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Thermodynamic uncertainty relations (TURs) are general lower bounds on the size of fluctuations of
dynamical observables. They have important consequences, one being that the precision of estimation of a
current is limited by the amount of entropy production. Here, we prove the existence of general upper
bounds on the size of fluctuations of any linear combination of fluxes (including all time-integrated currents
or dynamical activities) for continuous-time Markov chains. We obtain these general relations by means of
concentration bound techniques. These “inverse TURs” are valid for all times and not only in the long time
limit. We illustrate our analytical results with a simple model, and discuss wider implications of these new
relations.

DOI: 10.1103/PhysRevLett.131.197101

Introduction.—Thermodynamic uncertainty relations
(TURs) refer to general lower bounds on the size of
fluctuations in the observables of trajectories of stochastic
systems. TURs were initially postulated as a bound on the
variance of time-averaged currents in the stationary state of
continuous-time Markov chains [1], and then proven (via
“level 2.5” large deviation methods [2–4]) to apply to the
whole probability distribution [5]. TURs were then gener-
alized to other dynamics and observables, including finite
times [6,7], discrete-time Markov dynamics [8], first-pas-
sage times [9,10], and open quantum systems [11–14],
among many other extensions and alternative derivations
(see, e.g., [15–25]). For a review see Ref. [26].
The most studied TUR is that for the relative uncertainty

(variance over mean squared) of a time-integrated current
bounded by (twice) the inverse of the entropy production.
This has immediate consequences for inference and esti-
mation [1,26]: increased precision in the estimation of the
value of a current from a stochastic trajectory requires
increasing the dissipation, or alternatively, the value of the
entropy production can be inferred from the fluctuations of
one or more specific currents which might be easier to
access. Similar uses of the TUR can be formulated using
the dynamical activity [27–29] for the estimation of time-
symmetric observables [9,26].

Despite their success and generality, a limitation of
TURs is that they only provide lower bounds on the size of
fluctuations: except in the few cases where they are tight,
inference on the observable of interest is hindered by the
absence of a corresponding upper bound. Here, we correct
this issue by introducing a class of general upper bounds
for fluctuations of trajectory observables consisting of
linear combination of fluxes of a continuous-time Markov
chain, which includes all currents and activities. For lack
of a better name, we call these “inverse thermodynamic
uncertainty relations.” The inverse TURs are valid for all
times and bound fluctuations at all levels. Figure 1
illustrates our results (see below for details): the large
deviation rate function IðA=tÞ for a current A is upper
bounded by the TUR, as known, and lower bounded by our
inverse TUR. Below we prove these general relations
using spectral and perturbation techniques that are
widely applied in the field of quantum and classical
Markov processes (see Refs. [30–35] and references
therein).
Notation and definitions.—Let X ≔ ðXtÞt≥0 be a con-

tinuous-time Markov chain taking values in the finite
state space E with generator W ¼ P

x≠y wxyjxihyj−P
x wxxjxihxj, with x; y∈E; we adopt the convention of

having W acting from the right on probability measures on
E. If X0 is distributed according to some measure ν, we
denote by Pν the law of X and we use Eν for the
corresponding expected value. We assume that X is
irreducible with unique invariant measure (i.e., stationary
state) π. We are interested in studying fluctuations of
observables of the trajectory X of the form
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AðtÞ ¼
X
x≠y

axyNxyðtÞ;

where axy are arbitrary real numbers with
P jaxyj > 0, and

NxyðtÞ are the elementary fluxes (the number of jumps from
x to y up to time t). For a time-integrated current
axy ¼ −ayx, while for counting observables (such as the
activity), axy ¼ ayx.
The fluctuations of AðtÞ in the long time satisfy the

following theorems [36]: (i) Strong law of large numbers,
limt→þ∞t−1AðtÞ ¼ haiπ ≔

P
x≠y πxwxyaxy (holds almost

surely). (ii) Central limit theorem (small deviations; holds
in distribution) limt→þ∞t−1=2½AðtÞ − thaiπ� ¼ N ð0; σ2∞Þ,
where σ2∞ ¼ limt→þ∞σ

2
νðtÞ=t and σ2νðtÞ is the variance of

AðtÞ if ν is the initial distribution (notice, however, that
the limit does not depend on ν). (iii) Large deviation
principle (LDP)

Pν

�
AðtÞ
t

¼ haiπ þ Δa
�

≍ e−tIðΔaÞ for everyΔa∈R

for some rate function I∶ R → ½0;þ∞� which in general is
hard to determine and admits an explicit analytic expres-
sion only for particular models.
To state our main result we need the following quantities.

In the stationary state π, the average of A per unit time
is haiπ ¼

P
x≠y πxwxyaxy, while its static approximate

variance is ha2iπ , with ha2iπ ¼
P

x≠y πxwxya2xy (corre-
sponding to the variance of

P
x≠y axyÑxy, where Ñxy are

independent Poisson variables with intensity πxwxy).
The maximum escape rate is q ¼ maxx wxx, and c ¼
maxx≠yjaxyj is the maximum amplitude of the coefficients
that define the observable. Since we do not assume that
W is reversible, we denote by ε the spectral gap of
the symmetrization ℜðWÞ ¼ ðW þW†Þ=2, where the
adjoint is taken with respect to π. Finally, we recall
that the dynamical activity is the observable counting the
total number of jumps between configurations [29],
KðtÞ ¼ P

x≠y NxyðtÞ, and denote by hkiπ ≔
P

x≠y πxwxy

its average per unit of time at stationarity.
Main results.—We now state our three main results:
(R1) The variance σ2πðtÞ of any time-integrated current or

flux observable AðtÞ in the stationary state has the general
upper bound

σ2πðtÞ ≤ tha2iπ
�
1þ 2q

ε

�
: ð1Þ

Note that this is valid for trajectories of any length t.
(R2) The distribution of AðtÞ=t starting from an initial

measure ν obeys a concentration bound

Pν

�
AðtÞ
t

≥ haiπ þ Δa
�

≤ CðνÞe−tĨðΔaÞ; ð2Þ

where Δa > 0 is the fluctuation of A away from the

stationary average, and CðνÞ ≔
�P

x ν
2
x=πx

�
1=2

accounts

for the difference between ν and the stationary π, with
CðπÞ ¼ 1. The bounding rate function can be written
explicitly as

ĨðΔaÞ ¼ Δa2

2

�
hkiπc2 þ 2qha2iπ

ε þ 5cqΔa
ε

� : ð3Þ

(R3) The rate function for AðtÞ=t is lower bounded by
Eq. (3) for every Δa > 0, that is

ĨðΔaÞ ≤ IðΔaÞ: ð4Þ

(R1)–(R3) are extended straightforwardly to Δa < 0 by
considering the observable −AðtÞ.
While the LDP describes the asymptotic concentration of

the law of AðtÞ=t around the limit value haiπ , our main
contribution consists in providing an explicit and simple
bound on the probability of fluctuations valid at any time.
Table I sketches the connection between concentration
bounds and large deviations, and how the latter are derived
from the former.
Inverse TUR and bound on precision.—The most direct

use of TURs is in bounding the precision for estimating a

FIG. 1. Upper bound on current fluctuations. The full (black)
curve shows the exact rate function IðA=tÞ for the current defined
by a12 ¼ 0.9, a13 ¼ −0.9, a14 ¼ −0.9, a23 ¼ 0.9, a24 ¼ −0.9,
and a34 ¼ 0.9. The rate function is upper bounded by the TURs:
the dotted (blue) curve is the standard TUR using the entropy
production, while the dot-dashed (pink) curve is the TURwith the
dynamical activity. The dashed (red) curve is the inverse TUR: it
lower bounds the rate function, corresponding to an upper bound
on fluctuations at all orders. [We plot the iTUR from a parametric
Legendre transform of Λ̃ðuÞ in Eq. (8) to avoid the approximation
used to obtain Eq. (3); however, the explicit Eq. (3) gives a very
similar bound.] Inset: sketch of the four-state model.
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current from its time average over a trajectory in a non-
equilibrium stationary state (NESS) π. We define the
relative error ϵA of A as the ratio between the variance
of A and its average squared multiplied by t

ϵ2A ≔ t
σ2πðtÞ
hAi2π

¼ σ2πðtÞ
thai2π

: ð5Þ

From the standard application of the TUR together with the
“inverse TUR” Eq. (1) we can bound the relative error from
below and above

2

Σπ
≤ ϵ2A ≤

ha2iπ
hai2π

�
1þ 2q

ε

�
; ð6Þ

where Σπ ¼
P

x≠y πxwxy logðπxwxy=πywyxÞ is the average
entropy production rate in the NESS.
The physical meaning of our new upper bound can be

understood from its two factors. In contrast to the TUR, the
first factor in the right-hand side of (6) contains information
about the current A of interest via the static variance, ha2iπ .
This is measurable, being the stationary mean of
SAðtÞ ¼

P
x≠y a

2
xyNxyðtÞ: given a (time-asymmetric) cur-

rent A, there is an associated symmetric flux SA whose
stationary average encodes the interplay between the
localization properties of the dynamics (which jumps x ↔
y have larger rates πxwxy and πywyx, and how these are
spread among all possible transitions), and the transitions
relevant for A (which x ↔ y have a larger jaxyj giving rise
to larger variations in A). The first factor therefore
quantifies the intuition that if larger variations of A are
produced by the most (respectively, least) active jumps,
we can expect A to have large (respectively, small)
fluctuations.
The second factor in the right-hand side of Eq. (6)

encodes overall properties of the dynamics via the ratio
q=ε. The symmetrized generator corresponds to the unique
equilibrium dynamics that shares key relevant features
(steady state and dynamical activity) with the original
dynamics [37], and its spectral structure is able to upper
bound fluctuations at all times. A relevant case is that of
dynamics with several mesostates (phases) with frequent

jumps within and rare jumps between, implying metastable
behavior with large fluctuations for empirical fluxes. This
is captured by q=ε, with q large due to the speed of the
intrastate dynamics, and ε small (and vanishing at a first-
order phase transition as shown in [38]). Thus the second
factor in the right-hand side of Eq. (6) quantifies the fact
that fluctuations in a time-integrated current are limited by
the degree of separation of timescales in the dynamics.
Examples.—As an illustration of Eqs. (4) and (6) we

consider the fluctuations of currents in the four-state model
of Ref. [5]. The network of elementary transitions is shown
in the inset of Fig. 1. The rates are as in Ref. [5], w12 ¼ 3,
w13 ¼ 10, w14 ¼ 9, w21 ¼ 10, w23 ¼ 1, w24 ¼ 2, w31 ¼ 6,
w32 ¼ 4, w34 ¼ 1, w41 ¼ 7, w42 ¼ 9, and w43 ¼ 5. A
current is defined by the values of the six coefficients
ax>y which we take in the range axy ∈ ½−1; 1�. To perform
the analysis, we construct a mesh across the space of
current observables T ¼ ½−1; 1�6 discretized with spacing
10−1, with each point corresponding to a different current.
Figure 1 shows the bounds for the long-time limit rate

function IðA=tÞ for one such current A∈ T . The full (black)
curve is the exact rate function. It is calculated from the
“tilted” generatorWu¼

P
x≠y e

uaxywxyjxihyj−
P

xwxxjxihxj
as follows [36]: (i) the moment generating function
(MGF) of A is Zπ;tðuÞ ≔ Eπ½euAðtÞ� ¼ hπjetWu j−i, where
j−i ¼ P

x jxi is the “flat state”; (ii) at long times
Zπ;tðuÞ ≍ etΛðuÞ, where the limit scaled cumulant generating
function (SCGF) ΛðuÞ is the largest eigenvalue of Wu;
(iii) the rate function is obtained via Legendre trans-
form, IðaÞ ¼ supu½ua − ΛðuÞ�.
The dotted (blue) curve in Fig. 1 is the usual TUR using

the entropy production [5]. The dot-dashed (pink) curve is
the alternative TUR which instead of Σπ uses the average
dynamical activity, hkiπ ¼

P
x≠y πxwxy [9,39]. Both these

curves are above the true rate function, thus providing the
usual lower bounds on the size of the fluctuations of A. The
dashed (red) curve represents an inverse TUR which upper
bounds the size of fluctuations of A at all orders, cf. Eq. (3).
Figure 2 shows the bounds (6) on the precision error (5),

for all currents in T , both at finite and infinite t. The full
(black) curves are the exact error ϵ2A, where the first two
moments of A are obtained from the first and second

TABLE I. Connection between concentration bounds and large deviations. Concentration bounds (top row) provide bounds for the tail
probability of a dynamical observable AðtÞ and holding for all time t. The box shows our main result. Large deviations (bottom row)
pertain to the asymptotic behavior of the tail probability and the moment generating function, and follow from concentration bounds in
the long time limit. See text for definitions and derivations.

Pν½AðtÞ ≥ tðhaiπ þ ΔaÞ� ≤
Eq: ð9Þ

Eν½euAðtÞ�e−tuðhaiπþΔaÞ ≤
Eq: ð7Þ

CðνÞe−tfðhaiπþΔaÞu−Λ̃ðuÞg ∀ t > 0
Concentration bounds

)(Gärtner-Ellis )(

e−tsupu≥0fðhaiπþΔaÞu−ΛðuÞg ≤ etΛðuÞe−tuðhaiπþΔaÞ
t → þ∞

Large deviations
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derivatives of the MGF Zπ;tðuÞ evaluated at u ¼ 0. The
errors are plotted rank ordered by their value at t ¼ ∞. The
dotted (blue) lines are the lower bounds from the TUR at
either finite [6] or infinite [1] times. The dot-dashed (pink)
lines are the activity TUR, where in the left-hand side of
Eq. (6) Σπ is replaced by 2hkiπ. As the TURs do not depend
on the details of the current that they bound, these curves
are constant. Figure 2 also shows the inverse TUR from the
right-hand side of Eq. (6) as full (red) curves. This gives an
upper bound to the error. The inverse TUR contains
information about the specific current through its static
average and second moment and it tracks the change in
shape of the exact error: in many instances the ratio of the
relative value of the upper bound to the error is smaller than
that of the error to the lower bound.
As explained above, the inverse TUR captures the

increase of fluctuations close to a dynamical phase tran-
sition via its dependence on q=ε, see Eq. (6). Figure 3
illustrates this in a six-state model with two competing
mesostates: as the spectral gap closes with decreasing γ, the
system gets trapped for longer times in each metastable
phase, giving rise to larger fluctuations of currents with
different mean values at stationarity in the two phases. The
inverse TUR tracks this growth in the estimation error,
while the TURs do not. (See Ref. [38] for details.)
Derivation of results.—We now give the main steps for

the proofs of results ðR1Þ–ðR3Þ. For full details see
Ref. [38]. Result (R3) follows easily from (R2) and the
definition of the LDP ([38]). In order to obtain (R1) and
(R2), the first step is upper bounding the moment generat-
ing function of AðtÞ: for every u ≥ 0 the following holds:

Zν;tðuÞ ≤ CðνÞetΛ̃ðuÞ; ð7Þ

where

Λ̃ðuÞ ¼
X
x≠y

πxwxyðeuaxy − 1Þ þ qha2iπu2

ε

�
1 − 5qcu

ε

� ð8Þ

if 0 ≤ u < ðε=5qcÞ, and Λ̃ðuÞ ¼ þ∞ otherwise. The
bound (7) consists of two parts: the first summation in
Eq. (8) is the SCGF of

P
x≠y axyÑxy, where Ñxy are

independent Poisson random variables with rates πxwxy;
the second term takes care of the correlations between the
jumps of the Markov chain. (R1) follows from differ-
entiating twice Eq. (7). The Chernoff bound ([40], Sec. 2.2)
allows us to turn an upper bound for the moment generating
function into an upper bound for the tail probability:

Pν

�
AðtÞ
t

≥ haiπþΔa
�
¼Pν

�
euAðtÞ ≥ etuðhaiπþΔaÞ

�

≤Zν;tðuÞe−tuðhaiπþΔaÞ; u≥ 0: ð9Þ

Using Eq. (7) and optimizing in u one gets

Pν

�
AðtÞ
t

≥ haiπ þ Δa
�

≤ CðνÞe−tsupu≥0½uðhaiπþΔaÞ−Λ̃ðuÞ�;

(R2) follows from showing ([38]) that Ĩ in (3) is dominated
by the Legendre transform of Λ̃, that is

ĨðΔaÞ ≤ sup
u≥0

½ðhaiπ þ ΔaÞu − Λ̃ðuÞ�: ð10Þ

The technical part consists in proving Eq. (7). As we
already mentioned, a simple calculation shows that

FIG. 2. Lower and upper bounds on the estimation error. (a) Relative error ϵ2A for estimating a current A from a trajectory of length
t ¼ 10−2 in the NESS of the model of Fig. 1. We show results for 206 different currents A∈ T . The full (black) curve is the exact error.
The standard TUR, dotted (blue) line, and the activity TUR, dot-dashed (pink) line, provide lower bounds to the error which are
independent of A. The inverse TUR, dashed (red) curve, gives an upper bound to the error which varies with A. (b)–(d) Same for times
t ¼ 1; 102;∞, respectively. The data in all panels are ranked according to decreasing values of the error at t ¼ ∞. For comparison, the A
corresponding to entropy production is shown according to the same ranking: TUR bound (green circle), exact (white triangle), TUR
(blue cross), activity TUR (yellow square).
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Zν;tðuÞ ¼ hνjetWu j−i; u∈R ð11Þ

for the “tilted” generator Wu¼
P

x≠yðeuaxy −1Þwxyjxihyjþ
W, which is an analytic perturbation ofW. We consider the
action of Wu on the inner product space of complex
functions defined on the state space E endowed with the
following inner product hh; fiπ ¼

P
x πxh̄xfx. Standard

estimates show that

Zν;tðuÞ ≤ CðνÞetλðuÞ;

where λðuÞ ≔ maxfz∶ z∈SpðℜðWuÞÞg. What is left is to
upper bound λðuÞ: for values of u small enough, perturba-
tion theory allows us to express λðuÞ as

λðuÞ ¼
X
x≠y

πxwxyðeuaxy − 1Þ þ
Xþ∞

k¼2

ukλðkÞ: ð12Þ

From the explicit expression of λðkÞ ’s we can show that

jλðkÞj ≤ qha2iπ
ε

�
5qc
ε

�
k−2

ð13Þ

and taking u such that the geometric series converges, one
gets Eq. (7) with Λ̃ given by (8).
Outlook.—We have proven a general class of upper

bounds on the size of fluctuations of flux observables of
trajectories which complement the lower bounds provided
by TURs [41]. Results ðR1Þ–ðR3Þ apply to fluctuations of
all orders at all times. In contrast to standard TUR, our
bounds encode details of the current of interest. Having
both upper and lower bounds is necessary to limit the range
of estimation errors.

There are many possible extensions and refinements. We
focused on continuous-time Markov chains, but analogous
bounds should be obtainable for discrete time dynamics.Our
bounds have as input the spectral gap of the (symmetrized)
generator, which for many-body systems can be estimated
from time correlations [42,43]. Further approximations may
also allow to formulate the inverse TURs in terms of
operationally accessible quantities. The classical results
here will have a corresponding generalization for open
quantum dynamics by exploiting generalizations of con-
centration bounds to the quantum case, see, e.g., [35]. We
hope to report on these extensions in future publications.

This work was supported by the EPSRC Grants No. EP/
T022140/1 and No. EP/V031201/1.
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