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With the aim to understand the role of the constraints in the thermalisation of quantum systems,
we study the dynamics of a family of kinetically constrained models arising through duality from the
XXZ spin chain. We find that integrable and nonintegrable deformations around the stochastic point
give rise to ground state phase transitions between localised and delocalised phases, which in turn
determine the nature of the relaxation dynamics at finite energy densities. While in the delocalised
phase thermalisation is fast and homogeneous, in the localised phase relaxation is slow, temporal
autocorrelations exhibit plateaus indicative of metastability, and the growth of entanglement is
heterogeneous in space. Furthermore, by considering relaxation from initial product states, we
demostrate that this slow thermalisation can be rationalised directly from the presence of constraints
in the dynamics.

Introduction. Thermalisation is one of the major chal-
lenges to the durability of quantum technologies: quan-
tum coherence—their vital property—cannot be sus-
tained indefinitely due to imperfect isolation from the
environment [1–4]. It is also expected to occur in ex-
tended isolated systems, where infinitely many degrees
of freedom provide an effective bath that leads to equili-
bration of few-body observables. These attain stationary
values predictable by standard statistical ensembles or, in
the case of integrable systems with infinitely many con-
servation laws constraining the dynamics, generalisations
thereof [5–8]. In generic systems, where only the energy is
conserved, one can understand this in the context of the
eigenstate thermalisation hypothesis (ETH). The latter,
through a combination of thermodynamic suppression of
coherences and dephasing, leads to a drastic reduction in
the number of parameters required to describe stationar-
ity [9–12].

While the statistical ensembles can predict the asymp-
totic expectation values of the few-body observables, they
give no information about the time scales over which
the relaxation towards them occurs. Speed of relaxation
can be affected by various circumstances, such as the ex-
tent to which the symmetries of the physical system are
broken by the initial conditions [13–15], the presence of
emergent quasiconserved quantities [16–20], or dynam-
ical constraints [21–29]. The latter are the main fea-
ture of kinetically constrained models (KCM), originally
conceived as toy models for slow hierarchical dynamics
of classical viscous fluids and glasses [30–33]. Mimick-
ing excluded-volume interactions [34]—a feature of sys-
tems extending from supercooled liquids [35, 36] to Ry-
dberg blockade [37, 38]—they can lead to a wide variety
of exotic quantum nonequilibrium phenomena that have
recently been in the spotlight. Examples include jam-
ming and related Hilbert space fragmentation [39–44],
quantum many-body scars (QMBS) [45–48], anomalous
transport [49, 50], and cooperative dynamics of frac-

FIG. 1. Ground state phases and slow relaxation
of the XPX model. (a) Ground state phase diagram of
the XPX model in Eq. (1) for L = 160 (from DMRG per-
formed using the ITensor library [63, 64]). For smaller w1,2

(yellow region) the ground state is localised, while for larger
w1,2 (red region) it is delocalised. The arrow indicates the
values of w1,2 used in panels (b,c). (b) Time evolution of a
spin configuration |· · · ↓ · · · ↓↓ · · ·〉 with dots denoting spins
up (from TEBD based on the Armadillo library [65, 66]), for
w1 = −2, w2 = −1/2 in the localised phase. (c) Normalised
auto-correlation functions for individual initial configurations
(light blue) and their average (black) in the localised phase
(w1 = −3.5, w2 = −1.5), in a specific symmetry sector of the
model.

tons [51, 52]. Excluded-volume interactions and dynami-
cal constraints often arise in models with tunable interac-
tions, where strong correlations between excitations are
induced in the large coupling limit [37, 41, 53–59]. Alter-
natively, KCMs can sometimes be related to such models
through duality transformations [14, 60–62], an approach
we follow here.

In this paper we consider a family of one-dimensional
(1D) quantum models mappable to the anisotropic
Heisenberg spin-1/2 chain and its nonintegrable defor-
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mation. We investigate two phases of the model depicted
in Fig. 1(a): a phase where the ground state is localised
(yellow) and one where it is delocalised (red). A strik-
ing feature of the model in the phase with a localised
ground state is the emergence of facilitated dynamics at
finite energy density, as illustrated in Fig. 1(b): certain
local arrangements (pairs of spins down, see below) can
move freely, whereas certain other isolated excitations re-
main frozen for long times. We demonstrate the result-
ing separation of time scales by considering the evolution
of temporal autocorrelation functions of particle occu-
pation numbers starting from various initial states—cf.
Fig. 1(c). This in turn gives rise to a growth of the bi-
partite entanglement entropy which is heterogeneous in
space, depending on the effect that the dynamical con-
straints have on spatial fluctuations in initial product
states.

Models. We consider a one-dimensional XPX model on
a chain of L spins 1/2 with open boundary conditions:

HXPX =

L−1∑
j=2

σxj−1(1−σzj )σxj+1+w1σ
z
j +w2σ

z
j−1σ

z
j+1. (1)

Pauli matrices acting in the site j are denoted by σαj ,
α ∈ {x, y, z}, while 1 is the identity. The dynamical
constraint 1−σzj =2 |↓〉〈↓|j allows the spins in sites j−1
and j+1 to flip only if a spin down is between them.

When w2 = 0 the XPX model is integrable and belongs
to a family of models

HXXZ

HXPX

HXOR−FA

σzj 7→ τzj−1τ
z
j+1

σxj−1σ
x
j+1 7→ τxj

τzj−1τ
z
j 7→ Zj

τxj 7→ XjXj+1

Xj 7→ σxj−1σ
x
j

ZjZj+1 7→ σzj

(2)

related by degenerate duality maps often referred to as
the bond-site transformations. One of them yields the
anisotropic Heisenberg model [14, 60, 62]

HXXZ =

L−1∑
j=2

XjXj+1 + YjYj+1 + w1ZjZj+1 (3)

and the second one the XOR-Fredrickson-Andersen
model

HXOR-FA =

L−1∑
j=2

τxj (1− τzj−1τzj+1) + w1τ
z
j−1τ

z
j+1, (4)

whose kinetic constraint—a quantum XOR gate—allows
a spin flip to occur only between two oppositely aligned
spins [67]. Operators Xj , Yj , Zj , and separately ταj ,
α ∈ {x, y, z}, satisfy Pauli algebra and can be repre-
sented as Pauli matrices acting in site j. For w2 6= 0

FIG. 2. Order of ground state phase transitions in
the XPX model. Panels in the first and the second row
show the derivatives of the ground state energy on w1, resp.
w2. For w2 ≤ 0 the transition between the localised and the
delocalised phase (i.e., between the regions color-coded yellow
and red, respectively) is a first-order transition. For w2 > 0
it is of the second order.

the integrability is broken [14]: the corresponding non-
integrable deformations are HXXZ +w2 Zj−1ZjZj+1Zj+2

and HXOR-FA + w2 τ
z
j−2τ

z
j+2.

We note that there is some freedom in specifying
the duality transformations. Choosing Xj 7→ σxj−1σ

x
j ,

Yj 7→ σxj−1σ
y
j σ

z
j+1 · · ·σzL, Zj 7→ σzj · · ·σzL for 1 ≤ j ≤ L,

with convention σx0 = 1, the conserved magnetisation

Sz =
∑L
j=1 Zj of the Heisenberg model is mapped into

the “semilocal” charge S̃z =
∑L
j=1 σ

z
j · · ·σzL of the XPX

model: [HXPX, S̃
z] = 0. Despite not being local, such an

operator may crucially affect local relaxation [14, 60].

Notably, all of the models in the family (2) have classi-
cal stochastic counterparts. The one for the XPX model
with w2 = 0 and w1 = −1 − s is associated to W(s) =

−U(HXPX + (1 + s)1)U−1, where U=
∏L/4
j=1σ

z
4j−1σ

z
4j and

we have assumed L/4 ∈ N for convenience. The oper-
ator W(s = 0) is a stochastic Markov generator, while
for s 6= 0 it is a deformed (or “tilted”) generator en-
coding the large deviation (LD) statistics [33, 68, 69] of
the number of spin-flips (dynamical activity [70–72]) in
trajectories of the dynamics [73].

Via duality to the XXZ model, and up to trivial bound-
aries, W(s = 0) corresponds to the stochastic genera-
tor of the classical symmetric simple exclusion process
(SSEP) [74], and for s 6= 0, it encodes the LDs of the
activity in the SSEP [75, 76]. The SSEP is known to
have a phase transition in the space of its (long-time)
stochastic trajectories between an active and an inactive
phase, which shows up as a nonanalyticity at s = 0 in
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the largest eigenvalue of W(s) (in the large-size limit)
[75–77]. The dynamical LD method [33, 68, 69] pro-
vides a means for a statistical ensemble description of
trajectories, and the ensuing dynamical phase transi-
tion, in the classical stochastic SSEP [75–77]. In the
dual picture for the quantum model, this transition (oc-
curring at w1 = −1) corresponds to the ferromagnetic-
paraferromagnetic phase transition in the ground state
of the XXZ model [78, 79]. In what follows we explore
how it affects the relaxation in the XPX model.

Localised and delocalised phases. In the context of
quantum dynamics the inactive and active phase of the
XPX model will be referred to as the localised and de-
localised phase, respectively. Choosing the inverse par-
ticipation ratio IPR =

∑
ψ | 〈ψ|GS〉 |4 as a measure of

localisation (|GS〉 is the ground state and |ψ〉 are com-
putational basis states), we indeed find IPR close to one
in the former and close to zero in the latter. As shown
in Fig. 2 [see also Fig. 1(a)], these two phases extend be-
yond the integrable line w2 = 0. For all w2 ≤ 0 they are
separated by a first order transition, both along w1 as
well as w2. Instead, for w2 > 0 the transition is a second
order one, cf. Fig. 2.

An interesting feature of the localised phase, indicated
in Fig. 1(b), is what could be described as “fractonic”
nature of the excitations [56]: an isolated spin down re-
mains immobile for long times, while two adjacent spins
down can move without an energy cost. We note that the
isolated spin down in the integrable XPX model (w2 = 0)
corresponds to a domain wall in the XXZ model, which
does not melt in the |w1| > 1 regime due to being close
to a stable kink solution [80–85]. The fractonic dynamics
in which particles can move only if paired (assisted hop-
ping) is a sort of dynamical facilitation [32], which can
lead to separation of time scales [33]. Remarkably, the
resulting metastability exhibited by correlation functions
which involve the entire spectrum of HXPX, and which
will be explored in the following, is tied to the localisation
of the ground state.

Slow relaxation. To probe metastability we consider
the average temporal autocorrelation of the one-site oc-
cupation number nj = (1+ σzj )/2:

ct =
1

L

L∑
j=1

〈ψ|nj(t)nj |ψ〉 . (5)

Here, nj(t) = eiHXPXtnje
−iHXPXt and |ψ〉 is a com-

putational basis product state (an eigenstate of all
σzj ). For such initial states ct corresponds to the
average magnetisation of the initially occupied sites
at time t. To smooth out fast fluctuations we fur-
thermore define ct = t−1

∫ t
0

dτ c(τ), which asymptoti-
cally approaches the diagonal-ensemble prediction c∞ =
L−1

∑
j

∑
E`=Em

ψ∗`ψm 〈`|nj |m〉, the sum over j running
over the initially occupied sites only.

FIG. 3. Slowdown of the relaxation in the localised
phase. (a-d) Normalised time-integrated autocorrelations
(ct − c∞)/(c0 − c∞) from initial computational basis states

(light blue), and their average over the sector S̃z = L − 4
(black), for L = 14. Panels (a,b) are for the integrable case
(w2 = 0), panels (c,d) for the non-integrable one (w2 6= 0).
Panels (a,c) are in the localised phase, panels (b,d) in the
delocalised one. (e) Normalised time-integrated correlation
〈ct − c∞〉 averaged over all computational basis states (all
sectors of Hilbert space). In the delocalised regime (over-
lapping curves, topmost being dashed) there is almost no
w1 dependence of the relaxation time, while in the localised
regime there is a clear slowdown of relaxation with increasing
|w1|. The relaxation time seems to obey exponential scaling
τrel ∼ exp(α|w1 + 1|). (f) Estimate of log τrel from the area
under 〈ct − c∞〉 / 〈c0 − c∞〉 as a function of log t, averaged
over the entire Hilbert space.

Panels (a-d) in Fig. 3 portray the autocorrelation func-
tions (ct−c∞)/(c0−c∞), normalised to lie between 0 and
1, for a selection of initial states |ψ〉 in the semilocal-
charge sector S̃z = L− 4 with L = 14. The same panels
show also the average of (ct−c∞)/(c0−c∞) over all |ψ〉 in
that sector. In contrast to the delocalised phase, panels
(b,d) (red background), where all correlation functions
quickly attain stationary values, a large number of cor-
relators in the localised phase, panels (a,c) (yellow back-
ground), exhibit plateaus which persist for long times
before finally relaxing.

Averaging the correlation function over the initial
states reveals a hierarchical decay typical for classi-
cal glassy systems, where it is associated with a se-
quence of different length scales on which relaxation oc-
curs [86–88]. This is most apparent in the autocorre-
lation 〈ct − c∞〉 / 〈c0 − c∞〉, where 〈−〉 is the infinite-
temperature average over the entire Hilbert space, plot-
ted in Fig. 3(e). Defining the relaxation time τrel as the
one required by the average correlator to fall below a
certain cutoff value ε, there is a clear distinction between
the delocalised phase, with no dependence on w1, and the
localised one, for which Fig. 3(e) suggests τrel ∼ eα|w1+1|

for some α > 0 which may differ between the successive
plateaus.
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FIG. 4. Dynamic heterogeneity of the entanglement entropy. (a-c) Evolution of the time-integrated bipartite entan-

glement Sj(t) (top panels), and the time-integrated temporal autocorrelation of the one-site occupation number 〈ψ|nj(t)nj |ψ〉
(bottom panels), starting from three different initial computational basis states |ψ〉 (black squares denote spins down, white
ones spins up). The plots are for the localised regime of the nonintegrable model with w1 = −2, w2 = −1/2. (d) Snapshots
of the EE profile at different times. The initial configuration for which the time autocorrelations have plateaus indicative of
slow relaxation exhibits spatially heterogeneous entanglement evolution. The evolution of EE in the configuration with fast
relaxation is instead faster and homogeneous.

An alternative estimate for the relaxation time
scale is the area under the averaged correla-
tor in the logarithmic time scale: log τrel ≈∫∞
log tmin

d[log t](〈ct − c∞〉 / 〈c0 − c∞〉) [89]. We show

this τrel in Fig. 3(f) as a function of w1 ranging between
the delocalised and the localised regime of the integrable
model (w2 = 0): there is a clear crossover from a regime
where τrel is only weakly dependent on w1, coinciding
with the delocalised phase (red background), to one
of exponential dependence on w1 in the localised one
(yellow background). Note the lack of dependence on
system size for the sizes accessible to our numerics. This
indicates that relaxation can be slow but not divergent
with system size, a typical feature of glassy dynamics.

Note that through duality between the models, cf.
Eq. (2), the metastability presented above should oc-
cur also for the autocorrelation function of the domain-
wall occupation number (1 − ZjZj+1)/2 in the XXZ
model, as well as for the autocorrelation function of
(1− τzj−1τzj+1)/2 in the XOR-FA model.

Large coupling regime. Slow relaxation observed
above should be contrasted with the one in the strong
coupling limit of the XPX model. In particular, for
w2 = 0 and w1 → −∞ the dynamics of the XPX
model is described by the integrable dual folded XXZ
model [41, 42, 90]. The latter has an exponentially large
sector of jammed states, typical for Rydberg blockade
systems [45, 91], and exhibits strong Hilbert space frag-
mentation [39, 44, 92]. For finite w1 the dual folded

XXZ model accurately describes the time evolution of the
XPX model up to times t ∼ |w1|. On such time scales
the dynamics is confined to small subsectors of Hilbert
space and time-averaged correlation functions ct exhibit
plateaus. While we have checked that they can be cor-
rectly predicted by the folded model’s diagonal ensemble,
such plateaus are not observed for the values of w1,2 con-
sidered herein, but instead appear for much larger values
of |w1|. Indeed, the plateaus seen in our examples per-
sist on time scales that are exponential and not linear in
the parameter. (see Ref. [93] for a perturbative picture
of prerelaxation in certain nonintegrable deformations of
the XXZ model).

Dynamic heterogeneity in entanglement. Entropy
growth provides crucial insight into the role of kinetic
constraints in the emergence of metastability [21, 22,
94, 95]. To demonstrate the heterogeneity of dynam-
ical facilitation we consider the bipartite entanglement
entropy (EE) Sj(t) = −Tr[ρj(τ) log ρj(τ)], where ρj(t) is
the time-evolved reduced density matrix of the subsys-
tem consisting of sites 1, 2, . . . j. Panels (a-c) of Fig. 4

show Sj(t) = t−1
∫ t
0

dτSj(τ) for several initial states in
the localised phase (w1 = −2, w2 = −1/2) of the XPX
model on L = 14 sites. Figure 4(a) shows the difference
between the EE growth when spins down which facilitate
relaxation are initially closer (faster EE growth) to when
they are further apart (slower EE growth). Note that
the heterogeneity of the EE evolution is accompanied by
plateaus in the correlators 〈ψ|nj(t)nj |ψ〉. Figure 4(b)
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illustrates the interplay of the kinetic term and the three-
site potential energy term (for w2 6= 0): facilitation
caused by the spin down closer to the boundary affects
less neighbouring sites, which are thus entangled faster by
the quantum unitary dynamics, that is, S12(t) ≥ S2(t) for
all t. Finally, due to the assisted hopping in the localised
regime, a large density of paired down spins results in
a quick equilibration, as shown in Fig. 4(c). The pro-
files of EE plotted at different times in Fig. 4(d) further
corroborate the observation that metastability is associ-
ated with dynamic heterogeneity, as is also the case in
classical glassy materials with or without quenched dis-
order [34, 35, 94, 96].

Discussion. We have investigated how metastability
and slow heterogeneous relaxation emerge from the ki-
netic constraints in the XPX spin chain (and by extension
in its duals, the XXZ and XOR-FA models). The onset
of anomalously slow dynamics coincides with a ground
state phase transition from a delocalised to a localised
one. This is similar to what occurs in other 1D and
2D constrained models [21, 22, 24, 27] for deformations
around their stochastic (frustration free) points. In our
case, we also find that the two phases with distinct relax-
ation extend beyond the range of parameters for which
the model is integrable and which include the stochastic
point. Interestingly, another contrast to previous results
is that the ground state transitions delimiting the two
dynamical regimes are not always first-order.

While the models studied herein bear some resem-
blance to certain KCMs with a variety of low-entangled
nonthermalising eigenstates [24, 97], the methods for con-
structing such states do not straightforwardly generalise
here due to crucial differences in either dynamical facili-
tation, or interaction. Whether the onset of slow hetero-
geneous dynamics in quantum KCMs is related to non-
thermalising states interwoven into the energy spectrum,
or the presence of some other exotic symmetries con-
straining the dynamics [47, 98, 99] remains one of the
intriguing open questions.
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[14] M. Fagotti, V. Marić, and L. Zadnik, Nonequilibrium
symmetry-protected topological order: emergence of
semilocal gibbs ensembles, arXiv:2205.02221 (2022).

[15] F. Ares, S. Murciano, and P. Calabrese, Entanglement
asymmetry as a probe of symmetry breaking, Nature
Communications 14, 2036 (2023).

[16] M. Fagotti, On conservation laws, relaxation and pre-
relaxation after a quantum quench, J. Stat. Phys. 2014,
P03016 (2014).

[17] B. Bertini and M. Fagotti, Pre-relaxation in weakly in-
teracting models, J. Stat. Mech. 2015, P07012 (2015).

[18] J. Kemp, N. Y. Yao, C. R. Laumann, and P. Fendley,
Long coherence times for edge spins, J. Stat. Mech. 2017,
063105 (2017).

[19] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers,
A rigorous theory of many-body prethermalization for
periodically driven and closed quantum systems, Comm.
Math. Phys. 354, 809 (2017).

[20] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Ther-
malization and prethermalization in isolated quantum
systems: a theoretical overview, J. Phys. B 51, 112001
(2018).

[21] M. van Horssen, E. Levi, and J. P. Garrahan, Dynam-
ics of many-body localization in a translation-invariant
quantum glass model, Phys. Rev. B 92, 100305 (2015).

[22] Z. Lan, M. van Horssen, S. Powell, and J. P. Garrahan,
Quantum slow relaxation and metastability due to dy-
namical constraints, Phys. Rev. Lett. 121, 040603 (2018).

[23] A. Morningstar, V. Khemani, and D. A. Huse, Kinetically
constrained freezing transition in a dipole-conserving sys-
tem, Phys. Rev. B 101, 214205 (2020).

[24] N. Pancotti, G. Giudice, J. I. Cirac, J. P. Garrahan, and
M. C. Bañuls, Quantum east model: Localization, non-
thermal eigenstates, and slow dynamics, Phys. Rev. X

mailto:lzadnik@sissa.it
https://www.sciencedirect.com/science/article/pii/S0079672799000038
https://doi.org/10.1038/35007021
https://doi.org/10.1038/35007021
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://www.sciencedirect.com/science/article/pii/S0370157319303084
https://www.sciencedirect.com/science/article/pii/S0370157319303084
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://dx.doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://dx.doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1103/PhysRevLett.119.010601
https://doi.org/10.1103/PhysRevLett.119.010601
https://doi.org/10.48550/arXiv.2205.02221
https://doi.org/10.1038/s41467-023-37747-8
https://doi.org/10.1038/s41467-023-37747-8
https://doi.org/10.1088/1742-5468/2014/03/P03016
https://doi.org/10.1088/1742-5468/2014/03/P03016
https://dx.doi.org/10.1088/1742-5468/2015/07/P07012
https://doi.org/10.1088/1742-5468/aa73f0
https://doi.org/10.1088/1742-5468/aa73f0
https://doi.org/10.1007/s00220-017-2930-x
https://doi.org/10.1007/s00220-017-2930-x
https://dx.doi.org/10.1088/1361-6455/aabcdf
https://dx.doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1103/PhysRevB.92.100305
https://doi.org/10.1103/PhysRevLett.121.040603
https://doi.org/10.1103/PhysRevB.101.214205
https://doi.org/10.1103/PhysRevX.10.021051


6

10, 021051 (2020).
[25] S. Scherg, T. Kohlert, P. Sala, F. Pollmann,

B. Hebbe Madhusudhana, I. Bloch, and M. Aidelsburger,
Observing non-ergodicity due to kinetic constraints in
tilted fermi-hubbard chains, Nature Comm. 12, 4490
(2021).

[26] P. Brighi, M. Ljubotina, and M. Serbyn, Hilbert space
fragmentation and slow dynamics in particle-conserving
quantum east models, arXiv:2210.15607 (2022).

[27] R. J. Valencia-Tortora, N. Pancotti, and J. Marino, Ki-
netically constrained quantum dynamics in supercon-
ducting circuits, PRX Quantum 3, 020346 (2022).

[28] A. Deger, S. Roy, and A. Lazarides, Arresting classical
many-body chaos by kinetic constraints, Phys. Rev. Lett.
129, 160601 (2022).

[29] A. Deger, A. Lazarides, and S. Roy, Constrained dy-
namics and directed percolation, Phys. Rev. Lett. 129,
190601 (2022).

[30] R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. An-
derson, Models of hierarchically constrained dynamics for
glassy relaxation, Phys. Rev. Lett. 53, 958 (1984).

[31] G. H. Fredrickson and H. C. Andersen, Kinetic ising
model of the glass transition, Phys. Rev. Lett. 53, 1244
(1984).

[32] F. Ritort and P. Sollich, Glassy dynamics of kinetically
constrained models, Adv. Phys. 52, 219 (2003).

[33] J. P. Garrahan, Aspects of non-equilibrium in classical
and quantum systems: Slow relaxation and glasses, dy-
namical large deviations, quantum non-ergodicity, and
open quantum dynamics, Physica A 504, 130 (2018).

[34] D. Chandler and J. P. Garrahan, Dynamics on the way to
forming glass: Bubbles in space-time, Annu. Rev. Phys.
Chem. 61, 191 (2010).

[35] L. Berthier and G. Biroli, Theoretical perspective on
the glass transition and amorphous materials, Rev. Mod.
Phys. 83, 587 (2011).

[36] G. Biroli and J. P. Garrahan, Perspective: The glass tran-
sition, J. Chem. Phys. 138, 12A301 (2013).

[37] I. Lesanovsky, Many-Body spin interactions and the
ground state of a dense Rydberg lattice gas, Phys. Rev.
Lett. 106, 025301 (2011).

[38] A. Browaeys and T. Lahaye, Many-body physics with
individually controlled Rydberg atoms, Nature Phys. 16,
132 (2020).

[39] Z.-C. Yang, F. Liu, A. V. Gorshkov, and T. Iadecola,
Hilbert-space fragmentation from strict confinement,
Phys. Rev. Lett. 124, 207602 (2020).

[40] C. M. Langlett and S. Xu, Hilbert space fragmentation
and exact scars of generalized Fredkin spin chains, Phys.
Rev. B 103, L220304 (2021).

[41] L. Zadnik and M. Fagotti, The folded spin-1/2 XXZ
model: I. Diagonalisation, jamming, and ground state
properties, SciPost Phys. Core 4, 010 (2021).

[42] B. Pozsgay, T. Gombor, A. Hutsalyuk, Y. Jiang,
L. Pristyák, and E. Vernier, Integrable spin chain with
Hilbert space fragmentation and solvable real-time dy-
namics, Phys. Rev. E 104, 044106 (2021).

[43] K. Tamura and H. Katsura, Quantum many-body scars
of spinless fermions with density-assisted hopping in
higher dimensions, Phys. Rev. B 106, 144306 (2022).

[44] K. Bidzhiev, M. Fagotti, and L. Zadnik, Macroscopic ef-
fects of localized measurements in jammed states of quan-
tum spin chains, Phys. Rev. Lett. 128, 130603 (2022).

[45] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Om-

ran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres,
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