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Abstract: The use of digital technologies around the world has increased considerably, modifying the way in which daily 
activities are conducted. The manufacturing sector is no exception. Over the last decade, digital technologies have become a 
key element for manufacturing companies to deliver high quality products, which is a critical factor in their success and 
competitiveness. However, for most companies, cost and lack of understanding of the benefits of digital solutions are still a 
main barrier to digitalisation of their operations. In this paper, a low-cost visual system is proposed and developed for in-
process detection of defective parts in a manufacturing company that produces hoses with fittings and connectors. The 
company often faces problems with the angle, length, and condition of parts, particularly with brazing residues and corroded 
surfaces, causing rework and rejection of products by clients. The proposed low-cost system is based on a deep learning 
approach and uses an off-the-shelf camera to identify corrosion in parts before assembly. Using a low-cost solution 
contributes to optimizing costs and operations in the production line, reducing waste and rework due to the assembly of 
defective parts, and minimizing human errors due to differing expertise or diverse criteria. Also, the solution can potentially 
be implemented in other production lines, reducing the learning curve as regards implementation and extending the lessons 
learned to the solution of other problems. 
 

1. Introduction 
Clients and customers are essential stakeholders, 

prompting companies to continuously explore alternatives for 
more effectively fulfilling their needs and demands. This 
pursuit is driven by the recognition that clients and customers 
exclusively only will pay for products that are 'good' for them, 
that is, quality products. Therefore, ensuring product quality 
has emerged as a substantial concern for companies. The 
shipment of defective products creates quality-related issues, 
while abstaining from shipping defective items translates into 
financial losses for the manufacturer [1]. Hence, several 
quality methodologies, such as Six Sigma, have received 
significant attention over the past decades, aiming to mitigate 
process variability during the manufacturing of products. 

In modern manufacturing and industrial processes, the 
early detection and accurate assessment of defects within in-
process products or during final inspection are critical to 
ensuring product quality, safety, and reliability. To be more 
specific, within the metal-mechanic industry, corrosion is a 
type of defect that companies strive to identify promptly. 
Corrosion can compromise structural integrity, functionality, 
and overall performance. Traditional methods of corrosion 
identification, often relying on manual visual inspection, are 
limited by subjectivity, time consumption, and inconsistent 
results. 

Recent advances in computer vision and deep learning 
techniques have revolutionized the field of image analysis 
and pattern recognition. Among these techniques, the You 
Only Look Once (YOLO) algorithm has garnered attention 
due to its real-time object detection capabilities. YOLO's 
ability to rapidly process images and identify objects within 
them, coupled with its accuracy, makes it a promising tool for 
developing robust and efficient visual inspection systems [2]. 

This paper presents an approach to corrosion detection 
through the integration of a low-cost visual inspection system 
with deep learning methodologies, specially by using the 

YOLO algorithm. The proposed system aims to address the 
limitations of traditional visual inspection methods, which are 
often time-consuming, subjective, and dependent on the 
expertise of inspectors. By harnessing the power of deep 
learning, the system enhances the accuracy and efficiency of 
corrosion identification, contributing to improved decision-
making processes, a reduction of in-process rework, and more 
effective resource allocation. 

2. Background  
2.1. Testing Techniques and Corrosion 

In the context of manufacturing processes, the 
thorough inspection of components assumes paramount 
importance to ensure structural integrity, performance, and 
conformance with engineering specifications and standards. 
A range of techniques are conventionally employed to 
meticulously evaluate the quality and integrity of these 
components, in particular those involving metallic parts. 
Nondestructive testing techniques are frequently used to 
assess the integrity of materials by examining surface or 
internal defects, as well as evaluating metallurgical 
conditions, without adversely impacting the material's 
structural composition or its viability for its designated 
function.  Among the most common techniques include visual 
inspection, microscopy, radiography, dye penetrate, 
ultrasonic, magnetic particle, eddy current for metals, and 
acoustic emission [3]. 

In one hand, the Visual inspection technique is useful 
for identifying macroscopic flaws. It involves direct 
observation either with the naked eye or aided by 
magnification to identify surface irregularities such as cracks, 
corrosion, and fractures [3]. Nevertheless, this technique also 
requires that the person conducting the inspection has the 
necessary training and skills, in addition to the fact that the 
final decision of whether the inspected part is accepted 
becomes subjective and falls entirely on the experience of the 
inspector. All of this leads to the inspection process not being 
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consistent and, although doing so requires repetitive tasks, the 
result will not necessarily be the same, therefore repeatability 
is not ensured [4]. In-process inspection becomes 
complicated and frequently presents a challenge when 
companies lack the resources to invest in tools and equipment 
that mitigate uncertainty in outcomes. Conducting exhaustive 
inspections to complete batches using conventional methods 
not only escalates production costs but also is very time 
consuming. 

On the other hand, corrosion denotes a material's 
response upon interaction with its environment, leading to 
alterations encompassing changes such as consumption, 
dissolution, or deterioration of the material [5]. Corrosion 
monitoring involves a systematic observation and evaluation 
of material changes, caused by inherent degradation 
mechanisms like atmospheric corrosion, chemical dissolution, 
or oxidation, among others. Typically, this is accomplished 
by employing specialized corrosion assessment methods or 
instruments within structures, parts or products on a small and 
big scale. The purpose of this monitoring is to assess the 
integrity of the structure of assets (e.g. infrastructure, facility, 
machinery) or parts (e.g. raw materials, in-process products 
or final products) to ensure that the element inspected is not 
affected by corrosion damage. The primary aim of corrosion 
monitoring is to assess the structural soundness of 
infrastructure, ensuring that the longevity of the asset remains 
unaffected by corrosion-related impairments. Corrosion 
monitoring also may encompass quality assurance by 
minimizing contamination arising from corrosion, as well as 
averting safety lapses and potential incidents. Currently, 
initiatives related to corrosion monitoring have experienced a 
notable surge in adoption, spanning a wide array of 
applications. These applications encompass various domains, 
including but not limited to pipelines, refinery complexes, 
architectural structures, aircraft, maritime vessels, 
automobiles, electronic devices, computing systems, and 
even biomedical implants [6]. 
 

2.2. Machine Learning Approaches and Low-cost 
Solutions 

Considering the importance for companies to ensure 
the quality of their products and compliance with standards, 
in recent years the realm of inspection and quality control has 
witnessed a transformative shift with the incorporation of 
new techniques using technology.  In this context, two 
particularly noteworthy approaches, especially deep learning 
and image processing, have emerged as powerful tools in 
recent times. These approaches can be categorized as 
‘thinking/reasoning’ technologies due to their inherent 
capabilities that strive to emulate, and in certain instances, 
exceed human cognitive faculties. These methodologies align 
with the broader pursuit of artificial intelligence, seeking to 
replicate and augment human-like cognitive processes in 
machines [7]. Both deep learning and image processing 
methodologies hold the potential to transcend the limitations 
of traditional inspection methods, offering an unprecedented 
level of accuracy, speed, and adaptability. 

Deep learning, a subset of artificial intelligence 
introduced in the 2000s, exhibits a remarkable capacity to 
automatically extract intricate patterns and features from 
complex data, rendering it particularly adept at discerning 
subtle anomalies in diverse applications such as 
manufacturing, healthcare, and infrastructure assessment. 

Deep learning, situated within the purview of machine 
learning, is characterized by its ability to autonomously 
acquire intricate knowledge from large datasets, thereby 
enabling the identification of intricate patterns and 
representations. In this sense, it strives to replicate the 
cognitive processes associated with human pattern 
recognition and abstraction, albeit in a more streamlined and 
expedited manner. Similarly, image processing, underpinned 
by computational algorithms, seeks to emulate human visual 
perception by processing and extracting relevant information 
from visual data. As such, these thinking/reasoning 
technologies exhibit the potential to not only mimic but also 
potentially surpass certain aspects of human cognitive 
functioning, thereby reshaping conventional paradigms in 
inspection and quality control procedures [7-9].  

Image processing techniques have gained prominence 
by leveraging computational algorithms to manipulate, 
analyse, and interpret visual data, enabling accurate defect 
detection and classification, and enhancing the accuracy, 
efficiency, and objectivity of inspection processes across 
various domains. Image processing encompasses a range of 
fundamental tasks, including seemingly straightforward 
operations such as image resizing. In the context of deep 
learning, uniformity of images is essential for the 
development of such models, making resizing a common 
image processing task.. This requires resizing all images to a 
consistent size, a preprocessing step that facilitates their 
compatibility with the network's architecture. Beyond 
resizing, an array of additional processing tasks can be 
undertaken to optimize image inputs for subsequent analysis. 
Geometric transformations, for instance, enable the 
augmentation of the dataset by applying rotations, 
translations, or reflections to images, these transformations 
are essential for achieving good performance when training 
deep learning models. Color transformations offer a 
possibility to standardise and manipulate the color 
distribution of images, while conversion to grayscale reduces 
computational complexity and eliminates color-based 
features. The amalgamation of these preprocessing 
techniques underscores the role of image processing in 
priming raw visual data for effective interpretation by deep 
learning techniques, exemplifying its significance in the 
broader landscape of machine vision and artificial 
intelligence applications [8]. 

In this context, object detection is a computer vision 
task that pursues a dual-faceted objective. Primarily, it 
involves the localization of one or more objects present 
within a given image, followed by the secondary task of 
ascertaining the classification of each individual object 
contained therein. This process is executed through the 
delineation of a bounding box encompassing the identified 
object, concomitant with the attribution of its anticipated 
class label. Thus, it diverges from the conventional purview 
of image classification, wherein the predictive scope is 
limited solely to the classification of the image's entirety. In 
contrast, object detection entails an extended prognostic 
ambit, encompassing not only the categorisation of the object 
but also the prediction of the spatial coordinates demarcating 
the bounding box that optimally encapsulates the detected 
object. This computational pursuit assumes a remarkable 
behaviour, as it necessitates the successful achievement of 
both accurate object localization, thereby enabling the 
delineation of precise bounding boxes around distinct objects 
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present within an image, and thoughtful object classification, 
ensuring the accurate anticipation of the specific object class 
corresponding to the localised entity [8, 9]. 

As mentioned in the Introduction section, YOLO 
(“You Only Look Once”) is a family of object detection 
architectures that have exhibited continuous refinement 
subsequent to its first launch in 2015, commencing with the 
inception of YOLOv1. The compendium of YOLO models 
constitutes a succession of end-to-end deep learning 
constructs meticulously tailored to expedite the process of 
object detection. Underpinned by an open-source framework, 
these models were conceptualized and realized by Joseph 
Redmon and Ali Farhadi, heralding a pioneering venture in 
the domain of swift real-time object localization. 
Distinguished by its expeditious computational performance, 
YOLO occupies a relevant niche within the spectrum of 
object detection algorithms. Central to the YOLO 
methodology is its distinctive operational paradigm, wherein 
predictions are exclusively formulated for a delimited set of 
bounding boxes. This hinges upon the partitioning of the 
input image into an array of discrete cells, with each cell 
imbued with the capability to directly infer both bounding 
box specifications and the classification label of the 
encompassed object. This  predictive computations 
contributes to the rapidity and efficiency that distinguishes 
YOLO within the set of object detection methodologies [2, 
10]. YOLOv8 is the most recent version, a cutting-edge, state-
of-the-art (SOTA), which not only introduces novel attributes 
but also encompasses a spectrum of enhancements to 
augment overall performance, flexibility, and efficacy [10].  

By leveraging advanced algorithms and 
computational methods, image processing empowers 
practitioners to transcend the limitations of human perception 
and provides a quantitative foundation for decision-making. 
Segmentation, in addition to finding the bounding boxes, it 
adds a mask, delimiting the object within the box. This 
introduction highlights the growing significance of image 
processing as a contemporary methodology in inspection 
practices, underscoring its potential to revolutionize 
conventional approaches and foster unprecedented levels of 
precision and reliability. 

3. Research Methodology 
This section outlines the methodology adopted for the 

development of the visual inspection system aimed at 
identifying brazing residue or corrosion in fitting parts, 
utilizing the YOLOv8 image segmentation model and a 
preloaded dataset. 

Danfoss, a multinational corporation headquartered in 
Denmark, demonstrated willingness to engage in research 
collaboration providing hypothetical samples of brazing 
residue or corrosion manifested in their parts. With a global 
presence spanning over twenty countries, Danfoss operates 
within three principal business segments: power solutions, 
climate solutions, and power electronics and drives [11]. The 
participating site is situated in the United Kingdom and 
specializes in offering power solutions. 

The initial step involved identifying the specific fitting 
parts subject to inspection. The characteristics of these parts, 
including various types and degrees of corrosion, were 
defined to establish a comprehensive framework for 
subsequent dataset collection and model training. To enable 

effective training of the visual inspection system, a suitable 
dataset was sought, obtained from samples provided by 
Danfoss and images readily accessible from the internet. This 
dataset was selected to align with the identified fitting parts 
and their corresponding corrosion characteristics. The dataset 
encompassed images showcasing varying levels of corrosion, 
ensuring relevance and applicability to the inspection task. 

The experimental environment was meticulously 
configured to facilitate both image acquisition and 
programming. For image acquisition, a physical setup was 
established, encompassing the positioning of fitting parts, 
appropriate lighting, and camera placement. Additionally, 
hardware and software components were selected and 
configured, ensuring compatibility with the YOLOv8 model. 
An emphasis was placed on utilizing low-cost infrastructure 
and off-the-shelf components. The pre-trained YOLOv8 
object detection model was employed as the foundation for 
the inspection system. Using transfer learning, the model was 
further trained using the acquired dataset containing images 
of fitting parts, including instances of general corrosion.  

In one hand, the dataset employed for the pre-training 
of the model comprises 2580 images showcasing various 
corrosion issues evident on commonplace objects. This 
collection shows different real world objects that present 
some level of corrosion, such as automobiles, vessels, and 
pipelines, among other examples [12, 13]. On the other hand, 
the data set used for testing includes 280 images from 
discontinued fitting parts, provided by Danfoss to simulate 
actual parts with corrosion problems. The photographs were 
captured from varying perspectives, with the components 
positioned at different angles, and illuminated using distinct 
light intensities, achieved through the utilization of LED 
lighting, in-camera flash, and ambient lighting conditions. 

By initializing the model with pre-existing weights, 
training efficiency was optimised, enhancing convergence. 
Upon successful training, the trained YOLOv8 model was 
used to analyse real photos of fitting parts. These photos 
represented actual instances of corrosion and allowed for the 
assessment of the inspection system’s performance in a 
practical context. The model’s ability to accurately detect and 
delineate corroded regions was evaluated against the real 
parts. 

The performance of the visual inspection system was 
evaluated through quantitative and qualitative measures. 
Metrics such as train/segmentation loss and 
validation/segmentation loss were computed to assess the 
system’s accuracy and reliability in identifying corrosion. 
Additionally, visualizations of the model’s predictions were 
examined to gain qualitative insights into its behaviour. 
Feedback obtained from the evaluation stage was utilized to 
iteratively refine the visual inspection system. 
Misclassifications and areas of improvement were identified 
and addressed through adjustments to the dataset, model 
parameters, or post-processing techniques. This iterative 
process aimed to enhance the system’s overall performance 
and effectiveness. Finally, the deployment potential of the 
developed visual inspection system was explored. 
Considerations were made regarding its integration into 
existing quality control workflows, compatibility with 
camera systems, and real-world implementation scenarios. 
Challenges associated with deployment and potential 
solutions were assessed. 
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4. Results and Discussion 
The subsequent section presents the outcomes and 

corresponding discussion stemming from the development of 
a low-cost system tailored for the visual inspection of 
corrosion in fitting parts. This comprehensive exploration 
delves into the findings derived from the implementation, 
emphasising its efficacy in detecting and analysing instances 
of corrosion within the specified context. The results and 
subsequent discussion offer valuable insights into the 
performance of the inspection system, its strengths, 
limitations, and potential future work for refinement, thereby 
contributing to the broader discourse on low-cost solutions 
for corrosion assessment. 

The equipment employed for the execution of the 
experimental procedures includes:  

a) Laptop, processor Intel(R) Core(TM) i5-8265U 
CPU @ 1.60GHz   1.80 GHz, 8.0 GB RAM. 

b) Comercial camera in mobile phone for tests and 
Raspberry Pi, HQ, Camera Module for the future 
pilot in Danfoss. 

c) All photos were taken with 328 lux average. 
 

Starting with the identification of parts and their 
characteristics, the products considered as part of this study 
were crimp fittings. Danfoss offers a broad line of fittings that 
are described as high-quality and high-performing products. 
They are designed for extremely high-pressure applications, 
and their superior resistance to corrosion contributes to 
enhanced performance of the equipment in use. An example 
of these fittings is presented in Fig. 1. 

 

 

Fig. 1. Crimp Fittings [14]  
 
Specific requirements and inspection criteria have 

been delineated for these parts within their quality 
management system documentation. The standards 

addressing corrosion and discoloration explain —via 
illustrative examples as presented in the Fig. 2 and 3— the 
conditions under which the parts are considered acceptable 
and satisfactory. Furthermore, it outlines instances when 
seeking the approval of the team leader becomes imperative, 
as well as scenarios where the parts manifest defects or 
damages, warranting their rejection. 
 

      
Fig. 3. Parts acceptable for use [15] 

 

   

Fig. 4. Parts with rust identified within end fitting [15] 
 
In order to obtain the dataset of images, an initial 

classification process was undertaken to categorise the 
images as either "CORROSION" or "NO CORROSION." 
The compilation of images was facilitated through the 
extraction of visual data from Google using a scraping 
technique [13]. Afterwards, the data set also had to be 
annotated with the bounding boxes. Subsequent to the 
programming of the code, the training model underwent 
testing using the collection of images sourced from Google.  

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Performance of the deep learning model on the training set   
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The performance of the deep learning model during 
the training process is illustrated in Figure 4. As evident from 
the visualization, both the training (Fig. 4(a)) and validation 
(Fig. 4 (b)) graphs depict a discernible downward trend in 
Loss. This trend represents a progressive enhancement in 
image segmentation performance with each successive 
iteration of the model. Opposite to the training and validation 
loss graphics, the precision graphic (Fig. 4 (c)) exhibits a 
positive trend. Precision, a critical metric in evaluating the 
model's performance, measures the ratio of true positive 
predictions to the total number of predicted positive instances. 
In this context, the ascending trend of the precision curve 
denotes an improvement in the model's ability to accurately 
identify and classify instances of interest among the 
positively predicted cases. The positive trend underscores the 
model's increasing capability to minimize false positives and 
enhance its precision as the training iterations progress. This 
observation signifies a commendable advancement in the 
model's capacity to precisely delineate areas of interest, 
contributing to the overall efficacy of the image segmentation 
task. 

Upon completing the model training process, the 
subsequent step involves the execution of the prediction code, 
which serves the purpose of discerning distinct segments 
within the provided images. This discrimination is centered 
upon the identification of regions exhibiting the presence or 
absence of the specific attribute under consideration, namely 
"corrosion" or "no corrosion." Through the utilization of the 
trained model, this predictive procedure enables the accurate 
classification and localization of the aforementioned 
segments within the visual data.  

Fig 5. comprises two unprocessed photographs, each 
depicting distinct sections of interest from two different parts. 
In these images, notable instances of corrosion manifest as 
discernible irregularities and discolored areas, indicative of 
material degradation. The presence of these corroded regions 
within the images is apparent, although visual identification 
alone might not suffice for accurate quantification and 
comprehensive analysis of the corrosion extent. Subsequently, 
to enhance the precision of corrosion localization and 
identification, the YOLOv8 model is deployed for predictive 
analysis. 
 

        
Fig. 5. Crimp Fittings before the image segmentation  

 
Upon conducting a series of seven tests, each 

characterized by distinct image configurations, results and 
corresponding metrics are presented in Table 1. These tests 
encompassed a diverse array of image setups for one fitting, 
ranging from differing lighting conditions to varying angles 
of object placement. For the task of detecting corrosion in 

components, precision is considering as the metric of interest. 
Considering that the main objective is to identify the 
maximum number of corroded parts relative to the overall 
count of the actual corroded items. 

As discernible from the data, test number 6 stands out 
as the best iteration. The test yields a precision value of 0.96, 
signifying that the model's predictions regarding corrosion 
presence in parts are correct approximately 96 percent of the 
times. It is pertinent to highlight that this particular test 
exhibits the highest values not only in precision, but also 
across other relevant metrics. Given this noteworthy 
performance, the specific imaging conditions applied in this 
test were determinant for the success of the test. Consequently, 
an additional test was conducted, incorporating 60 images 
from different fitting parts. 

 

# Test 1 2 3 4 5 6 7 

True 
Positive 7 6 3 8 22 24 13 

True 
Negative 1 0 0 3 2 0 0 

False 
Positive 5 4 8 11 31 1 1 

False 
Negative 17 10 4 7 23 5 6 

Sample 30 20 15 29 78 30 20 

Precision 0.58 0.60 0.27 0.42 0.42 0.96 0.93 

Recall 0.29 0.38 0.43 0.53 0.49 0.83 0.68 

Accuracy 0.27 0.30 0.20 0.38 0.31 0.80 0.65 

F1-score 0.39 0.46 0.33 0.47 0.45 0.89 0.79 

Table 1. Results from tests for corrosion prediction in fitting 
 
After performing the last test, an observable reduction 

in precision becomes apparent, shifting from 0.96 to 0.69., 
results are presented in Table 2. Notably, despite this decrease, 
the precision value remains notably substantial. This 
occurrence can be attributed to the fact that, while the 
imaging conditions were replicated for this trial, the sections 
within which potential corrosion was discerned exhibited less 
distinct clarity or were situated at greater depths within the 
fittings, relative to the previous trials. 
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Table 2. Results from test, best conditions, different parts 
 
In the second set of figures (Fig. 6), which corresponds 

to the same original photographs as depicted in Fig. 5 but post 
YOLOv8 prediction, a significant advancement in corrosion 
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detection and annotation becomes evident. Employing the 
YOLOv8 model, the predicted outcome effectively 
demarcates and highlights, via a red coloration overlay, the 
areas within the images that have been successfully identified 
as exhibiting corrosion. This computer-assisted prediction is 
notably accurate in localizing and categorizing corroded 
segments within the visual data. The contrasting red 
annotations, juxtaposed against the original images, 
unequivocally delineate the spatial distribution of corrosion 
occurrences, thus providing a comprehensive and insightful 
visualization of the extent and locations of corrosion.  

 

    
Fig. 6. Crimp Fittings after the image segmentation 

 
The prediction code's execution thus contributes to the 

overarching objective of automated image analysis for the 
purpose of corrosion detection, thereby facilitating efficient 
and informed decision-making in domains reliant upon the 
assessment of material degradation and structural integrity. 

5. Conclusions  
The development and successful validation of a low-

cost inspection system for identifying corrosion using deep 
learning and YOLOv8 is presented in this paper. A set of 
eight tests was conducted to systematically evaluate optimal 
imaging conditions for future applications. Among the initial 
seven tests, the iteration that garnered the highest precision, 
at 96%, involved the use of a flash or integrated camera 
lighting. However, upon replicating the environmental 
parameters to generate an alternate image dataset featuring 
diverse components, the precision score experienced a 
decline to 69%. This reduction can be attributed to the 
intricate accessibility of camera capture to sections housing 
potential corrosion, which were positioned in challenging-to-
reach locations within the fittings. In light of these 
observations, a future experiment is envisioned, entailing the 
use of two cameras deployed at varying angles. This approach 
aims to maximize surface coverage for part examination, with 
the intent of addressing the limitations posed by the obscured 
sections encountered in previous trials. 

The conclusive results obtained through 
experimentation at Danfoss underscore the system's efficacy 
and practicality. This study has yielded several noteworthy 
outcomes.  

Firstly, the inspection system's construction using off-
the-shelf components and open-source software has a 
paramount implication for industries. This approach mitigates 
the financial risk associated with investing in new technology, 
making it accessible for a wide range of companies, 
regardless of their financial capacity. For this reason, 
enterprises consistently endeavour to integrate components 

into their operations that involve minimal investments or 
implementation efforts. This drive for innovation in product 
manufacturing methods underscores their pursuit of novel 
approaches. 

Secondly, the implementation of the proposed 
inspection system contributes to a substantial enhancement in 
accuracy. The system's reliance on deep learning and 
YOLOv8 eliminates the inherent subjectivity stemming from 
human interpretation, experience, or individual viewpoints. 
This objectivity ensures consistent and reliable inspection 
outcomes, reducing the likelihood of errors and discrepancies 
in corrosion detection. 

Furthermore, the principal objective of this research, 
which was to overcome the limitations of traditional visual 
inspection methods, has been met. The conventional methods 
often suffer from time-intensive procedures, subjectivity 
influenced by inspectors' expertise, and potential variability 
in results. The developed system provides a solution that is 
not only efficient but also standardised, mitigating these 
limitations and advancing the state of corrosion inspection. 

The next phase of the research involves on-site testing, 
where the system will be piloted in one of the production lines. 
This real-time inspection will provide insights into the 
system's adaptability and performance in a live industrial 
environment. Subsequent adjustments can be made to tailor 
the system to the specific requirements of the production line. 
The successful integration of the system into one production 
line will pave the way for its implementation across the 
remaining three lines, signifying a comprehensive adoption 
of the technology. 
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