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A B S T R A C T

Accurate forecasts of solar panel performance can improve grid penetration, enable cost evaluation prior to
project implementation, and improve fault detection during operation. Spectral correction functions (SCFs)
used to model the influence of the solar spectrum in such forecasting models are typically based on either
proxy representations of the spectrum, using parameters such as air mass, or parameters derived directly
from the spectrum, such as the average photon energy (APE). Although the latter is more accurate, the APE
is argued in some studies not to be a unique characteristic of the spectrum and to suffer from increased
uncertainty when analysing spectra at longer wavelengths. This study first derives APE spectral correction
function coefficients for three PV technologies — multicrystalline (mSi), triple junction amorphous silicon
(aSi-T), and cadmium telluride (CdTe). Based on an analysis of uncertainty in the SCF for each of the three
devices, this study proposes a new spectral correction function based on the average photon energy, 𝜑, and
the depth of a water absorption band, 𝜀. The additional index enables spectra to be characterised by unique
combinations of 𝜑 and 𝜀. Several water absorption bands are tested and the 650–670 nm band is found to yield
the most accurate SCF for all three PV devices. An optimal parameterisation of the SCF for each PV device,
as well as a cost-accuracy-balanced parameterisation, is presented. Improvements in the prediction accuracy
of up to 60% for both the mSi and aSi-T modules, and around 20% for the CdTe module, are achieved by the
proposed model with respect to a comparable two-variable proxy SCF, namely the air mass and precipitable
water function. Compared with the single-variable APE SCF, 𝑓 (𝜑), the proposed model improves the prediction
accuracy by around 10% for the aSi-T and mSi modules, and by around 2% for the CdTe module. No new data
are required for the proposed model compared with 𝑓 (𝜑) as the same spectra used to calculate the APE are
used to calculate 𝜀. The proposed spectral correction function can easily be integrated into wider photovoltaic
performance models for improved forecasting.
1. Introduction

Solar irradiance is one of the main factors affecting PV perfor-
mance [1,2]. However, due to the non-linear spectral response of
photovoltaic (PV) modules, measurements of broadband irradiance
alone are insufficient for accurately modelling the energy yield of PV
systems under realistic operating conditions.

The impact of spectral irradiance on PV performance has been
studied extensively [3–7] and shown to be especially significant for
wide band gap semiconductor technologies such as amorphous silicon
and cadmium telluride. Its omission from performance models can lead
to annual forecasting errors of up to 20% for such devices [8–10].
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For concentrating photovoltaic (CPV) and multi-junction (MJ) systems,
spectral errors of up to 30% have been reported in locations with
extreme atmospheric conditions [11]

The performance of any particular PV device is usually known for
a set of reference test conditions (RTC), which include a reference
spectrum. To correct for the difference in performance due to the spec-
trum under realistic operating conditions (ROC), a spectral correction
function (SCF) is used. SCFs are either based on proxy variables used
to represent the spectrum, or values derived directly from the solar
spectrum.

Proxy variables are environmental parameters that are considered
to have a dominant effect on the solar spectrum, and therefore whose
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value can serve as an indirect indicator of the shape of the prevailing
spectrum. Examples of such variables include air mass (AM) [12],
clearness index (𝐾𝑡) [13], and atmospheric precipitable water content

[14]. The proxy variables are chosen based on the significance
f their impact on the solar spectral distribution and the specific
pectral response characteristics of the devices under investigation. For
xample, AM values between 1.0 and 5.0 have been found to result
n performance fluctuations of up to 5% in c-Si modules and over 5%
or CdTe modules [15]. Furthermore, CdTe devices have been found
o be particularly susceptible to changes in 𝑊 , with variation between
.5–5.0 cm resulting in performance fluctuations of −4% to + 5% [15].

In terms of values derived directly from the spectrum, the average
hoton energy (APE) [16] is frequently used [17–20]. The APE is the
ean energy of the photons contained within a predetermined wave-

and of spectral irradiance. A higher average photon energy indicates
blue-shifted spectrum, while a lower energy indicates a red-shifted

pectrum. Since the parameter selection in proxy-variable SCFs offer
nly a limited range of information about the spectrum, the APE
as been used as an alternative parameter to characterise the solar
pectrum and investigate its influence on PV performance. Several
tudies have shown that spectra with a higher average photon energy
an lead to increases in the operation efficiency of aSi (single– and
ouble-junction), CdTe, and perovskite PV devices, while decreases are
bserved for technologies such as mSi, mono-Si, and Copper-Indium-
elenium PV devices [21–23]. These studies analyse in detail the
elationship between PV performance and the spectrum, as charac-
erised using the APE, but do not go on to develop an APE-based SCF
or PV performance forecasts. Where regression analysis has been used
o quantify the correlation between the APE and a PV performance
ndicator [24], validation of the proposed model(s) in terms of predic-
ive accuracy is lacking. Daxini et al. [25] proposed a new SCF based
n the APE, whose predictive accuracy is validated using field data
nd compared to that of two proxy-variable SCFs, namely the air mass
unction, 𝑓 (𝐴𝑀𝑎) [12], and the combined air mass and clearness index
unction, 𝑓 (𝐴𝑀𝑎, 𝐾𝑡) [8]. The APE SCF is shown to reduce the mean
bsolute prediction error by almost 50% with respect to 𝑓 (𝐴𝑀𝑎) and
lmost 40% with respect to 𝑓 (𝐴𝑀𝑎, 𝐾𝑡). However, the proposed model
s only validated for a single amorphous silicon PV device and therefore
t is necessary for future work to validate the model with different types
f PV technology.

Another limitation of the aforementioned APE-PV studies centres on
he uniqueness of the APE parameter in terms of its ability to represent
olar spectra. Dips in spectral irradiance in one particular waveband
ay be countered by increases in irradiance in another waveband,

eading to two differently shaped spectra but the same average photon
nergy. By adopting the International Electrotechnical Commission’s
ethodology for rating the spectral matching of a solar simulator [26],
inemoto et al. [27] show that an APE value yields a spectral irra-

iance distribution with a relatively small standard deviation . These
esults are supported by Tsuji et al. [28] who conclude the APE is a
nique characteristic of the solar spectrum at three test sites across
apan. On the other hand, more recent research has cautioned against
sing the APE parameter for spectral analysis [7,29]. For example,
ofuentes et al. (2017) analyse the coefficient of variation of the APE
arameter, rather than the standard deviation as used by Minemoto
t al. and find that APE values used to represent the spectrum have an
ncertainty of over 3% between 450–900 nm, and 5%–11% outside of
his range [30]. They conclude that the APE is not a bijective index
nd cannot be used reliably for spectral analysis. Given that the only
tudy to have derived and validated an SCF based on the APE parameter
emonstrates the proposed methodology solely for aSi PV devices,
hich have a spectral response range below 900 nm, the bijectivity

ssue highlighted in [30] may not have been a problem. Two research
aps in the existing literature are clear:

1. The use of the APE parameter to derive an SCF for PV devices
2

with wider spectral responses.
2. Uncertainty in the APE parameter when analysing spectral ef-
fects on PV devices, in particular those with wider spectral
responses.

Ishii et al. [31] show that the primary driver for changes in the
shape of spectra that maintain the same APE are negatively correlated
depths of water absorption bands (𝜀𝑤) and atmospheric windows (𝜀𝑎),
ereinafter collectively referred to as ‘‘spectral bands’’, or 𝜀. It is sug-
ested that a solar spectral distribution may therefore be characterised
niquely for all wavelengths with both the APE and an additional index,
amely the depth of one such spectral band.

In this work, an SCF based on the APE parameter is derived and
alidated for a range of different PV technologies, including those
ith a spectral response beyond 900 nm. Based on an analysis of the
ncertainty in the single-variable APE SCF, an advanced model based
n both the APE and the depth of a spectral band is proposed to address
he uncertainty in 𝑓 (𝜑) caused by the uncertainty in the 𝜑. The new
odel is developed and validated using empirical data for three PV

echnologies — multicrystalline, cadmium telluride, and triple-junction
morphous silicon. The combined 𝜑-𝜀 model addresses the bijectivity
ssue of the APE parameter whilst still retaining the higher accuracy
chieved through the use of direct representation of the spectrum
ather than the traditional proxy representation. As part of the model
alidation, the predictive accuracy of the proposed model is compared
o that of the APE spectral correction and a proxy-variable function.
ew model coefficients are derived for the latter, which represent an
dditional contribution of this work to the literature.

. Methodology

In this section, first, the overall research framework is presented.
he following subsections then explain methods and parameters used
or data collection, processing, and analysis.

.1. Research framework

Fig. 1 is a flow chart illustrating the research framework and overall
rocesses undertaken to achieve the main aims of this study, which are
o validate the 𝑓 (𝜑) SCF for different PV technologies, and develop and
alidate a new SCF based on two spectral indices — the average photon
nergy (𝜑) and the depth of a water absorption band (𝜀).

The first stage of the work is to derive the 𝑓 (𝜑) model coefficients
or three PV technologies not previously examined in the literature.
ased on an analysis of the uncertainty in the 𝑓 (𝜑) correlation for these
echnologies, and published spectral irradiance analysis, four spectral
ands are determined as potential candidates for 𝜀 in the proposed

𝑓 (𝜑, 𝜀) spectral correction model. An iterative algorithm is used to fit
ifferent surface functions to a correlation of 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑, 𝜀), for each 𝜀

band and for each device under test (DUT). In this stage, the optimal
fitting function is determined for each 𝜀 band, for each DUT. The best
fitting function for each 𝜀 band is then used to make predictions of
𝐼𝑠𝑐𝑛, which are compared with measurement-derived values of 𝐼𝑠𝑐𝑛, to
etermine the optimal 𝜀 band for each DUT. This leads to a final model
f 𝑓 (𝜑, 𝜀) with the optimal 𝜀 band and functional form. The final 𝑓 (𝜑, 𝜀)
CF for each DUT is then validated through a comparison of its fitting
nd 𝐼𝑠𝑐𝑛 prediction accuracy with those of existing SCFs, namely 𝑓 (𝜑),
nd 𝑓 (𝐴𝑀𝑎,𝑊 ).

.2. Spectral shift in PV performance

As spectral changes affect the measured short-circuit current of a
V device, 𝐼sc, a normalised form of 𝐼sc, is used to characterise PV
erformance under the prevailing spectrum. 𝐼sc is first translated to
reference temperature (𝑇𝑟 = 25 °C) and reference irradiance (𝐺0 =

000 Wm−2) as follows [32]:

′
𝑠𝑐 =

𝐼𝑠𝑐
[

𝐺0
]

. (1)

1 + 𝛼̂𝐼𝑠𝑐 (𝑇𝑐 − 𝑇𝑟) 𝐺𝑝𝑜𝑎
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Fig. 1. Research framework.
Here, 𝛼̂𝐼𝑠𝑐 [°C−1] is the short-circuit current temperature coefficient, 𝑇𝑐
[°C] is the cell temperature, and 𝐺𝑝𝑜𝑎 is the measured plane of array
irradiance. 𝑇𝑐 is estimated using a one-dimensional thermal conduction
model [32] based on the module temperature, 𝑇𝑚, which is measured:

𝑇𝑐 = 𝑇𝑚 +
𝐺𝑝𝑜𝑎

𝐺0
𝛥𝑇 . (2)

𝛥𝑇 is the temperature difference between the module and cell and
is determined based on the structure of the DUT. 𝛥𝑇 is set as 3 °C in
this study based on the structure of the three modules tested.

The purely spectral influence is expressed by the ratio of 𝐼 ′sc to the
reference current, 𝐼sc0, which is the current measured at 𝑇𝑟, 𝐺0, and
AM1.5 (reference spectral irradiance):

𝐼𝑠𝑐𝑛 =
𝐼 ′𝑠𝑐
𝐼𝑠𝑐0

. (3)

2.3. Characterisation of the solar spectrum

The two parameters – APE and 𝜀 – used to characterise the measured
solar spectral distribution are introduced in this section.

2.3.1. Average photon energy
The average photon energy, APE or 𝜑, is an indicator of the overall

shape of the solar spectrum. It is calculated by dividing the total energy
in the spectrum by the number of photons it contains, as follows:

𝜑[eV] = 1
𝑞

(

∫ 𝑏
𝑎 𝐸𝜆𝑑𝜆

∫ 𝑏
𝑎 𝛷𝜆𝑑𝜆

)

. (4)

𝐸(𝜆) [Wm−2 nm−1] is the spectral irradiance, 𝛷(𝜆) [m−2 nm−1] is the
spectral photon flux density, 𝑞 [C] is the electron charge, and 𝑎 [nm]
and 𝑏 [nm] are the upper and lower wavelength limits, respectively, of
the considered waveband.
3

2.3.2. Depth of a spectral band
The depth of any spectral band, 𝜀, is calculated by integrating the

spectral irradiance between the lower (𝑐) and upper (𝑑) wavelength
limits of the specified band,

𝜀 = ∫

𝑑

𝑐
𝐸𝜆𝑑𝜆. (5)

Fig. 2 shows the intercorrelation between the atmospheric window
and water absorption band in the solar spectrum, as first observed by
Ishii et al. (2012) [31]. One pair of bands is highlighted as an example.
Band A (1000–1050 nm) is an atmospheric window and Band B (1110–
1160 nm) is a water absorption band. The red and blue arrows indicate
a higher and lower spectral irradiance in Band A and B, respectively.
Therefore, as the spectral irradiance (SI) in Band A increases, that of
Band B decreases, and vice versa.

In this study, the recommendation of Ishii et al. (2012) to use a
combination of (𝜑, 𝐼) to characterise the solar spectrum is adopted
to develop a new spectral correction function. The band selection is
discussed in Section 6.

2.4. Devices tested

The devices tested in this study are multicrystalline silicon (mSi),
cadmium telluride (CdTe), and amorphous silicon triple junction (aSi-
T). A summary of the technical specifications of each device tested is
presented in Table 1.

These three devices are a representative sample of PV technologies
to demonstrate the proposed model from a technical perspective as
well as the perspective of meaningful practical application. Firstly,
amorphous and CdTe devices are especially important for building-
integrated photovoltaics applications [36–40]. The application aSi-
based devices in particular has also been explored for PV-thermoelectric
systems [41–43]. In terms of mSi, their positive balance between
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Fig. 2. Atmospheric window (Band A, 1000–1050 nm) and water absorption band (Band B, 1110–1160 nm) as highlighted in [31]. The red and blue arrows indicate the negative
correlation between the spectral irradiance (SI) in bands A and B. As the SI of band A increases (red upwards), that of band B decreases (red downwards), and vice versa with
the blue arrows. The SI data were measured at the University of Nottingham test site. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
.

Table 1
Technical specification and database identifier of the three DUTs as detailed in the
NREL database [33–35].

Parameter DUT

aSi-T CdTe mSi

Database identifier aSiTriple28325 CdTe75669 mSi0251
𝐼𝑠𝑐 (A) 4.39 1.14 2.67
𝑉𝑜𝑐 (V) 23.22 85.15 21.90
𝑃𝑚𝑝𝑝 (W) 58.67 65.77 43.88
𝛼𝐼𝑠𝑐 (%°C−1) 0.000981 0.00051 0.00057

cost and efficiency means that they have dominated the global PV
market [44] for rooftop applications, in particular on residential prop-
erties [45]. The devices selected cover a range of PV types, namely
thin film, multijunction, and crystalline, and have different spectral re-
sponse characteristics, thus providing a comprehensive sample of tech-
nology types and constructions against which the proposed methodol-
ogy can be validated.

2.5. Data acquisition and analysis

The PV performance and meteorological data used in this study are
sourced from a public database published by the National Renewable
Energy Laboratory (NREL) [33–35] and used widely in a range of PV
and meteorological studies [46–49]. The data used in this study were
measured at NREL’s Outdoor Test Facility (OTF) located in Golden,
Colorado. The parameters measured and the devices used to measure
them at the OTF are summarised in Table 2. The database’s associated
publications [33–35] explain the measurement campaign, data process-
ing, and data reliability and uncertainty in more detail. The additional
data processing actions undertaken in this work are summarised in
Table 3.

The PV performance and meteorological data are only measured for
a total duration of one year. However, two datasets are required in
this analysis — one to develop the new SCF and a second to validate
it. It is essential to maintain sufficient data in both sets to ensure
4

Table 2
Equipment at the OTF and their respective measurements.

Parameter Instrument

Wind speed/direction,
precipitation, temperature,
relative humidity, pressure

Vaisala WCT529 sensor

Plan-of-array irradiance Kipp & Zonen CMP22 pyranometer
Datalogger Campbell Scientific CR1000
Data Logger Communications RAVEN XE-EVDO
PV module IV curve Daystar MT5 multi-tracer
Module back surface temperature Omega CO1-T Style I thermocouple

Table 3
Additional data processing measures undertaken to filter the NREL data measured in
Golden, Colorado, USA. The 𝐼𝑠𝑐𝑛 = 0.17 example point occurred on 2013-01-02 at 1045h

Retention criteria Explanation

Irradiance > 200 Wm−2 Reduce noise but retain overcast conditions
Time 0800 h–1600 h Retain daylight hours only
Manual 𝐼𝑠𝑐𝑛 filter Example: 𝐼𝑠𝑐𝑛,𝐶𝑑𝑇 𝑒 = 0.17, all other 𝐼𝑠𝑐𝑛 > 0.8

they are representative of real operating conditions throughout the
entire year [50–52]. Since multiple years of data are not available,
the available one-year dataset was sorted chronologically and split
by extracting data at a ratio of 2:1, which is a commonly used ratio
in both PV and non-PV research [53–55]. This means that, moving
through the dataset chronologically, every third measurement of the
required parameters (SI, 𝐺𝑝𝑜𝑎, 𝐼𝑠𝑐 , etc.) was extracted to form the model
validation dataset while the remaining two were retained for the model
development. This separation enables the application of out-of-sample
testing in the validation stage where data not previously used in the
model development are used to validate the model. It also means that
data from the start to the end of the year are included in both the model
development and validation datasets.

The Levenberg–Marquardt (LM) algorithm is used in the fitting
process to determine the regression coefficients for correlations in this
study. For each spectral band used in the new model, the surface
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unctions fitted to the data are ranked according to their Bayesion and
kaike Information Criterion (BIC, AIC) scores to determine the best

it function for each spectral band. The BIC and AIC yield a rating
hat balances accuracy and complexity of the model [56], although
he BIC involves a greater penalty for increased complexity due to
he higher weighting of the term for the number of model parame-
ers. The coefficient of determination, 𝑅2, is calculated for the best
it surface function for each spectral band to enable a comparison
f fitting accuracy between the models. A higher 𝑅2 indicates that
he surface function explains more of the variation in the dependent
ariable. However, a higher 𝑅2 value does not necessarily mean a better
rediction model as there is always a risk of overfitting to the data used
o develop the model [57,58]. Therefore, in the validation stage, the
ptimal parameterisation, according to the BIC/AIC scores, for all four
pectral bands is used to predict values of 𝐼𝑠𝑐𝑛.

The prediction accuracies of the models based on different spectral
ands are then compared to determine the optimal 𝜀 band. In addition,
omparing this 𝜀-band optimisation result to the 𝜀 band ranking ac-
ording to the 𝑅2 values offers an indication of whether any overfitting
xists in the model parameterisation.

The prediction accuracy of 𝑓 (𝜑, 𝜀), using the optimal 𝜀 band and
unctional form, is then compared to the accuracy of existing SCFs,
amely 𝑓 (𝜑) and 𝑓 (𝐴𝑀𝑎,𝑊 ) to test whether there is any benefit to
sing the new model. Finally, the sensitivity of the prediction accuracy
o the functional form of 𝑓 (𝜑, 𝜀) is then analysed to determine the
lexibility of the model for different use cases that could impose varying
evels of computational resources or requirements.

.6. Summary

The structure of the remaining analysis in this study is summarised
n Fig. 3. The flow chart describes each step of the analysis and,
here applicable, the statistical metrics adopted at each stage are

ncluded in brackets. The measurement stage is based on the data
ollection and processing described in Section 2.5. The measured me-
eorological and PV performance data are presented in Sections 3
nd 4. The model development stage is presented across Sections 5
nd 6, where new coefficients of 𝑓 (𝜑) are presented and the new
(𝜑, 𝜀) model is developed and optimised. The model validation stage

s presented across Section 7, where the optimised form of 𝑓 (𝜑, 𝜀) is
alidated, and the 𝐼𝑠𝑐𝑛 prediction accuracies of 𝑓 (𝜑, 𝜀), 𝑓 (𝜑) (new coef-

ficients), and 𝑓 (𝐴𝑀𝑎,𝑊 ) are compared. In the final step, a simplified
arameterisation of 𝑓 (𝜑, 𝜀) is validated in Section 7.4.
5

3. Climatic conditions at the test site

The Golden test site is at an elevation above sea level of approx-
imately 1800 m. The monthly variation in irradiance and ambient
emperature at the site are shown in Fig. 4. The climate is a typical
ild-to-cold winter (mean temperature 10 °C) and warm–hot summer

mean temperature 30 °C). The monthly mean irradiance on the plane
f the PV test array varies between approximately 600 Wm−2 and 700
m−2 throughout the year.
Fig. 5 presents the variation in the monthly mean values of sev-

eral meteorological parameters that directly affect the solar spectrum,
namely air mass, atmospheric precipitable water content, and aerosol
optical depth at 500 nm (AOD). AOD is measured at the OTF, while
𝑊 is calculated using measurements of relative humidity and ambient
air temperature [59,60]. 𝐴𝑀𝑎 is calculated using the Kasten and Young

odel [61] combined with a linear pressure correction based on the site
levation [62] to account for the decreased density of air molecules at
ifferent elevations [63]. The air mass follows the expected seasonal
inusoidal trend that is dictated by the change in solar elevation over
he course of one year. Atmospheric water vapour follows a similar but
nverted sinusoidal pattern, which is similar to that of the annual am-
ient air temperature variation. Increased temperatures in the summer
ead to increased surface water evaporation and the greater capacity
f warmer air to hold moisture [64,65] The range of these parameters
s between around 1.0–2.5 and 0.5–2.0 cm, which are typical of this
egion. The AOD levels break the sinusoidal trend with an atypical
pike in April. Historical weather data from a variety of meteorological
tations and airports, compiled in Ref. [66], report unstable conditions
uring April of 2013. Most days during this period featured one or a
ombination of rainfall, haze, and dust. The latter two, in particular,
ay have contributed to the increase in aerosol optical depth during

he month of April 2013.
Fig. 6 shows the annual variation in the daily mean and monthly

ean values of the average photon energy at the OTF. The variation in
PE also exhibits a sinusoidal pattern with a decrease in the winter
onths (October–February) relative to the summer months March–

eptember. The dashed line shows the AM1.5 reference spectrum,
hich, between 350–1050 nm, is equal to 1.88 eV [67]. Relative to the

AM1.5 reference spectrum, the prevailing spectral irradiance conditions
during the summer months are similar to AM1.5, with a slight blue shift
in July. On the other hand, the winter months experience significantly
red-shifted spectra relative to the AM1.5 spectrum. This red shift in
winter results from shorter-wavelength radiation being more strongly

affected by Raleigh scattering when the solar elevation is lower.This
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Fig. 4. Mean monthly global plane-of-array irradiance (𝐺𝑝𝑜𝑎) and ambient temperature (𝑇𝑎𝑚𝑏) measurements at the OTF.
Fig. 5. Annual variation in several key environmental parameters that influence the solar spectrum in Golden, Colorado. Data points represent the monthly mean values for each
parameter.
pattern is in line with the trends observed in Fig. 5 where atmo-
spheric variables that result in greater scattering of longer-wavelength
light, resulting in a blue-shifted spectrum, are more prevalent in sum-
mer months, during which time the solar elevation (air mass) is also
higher (lower). As a result of the winter red shift, the PV devices,
in particular the CdTe- and aSi-based technologies, may operate less
efficiently (𝐼𝑠𝑐𝑛< 1) in the winter compared with the summer. The
annual variation in 𝐼𝑠𝑐𝑛 is discussed in greater detail in Section 4.

4. Spectral dependence of PV performance

Before presenting the results of the SCF analysis, the spectral re-
sponse characteristics of the DUTs are presented in this section. In
addition, an analysis of the temporal variation in 𝐼 over the course
6

𝑠𝑐𝑛
of one year is presented for each DUT to illustrate their respective
dependence on the solar spectrum.

Fig. 7 shows each device’s normalised spectral response, behind
which the AM1.5 reference spectrum is plotted. CdTe has the narrowest
spectral response and exhibits sharp cut off wavelength at around
900 nm, which corresponds to its band gap of around 1.5 eV [70]. The
wide band gap (narrow spectral response range) results in a relatively
strong spectral dependence of CdTe performance as CdTe PV devices
can only utilise a relatively small proportion of the available spectral
irradiance. The other two devices – aSi-T and mSi – all have much
broader spectral response ranges. For the mSi device, this results in a
reduced spectral dependence. However, this is not the case with aSi-T,
which is a triple-junction device. In a multijunction device, the spectral
responses of each junction are combined to provide a wider overall



Energy 284 (2023) 129046R. Daxini et al.
Fig. 6. Annual variation in the average photon energy at the OTF in Golden, Colorado.
Fig. 7. Normalised spectral response (SR) of the three PV technologies investigated in this study. Behind the spectral response curves is the spectral irradiance (SI) for the AM1.5
reference spectrum, normalised between 280 and 1200 nm. SR data are sourced from Ref. [68] (mSi and CdTe) and Ref. [69] (aSi-T).
spectral response range for the device. However, the construction of
multijunction devices is such that the junctions may be considered
as cells connected in series. Therefore, the current flowing through
each junction must be equal, which limits the overall device current to
that of the least productive junction. Therefore, multijunction devices
exhibit a strong spectral dependence [71,72] due to the particular
spectral response characteristics of the individual subcells (junctions).

To understand the spectral response behaviour of the DUTs quan-
titatively in the field, Fig. 8a shows the annual variation of 𝐼𝑠𝑐𝑛 for
the devices. 𝐼𝑠𝑐𝑛 is an indicator of the purely spectral influence on the
short-circuit current of a PV module, as defined in Section 2.2. Values
of 𝐼 > 1 indicates higher performance under the prevailing spectrum
7

𝑠𝑐𝑛
with respect to the performance under the reference conditions, 𝐼𝑠𝑐𝑛 < 1
indicates decreased performance, while 𝐼𝑠𝑐𝑛 = 1 indicates there is no
difference between the performance under the prevailing spectrum and
under reference conditions.

As expected, the performances of the wider band gap (CdTe) and
multijunction (aSi-T) devices have a stronger spectral dependence than
the narrower band gap single-junction device (mSi). With respect to
RTC (where 𝐼𝑠𝑐𝑛 = 1), the monthly mean variations plotted in Fig. 8a
show variation of up to −9%, +6% for aSi-T, −5%, +1% for CdTe,
and −2%, +0% for mSi. The maximum observed variations on the 15-
minute-averaged timescale of the original dataset are −40% to +20% for
aSi-T, −20% to +10% for CdTe, and around ±5% for mSi. It is important
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Fig. 8a. Annual variation in monthly mean 𝐼𝑠𝑐𝑛 for the three DUTs — aSi-T, CdTe, and mSi.
to note that 𝐼𝑠𝑐𝑛 for the aSi-T device may be influenced by non-spectral
effects that are not accounted for in the normalisation process. In the
summer in particular, thermal annealing of the device may lead to an
increase in efficiency [73,74], which could in part be responsible for
the significant rise in 𝐼𝑠𝑐𝑛, in particular when compared with the mSi
and CdTe devices.

Variation in 𝐼𝑠𝑐𝑛 for all three devices follow a seasonal sinusoidal
pattern over the year. The reduction in 𝐼𝑠𝑐𝑛 in the winter months may
be attributed to an average drop in the solar elevation during this
time of the year. The resultant increase in solar air mass shifts the
solar spectrum to longer wavelengths on average, which results in a
reduction in efficiency, especially for the CdTe and aSi-T devices. This
change in the solar spectrum is also indicated by a drop in the average
photon energy at the same time, which is shown in Fig. 6.

5. APE spectral correction

In this section, the coefficients of 𝑓 (𝜑) are derived for each of the
three DUTs, which expands on Ref. [25]. The coefficients for each of
the modules are summarised in Table 5. An analysis of the uncertainty
in 𝑓 (𝜑), in addition to a review of existing studies, informs the selection
of the spectral band used for 𝜀 in the main analysis of this study where
a new SCF based on the APE and 𝜀 is presented.

5.1. APE spectral correction

Based on the discussion in Section 4, the correlation between 𝐼𝑠𝑐𝑛
and 𝜑 for the mSi device would be expected to be weak compared
to the same correlations for the aSi-T and CdTe devices. This estima-
tion is borne out in the results shown in Fig. 8d. The coefficients of
determination, 𝑅2, for each of the fits are listed in Table 4.

All three devices show an increase in efficiency with the average
photon energy, although the rate of increase is greatest for the aSi-T and
CdTe modules. For the CdTe module, which has a relatively wide band
gap, the blue-shifted spectra (higher APE) contain a larger proportion of
photons with sufficient energy to generate a photocurrent. For the aSi-T
module, a similar principle applies but in this case it is the top junction
(wide band gap) of the module that is engaged more effectively in the
8

Table 4
𝑅2 values for the fourth order polynomial
fits of 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑) for each DUT.
DUT 𝑅2

aSi-T 0.90
CdTe 0.54
mSi 0.10

overall current generation by the blue-shifted spectra. Generally speak-
ing for both the CdTe and aSi-T modules, the active region for these
thin-film technologies is typically within the first micrometer of the
cell (top-cell in the aSi-T case). This improves their spectral response
to shorter-wavelength irradiation as irradiance in the blue-visible range
is typically absorbed within 0.1–1 μm of cell depth [75]. Although the
mSi data also show an increase in 𝐼𝑠𝑐𝑛 with APE, the correlation is weak
and the fit is unreliable as evidenced by the extremely low 𝑅2 (< 0.01).
The increased uncertainty in the mSi fit may be attributed in part to the
wider and flatter spectral response range of the module, which means
that the device performance has a greater dependence on APE values
that have a higher uncertainty.

The aSi-T data show the least variability of the three PV devices,
with the tightest correlation and highest 𝑅2. However, one notable
feature across all devices is that in the range of approximately 1.85eV ≤
𝜑 ≤ 1.90eV there is a larger spread in 𝐼𝑠𝑐𝑛 relative to the variation in
𝜑, when compared to other values of 𝜑. In this 𝜑 range, the same or
similar values of 𝜑 yield different values of 𝐼𝑠𝑐𝑛. This means that spectra
resulting in different levels of PV performance possess APE values that
are insufficiently different to represent the change in 𝐼𝑠𝑐𝑛 to which
they lead. This observation substantiates previous work that argues the
APE index is incapable of uniquely representing solar spectral distribu-
tions [29,30]. Improvement in the reliability and prediction accuracy
of 𝑓 (𝜑) is likely to be achieved through attributing the different 𝐼𝑠𝑐𝑛
values to unique value(s) representing the spectrum. Previous research
has identified variation in atmospheric water vapour to be the driver
of uncertainty in the APE value [30,31]. Several studies have also
found that atmospheric water vapour has a significant impact on the
performance of solar panels, in part through its effect on the solar
spectrum [76,77]. These studies find a high variation in PV output due
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Fig. 8b. 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑) SCF for the aSi-T device. The coefficient of determination, 𝑅2 is high, at around 0.90.
Fig. 8c. 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑) SCF for the CdTe device. The coefficient of determination, 𝑅2 is medium-high, at around 0.54.
to variable atmospheric precipitable water content levels, in particular
for CdTe modules. Guechi et al. [78] find that the short-circuit current
of a CdTe module can vary by over 3% as a result of variation in 𝑊
from 0.5 to 4.0 cm, while a hydrogenated silicon device is found to vary
by less than 2.5%. Passow et al. [15] report a more significant variation
in CdTe performance of −4% to + 5% when 𝑊 ranges between 0.5–5.0
cm.

Four 20 nm-wide wavebands centred about 660 nm, 720 nm, 815 nm,
and 940 nm, which are identified in [78,79], are used as the positions of
9

water absorption bands in the subsequent analysis. Through comparing
the SCFs derived from multiple wavebands, it is possible to determine
whether the uncertainty around 1.85eV ≤ 𝜑 ≤ 1.90eV can be resolved
through the inclusion of a water absorption band in the 𝑓 (𝜑) SCF —
𝑓 (𝜑, 𝜀).

In this section, model coefficients for 𝑓 (𝜑) have been derived for
the three PV technologies investigated in this study — aSi-T, CdTe, and
mSi. The model coefficients are presented in Table 5. 𝑓 (𝜑) coefficients
for these three PV types have not previously been published in the
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Fig. 8d. 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑) SCF for the mSi device. The coefficient of determination, 𝑅2 is low, at around 0.1.
Table 5
Fourth order polynomial coefficients for 𝑓 (𝜑) for each PV device. The fits to which
these values refer are shown in Figs. 8b, 8c, and 8d for the aSi-T, CdTe, and mSi
devices, respectively.

Device Coefficient

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4
aSi-T −2681.4825 5873.6537 −4828.0300 1764.8774 −241.9810
CdTe −1745.5747 3752.4391 −3022.5415 1081.5722 −145.0411
mSi −1469.6501 3139.0754 −2511.0929 892.1727 −118.78122

literature. Furthermore, analysis of the uncertainty in 𝑓 (𝜑) for each of
these three devices, in addition to a review of existing literature, has
helped identify four spectral bands as candidates for 𝜀 in the 𝑓 (𝜑, 𝜀)
SCF. The following section presents the new model, 𝑓 (𝜑, 𝜀), which
addresses the uniqueness issue of the APE parameter that is responsible
for the high degree of uncertainty in 𝑓 (𝜑).

6. APE-𝜺 spectral correction

In this section, an additional index is added to the APE spectral
correction, 𝑓 (𝜑). The index is the depth of a water absorption band, 𝜀.
The purpose of this additional index is to help distinguish observations
that have similar APE values but different values of 𝐼𝑠𝑐𝑛, in particular
in the range of 1.85eV ≤ 𝜑 ≤ 1.90eV where this phenomenon is
prevalent. Based on the analysis in Section 5.1, the following four
wavebands are used: 650–670 nm, 710–730 nm, 810–830 nm, and 930–
950 nm. For each combination 𝜑-𝜀, the optimal surface fitting function
is determined for further analysis.

6.1. Parameterisation of the 𝐼𝑠𝑐𝑛 -𝜑-𝜀 correlation

For each waveband, the 22 default surface fitting functions available
in OriginLab [80] were fit to the data. Typically, around eight fits con-
verged for each waveband. The highest ranking fit for each waveband,
according to the BIC and AIC values, was selected for further analysis.
These fits for each waveband are summarised in Tables 6, 7, and 8 for
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Table 6
𝑅2 values for the highest ranking surface fit to the data for
each of the four wavebands tested for the aSi-T device.
𝜀 𝑅2 Function

650–670 0.915 LogNormal2D
710–730 0.913 ExtremeCum
810–830 0.912 ExtremeCum
930–950 0.913 ExtremeCum

Table 7
𝑅2 values for the highest ranking surface fit to the data for
each of the four wavebands tested for the CdTe device.
𝜀 𝑅2 Function

650–670 0.584 Poly2D
710–730 0.604 RationalTaylor
810–830 0.571 Parabola2D
930–950 0.596 DoseResp2D

Table 8
𝑅2 values for the highest ranking surface fit to the data for
each of the four wavebands tested for the mSi device.
𝜀 𝑅2 Function

650–670 0.295 RationalTaylor
710–730 0.242 ExtremeCum
810–830 0.237 LogNormal2D
930–950 0.269 LogNormal2D

the aSi-T, CdTe, and mSi modules, respectively. The extent to which
each surface function explains the variability in 𝐼𝑠𝑐𝑛 is characterised
by the coefficient of determination, 𝑅2, the values of which are also
included in the aforementioned tables.

For all three devices, an improvement in fitting accuracy is achieved
relative to 𝑓 (𝜑) model regardless of the waveband chosen for 𝜀. The
improvement in the SCF achieved through the inclusion of 𝜀 is not only
apparent in the 𝑅2 value, but also visually evident in the correlations
plotted for each device in Figs. 9a, 9b, and 9c. In these three graphs,
the correlations using the 650–670 nm spectral band are presented as an
example, although the described effect is present for all spectral bands.
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Fig. 9a. 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑, 𝜀) for the aSi-T device, where 𝜀 is set as the 650–670 nm band.
Fig. 9b. 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑, 𝜀) for the CdTe device, where 𝜀 is set as the 650–670 nm band.
The grouping of observations around the 1.85eV ≤ 𝜑 ≤ 1.90eV range
for all PV devices, which was discussed in Section 5.1, is spread out
into the third dimension created by the additional index. As a result,
different values of 𝐼𝑠𝑐𝑛 that were originally attributed to the same or
similar values of APE are now attributed to unique combinations of
APE and 𝜀.
11
For the aSi-T device, the improvement in 𝑅2 (Table 4 vs. 6) is
relatively small (<0.02) and the fitting accuracy of all wavebands is
similar. In contrast, the differences between the 𝑅2 values for the
different wavebands is more distinct for the CdTe device, as shown
in Table 7. The range in 𝑅2 is around 0.04 (0.56 < 𝑅2 < 0.60),
which is greater than the range for the aSi-T device. This may be due
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Fig. 9c. 𝐼𝑠𝑐𝑛 = 𝑓 (𝜑, 𝜀) for the mSi device, where 𝜀 is set as the 650–670 nm band.
to the higher susceptibility of CdTe performance to changes in atmo-
spheric water vapour content, hence 𝑓 (𝜑, 𝜀) could be more sensitive
to the water absorption band (𝜀) selection. Furthermore, the relative
improvement of the spectral correction function through the inclusion
of the additional index is higher for CdTe than for the aSi-T device.
Comparing 𝑓 (𝜑) for both devices (Figs. 8b and 8c), the variation in 𝐼𝑠𝑐𝑛
for similar values of APE is significantly greater for the CdTe module
than for the aSi-T device, in particular between 1.85eV ≤ 𝜑 ≤ 1.90eV.
This was to be expected given the wider spectral response of the
CdTe module, compared with a single-junction aSi module (discussed
in [25]), and the issues discussed earlier regarding the uncertainty
in APE values for analysing spectra at longer wavelengths. Therefore,
the inclusion of an additional index that helps to distinguish between
different performance observations that are matched to the same APE
would be expected to benefit the CdTe model more than the aSi-T
model.

For the mSi module, the variation in 𝐼𝑠𝑐𝑛 about the 1.85–1.90 eV
band reaches up to around ±10%, which is even greater than that of the
CdTe module. Hence, it would be expected that the attribution of these
different performance observations to uniquely characterised spectra,
as opposed to similarly characterised spectra as in Fig. 8d, would in-
crease the model accuracy significantly. The additional index increases
the value of 𝑅2 for the spectral correction function by around 300%
(a factor of three). All 𝑅2 values for the mSi module are significantly
lower than those resulting from the fits for the other PV devices, but this
is to be expected given the flatter spectral response of mSi device and
its greater dependence on APE values that have a higher uncertainty,
compared with the aSi-T and CdTe modules, as discussed earlier. What
is more important than the absolute value of the 𝑅2 coefficient is its
relative increase through the inclusion of an additional index in the
spectral correction model.

The variation in the highest ranking spectral band for each device,
according to the 𝑅2, means that no single spectral band can be declared
optimal for all devices at this stage of the analysis. The 650–670 nm
ranks highest for the aSi-T and mSi devices, although by only a small
margin for the former. For the CdTe module, the 650–670 nm band
ranks third highest. Moreover, 𝑅2 is only an indicator of how well
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the surface function fits to the plotted data points, but provides no
information on whether the resulting model is a good predictor of
the dependent variable when supplied with an arbitrary set of data as
an input. A high 𝑅2 value could result from overfitting to the model
development dataset and the derived model may not provide accurate
predictions when supplied with new data. Therefore, in the following
section, the predictive accuracies of the SCFs derived for all four 𝜀
bands are analysed to identify the optimal waveband, 𝜀.

6.2. Optimisation of 𝜀

The highest ranking parameterisations for each 𝜀 band are used to
predict 𝐼𝑠𝑐𝑛 values for each DUT using the validation dataset described
in Section 2.5. A simple calculation of the annual Mean Absolute Error
(MAE) is used here to compare the prediction accuracies of each SCF
for each PV device. The MAE is calculated as follows:

MAE =
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑥𝑖|
𝑛

, (6)

where 𝑦𝑖 is the predicted value, 𝑥𝑖 is the true value, and 𝑛 is the
total number of data points. The MAE in this case is dimensionless
as 𝑥 and 𝑦 are the true and predicted values of 𝐼𝑠𝑐𝑛, respectively,
which themselves are dimensionless. First, as an overall indication of
accuracy, the annual mean MAE is examined. A more detailed analysis
of the MAE on different timescales throughout the year is presented
in Section 7, where the proposed SCF is validated.

Table 9 shows the MAE values calculated using the best fit function,
as identified in Section 6.1, for the aSi-T, CdTe, and mSi devices. The
results in Table 9 show that the wavebands that yielded SCFs with
the highest 𝑅2 value do not necessarily result in the lowest MAE. This
may be a sign of overfitting in some of the models, as postulated in
Sections 2.5 and 6.1. The 650–670 nm waveband consistently results
in the lowest MAE for each of the DUTs. However, for aSi-T device, the
810–830 and 930–950 wavebands result in the same MAE as the 650–
670 waveband. For the CdTe device, the 710–730 waveband results in
the same MAE as the 650–670 waveband. Despite these similarities,
given that the 650–670 waveband is the most consistent across all
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Fig. 10a. Comparison of the measured and predicted values of 𝐼𝑠𝑐𝑛 (using 𝑓 (𝜑, 𝜀)) as a function of time for the aSi-T device.
Table 9
MAE values calculated from predictions of 𝐼𝑠𝑐𝑛 that result
from using different spectral bands in the 𝑓 (𝜑, 𝜀) SCF.
Device 𝜀 MAE

aSi-T

650–670 0.0134
710–730 0.0156
810–830 0.0134
930–950 0.0134

CdTe

650–670 0.0149
710–730 0.0149
810–830 0.0152
930–950 0.0150

mSi

650–670 0.0101
710–730 0.0107
810–830 0.0107
930–950 0.0106

three devices, the 650–670 band is considered to be the best choice
for further analysis.

The fact that the same waveband gives the lowest prediction error
for all three devices suggests that the optimum band selection to charac-
terise the solar spectrum may depend on a fundamental property of the
spectrum rather than a device-specific response to the spectrum. None
of the three panels have any particular spectral response characteristics
between 650–670 nm. Taking the CdTe device as an example, Fig. 7
shows that its peak spectral response is at around 900 nm. therefore,
one may have expected that a water absorption band closer to this peak
response wavelength, such as 930–950 nm, would have been a better
choice for 𝜀. Although the waveband 930–950 nm generates a relatively
low MAE, it ranks third highest out of the four wavebands.

7. Validation of the APE-𝜺 SCF

The prediction accuracy of the highest ranking surface fits for each
PV device are tested in this section in order to validate each model.
Following on from the analysis in the previous sections, 𝜀 is set as 650–
670 nm. The prediction accuracy of the proposed model is determined
by comparing values of 𝐼𝑠𝑐𝑛 predicted by 𝑓 (𝜑, 𝜀), 𝐼𝑠𝑐𝑛,𝑓 (𝜑), with values
of 𝐼 derived from measured data, 𝐼 . The prediction accuracy of
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𝑠𝑐𝑛 𝑠𝑐𝑛,𝑚𝑒𝑎𝑠
the proposed model is then compared to that of the single-variable APE
spectral correction and a traditional proxy-variable approach based on
air mass and atmospheric precipitable water content.

7.1. Time series analysis

In this section, the temporal trends in the prediction accuracy and
associated uncertainty of the proposed model are analysed. Figs. 10a,
10b, and 10c show time series plots of 𝐼𝑠𝑐𝑛,𝑐𝑎𝑙𝑐 and 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠 for the
aSi-T, CdTe, and mSi devices, respectively. For these figures, 𝐼𝑠𝑐𝑛,𝑐𝑎𝑙𝑐
is calculated using 𝑓 (𝜑, 𝜀) and is hence denoted 𝐼𝑠𝑐𝑛,𝑓 (𝜑,𝜀).

The seasonal variation in 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠 for the aSi-T and CdTe devices,
identified in Section 4 is predicted accurately by the proposed model.
The mean absolute errors (MAEs) for the winter months of October–
February, during which time this drop in efficiency occurs, are 0.00967
and 0.01262 for the aSi-T and CdTe modules, respectively. 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠
for the mSi module exhibits a weaker seasonal trend, but this is still
captured in the predictions by the model, which yields an MAE of
0.00936.

In addition to being able to model the long-term seasonal shift
in efficiency due to the spectrum, high frequency changes in 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠
are also modelled accurately. In particular for the aSi-T device, high
frequency fluctuations in 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠 above and below unity are captured
by the model. The same is true for the mSi and CdTe devices, albeit to
a lesser degree for the extreme values of 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠.

The prediction error increases for all three devices in the summer
months. Whereas the model predicts a relatively stable efficiency in
these months with only minor variations (3%), in reality 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠 ex-
hibits variation (10%). Figs. 11a, 11b, and 11c show the MAE for each
15-minute measurement and prediction, as well as the mean monthly
MAE. Prediction errors in the summer months are the dominant con-
tributor to the annual MAE values, which are 0.01018, 0.01343, and
0.01495 for the mSi, aSi, and CdTe devices, respectively. One cause
of this may lie in the methodology used for the normalisation of 𝐼𝑠𝑐 .
The influence of two factors – irradiance and temperature – were
removed from the measured short-circuit current in the normalisation
process, and it was assumed the resulting difference of 𝐼∗𝑠𝑐 from the
reference current was due to the influence of the spectrum. In the
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Fig. 10b. Comparison of the measured and predicted values of 𝐼𝑠𝑐𝑛 (using 𝑓 (𝜑, 𝜀)) as a function of time for the CdTe device.
Fig. 10c. Comparison of the measured and predicted values of 𝐼𝑠𝑐𝑛 (using 𝑓 (𝜑, 𝜀)) as a function of time for the mSi device.
summer, the relative contribution of the direct beam component of
irradiance is greater, and thus the angle of incidence (AOI) has a greater
effect on module efficiency [12]. However, changes in efficiency due
to the AOI have not been considered because to do so would require
information on the separate components of irradiance rather than just
the global plane of array irradiance. Due to construction work around
the meteorological weather station [34] in the summer of 2013, the
measurements of the separate components of irradiance suffer from a
relatively large number of missing values. Using these data would have
14
impacted the reliability and accuracy of the derived model. Since the
primary aim of this study is to present a new method to account for the
spectral influence on the performance of PV devices, and demonstrate
the relative power of an additional index in the single-variable APE
spectral correction method, it was considered more appropriate to use
the larger 𝐺𝑝𝑜𝑎dataset. The increase in prediction error resulting from
the exclusion of an AOI correction for the summer months of 2013 is
a systematic error present across all models for each device and does
not impact the final conclusions of the study in terms of the relative
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Fig. 11a. 15-minute (crosses) and monthly MAE (line and crosses) values as a function of time for the aSi-T device. The annual MAE value is 0.0134.
Fig. 11b. 15-minute (crosses) and monthly MAE (line and crosses) values as a function of time for the CdTe device. The annual MAE value is 0.0149.
performance of the different models and the parameters they include.
There is another spike in the MAE for all models in the month of April
2013. This is likely to be a result of increased atmospheric aerosol levels
during this month, as shown in Fig. 5.

7.2. Comparison with existing models

In this section, the prediction accuracy of the proposed model,
𝑓 (𝜑, 𝜀), is compared with that of the APE model, 𝑓 (𝜑), presented
in Section 5.1, and a proxy-based alternative — the air mass and
15
precipitable water content model, 𝑓 (𝐴𝑀𝑎,𝑊 ) [46]. The latter is chosen

for two reasons. First, as a proxy variable-based approach, it offers an

insight into how the two methods – spectra- and proxy-based – compare

in terms of accuracy. Second, it is chosen for its similarity in terms of

inclusion of the effects of water vapour. The first subsection introduces

the 𝑓 (𝐴𝑀𝑎,𝑊 ) model and presents new coefficients for the model that

have been derived for the aSi-T device in this study. The following

subsection compares the predictive accuracies of the different SCFs.
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Fig. 11c. 15-minute (crosses) and monthly MAE (line and crosses) values as a function of time for the mSi device. The annual MAE value is 0.0101.
Table 10
𝑓 (𝐴𝑀𝑎 ,𝑊 ) model coefficients for the aSi-T PV module.

b0 b1 b2 b3 b4 b5

aSi-T 0.928 −0.103 −0.0597 0.0939 0.166 0.00656

7.2.1. Air mass and precipitable water SCF
The functional form of 𝑓 (𝐴𝑀𝑎,𝑊 ) is as follows [46]:

𝐼𝑠𝑐𝑛 = 𝑏0 + 𝑏1 ⋅ 𝐴𝑀𝑎 + 𝑏2 ⋅𝑊 + 𝑏3 ⋅
√

𝐴𝑀𝑎 + 𝑏4 ⋅
√

𝑊 + 𝑏5 ⋅
𝐴𝑀𝑎
√

𝑊
. (7)

Coefficients for the 𝑓 (𝐴𝑀𝑎,𝑊 ) model have only been published for
crystalline silicon and CdTe PV devices [46]. For the purpose of this
study, an additional set of coefficients has been derived for the aSi-T
device using the Golden data and these are summarised in Table 10.

7.3. Performance comparison

Time series plots of the same format as those which were presented
in Section 7.1 are presented here for each device, where 𝐼𝑠𝑐𝑛,𝑐𝑎𝑙𝑐 =
𝑓 (𝐴𝑀𝑎,𝑊 ). Figs. 12a and 12b show that 𝑓 (𝐴𝑀𝑎,𝑊 ) can accurately
predict the seasonal shift in 𝐼𝑠𝑐𝑛 for the CdTe and aSi-T devices. How-
ever, in the case of mSi device, although a decrease in 𝐼𝑠𝑐𝑛 is predicted
in the winter months, this decrease is significantly overestimated.
The mSi MAEs for the December, January, and February are 0.0151,
0.0144, and 0.0154, respectively.

A common observation across all three PV devices is that whereas
𝑓 (𝐴𝑀𝑎,𝑊 ) is capable of modelling higher frequency variations in
𝐼𝑠𝑐𝑛 than the simple air mass function, with reference to the results
reported in [25], the extreme values of 𝐼𝑠𝑐𝑛 are not accurately pre-
dicted. Figs. 12a, 12b, and 12c show that although 𝑓 (𝐴𝑀𝑎,𝑊 ) tends
to estimate a change in 𝐼𝑠𝑐𝑛 correctly, the absolute prediction value
is typically either an over– or underestimate. The reason for this may
be the fact that 𝑊 is a relatively simplistic indicator of atmospheric
water vapour, without specific reference to its impact on the spectrum.
Therefore, 𝑊 may not be sufficiently sensitive to changes in the spec-
trum at specific wavelengths, caused by the presence of atmospheric
water vapour, that are most significant for PV performance. On the
16

other hand, in the proposed 𝑓 (𝜑, 𝜀) SCF, the focus of 𝜀 on a specific
Table 11
Annual MAE values for the predictions made by 𝑓 (𝐴𝑀𝑎 ,𝑊 ) and 𝑓 (𝜑, 𝜀)
for each DUT.
DUT MAE

𝑓 (𝜑) 𝑓 (𝐴𝑀𝑎 ,𝑊 ) 𝑓 (𝜑, 𝜀)

mSi 0.0112 0.0250 0.0102
CdTe 0.0152 0.0187 0.0149
aSi-T 0.0149 0.0224 0.0134

water absorption band enables greater sensitivity to water vapour-
induced changes in the spectrum that are the most influential on PV
performance. This notion is supported by the annual values of MAE for
all three devices, which are summarised to three significant figures in
Table 11 for 𝑓 (𝐴𝑀𝑎,𝑊 ), 𝑓 (𝜑), and 𝑓 (𝜑, 𝜀). The proposed model reduces
the MAE generated by 𝑓 (𝐴𝑀𝑎,𝑊 ) by approximately 60% for both the
mSi and aSi-T modules, and by around 20% for the CdTe module.

For all three PV devices, the new model also reduces the prediction
error compared with 𝑓 (𝜑), albeit by a smaller margin than the improve-
ments on 𝑓 (𝐴𝑀𝑎,𝑊 ). Although the absolute value of the reduction in
MAE appears small, the percentage change is around 10% for the mSi
and aSi-T devices, and 2% for the CdTe device, which is significant.

While it is not the main focus of this study, it is still useful to
compare the 𝑓 (𝜑) and 𝑓 (𝐴𝑀𝑎,𝑊 ) SCFs. The percentage improvements
achieved through the inclusion of 𝜀 in the SCF for the aSi-T, CdTe,
and mSi modules are around 10%, 2%, and 9%. It is worth bearing
in mind that the additional information required for the new model, 𝜀,
is already present in data used to calculate 𝜑. Therefore, there is no in-
formation cost associated with these improvements since no additional
data are required. The only requirement is an extra calculation of the
value for 𝜀 in the model, but this is relatively simple and does not add
any significant computational cost to the overall modelling procedure.
On the other hand, the parameterisation of 𝑓 (𝜑, 𝜀) is somewhat more
complex and if the user is working with a new or customised DUT,
greater computational cost would be incurred to derive the model
coefficients for this multivariable function. However, in the following
section, it is shown that a balance between computational cost and ac-
curacy can easily be struck. Even without the optimal parameterisation
of 𝑓 (𝜑, 𝜀), where a sub-optimal but simpler parameterisation is used
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Fig. 12a. Comparison of the measured and predicted values of 𝐼𝑠𝑐𝑛 = 𝑓 (𝐴𝑀𝑎 ,𝑊 ) as a function of time for the aSi-T device.
Fig. 12b. Comparison of the measured and predicted values of 𝐼𝑠𝑐𝑛 = 𝑓 (𝐴𝑀𝑎 ,𝑊 ) as a function of time for the CdTe device.
instead, significant improvements in accuracy for all PV devices are still
be achieved relative to existing SCFs.

7.4. Balancing model complexity and accuracy

It is clear that the proposed spectral correction based on the average
photon energy and the depth of a water absorption band exceeds
the accuracy of existing spectral corrections significantly. However,
17
the analysis thus far finds that different functional forms of 𝑓 (𝜑, 𝜀)
offer better information criteria scores for different devices. From a
computational complexity perspective, the functions are relatively sim-
ple and can easily be integrated into commercial software or other
PV performance applications. Nevertheless, a simpler expression could
save time for large-scale iterative calculations that may be required
when analysing multiple modelling scenarios. Furthermore, from an
end-user application perspective, it would be simpler to have a single
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Fig. 12c. Comparison of the measured and predicted values of 𝐼𝑠𝑐𝑛 = 𝑓 (𝐴𝑀𝑎 ,𝑊 ) as a function of time for the mSi device.
Table 12
Poly2D model coefficients for each DUT to four significant figures. 𝑅2 values for the
corresponding surface fitting functions are included to three significant figures.

DUT 𝑅2 Model coefficients

𝑧0 a b c d g

aSi-T 0.907 −21.94 22.62 −0.01393 −5.521 1.7341E−4 0.003860
CdTe 0.584 −0.5313 0.7208 0.02232 0.05321 1.629E−4 −0.01445
mSi 0.194 −0.3998 1.101 0.03366 −0.1837 1.493E−4 −0.02046

functional form that only has device-specific coefficients, rather than
a device-specific functional form with device-specific coefficients. It is
also easier and more efficient to record and share the model if its form
is standardised. In this section, a single functional form is chosen to
demonstrate how a high level of accuracy is still maintained even if
the optimal functional expression, according to the statistical ranking,
is not adopted for 𝑓 (𝜑, 𝜀).

The simplest of the functions tested in Section 6.1 is the ‘‘Poly2D’’
equation, which takes the following form [81]:

𝑧 = 𝑧0 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥2 + 𝑑𝑦2 + 𝑔𝑥𝑦. (8)

The model coefficients (𝑧0, 𝑎, 𝑏, 𝑐, 𝑑, 𝑔) for each DUT are summarised
in Table 12. The resulting MAE values for the comparison between
𝐼𝑠𝑐𝑛,𝑐𝑎𝑙𝑐 and 𝐼𝑠𝑐𝑛,𝑚𝑒𝑎𝑠 are summarised in Table 12.

The Poly2D model is used to predict values of 𝐼𝑠𝑐𝑛 in the same way
as that which was presented in Section 7.3. The resulting annual MAE
values for each DUT are summarised in Table 13

The results in this section show that the proposed methodology
is relatively flexible in terms of its functional form. It is also clear
that the selection of the optimal functional form is a topic for further
exploration to find a balance between not only model complexity and
accuracy, but also usability. The two-dimensional polynomial function
is a simple surface expression and, although it does not offer the highest
level of accuracy possible for 𝑓 (𝜑, 𝜀), it can still be used to derive an
SCF for all three DUTs that improves the MAE value compared with
𝑓 (𝜑) and 𝑓 (𝐴𝑀 ,𝑊 ).
18

𝑎

Table 13
Annual MAE values for the predic-
tions made by 𝑓 (𝜑, 𝜀) for each DUT.
𝜀 is set as the 650–670 nm spectral
band. The model used is described
in Eq. (8) and the model coefficients
for each DUT are summarised in
Table 12.
DUT MAE

mSi 0.0101
CdTe 0.0150
aSi-T 0.0140

8. Conclusion

Changes in spectral irradiance can lead to variations in PV perfor-
mance of up to 9%, 5%, and 2% on a monthly average timescale for
the aSi-T, CdTe, and mSi devices, respectively. These values increase to
40%, 20%, and 5% on a 15-minute average timescale. A single-variable
spectral correction function based on the average photon energy can ac-
count for most of this variation, but suffers from increased uncertainty
for APE values between 1.85 eV and 1.90 eV. In this range of only
0.05 eV (±2.5%), the same or similar values of APE are correlated with
a wide range (±10%) of 𝐼𝑠𝑐𝑛 values.

Including an additional parameter in the spectral correction, namely
the depth of a water absorption band (𝜀) enables an association of
the different 𝐼𝑠𝑐𝑛 values, which have the same APE value, to unique
combinations of APE and 𝜀 instead. This work identifies the 650–
670 nm spectral band to be optimal for all three devices investigated.
Improvements in the prediction accuracy (reductions in the mean
absolute error of prediction) of up to 10% are achieved with the new
spectral correction. Furthermore, against a comparable two-variable
proxy spectral correction, the air mass and precipitable water SCF,
improvements in the prediction accuracy of up to 60% are achieved.

The optimal parameterisation for the model appears to be device-
dependent but, in this work, it is shown that a compromise can be made
between accuracy and complexity by adopting a simple and standard
expression for the model for all devices. This expression is a two-
dimensional polynomial (Poly2D), the device-specific coefficients for
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which are determined in this study. The MAE for all three devices is
still either the same or better when using the Poly2D expression rather
than the optimal device-specific expression.

This work presents a new spectral correction model that addresses
the question of bijectivity with the APE parameter that is used in some
existing spectral correction methods. The methodology followed in this
work has been demonstrated for three PV devices and the model accu-
racy has been validated for all three devices. Its benefits with respect to
existing approaches have been shown and are manifested in particular
through reductions in the normalised short-circuit current prediction
error. However, the precise functional form of the model requires
further investigation. Although multiple parameterisations have been
investigated, further work should continue these investigations in more
detail through the use of larger datasets from different climate regions,
different statistical analyses, and a wider range of PV devices. The data
used in this study are restricted to a single location, hence the presented
model coefficients may be limited by site-specific conditions such as the
local climate, the specific technical characteristics of the PV devices,
local measurement site set up, etc. Therefore, the precise coefficients
presented in this study may not be universally applicable. Neverthe-
less, the standardised comparison between different SCF methodologies
within this study shows that the proposed methodology – an SCF based
on both 𝜑 and 𝜀 – addresses the shortfalls of 𝑓 (𝜑), and is more accurate
than a comparable proxy multivariable SCF, namely 𝑓 (𝐴𝑀𝑎,𝑊 ). The
proposed method should now be validated in different climate regions,
for different PV devices, and so on.
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Appendix

The functional forms of the six parameterisations used in this study,
which are referenced in Tables 6, 7, and 8, are summarised this
appendix. Further information on the fitting functions listed here,
including the meanings behind each of the coefficients in the models,
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can be found in Ref. [82].
1. LogNormal2D :
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2. ExtremeCum:

𝑧(𝑥, 𝑦) = 𝑧0 + 𝐵 exp
{
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(A.2)

3. RationalTaylor:

𝑧(𝑥, 𝑦) =
𝑧0 + 𝐴01𝑥 + 𝐵01𝑦 + 𝐵02𝑦2 + 𝐶02𝑥𝑦

1 + 𝐴1𝑥 + 𝐵1𝑦 + 𝐴2𝑥2 + 𝐵2𝑦2 + 𝐶2𝑥𝑦
(A.3)

4. DoseResp2D:

𝑧(𝑥, 𝑦) = 𝑧0 +
𝐵

[

1 +
(

𝑥
𝐶

)−𝐷
] [

1 +
(

𝑦
𝐸

)−𝐹
] (A.4)

5. Parabola2D:

𝑧(𝑥, 𝑦) = 𝑧0 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥2 + 𝑑𝑦2 (A.5)

6. Poly2D

𝑧(𝑥, 𝑦) = 𝑧0 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥2 + 𝑑𝑦2 + 𝑔𝑥𝑦 (A.6)
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