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H I G H L I G H T S  

• Background data in local scale air quality models represent regional PM2.5. 

• Accounting for wind direction in models improves background estimates. 
• Proximate sources close to monitoring sites influence model verification. 
• Improved model outputs will aid assessment of acute and long-term health impacts.  
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A B S T R A C T   

Atmospheric dispersion models are widely applied to simulate pollutant concentrations such as PM2.5 for use in 
long- and short-term health studies. A significant proportion of PM2.5 originates outside urban areas in which 
many people live. It is important to reflect this ‘background’ component in the modelling process in order to 
provide an accurate representation of the total pollution load experienced by human populations. To be credible, 
model outputs must be verified against available monitoring data, which, in the case of PM2.5, may be limited to 
a small number of monitoring sites across a large urban area. Here we evaluate four different approaches to 
representing background PM2.5 in an atmospheric dispersion model (ADMS-Urban) for Nottingham, UK. A 
directional approach, based on multiple urban background monitoring sites located outside the study area 
provides the most robust estimates. Our adopted approach allows us to model both short- and long-term air 
quality conditions, whilst accounting for local- and regional-scale variations in the pollution burden, and will 
ultimately enable us to assess short- and long-term effects of air pollution on health.   

1. Introduction 

Particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) 
is associated with many adverse health impacts including cardiovascu
lar, respiratory, and neurological diseases (Anderson et al., 2013; Samoli 
et al., 2016; Shi et al., 2020; Southerland et al., 2022). There is no ev
idence of a threshold below which no adverse health effects occur, nor 
evidence of a safe level of exposure to PM2.5 (Wei et al., 2019; World 
Health Organization (WHO), 2013; 2021). The current health based UK 
annual Air Quality standard is 20 μg/m3, with a target figure for England 
of 10 μg/m3 by 2040 (The Environmental Targets Fine Particulate 
Matter England Regulations, 2023). The recently updated WHO annual 
air quality guideline for PM2.5 is 5 μg/m3 (WHO, 2021). 

PM2.5 can be a primary or secondary pollutant. Major sources of 
primary PM2.5 in the UK include exhaust emissions, non-exhaust emis
sions such as road, tyre and brake wear, and emissions from industrial 
processes and industrial and domestic combustion (Department for 
Environment, Food and Rural Affairs (Defra), 2023a; McDuffie et al., 
2021). However, a significant proportion (41%–72%) of PM2.5 in the UK 
is believed to be secondary, caused by chemical reactions in the atmo
sphere (Harrison et al., 2012; Yin et al., 2010). PM2.5 can travel long 
distances in air masses, meaning long-range transport, particularly from 
mainland Europe, can make a large contribution to the PM2.5 load in the 
UK (Graham et al., 2020). 

Ambient PM2.5 concentrations should be regularly reviewed against 
legislative limits and to assess the effectiveness of interventions to 
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reduce PM2.5 (Forehead et al., 2020). However, PM2.5 is only measured 
at 92 out of the 171 Automatic Urban and Rural Network (AURN) 
monitoring sites across the UK, far fewer than for other pollutants such 
as NO2, which is measured at 145 AURN monitoring sites (Defra, 
2022a). Monitoring and personnel costs, along with previous regulatory 
focus placed on other pollutants, e.g., NO2 and SO2, may contribute to 
the lack of PM2.5 monitors in the AURN (Defra, 2022b; Giordano et al., 
2021). Local authorities may also conduct limited PM2.5 monitoring, but 
focus mainly on NO2 via the use of passive diffusion tubes (PDT) (Broday 
et al., 2017; Kumar et al., 2015; Sun et al., 2019). PDTs offer a coarse 
temporal resolution of NO2 concentrations; however, they are useful for 
assessing spatial variability in concentrations (Nash and Leith, 2010). 

Previously there has been a focus on monitoring PM2.5 in ‘hot spots’ 
e.g., close to busy roads, due to associations between short-term peaks in 
PM2.5 and adverse health effects (Harrison et al., 2012). Research has 
also demonstrated the health risks of long-term exposure to fine parti
cles, but monitoring has not increased based on this understanding 
(Southerland et al., 2022). In the absence of monitoring, air pollution 
models can be used to generate PM2.5 estimates across a range of spatial 
scales. Local-scale models can generate high resolution estimates of 
PM2.5 across a city, which can then be used in decision making for air 
quality interventions and health impact assessments (Ortiz and Frie
drich, 2013). 

Annual mean modelled concentrations are typically used to assess 
relationships between long-term health and air pollution across city 
scales (Huang et al., 2017). However, models can also be used to 
simulate air pollution episodes, which are known to link to acute 
adverse health impacts (Bell et al., 2013). In the UK, these episodes 
typically occur at regional scales, dominated by background PM2.5 from 
mainland Europe and other conurbations upwind of the study area, with 
local emissions ‘topping-up’ concentrations, resulting in 
higher-than-average PM2.5 concentrations and more extreme exceed
ances of air quality thresholds (Graham et al., 2020). 

Background concentrations are used in local-scale dispersion models 
to characterise the contribution of pollution sources not considered 
explicitly in the model run (Tchepel et al., 2010). They are combined 
with concentrations originating from local sources to estimate total 
concentrations at the models chosen receptor sites. Background con
centrations are important for both long- and short-term studies as they 
can be a major source of error (Tchepel et al., 2010), so estimates must 
be as reliable as possible. 

There are many ways in which background concentrations can be 
estimated and incorporated within a local atmospheric dispersion 
model. For example, rural AURN sites can provide an indication of 
transboundary PM2.5 contributions, while urban AURN sites also cap
ture additional local contributions. To provide a more dynamic repre
sentation of background concentrations, local scale dispersion models 
can also be coupled with regional scale models (Kadaverugu et al., 2019; 
Zhong et al., 2022). It is essential to get the background and local pro
portions accurate in local-scale air quality modelling so that double 
counting of sources can be avoided and local sources can be targeted for 
management (Ortiz and Friedrich, 2013). 

Previous UK studies have used gridded background annual mean 
concentrations of PM2.5 on a 1-km x 1-km resolution generated using the 
Pollution Climate Mapping (PCM) model (Defra, 2018a) (e.g. Singh 
et al., 2013, 2019). To introduce temporal variability into the back
ground dataset, Singh et al. (2019) used urban background monitoring 
data, representative of the model domain. Khreis et al. (2018) also used 
gridded background concentrations from the PCM to account for NOx 
concentrations from non-road sources in Bradford, UK. 

Background concentrations represented by data from a single 
monitoring site have been used in studies conducted at varying scales, 

for example, to assess intra-urban variability of PM2.5 concentrations in 
Pittsburgh, USA (Michanowicz et al., 2016) and smaller scale studies 
determining agricultural emissions in Ohio, USA (Hadlocon et al., 
2015). In Lithuania, Dėdelė and Mǐskinytė (2018) used a single moni
toring site to derive an annual average background concentration for 
their atmospheric dispersion model. 

Rittner et al. (2020) used a combination of urban and rural back
ground monitoring sites as background concentrations in an atmo
spheric dispersion model to determine particle concentrations (PM10, 
PM2.5) in Sweden. Zhong et al. (2021) derived background PM2.5 con
centrations for their atmospheric dispersion model from hourly PM2.5 
recorded at rural background AURN sites, which they then scaled using a 
ratio of the annual average background concentration in rural areas 
bordering the model domain (West Midlands, UK) generated by the PCM 
(Defra, 2018a). In Beijing, China, Biggart et al. (2020) used three sites to 
the northwest, northeast and southeast of urban Beijing to represent 
background PM2.5 and PM10 concentrations when modelling street-scale 
air quality. 

Regional scale air quality models have also been coupled with urban 
scale atmospheric dispersion models to provide background concentra
tions. When estimating NOx, NO2 and O3 in London, Beevers et al. 
(2012) found that coupled models yielded reasonable agreement with 
measurements, although there were some issues with double counting of 
emissions. In their study of Paris, France, Lugon et al. (2020) found that 
their regional models underestimated NO and NO2 concentrations at a 
local level, but this improved when coupled with a local scale model. 

In order to test model input parameters and assumptions about 
background concentrations, it is necessary to verify model outputs with 
monitored data (Defra, 2018b). This highlights the need for monitoring 
locations for PM2.5 to be as representative of an area as possible. Pre
vious studies have demonstrated the importance of using fine temporal 
resolution monitoring data to identify sources and PM components. 
Ferranti et al. (2008) recorded PM10 concentrations in a remote location 
in northwest England and were able to classify high concentration PM10 
events by start time, duration, wind direction and particle size charac
teristics, resulting in the identification of an unregulated burn site. On a 
wider scale, Malley et al. (2016) used air mass trajectory data combined 
with measurements from monitoring sites, measuring PM in southeast 
Scotland and southeast England, to identify the contributions from 
different PM components. Conducting model verification can, however, 
be challenging when there are a small number of sites within the model 
domain that measure PM2.5, and they have missing or poor quality data, 
for example, where monitored data are affected by sources that are not 
representative of the study area. 

The aim of our larger study is to use an air pollution model (ADMS- 
Urban) to generate long- and short-term outputs for the city of Not
tingham, UK, for use in long- and short-term health studies. Prior to 
doing this, however, we need to test whether the model is performing 
well for our chosen study area. This paper describes how we set up and 
validated our model by: a) exploring different approaches for creating 
background datasets to determine the most suitable regional back
ground PM2.5 to include in the model; b) scrutinising current monitoring 
data and ensuring it is suitable for model verification and c) evaluating 
model performance spatially and temporally across the city against data 
from automatic and non-automatic monitoring sites. Advantages and 
disadvantages of each modelling approach are also discussed. 

2. Methods 

2.1. Study area 

Nottingham is situated in the East Midlands region of England, UK. 
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The Nottingham City Council (NCC) area is located in the centre of the 
Nottingham urban area, which extends into the surrounding boroughs of 
Ashfield, Gedling, Rushcliffe and Broxtowe. The study area for the 
purposes of this research covers areas within the NCC boundary (Fig. 1) 
and all model runs and validation were carried out for this area. The City 
of Nottingham is typical of larger urban areas in the UK, with a total 
population of 323,700 (2021 Census) (Nottingham City Council, 2023). 
This is important as 35.9% of the UK population live in major urban 
conurbations and there has been a 16% growth in population in cities 
since 2001 (to mid-2019) (Defra, 2021; Government Office for Science, 
2021). 

Evidence suggests regional background concentrations of PM2.5 
make up a considerable amount of PM2.5 mass in urban areas of the UK 
(Air Quality Expert Group (AQEG), 2012). AQEG (2012) have suggested 
that approximately 60% of PM2.5 mass recorded at urban background 
monitoring sites in central England are made up of secondary PM2.5. 
NCC (2018) suggest Nottingham experiences regional background PM2.5 
pollution from other conurbations and sources, for example, the West 
Midlands conurbation and agricultural sources outside of the City’s 
boundary. 

In the City of Nottingham, there is one urban background AURN site 
that measures PM2.5, PM10 and NO2 (City Centre), and one roadside site 
that measures PM10 and NO2 only (Western Boulevard) (Fig. 1). In line 
with the objectives of the AURN, these sites were established to assess 
compliance with the Ambient Air Quality Directives and associated air 
quality standards and measure reduction of pollutants over time. NCC 
also run a PDT network to monitor NO2 concentrations at roadside lo
cations (Fig. 1). One PM2.5 monitoring site is unlikely to be represen
tative for a population of >300,000 residents and therefore unlikely to 
be useful without additional data for air pollution – health assessments 
(Baca-López et al., 2021; Su et al., 2022). As PM2.5 monitoring is sparse 
in this city, we must apply atmospheric dispersion models to provide 
high resolution estimates of PM2.5 concentrations across Nottingham. 

2.2. ADMS-urban atmospheric dispersion model 

ADMS-Urban is a quasi-Gaussian plume dispersion model able to 
model pollution from sources with point, line, area, or volume geometry. 
It can model air quality across a range of spatial (street-scale, urban- 
scale, and even larger scales when coupled with a regional model 
(Zhong et al., 2022)) and temporal scales (short- and long-term average 
pollutant concentrations). 

ADMS-Urban requires a number of input data files to produce air 
pollution estimates, including point sources, traffic count and compo
sition data to model road sources explicitly, emissions data to input as a 
grid (for sources not explicitly modelled), meteorological data and 
background air pollution concentration data. Hourly meteorological 
data, including wind speed, wind direction, cloud cover and tempera
ture data are used to drive dispersion calculations (Di Nicola et al., 2022; 
Zhong et al., 2021). Values representing background concentrations can 
be entered as either annual or hourly values (see section 2.4). 

We adopted a reference year of 2019 for our modelling studies 
because this was the only year for which traffic data were available to us. 
This was also the last year before the COVID-19 pandemic, hence pre
dates any changes in activity (e.g., commuting) caused as a consequence 
of national lockdowns. Annual PM2.5 and NO2 concentrations recorded 
at the City Centre AURN site between 2008 and 2019 are shown in 
Fig. S1. These data indicate that annual PM2.5 concentrations at this 
urban background site are below the UK Air Quality Standard, but often 
exceed the more recent Environmental Target for England. 

2.3. Model set-up 

Hourly sequential meteorological data for 2019 were inputted into 
ADMS-Urban version 5.0. This included wind speed, wind direction, 
cloud cover and temperature data from Watnall weather station located 
6 km northwest of the city (Fig. 1) (Centre for Environmental Data 
Analysis (CEDA), 2019). A single, fixed value was used to represent 
relative humidity. 

Major roads within the Nottingham City boundary were modelled 
explicitly using daily average traffic count and vehicle composition data 
for individual road links supplied by NCC (Fig. 1). The UK Emissions 
Factor Toolkit (EFT) v10.1 was used to calculate road traffic emissions; 
this was the most current version at the time of modelling (Defra, 2020). 
Emissions were scaled depending on traffic flow by a local time-varying 
emissions factor, this drives diurnal variations on weekdays and lower 
concentrations on Saturdays and Sundays. This factor was calculated 
using traffic count data supplied by NCC. 

All other emissions, including minor roads, were inputted into 
ADMS-Urban as 1-km x 1-km resolution emissions grids (Gulliver et al., 

Fig. 1. Location of the Nottingham Urban Area within the UK, locations of 
administrative districts within the Nottingham Urban Area, the Nottingham 
City Boundary, AURN and PDT monitoring locations in Nottingham used for 
model verification, location of Watnall meteorological station, and the roads 
modelled in ADMS-Urban. 
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Fig. 2. Background AURN sites used to form background datasets for input into ADMS-Urban. Compass (right) shows 8 × 45◦ wind sectors used in Approach 3. The 
wind rose (left) shows the frequency of wind directions at Watnall and the 12 × 30◦ sectors used in Approach 4. 

E.L. Draper et al.                                                                                                                                                                                                                                



Atmospheric Environment 314 (2023) 120107

5

2018; NAEI, 2018). These are estimated annual averages which are 
compiled from a range of statistical datasets including energy, transport, 
pollution inventories and food and farming data (NAEI, 2022). Source 
disaggregation was turned on in ADMS-Urban to avoid duplication of 
sources and the Generic Reaction Set (GRS) Chemical Reaction Scheme 
was used to model photochemical reactions between NO, NOx, O3 and 
VOCs (O’Neill et al., 2021). 

2.4. Determining a suitable background dataset for model input 

ADMS-Urban provides options to incorporate background concen
trations into the modelling process using single fixed values or hourly 
sequential values taken from an appropriate background monitoring 
site. This is important in the case of PM2.5, because ADMS-Urban does 

not simulate any background particulate matter from either primary or 
secondary sources. Here we use hourly sequential background concen
trations of pollutants recorded at monitoring sites outside the modelling 
domain. These background concentrations represent transboundary, 
national, and regional components of PM2.5. It is important to get the 
best possible estimate of the background fraction of PM2.5 concentra
tions to ensure the impact of local sources can be assessed realistically. 

Four different approaches to deriving background concentrations of 
PM2.5 for Nottingham were developed using data from different AURN 
sites in England. These included both rural and urban background sites, 
which were selected based on their relationship to Nottingham as 
determined by wind direction recorded at the nearby Watnall meteo
rological station (Fig. 2). Rural AURN sites, as defined by Defra, should 
be located more than 20 km away from an agglomeration and 5 km from 
other built up areas, whereas urban background AURN sites should be 
representative of a continuously built up area covering a few km2 (Defra, 
2023b). 

Approach 1 used hourly sequential monitored background data from 
Chilbolton, a rural AURN site in southern England. 

Approach 2 used the same hourly data from Chilbolton as Approach 
1, however these data were scaled using fixed annual averages from the 
PCM (Fig. S2). This uplift should ensure that PM2.5 values are more 
representative of background values on the outskirts of Nottingham 
(Zhong et al., 2021). 

Approaches 3 and 4 used hourly sequential monitored background 
data from various urban background AURN sites in the UK, based on 
their locations within either 8 (Approach 3) or 12 (Approach 4) sectors 
from the Watnall wind rose (Fig. 2). If there was more than one site in a 
sector, then the site closer to Nottingham was generally chosen. Where 
there was no site in a particular sector, then the closest site in an adja
cent sector was used (e.g. data from Hull for the 45–90◦ sector in 
Approach 3). Details of the monitoring sites used to represent each 
sector in Approach 3 are given in Table S1. Each approach is summarised 
in Table 1.  

The AURN sites were chosen for a number of reasons. At the time of 
this study, there were only five rural AURN sites that measured hourly 
PM2.5 concentrations. Chilbolton Observatory was selected as it was the 

Table 1 
Approaches to determining background concentrations.  

Approach Description 

Approach 
1 

Hourly sequential background data from a rural AURN site, Chilbolton 
Observatory (southern England), 200 km from Nottingham City Centre 
(Fig. 2). 

Approach 
2 

Hourly sequential background data from a rural AURN site, Chilbolton 
Observatory (Fig. 2), were scaled using fixed annual averages from the 
PCM Model (Defra, 2019). Four values were taken from the PCM 
Model at rural locations within Nottingham but outside the city ( 
Fig. S2). 

Approach 
3 

Hourly sequential background data from urban background AURN 
sites located within each of 8 × 45◦ sectors upwind of Nottingham 
(solid black dots Fig. 2) were used. These were all within a 170 km 
radius of the city. Monitoring sites as listed in Table S1. In calculating 
the background concentrations to be used in ADMS-Urban, 
contributions from each sector were weighted by the frequency of 
wind from that sector (wind rose, Fig. 2) representing air masses from 
each direction (Biggart et al., 2020; O’Neill et al., 2021; Zhong et al., 
2021). 

Approach 
4 

Hourly sequential background data from urban background AURN 
sites located in 12 × 30◦ sectors upwind of Nottingham (solid black 
dots and open dots with cross hatch Fig. 2) were used. These sites were 
within a 200 km radius of the city. Contributions from each sector 
were weighted by the frequency of wind from that sector (wind rose  
Fig. 2).  

Fig. 3a. Time variation plot of PM2.5 concentrations at the City Centre AURN site (2009–2019).  
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Fig. 3b. Time variation plot of NO2 concentrations at the City Centre AURN site (2009–2019).  

Fig. 4. Hot food stall located nearby to the Nottingham City Centre AURN site. Photograph taken: 21/02/2023.  
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closest of these rural AURN sites to Nottingham. Furthermore, the 
Chilbolton AURN site is often upwind of Nottingham as the prevailing 
wind comes from the south west (Fig. 2). The AURN sites located in 
Nottingham were not used to generate background values. It should be 
noted for the purpose of this study, straight-line trajectories have been 
assumed. Median annual concentrations of PM2.5 for the AURN sites 
used in Approach 3 ranged from 4 to 10 μg/m3. 5th percentile concen
trations ranged from 1 to 3 μg/m3. 95th percentile concentrations had a 
much larger range in comparison (20–40 μg/m3) possibly due to above 
average concentrations recorded during PM2.5 episodes. In Approach 3, 
47% of hours in the year used values from two urban background AURN 
sites (Birmingham and Leamington Spa), reflecting the prevailing south- 
westerly wind (Fig. 2; Table S1). 

As stated previously, PM2.5 is only monitored at one urban AURN site 
in the City of Nottingham, whereas NO2 is monitored more extensively, 
including at 55 sites using PDTs (see section 2.1). To get a broader un
derstanding of model performance, specifically its ability to capture 
emissions from road traffic sources, we ran ADMS-Urban to these 55 
sites. For consistency, we used the same rural and urban background 
AURN sites to generate background NO2 concentrations as we did for 
PM2.5, even though there were other AURN sites we could have used for 
NO2 as it is more widely measured, and which might have provided a 
better representation of background NO2. 

2.5. Model verification 

Both AURN sites in Nottingham (Fig. 1) were used to verify model 
performance for each approach to representing background pollutant 
concentrations (Table 1). The openair R package was used to visualise 
and analyse data prior to model verification (Carslaw and Ropkins, 
2012; R Core Team, 2021). This package has been used widely to 
identify sources of air pollution using polar and time variation plots 
(Bodor et al., 2020; Grange et al., 2016; Munir and Mayfield, 2021). 
Here this approach allowed us to identify the influence of a proximate 
source of PM2.5 at the City Centre AURN site. The lunchtime peaks of 
PM2.5 in the time variation plots (Fig. 3a) present a very different tem
poral signature from that of expected local sources, such as nearby 
roads, that typically follow a diurnal pattern of the morning and evening 
rush-hours (Kendrick et al., 2015). As PM2.5 was anomalous, NO2 was 
tested to identify whether similar temporal patterns were seen for this 
pollutant. Fig. 3b shows that there were no differences in temporal 
patterns of NO2 from the expected diurnal patterns. Further investiga
tion into the PM2.5 time series revealed that the cause was a mobile hot 
food outlet contributing much higher emissions to the area adjacent to 
the City Centre AURN site, not typical of the city as a whole (Fig. 4). 
Correspondence with the local authority revealed that the food outlet 
opened in 2015 and operated between the hours of 10:30 and 16:30. Due 
to the influence of the proximate source, data for busy periods 
(11:00–15:00 inclusive, Monday to Sunday), were removed from the 
verification dataset. 

PM2.5 is not monitored at the Western Boulevard AURN site (Fig. 1) 
hence it was estimated by applying a PM2.5:PM10 ratio from the City 
Centre time series once the influence of the hot food stall was removed 
from the dataset. This ratio was calculated for hourly concentrations of 
PM10 and PM2.5 and averaged for the year, giving a value of 0.58, which 
is similar to the ratios reported by Harrison et al. (2012), Munir (2017) 
and Spandana et al. (2021). The value was then applied to the measured 
PM10 values from Western Boulevard to yield estimated PM2.5 values for 
that site. 

Hourly concentrations of PM2.5 modelled using ADMS were subse
quently verified against both hourly monitored PM2.5 concentrations at 
the City Centre AURN site, and hourly estimated PM2.5 concentrations at 
the Western Boulevard AURN site. 

Modelled NO2 was verified using hourly concentrations at the City 
Centre and Western Boulevard AURN sites and average annual con
centration data from the PDT network (Defra, 2022a; NCC, 2020). PDT 
data was taken from NCC annual air quality reports which include local 
bias adjustment (NCC, 2020). 

Modelled and monitored values for Nottingham were compared 
using the ModStats model performance function in the Openair R 
Package (see also Borge et al., 2022; Carslaw, 2011; Frohn et al., 2022). 

Table 2 
Model statistics of model performance for PM2.5 at City Centre and Western Boulevard AURN sites (hourly data).  

Approach na FAC2 MB MGE NMB NMGE RMSE r COE IOA 

City Centre 
Approach 1 6676 0.77 0.46 4.70 0.04 0.44 7.14 0.70 0.30 0.65 
Approach 2 6676 0.70 3.43 5.97 0.32 0.56 8.96 0.70 0.11 0.56 
Approach 3 6676 0.81 2.05 4.24 0.19 0.40 6.39 0.80 0.37 0.68 
Approach 4 6676 0.60 5.62 7.28 0.53 0.69 9.48 0.69 − 0.08 0.46  

Western Boulevard 
Approach 1 8481 0.81 − 0.54 4.60 − 0.05 0.40 7.18 0.63 0.22 0.61 
Approach 2 8481 0.78 2.35 5.72 0.20 0.50 9.12 0.62 0.03 0.51 
Approach 3 8481 0.86 1.03 4.27 0.09 0.37 6.77 0.72 0.27 0.64 
Approach 4 8481 0.72 4.74 6.60 0.41 0.58 9.10 0.64 − 0.12 0.44  

a n equals the number of hourly data points tested in the analysis. 

Fig. 5a. Observed vs. Modelled PM2.5 scatter plots for all approaches for the 
City Centre AURN site. The solid line is the 1:1 line, the lower dashed line is the 
1:0.5 line and the upper dashed line is the 1:2 line, these demonstrate how close 
the data points are to a 1:1 relationship and shows what data points are within a 
factor of two (FAC2) (Carslaw and Ropkins, 2012). Hexagonal binning shows 
the number of data points that lie within each shaded hexagon. 
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Model performance was assessed using metrics including fraction of 
predictions within a factor of two (FAC2), mean bias (MB), mean gross 
error (MGE), normalised mean bias (NMB), normalised mean gross error 
(NMGE), root mean square error (RMSE), correlation coefficient (r), 
coefficient of efficiency (COE) and index of agreement (IOA) (Carslaw 
and Ropkins, 2012; R Core Team, 2021). 

3. Results 

A range of issues affected the number of PM2.5 data points available 
from observations and modelling. Fewer hourly observations (n = 6676) 
are included in the City Centre verification dataset, due to data loss 
(1825 data points, 21% data loss) associated with data cleaning to 
remove the influence of the proximate source (see above), compared to 
the PM10:PM2.5 scaled Western Boulevard verification dataset (n =
8481) (Table 2). Other differences in the number of observations (n) at 

the City Centre and Western Boulevard (Tables 2 and 3) are due to 
variable data capture at the monitoring sites, for example, missing data 
due to instrument failure (PM2.5: City Centre – 191 missing data points 
(2% data loss), NO2: City Centre – 148 missing data points (2% data 
loss); Western Boulevard – 42 missing data points (<1% data loss)). 195 
data points were missing for PM10 at Western Boulevard, meaning we 
were unable to estimate PM2.5 for these (see above), resulting in 2% data 
loss. 

Missing data within the hourly sequential meteorological input file 
also impacted the number of modelled values. If meteorological data is 
not available, the calculation for that hour is skipped in ADMS-Urban. 
Across all model runs 97 h were skipped because of this, resulting in 
1% data loss from missing meteorological data. Rows with missing air 
quality or meteorological data were deleted for the purposes of model 
verification. 

Statistics of model performance based on the comparison of 
observation-based and modelled concentrations of PM2.5 are given in 
Table 2. Approach 1 performed best in MB and NMB at both sites, with 
MB providing an indication of model over (+) or under (− ) estimation. 
Approach 2 performed moderately well across all test metrics, except for 
r and RMSE where it performed the worst out of all approaches when 
verified against estimated PM2.5 data at Western Boulevard. 

Approach 3, using urban background concentrations from 8 × 45◦

wind sectors, shows good agreement with monitored concentrations at 
the City Centre AURN site (Fig. 5a) and with estimated concentrations at 
the Western Boulevard AURN site (Fig. 5b). This approach performed 
most strongly across a range of test metrics at both verification sites in 
the city (Table 2). High scores for FAC2 and IOA indicate good overall 
model performance (Chang and Hanna, 2004; Willmott et al., 2012). 

Approach 4 performed worst out of all approaches across a range of 
statistics at both verification sites when compared to monitored and 
estimated PM2.5 data. 

Hourly modelled NO2 concentrations were verified against hourly 
sequential monitored data at both the City Centre and Western Boule
vard AURN sites and results varied across all four approaches. All ap
proaches tended to underpredict NO2 concentrations (MB), apart from 
Approach 3 at the City Centre AURN site (Table 3). Approach 3 showed 
generally good agreement with hourly monitored data at both the City 
Centre (Fig. 6a) and Western Boulevard sites (Fig. 6b). It performed best 
in FAC2 and r for both sites and best in IOA and RMSE at the Western 
Boulevard AURN site (Table 3). Approach 4 yielded a few large outliers 
where NO2 was overestimated at both sites, however these were typi
cally for a small number of simulations. 

Modelled annual average NO2 was also compared with monitored 
data from the PDT sites (Table 4). All approaches tended to underpredict 
(MB) concentrations at these sites. Approach 3 was able to predict 

Fig. 5b. Observed (estimated) vs. Modelled PM2.5 scatter plots for all ap
proaches for the Western Boulevard AURN site. The solid line is the 1:1 line, the 
lower dashed line is the 1:0.5 line and the upper dashed line is the 1:2 line, 
these demonstrate how close the data points are to a 1:1 relationship and shows 
what data points are within a factor of two (FAC2) (Carslaw and Ropkins, 
2012). Hexagonal binning shows the number of data points that lie within each 
shaded hexagon. 

Table 3 
Model statistics of model performance for NO2 at City Centre and Western Boulevard AURN sites (hourly data).  

Approach na FAC2 MB MGE NMB NMGE RMSE r COE IOA 

City Centre 
Approach 1 8515 0.79 − 2.96 10.83 − 0.11 0.39 14.11 0.57 0.13 0.56 
Approach 2 8515 0.80 − 0.93 10.56 − 0.03 0.38 13.72 0.60 0.15 0.58 
Approach 3 8515 0.84 5.18 10.60 0.19 0.38 14.36 0.69 0.15 0.57 
Approach 4 8515 0.72 − 2.29 13.04 − 0.08 0.47 22.92 0.63 − 0.05 0.48 
Western Boulevard 
Approach 1 8622 0.69 − 10.94 14.20 − 0.33 0.43 19.22 0.66 0.13 0.56 
Approach 2 8622 0.73 − 8.47 13.39 − 0.26 0.41 18.10 0.65 0.18 0.59 
Approach 3 8622 0.86 − 1.76 10.75 − 0.05 0.33 14.48 0.75 0.34 0.67 
Approach 4 8622 0.67 − 5.62 15.40 − 0.17 0.47 24.56 0.61 0.06 0.53  

a n equals the number of hourly data points tested in the analysis. 
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annual mean concentrations across most sites in the city within 0–10 μg/ 
m3 of observed values (Fig. 7). This approach performed most strongly 
across all metrics apart from r, where Approach 4 performed better 
(Table 4). 

Fig. 8 illustrates the difference between background concentrations 
derived from rural and urban background AURN sites used in Ap
proaches 1 and 3 and observed concentrations recorded at the urban 
background AURN site located in Nottingham City Centre. The back
ground concentrations generated by Approach 3 are typically within 5 
μg/m3 of observed total concentrations whereas the background con
centrations generated by Approach 1 are much lower in comparison. 
Fig. 8 confirms that only a small proportion of PM2.5 recorded in Not
tingham City Centre usually originates from local sources, which is 
confirmed by running ADMS-Urban without the background datasets, 
giving a mean annual concentration of 2.5 μg/m3. This emphasises why 
the input of the best possible estimate of background concentrations into 
the model is important to achieve accurate estimates of total 
concentrations. 

Both approaches show seasonal trends in PM2.5 consistent with those 
measured at the City Centre AURN site, including higher peaks in winter 
(December to February), spring (March to May) and occasionally sum
mer (June to August). Peaks in November and December, which may 
relate to more local activities associated with celebrations such as Guy 
Fawkes Night (AQEG, 2012) are reflected better in Approach 3 but are 
not ’seen’ by the distant rural AURN site at Chilbolton (Approach 1). 

4. Discussion 

4.1. Interpretation of approaches to estimating background PM2.5 

As noted in Section 2.1, regional and national background, and 
secondary contributions are known to dominate PM2.5 concentrations 
across the UK (Kelly et al., 2023; Vieno et al., 2016; Wang et al., 2020), 
with local sources contributing very little (estimated to be < 2 μg/m3 

annual mean). Our study confirms that this is also true for the City of 
Nottingham (Fig. 8). 

We have shown that background concentrations can be derived from 
available monitoring data to provide appropriate inputs into urban scale 
atmospheric dispersion models. As noted above, other researchers have 
coupled regional-scale pollution models with local-scale models to 
include background concentrations of PM2.5, but this methodology was 
not open to us. Based on our case study, Nottingham, Approach 3, which 
used urban background PM2.5 concentrations from 8 × 45◦ wind sectors, 
showed good agreement with monitoring data in the city and performed 
most strongly across a range of evaluation metrics (Table 2; Fig. 5). We 
have also highlighted the importance of screening and refining moni
toring data, so that models can be verified to an acceptable standard, 
which can then be used to support air pollution – health studies. 

Previous studies have demonstrated that PM2.5 can travel long dis
tances in air masses, and that PM2.5 episodes in the UK can occur from 
stagnating air which has originated from mainland Europe or other parts 
of the UK (Fenech et al., 2019; Vieno et al., 2016). Back trajectory 
analysis has illustrated that these air masses can take a variety of paths 
across the UK. Approaches 1 and 2 used background data from a single, 
rural AURN site (Chilbolton), the closest rural AURN site upwind of 
Nottingham based on the prevailing wind direction. Comparison with 

Fig. 6b. Observed vs. Modelled NO2 scatter plots for all approaches for the 
Western Boulevard AURN site. The solid line is the 1:1 line, the lower dashed 
line is the 1:0.5 line and the upper dashed line is the 1:2 line, these demonstrate 
how close the data points are to a 1:1 relationship and shows what data points 
are within a factor of two (FAC2) (Carslaw and Ropkins, 2012). Hexagonal 
binning shows the number of data points that lie within each shaded hexagon. 

Table 4 
Model statistics of model performance for NO2 at diffusion tube sites (annual data).  

Approach na FAC2 MB MGE NMB NMGE RMSE R COE IOA 

Approach 1 55 0.93 − 12.76 12.78 − 0.33 0.33 14.71 0.33 − 1.11 0.05 
Approach 2 55 0.96 − 10.69 10.80 − 0.28 0.28 12.88 0.34 − 0.78 0.11 
Approach 3 55 1.00 − 4.40 6.54 − 0.12 0.17 8.33 0.34 − 0.08 0.46 
Approach 4 55 0.98 − 10.92 10.92 − 0.29 0.29 12.81 0.47 − 0.81 0.10  

a n equals the number of PDT sites used in the analysis. 

Fig. 6a. Observed vs. Modelled NO2 scatter plots for all approaches for the City 
Centre AURN site. The solid line is the 1:1 line, the lower dashed line is the 
1:0.5 line and the upper dashed line is the 1:2 line, these demonstrate how close 
the data points are to a 1:1 relationship and shows what data points are within a 
factor of two (FAC2) (Carslaw and Ropkins, 2012). Hexagonal binning shows 
the number of data points that lie within each shaded hexagon. 
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measurements from the City Centre AURN site and modelling with 
ADMS using local sources only, indicates that these approaches are able 
to reproduce some episodes recorded in Nottingham and provide 
reasonable estimates of annual mean concentrations. Using this single 
monitoring site can, however, only capture certain air mass directions 
(Fig. 2) meaning that background PM2.5 signals from other directions are 
at risk of not being represented. 

In contrast, Approach 3, using data from multiple urban background 
AURN sites based on wind direction (Fig. 2) is more likely to reflect 
short-term variations in regional background PM2.5 concentration 
because it considers a broader range of sectors and captures source 

contributions closer to the City of Nottingham. It is, therefore, more 
suitable to forecast both annual mean and episode-specific concentra
tions, for use in assessments of chronic and acute health impacts. 
Meteorology is a source of error in air quality models, and models will 
not predict observed pollution episodes if the modelled wind speed and 
direction does not replicate the conditions accurately enough to reflect 
the origins of an air pollution episode at a given location (Conti et al., 
2017). 

Our initial exploration of seasonality (Fig. 8) suggests possible 
different drivers for pollution episodes in Nottingham, which may also 
result in seasonal variations in PM composition (Kelly et al., 2023; Tang 
et al., 2018). Further work will be required to confirm this. 

Nottingham is located in a central position in the UK meaning urban 
background AURN sites are positioned in most wind sectors. In some 
sectors, however, there were no AURN sites that measured PM2.5 during 
the reference year, meaning some AURN sites had to cover more than 
one sector, or the closest AURN site to that wind sector was used 
(Table S1). However, capturing air mass characteristics from a range of 
directions, even if restricted by geographical location, will provide a 
better indication of PM2.5 travelling in air masses than capturing air 
mass characteristics from a single background monitoring site alone. 
Further investigation is needed for other locations where there are fewer 
options for monitoring sites in certain wind sectors, for example, coastal 
cities. 

4.2. Implications for long- and short-term health studies 

The ultimate objective of long- and short-term studies that assess 
relationships between air pollution and health is to determine concen
trations of a pollutant in space and time, so that exposure can be 
quantified and associations with health impacts can be determined 
(Kirwa et al., 2021). Although background contributions reduce the 
spatial heterogeneity at urban background locations (Beevers et al., 
2013), other long-term health studies have found that finer spatial scale 
differences in concentrations of air pollution, driven by more local 
emissions, may have larger associations with health risks than differ
ences in regional scale air pollution (Eeftens et al., 2012; Kirwa et al., 
2021; Miller et al., 2007). For example, Gulliver et al. (2018) conducted 
long-term PM10 modelling in the Avon Longitudinal Study of Parents 
And Children (ALSPAC) study and found that background PM10 repre
sented 83–85.6% of long-term PM10 concentrations. However, despite 
the large influence of background concentrations, local concentrations 
contributed to large differences in concentration experienced by 
different study participants. 

PM2.5 episodes are linked to acute health effects (Pope et al., 2011). 
Using background datasets that can accurately determine the back
ground proportion of pollution in models during episodes is important, 

Fig. 7. Difference between observed and modelled annual average NO2 con
centrations (μg/m3) at PDT sites across Nottingham. 

Fig. 8. Time series plot showing daily averages of the background PM2.5 dataset for Approach 1 (Chilbolton only), Approach 3 (multiple sites) and observed PM2.5 
concentrations at the Nottingham City Centre urban background AURN site in 2019. 
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as episodes are often influenced by background air pollution (Graham 
et al., 2020). Therefore, being able to differentiate between background 
and local pollution contributions in models could help understanding on 
how local sources contribute to higher concentrations recorded during 
these periods. An et al. (2007) found that in Beijing, the contribution of 
PM2.5 from background sources varied depending on location, ranging 
from 39% to 53% in the northwest to 15% in the southwest. 

Modelling episodes is important to understand the relationship be
tween above average concentrations of air pollution and acute 
morbidity and mortality recorded by hospital emergency departments, 
e.g., acute respiratory and cardiovascular events (Atkinson et al., 2014; 
Elliot et al., 2016; Sorek-Hamer et al., 2020). Effective models can 
identify locations with high concentrations of pollution which could be 
associated with a higher occurrence of acute health conditions. 

The evidence above suggests it is important to ensure that both 
background and local components of PM2.5 are accurately represented in 
the model, so that the total amount of PM2.5 is estimated correctly. 
Background concentrations should be as representative as possible, so 
that the model can produce the ‘right results for the right reasons.’ 

4.3. Model verification and impacts of proximate sources 

This study found that the City Centre AURN site in Nottingham is 
influenced by a proximate source, not reflective of general conditions 
across the city which limits the number of observations at that site 
available for model verification. We decided to remove the influence of 
the proximate source from the verification dataset because of un
certainties in how best to parametrise this small local source in the 
model. In the absence of this discovery of a proximate source, erroneous 
conclusions could have been drawn when interpreting model verifica
tion results. This could have serious impacts if the model outputs were 
being used for decision making, e.g., conducting a study on air pollution 
interventions or an impact assessment on a new piece of policy (Holman 
et al., 2015). 

The influence of proximate sources on monitoring sites may also 
affect the reporting required in accordance with air quality directives. 
Air quality in the wider vicinity may be much better than monitoring 
suggests. Therefore, proximate sources may obscure general reductions 
in PM2.5 in an area subject to national and local emission reduction in
terventions, leading to incorrect conclusions on the effectiveness of such 
interventions. This also applies to epidemiological studies, where asso
ciations between air pollution and adverse health impacts may be 
inaccurately identified when using data that is not representative of 
actual human exposure (Bell et al., 2007; Fann et al., 2011). 

In this study, we used the corrected time series from the City Centre 
AURN site to produce a PM10:PM2.5 ratio to apply to the Western 
Boulevard monitored PM10 data. This was useful to increase the number 
of verification sites (from one to two) to check model performance. 
However, data from one monitoring site monitoring PM2.5 and scaled 
estimates of PM2.5 from another monitoring site monitoring PM10 are 
unlikely to be spatially representative enough to inform decisions on air 
quality – health policy for medium to large sized cities (Piersanti et al., 
2015). It is recommended that PM2.5 monitoring should be added to 
Western Boulevard. 

PDT monitoring at roadside locations, measuring annual mean NO2 
concentrations from traffic related air pollution, were used as a proxy to 
test how well models predicted concentrations from road sources. This 
helped to provide a broader spatial assessment of model performance, 
although model inputs were not optimised for NO2 (see section 2.4). 
This gives us confidence that our model can estimate concentrations 
reasonably well from modelled road sources and enables us to apply the 
model widely across the city using the road source parameters. How
ever, ultimately there is a need for more PM2.5 monitors to record PM2.5 
concentrations in more locations and verify models. The rise of new 
technology for PM2.5 monitoring, such as the use of low-cost air quality 
sensors, could provide more data for verifying air pollution models 

across a range of temporal scales even if of lower accuracy and precision 
compared to reference monitoring sites (Bi et al., 2021). Nevertheless, 
there is still a need for models to estimate pollution concentrations 
across scales that are not covered by monitors, run forecasts and 
back-casts and conduct source apportionment exercises. 

5. Conclusion and recommendations 

This study aimed to generate model output for use in short- and long- 
term health studies in a location where monitoring is compromised and 
insufficient. In this study we explored methods for determining a suit
able background dataset for PM2.5 models and identified ways to verify 
PM2.5 models when monitoring data was limited. 

We have shown that we can produce directionally-informed esti
mates of background PM2.5 from urban background monitoring sites 
selected on the basis of wind direction. This enables us to include local 
and regional background contributions in our modelling studies and to 
evaluate their varying contributions to short-term pollution episodes 
and longer term air quality. Therefore, this approach can be applied in 
studies investigating the short- and long-term health impacts of PM2.5. 

This study also identified the influence of a proximate source near to 
a monitoring site used for model verification, which highlights the 
importance of ensuring that monitoring data for individual sites is 
scrutinised in detail prior to use in modelling and model verification. 
Furthermore, better controls are needed to prevent siting potential 
sources of pollution close to reference air quality monitoring sites. It is 
recommended that provision of robust statutory guidance on the siting 
of potential sources is needed to prevent this issue. 

The approaches used in this study are relatively simple and acces
sible for modellers. They can be applied in different geographies, across 
a range of spatial and temporal scales, however, they cannot be easily 
used to assess future changes unlike coupled regional and local models 
used for forecasting (Baklanov and Zhang, 2020; Zhang et al., 2012). 

Air pollution modelling is complex, it requires compromise to ach
ieve the precision in concentrations, temporal and spatial resolution 
appropriate to the study. This study provides methods to overcome some 
of the compromises modellers need to consider when conducting an air 
pollution study, for example representing the complexity of the wider air 
quality climate within the model and overcoming limitations with 
monitored data. 
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Baca-López, K., Fresno, C., Espinal-Enríquez, J., Martínez-García, M., Camacho-López, M. 
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