) and computed the differ-
ence between them (Fig. 1). Visual inspection of the average
image “control – PWA” revealed higher intensities of voxels
on the lateral parts of the chiasm and optic tracts. In contrast,
for “PWA – control” the highest voxel intensity values were
observed in the central parts of the optic chiasm and the
medial parts of the optic nerves.

Features of Averaged Images That Drive CNN
Predictions. In the next step, we performed an experi-
ment where we provided the averaged images of controls
and albinism as the input to CHIASM-Net. Subsequently, we
applied several XAI methods to identify which parts of the
input most contribute to the outcome score (Fig. 2).

All methods consistently indicated that high values in the
central part of the image (which corresponds to the center
of optic chiasm) positively contribute to the prediction of
albinism (see Fig. 2). At the same time, higher intensities
in the outer parts of the chiasm negatively contributed to
the prediction of albinism, thus positively contribute to the
prediction of control (see Fig. 2). This matches the patterns
present in the training data, as shown in Figure 1.

Specified Input. Finally, we applied XAI methods to
inspect individual images from the TEST1 group. For this
purpose, we chose fold six, as it demonstrated both high
accuracy and stability. From the TEST1 group, we selected
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FIGURE 1. Differences between averaged images of controls and albinism from the TRAIN dataset from the fold 5. (A) Slices from
averaged images of controls. (B) Binary mask of voxels (intensity threshold: <0.75) from the averaged control image. (C) Difference between
averaged control and albinism images masked by the binarized image B. (D) Difference between averaged control and albinism images.
(E) Difference between averaged albinism and controls images masked by the binarized image F (note the inverted intensity as compared
to columns C and D). (F) Binary mask of voxels (intensity threshold: <0.6) from the averaged albinism image. (G) Averaged albinism
images. All presented images use fixed heatmap with constant range of values. Images for albinism demonstrate higher intensity in the
central parts of chiasm (blue arrows) as compared to healthy controls (column E), which indicates a more compact structure. In contrast,
controls show higher intensities on the lateral parts of optic tracts and the chiasm (red arrows), which indicates an increased width of the
latter (column C).

2 representative samples, one per class, which entered the
inspection of the prediction process using the occlusion
method.

The results are depicted in Figure 3, where the most
relevant areas are false color-coded with warm colors, that
is, maximally red. In the case of the controls, the regions
driving the prediction of “control” are the superior (dorsal)
parts of the optic chiasm body and the optic tracts. For
albinism, the most relevant region for the prediction of
“albinism” is the body of the optic chiasm, although the attri-
butions map also highlights optic nerves and tracts.

DISCUSSION

We have demonstrated the applicability of CNNs for the
direct detection of chiasmal malformations from anatomic
MRI scans in PWA. Here, we will be discussing three
essential questions for the tested methods: (i) compari-
son of performance of the proposed method to alternative
diagnostic procedures, (ii) reliability of the predictions of
the proposed CNN (CHIASM-Net), and (iii) applicability of
the method in modern clinical environments. A supple-
mentary discussion of specific study results is provided
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FIGURE 2. Inspection of predicting process of CHIASM-Net using image of averaged controls (A) and albinism (B). The first column
demonstrates subsequent averaged slices of control (A) and albinism (B), from inferior to superior slice. The following three columns
indicate the regions of input driving the predictions, as assessed with, from left to right, saliency maps, DeepLIFT, and Occlusion methods.
For “Saliency maps” and “DeepLIFT” hot colors mark areas where high voxel intensities positively contribute to the prediction of albinism.
In the case of “Occlusion,” warmer colors indicate areas that contribute strongly to the outcome predictions. It should be noted that panels
(A) and (B) use different value ranges. All XAI methods consistently indicate that higher intensities of central voxels of the optic chiasm
positively contribute to the prediction of albinism (red arrows), whereas the higher intensity in the lateral parts of the optic chiasm has the
opposite effect (blue arrows).

in “Supplement 8: Detailed discussion of CHIASM-Net’s
performance.”

Comparison to Alternative Procedures to Detect
Optic Chiasm Abnormalities

An important aspect of the evaluation of each method is
its comparison to other approaches. In this case, it implies
the exploration of alternative methods of detecting chiasmal
malformations from brain images in the absence of func-
tional testing. At present, the only method applied for
this purpose involves highly time-consuming diffusion MRI
measurements, which requires specific MRI and computa-
tional methods. In a pioneering study, Ather et al.13 reported
an accuracy of detection of albinism at 75%, which, as

concluded by the authors, was below the necessary mini-
mum for clinical application. This approach was revisited by
Puzniak et al.,14 who also reported an area under the char-
acteristic curve (AUC) of 75%. The results were, however,
encumbered by the small sample size (a common problem
in the research of rare congenital diseases, such as albinism).
Notably, due to limited sample size, the provided estimates
of accuracy were obtained for the same data on which the
model was trained, and as such does not reveal the true
performance of the method.

Unlike diffusion MRI data, anatomic MRI data (T1w
anatomic images) are more readily acquirable and avail-
able in a clinical environment. Very few studies have so far
made use of anatomical features for a quantitative compar-
ison of the optic chiasm in PWA and controls.16–19 Apply-
ing standard techniques, group differences are reported, but
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FIGURE 3. Explanation of predictions for selected control and PWA
input with occlusion method (fold 6, TEST1). (A) Sample control
image. (B) Sample albinism image. Each panel in the left column
demonstrates subsequent slices of T1w image, from inferior to supe-
rior. The right hand-column presents the attributions map obtained
with occlusion approach. Warmer colors mark areas that mostly
contribute to predictions. The predictions are driven by the areas
containing the white matter which correspond to the optic chiasm
and optic tracts.

did not assess individualized detection of albinism for diag-
nostic purposes. In contrast, a recent study employing a
DL-based approach15 provided proof-of-concept for such an
approach which motivated the present study. Specifically, it
was demonstrated that U-Net CNN trained on control data for
segmentation of optic chiasm performs in a different manner
for PWA and healthy controls. This was demonstrated by
errors in segmentation of the optic chiasm in PWA, which
were not evident for controls. The separability of data points
representing correctness of segmentation was measured by
fitting and evaluating performance of a C-support vector
machine on the same set of data. Importantly, although this
step used machine learning methodology, its only purpose
was to quantify the separability. The reported metrics with
accuracy of 0.84, precision of 0.82, recall of 0.9, and speci-
ficity of 0.7815 indicate that, although majority of data points
can be well grouped, there is a portion of borderline cases

which might be assigned to the wrong group. Whereas we
are not able to falsify/verify that hypothesis, we note that
the classification error reported in the present study is in
a similar range to the one described in the above study.
Until further research is performed, we can only speculate
whether it might be the variability of chiasma malformations
that limits the classification.

In summary, we note that the CHIASM-Net’s performance
in detecting chiasmal malformations surpasses the previous
alternative approaches from anatomic images, that is, analyz-
ing T1-anatomy-based chiasm geometry16,18 and diffusion-
weighted MRI of the chiasm.13,14 Given that a larger albinism
sample size will further improve CHIASM-Net’s performance,
we conclude that the CHIASM-Net-based approach of the
present study is of promise for future applications.

Reliability of the Predictions

The applicability of a deep neural network in a clinical envi-
ronment is determined not only by an acceptable quanti-
tative performance. Critically, it is also determined by the
evidence of the involvement of physiologically meaning-
ful input features behind the prediction outcome. In the
case of detecting chiasmal malformations, the relevant input
features would be limited to white matter voxels of the
optic chiasm.16 Inclusion of voxels outside the chiasm, for
example, blood vessels or surrounding tissue, would indi-
cate usage of unreliable features and, consequently, non-
trustworthy predictions. Specifically for the chiasm, Schmitz
et al.16 reported that the albinotic chiasm is thinner and
that the angles between the optic tracts are wider. To verify
whether these are the characteristics of the relevant input
provided for training and evaluation, we averaged input
images and calculated their difference. Interestingly, the
visualization of residuals showed close resemblance to the
images from the previous report Schmitz et al.16 Specifi-
cally, we observed higher white matter density in the lateral
parts of the optic tracts in controls, whereas in albinism the
medial parts were more expressed. This is in accordance
with the previously reported changes in the angles of optic
tracts reported previously. Additionally, we observed higher
intensity of the voxels in the body of optic chiasm, indica-
tive of higher density due to its smaller diameter and an
increased crossing. We take this specificity of our findings
as an indication that CHIASM-Net’s predictions are phys-
iologically plausible, as they are dominated by the previ-
ously reported anatomical optic chiasm deviations between
albinism and controls.

Clinical Applicability

Our CNN-based method to detect optic nerve misrouting in
albinism with T1w anatomic MRI scans carry several advan-
tages compared to other MRI-based approaches, as in dMRI
or functional MRI (fMRI). These benefits include: (1) shorter
acquisition times (approximately 10 minutes) with standard
protocols, (2) easier applicability in patients with visual func-
tion deficits, (3) data availability, as the method can be
applied on T1w images acquired for a different primary
reason, and (4) fully automated computations with faster
predictions and very little involvement of human factor
except for final assessment and verification of the results.
In addition to these factors, the findings from our study
emphasize the ever-increasing feasibility and practicability
of CNN-based methods for clinical diagnostics.
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Limitations

A large quantity of qualitative data is critical for the devel-
opment and performance of data-driven DL-based methods.
This requirement is a particular challenge in rare diseases,
such as albinism. In order to deal with this issue of data
scarcity, we combined data from our past work27 with those
from an independent study,13 to obtain the biggest MRI
dataset on albinism used in the so-far reported studies.
Despite this achievement, we note that MRI volumes from
32 PWA is insufficient for thorough training and testing
of CHIASM-Net in order to detect chiasmal malformations.
Although this limitation was to some extent mitigated by
our experimental design (e.g. performing training on widely
accessible MRI scans of controls and subsequently fine-
tuning the created network with smaller sample), we note
that ultimately this problem can be resolved only by the
acquisition of more MRI data on albinism and ideally sharing
it with the wider scientific community. Additionally, when
training neural networks, in particular in conjunction with
the low size of input patches, it is necessary to consider
overfitting as a potential confound. To mitigate this risk, we
have used several steps, at the level of both architecture and
training design. Finally, we have confirmed the lack of over-
fitting by analyzing the recorded learning curves. A detailed
discussion on specific steps and analysis of learning curves
is provided in the supplementary materials (Supplement 9:
Overfitting).

CONCLUSIONS

In this study, we developed a novel AI tool, CHIASM-Net,
to detect chiasmal abnormalities from T1w MRI scans and
evaluated its performance with a classifier metric. The neural
network relied on physiologically plausible input features in
the decision making process and resulted in a high perfor-
mance in classifying normal and albinotic chiasms. The
present study is intended to introduce an AI-based tool for
albinism diagnostics from anatomic images and to motivate
further applications in optic chiasm diagnostics. Notably, this
approach for albinism detection might also be retrospec-
tively applied to brain anatomic T1w MR images acquired
in the past for different purposes.
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