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A B S T R A C T

Reconfigurable Manufacturing System (RMS) provides a cost-effective approach for manufacturers to adapt
to fluctuating market demands by reconfiguring assets through automated analysis of asset utilization
and resource allocation. Achieving this automation necessitates a clear understanding, formalization, and
documentation of asset capabilities and capacity utilization. This paper introduces a unified model employing
semantic modeling to delineate the manufacturing sector’s capabilities, capacity, and reconfiguration potential.
The model illustrates the integration of these three components to facilitate efficient system reconfiguration.
Additionally, semantic modeling allows for the capture of historical experiences, thus enhancing long-term
system reconfiguration through a knowledge graph. Two use cases are presented: capability matching and
reconfiguration solution recommendation based on the proposed model. A thorough explication of the
methodology and outcomes is provided, underscoring the advantages of this approach in terms of heightened
efficiency, diminished costs, and augmented productivity.
1. Introduction

The future success of developed economies will depend on maintain-
ing a strong and sustainable manufacturing sector built on cutting-edge
technologies, skills, and industrial infrastructure with the ability to
create a variety of complex items faster, more effectively, and at
a lower cost [1]. The challenges posed by grand societal concerns,
such as food security, aging populations, and climate change, make it
difficult to develop the necessary industrial infrastructure to provide
future commodities and services. Thus, a new, comprehensive strat-
egy in manufacturing research that encompasses complexity, motion
processes, high data density, and changing environments is required.
Today’s manufacturers must deal with volatile market demand and
strive to meet the different requirements of customers by developing
customized products [2,3]. Based on this, the University of Notting-
ham, the University of Cambridge, and Imperial College London have
proposed a new concept known as ‘‘Elastic Manufacturing Systems’’,
investigated in the Elastic Manufacturing project funded by the UK En-
gineering and Physical Science Research Council (EP/T024429/1) [4],
allowing future manufacturing processes to be supplied as a service
based on dynamic resource needs and provision across value chains,
allowing for entirely new business models and holistic responses in the
manufacturing industry.

In the concept of the Elastic Manufacturing System, the reconfig-
uration ability of the manufacturing system is part of the solution to
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effectively respond to continuously changing marketing demands. An
RMS is a production system intended to accommodate the need for
changeable quantities of high-quality goods at a competitive price [5].
RMS features an adaptable hardware and software architecture that
permits the modification of production capacity and functionality by
physically changing the assets and layout of the system to achieve the
required throughput rate and flexibility [6].

The reconfiguration of production processes in response to external
changes is a difficult challenge because system reconfiguration requires
varied and disparate information on product information, capability
information, system layout, process parameters, operation times of mul-
tiple assets, the sequence of the operations, material handling systems,
and other relevant aspects in combination to correctly determine the
required asset selections and configurations [7]. The characteristics
of the data make this challenge bigger [8], as manufacturing data
typically exists in multiple locations and formats, including structured
and semi-structured data (such as data in proprietary vendor-specific
formats, as relational databases, data in XML format, JSON format,
HTML format, and more), and also unstructured database context
reports [9]. Traditional data storage and retrieval systems categorize
heterogeneous data based on their forms or modalities and analyze
them individually [10]. Effective knowledge exchange and reuse have
become challenging, with the conventional building of a knowledge
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base requiring manual processing, which is time-consuming and labor-
intensive, making it challenging to satisfy the criteria for the automated
construction of a knowledge base [11] for the manufacturing system.

Knowledge graphs are proposed as a solution to overcome the
limitations mentioned above. These structured, semantic knowledge
bases effectively represent diverse information, aptly meeting knowl-
edge representation requirements. Knowledge graphs structure infor-
mation in an entity-relationship-entity or entity-attribute-value format,
making them adept at describing the heterogeneity typical in the
manufacturing domain [12]. Beyond simply representing information,
machines can process and analyze knowledge graphs efficiently. This
attribute is crucial for automation tasks like automatically respond-
ing to queries or making system recommendations. Furthermore, the
compatibility of knowledge graphs with advanced technologies, such as
natural language processing and machine learning, allows for creating
sophisticated automated systems [12].

Within a knowledge graph, ontology plays a vital role. It formally
defines a set of concepts within a domain and their relationships. This
provides a shared understanding of the data’s structure and meaning,
including the types of entities and relationships that can exist and the
rules for combining them [13]. Semantics, another integral part of a
knowledge graph, is the interpretation of relationships and connections
between entities and concepts. This includes defining relationships and
their properties and understanding the entities’ meaning. The semantics
of a knowledge graph provides a structured way to represent com-
plex information meaningfully, simplifying navigation and information
querying.

Besides the knowledge representation problem, which can be ad-
dressed by the knowledge graph, to allow for fast, accurate, and au-
tomated reconfiguration, two essential elements need to be captured
and considered: the capability of the assets and the capacity of those
assets. The capability is used to represent the function of the resource in
a manufacturing configuration [14]. However, many capability models
in the manufacturing domain are proprietary and not vendor-neutral,
which reduces the interoperability of different information. Although
Järvenpää et al. [15] developed a formal unified description of the
capability model, the number of capability classes is limited, and
the industry lacks implementation. Furthermore, the model does not
include reconfiguration information or dynamic parameters. A formal
unified, and comprehensive description of the capability model will
allow for a rapid decision-making process. It should be highlighted
that incorporating Semantic Web Rule Language (SWRL) rules [16],
ontology reasoning [17], and related techniques such as rule-based
reasoning systems [18], SPARQL Inferencing Notation (SPIN) [19], and
SHAPE Constraint Language (SHACL) [20] into the capability model
within the knowledge graph can significantly improve its adaptability
and precision. By employing these reasoning processes, a more rigorous
and comprehensive understanding of the manufacturing system can
be achieved, ultimately facilitating superior decision-making and more
effective system reconfiguration.

On the other hand, the capacity of assets is measured and utilized to
monitor the real-time production state on the shop floor. In manufactur-
ing firms, capacity is often modeled using a mathematical index called
capacity utilization rate [21], which aims to reduce the average cost of
production by evaluating economic performance. The challenge is that
firms or assets might use different key performance indicators (KPIs),
which makes it important to model the capacity models semantically to
automate the process. Hence, a capacity model provides the necessary
KPIs to monitor the firm’s performance in various aspects, such as
machines and equipment efficiency and effectiveness and supply chain
performance [22,23].

In light of these challenges, our paper proposes a methodology
for realizing an automated and precise decision-making process in the
manufacturing domain, focusing on the robot manufacturing cell for
reconfigurable and adaptive systems. This approach involves the devel-
2

opment of a unified formal ontology model encompassing capability,
capacity, and reconfiguration information. The methodology employs
knowledge graphs to capture and represent knowledge semantically.
By utilizing this proposed model to represent manufacturing informa-
tion, the system gains a deeper understanding, making more efficient,
accurate, and prompt decisions. In essence, the critical contributions of
the paper are as follows:

1. Semantic modeling is used to define resource capability, capac-
ity, and reconfiguration formally.

2. An automatic data pipeline is used to generate the knowledge
graph for a reconfigurable system focusing on the robotic man-
ufacturing cell.

3. Two demonstration cases of how these semantic models work
together to assist the efficient decision-making and the success-
ful execution of system reconfiguration with the help of the
knowledge graph.

The remainder of the paper is organized as follows. Section 2
reviews the existing information models in the manufacturing do-
main and the knowledge graph representation of information models.
Section 3 describes the detailed information of the ontology model
representing capability, capacity and reconfiguration information. Sec-
tion 3.4 describes the process of building a knowledge graph based
on the proposed ontology model. Section 4 describes two validation
use cases based on the proposed methodology. Section 5 describes the
conclusions and outlines of future work.

2. Related work

This section presents an overview of the relevant work from three
perspectives: research on manufacturing system ontology models,
knowledge graphs and their applications, and the challenges of creating
reconfigurable manufacturing systems. To support the reconfiguration
of RMS with automated tools, all three topics must be considered. There
has been significant research on these individual topics but limited
examples of all three being considered together.

2.1. Ontology models in the manufacturing domain

In the manufacturing domain, there has been an increasing interest
in using emerging knowledge representation technologies – such as on-
tologies, semantics, and semantic web technologies – to support collab-
oration, interoperability, and adaptation needs. One of the earliest man-
ufacturing ontologies was the Process Specification Language (PSL),
developed to provide a neutral language for representing process-
related knowledge and supporting application integration [24]. The
XML-based approach may fulfill interoperability requirements across
diverse systems, but it only describes the manufacturing process’s struc-
ture, making it difficult to express its implicit semantic content [25].
Most existing resource description approaches are domain-specific and
offer only partial solutions for specific applications, hence lacking a
comprehensive view. Lu et al. [26] present an ontology-based approach
to enable semantic interoperability throughout the whole process of
service provision in the cloud. However, this work does not talk much
about the application of this ontology model and how to enable com-
plex decision-making processes with this model. Wang et al. [27]
present an ontology model to model task semantics and description
in cloud manufacturing systems. However, this paper lacks a vendor-
neutral description of the resource in this model, which hinders inter-
operability. Järvenpää et al. [15] presented a developed information
model MaRCO, which provides resource vendors with a standard,
vendor-independent way to describe the capabilities of the resource
offerings. The authors describe how to use this model to do capability
matching. The authors outline the utilization of the model for capability
matching in the manufacturing sector. Capability matching involves
determining the suitability of a manufacturing process or equipment for

a specific product or component by evaluating its accuracy, speed, and
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capacity compared to the requirements of the product or component
being produced. However, the limited number of capability classes is
due to a lack of industry-wide implementation, and the model does not
account for reconfiguration information or dynamic parameters. Based
on the literature review, there appears to be a scarcity of systematic
research pertaining to capacity modeling in manufacturing reconfig-
uration. While some papers address components of capacity models
in manufacturing [28–30], they do not provide a comprehensive and
systematic framework.

2.2. Knowledge graphs in the manufacturing domain

Knowledge graphs are composed of structured information about
the real world, describing entities and relations among them [17].
In a knowledge graph, each fact is represented as a triple (ℎ, 𝑟, 𝑡),

hich indicates that there exists a relationship named 𝑟 between the
ead entity ℎ and the tail entity 𝑡, e,g., (Milling machine, hasTools,
illing cutter). Compared with traditional data storage and computa-

ion, knowledge graph technology focuses on collecting, managing, and
rocessing unstructured, heterogeneous data. It is better at representing
nd computing relationships, which can handle complex and diverse
ssociation analysis and infer new knowledge [31]. One advantage of
he knowledge graph is that it can be easily extended to model new re-
ationships and entities without changing the original schema. Besides,
nowledge graphs are better suited for answering complex queries that
nvolve multiple entities and relationships [32], for example, ‘‘how
o produce the hinged product of the airplane?’’ This kind of query
ould be difficult or impossible to answer using traditional relational
atabases or flat file structures.

A knowledge graph comprises a schema layer and an entity
ayer [33]. The schema layer contains concepts, properties, and re-
ationships between concepts. The entity layer contains the specific
ntities that are instantiated from these ontological concepts. Taking
he milling machine once again as an example, (Milling machine, has-
ools, Milling cutter) is the entity representation from the entity layer.
oth the milling machine and milling cutter are instantiated from the
esource class of the schema layers. The semantic relationship of these
ntities in the schema layer is (Asset, hasTools, Asset). The data structure
f the knowledge graph is compatible with the data structures on which
any technical tasks in artificial intelligence are based (e.g., big data
ith a heterogeneous structure and multiple associations), which can
rovide strong support for subsequent machine learning and inference
asks, helping enterprises to improve performance in intelligent search,
ntelligent Q&A, intelligent recommendation, and big data analysis
pplications [34].

Knowledge graphs have been applied in the manufacturing domain
ecently. Zhou et al. [35] present a unified knowledge graph-driven
roduction resource allocation approach, allowing fast resource allo-
ation decision-making for given order inserting tasks, subject to the
esource machining information and the device evaluation strategy.
ia et al. [36] introduce an industrial knowledge graph (IKG)-based
ulti-agent reinforcement learning (MARL) method for achieving the

elf-X cognitive manufacturing network. Knowledge graphs make it
traightforward to express the connections within entities clearly and
ffectively. It allows people to analyze problems based on the connec-
ions between knowledge. Despite the numerous benefits of knowledge
raphs in manufacturing, some limitations must be considered, which
nclude the following:

1. Data integration: Integrating data from multiple sources can be
a challenging and time-consuming process. The quality and for-
mat of the data may also vary, making it difficult to standardize
and integrate it into a knowledge graph [37].

2. Expertise: Building and maintaining a knowledge graph re-
quires specialized skills and knowledge, making it challenging
for organizations to implement it themselves [38].

3. Lack of Standardization: The lack of standardization in knowl-
edge graph technology and data representation can limit inter-
operability and integration with other systems [39].
3

2.3. Reconfigurable manufacturing systems

An RMS is a manufacturing system that can be easily adapted
and reconfigured to accommodate changes in production requirements,
product design, and production volume [40]. The key characteristic of
an RMS is its ability to quickly switch between different production
processes and product types without extensive retooling or major in-
vestments in new equipment. This versatility enables manufacturers
to respond quickly to changes in market demand and product re-
quirements, reducing production downtime and costs while increasing
production efficiency and competitiveness [6,41,42]. There are several
types of reconfiguration in manufacturing systems, including:

1. Layout reconfiguration: When the position of the equipment
is considered as one of the configurations of the manufacturing
system. Then the layout optimization problem can be regarded
as a problem of selecting the best configuration. This includes
the physical layout of the manufacturing system, such as the
location of machines and equipment, as well as the spatial
relationships between them [43,44]. Layout reconfiguration in-
volves considering the optimal positioning of all machines in
the production line, with the decision variable being the poten-
tial range of each machine’s position. However, in some cases,
certain machines may not be able to change their positions due
to constraints such as fixed installation or specialized functions.
Thus, the position information for these machines is considered
to be fixed at 0 within the range of potential positions. Addi-
tionally, changes to the production environment, such as adding,
removing, or updating machines, can impact the overall layout
configuration and are therefore considered part of the layout
optimization process. When a layout reconfiguration is carried
out, the primary goal is to optimize the manufacturing system
for maximum efficiency, productivity, or any other objective.
However, it is crucial to consider the impact of these changes on
machines that might be left out of the reconfigured layout. While
unused machines in a reconfigured layout can be considered a
liability, several strategies are available to manage and mini-
mize their impacts on the overall manufacturing system, such
as redeployment, leasing, recycling, and maintenance. These
options can help ensure that the reconfiguration process leads
to a more efficient, productive, and cost-effective manufacturing
operation.

2. Resource selection: Resource selection refers to the process of
choosing the appropriate resources (e.g., machines, tools, and
personnel) to complete a task or production process. Resource se-
lection aims to ensure that the necessary resources are available,
efficient, and cost-effective for the task at hand [45].

3. Job scheduling: Although job scheduling is not specific to
RMSs, it is still a critical aspect of manufacturing that can
impact the overall system performance, including reconfigurable
manufacturing systems. Job scheduling involves determining the
optimal sequence of jobs to be processed, taking into account
various constraints such as machine availability, production ca-
pacity, and due dates for jobs. Therefore, job scheduling is an
important consideration in the design and operation of reconfig-
urable manufacturing systems to ensure efficient and effective
production. Various techniques, such as mathematical optimiza-
tion and heuristic algorithms, have been developed to address
job scheduling problems in manufacturing [46–48].

3. Methodology

Motivated by current limitations of existing manufacturing semantic
modeling methods [24–27], such as difficulties in achieving effective
reconfiguration, few unified ontology models that represent the ca-
pability, capacity, and reconfiguration information, the difficulties in
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processing heterogeneous data from the manufacturing domain [7], the
need for rapid response in the reconfiguration of the elastic manufac-
turing system [1], and low levels of automation in the decision-making
process [11], this paper provides a methodology for achieving fast, opti-
mized reconfiguration by utilizing an ontology model and a knowledge
graph. We have proposed an ontology model for capability, capacity,
and reconfiguration to formally describe these manufacturing features
in a machine-interpretable way. The knowledge graph-based method
is applied in this methodology because of its capability to deal with
heterogeneous data, and it can be dynamically updated.

To address knowledge graph limitations as described in Section 2.2,
the methodology proposes data transformation, mapping techniques,
and machine learning algorithms for data integration. Automated tools
and frameworks are recommended to tackle skill acquisition chal-
lenges, while the development and adoption of standardized knowledge
representation languages are encouraged.

3.1. Knowledge graph building approach

As mentioned in Section 2, the knowledge graph consists of the
schema layer and the entity layer. To build the knowledge graph
focusing on reconfiguration, a methodology to build both the schema
layer and the entity layer of the knowledge graph should be defined.

The construction of knowledge graphs can be achieved through
either a top-down or bottom-up approach. The top-down methodology
entails pre-defining the schema layers by means of data sets and expert
knowledge and subsequently updating the entity layer in accordance
with the predefined schema [49]. This strategy is widely adopted
in the creation of domain-specific or application-specific knowledge
graphs and is heavily contingent upon the input of domain specialists.
Conversely, the bottom-up approach commences at the entity layer
with the extraction of entities and relationships from structured and
unstructured data sources, followed by the establishment and ongoing
refinement of the schema layer based on the aggregated data derived
from the entity layer [50].

The exclusive reliance upon either a top-down or bottom-up strategy
bears certain limitations. The top-down approach necessitates substan-
tial participation from domain specialists, thus ensuring data precision
but at the expense of incurring considerable costs and consuming
copious amounts of time. Meanwhile, while more frugal compared to
the top-down methodology, the bottom-up strategy requires an abun-
dance of data, which can pose a daunting challenge to procure within
the realm of manufacturing. The proposed methodology in this paper
aspires to automate the decision-making process and attain an optimal
level of reconfiguration efficiency. Due to the inherent deficiencies
associated with exclusively utilizing either the top-down or bottom-up
approaches, a combination of both methods was opted for to fabricate
the knowledge graph in our methodology, as described in [51].

3.2. Constructing the schema layer of the knowledge graph

An ontology model named OCCR (Ontology model of Capability,
Capacity, and Reconfiguration) was developed to construct the schema
layer of the knowledge graph. This ontology model has been de-
veloped based on Järvenpää’s model [15], incorporating additional
semantic models and refining existing ones, such as incorporating
a more detailed capability model including metrology capability, as
well as incorporating information related to reconfiguration, capacity,
and tasks. The purview of the OCCR model is to formally model the
capabilities, capacities, and reconfiguration information, along with
their associated models, of reconfigurable manufacturing systems, thus
enabling a more cost-effective response mechanism for manufacturing
firms. This is achieved by enabling the automated analysis of the uti-
lization of available assets, and the autonomous allocation of capacity
to optimize the utilization of assets in response to fluctuating market
demands. The OCCR model consists of seven semantic models, namely
4

Table 1
Seven semantic models and their symbolic representations.

Models Symbolic representation

Task TAS
Product PRT
Process PRS
Capability CAB
Capacity CAP
Assets ASS
Reconfiguration REC

the task, product, process, capability, capacity, assets and reconfigura-
tion models, each of which comprises the relevant ontology classes. A
comprehensive representation of these semantic models is presented in
Table 1, with a more in-depth description of each model provided in
the following texts.

3.2.1. Task model
The task model describes the information about how customer

orders and requests that are initiated internally within the factory
are processed. It represents the tasks or activities needed to com-
plete a customer order or fulfill a request. It provides a high-level
overview of the steps involved in the production process. The task
model is divided into two submodels; non-reconfiguration-related tasks
and reconfiguration-related tasks.

1. Non-reconfiguration-related task model (NRT)
A non-reconfiguration-related task is defined in the model,
which typically originates from the customer and is intended
to meet specific requirements for producing the product, such
as quantity and timeline. This task can also be interpreted as a
production task.

2. Reconfiguration-related task model (RT)
The reconfiguration-related task is defined in the model, typ-
ically as an internal task of the factory. This model provides
information about reconfiguration, which can involve different
types of reconfiguration, such as layout reconfiguration, resource
selection, and job scheduling.

3.2.2. Product model
In a reconfigurable robotic manufacturing system, the product being

created plays a pivotal role. The selection of the most efficient produc-
tion procedures is heavily influenced by the geometric attributes of the
product, such as its size and shape. For instance, if the product is large
or has a complex shape, robotic manufacturing cells equipped with
industrial robots that have a large workspace and high flexibility might
be suitable. These robots can manipulate large objects or accurately
navigate around complex shapes, making them ideal for these types
of tasks. On the other hand, if the product has intricate geometric
features or requires precise assembly, robotic cells with robots that
possess high precision and advanced control features might be a better
choice. These robots can handle delicate assembly tasks and accurately
follow complex trajectories, thereby ensuring the quality of the finished
product. In addition, the product’s requirements for assembly and han-
dling can also influence the choice of robotic cells. For example, if the
product requires specific positioning or orientation during assembly,
robots with advanced vision systems or force-sensing capabilities might
be necessary.

In summary, the specific characteristics and requirements of the
product significantly influence the selection and configuration of the
robotic cells in a reconfigurable manufacturing system

3.2.3. Process model
This model provides a structured representation of the necessary

operations and requirements to complete a manufacturing or reconfigu-
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ration task step. A process model comprehensively explains the various
steps involved in a manufacturing task or reconfiguration process,
defining the inputs, outputs, and dependencies of each step. Further-
more, it is linked with the capability model to suggest the required
capabilities to execute the process.

3.2.4. Capability model
A capability model in the manufacturing domain represents the

capabilities and constraints of the factory in terms of the manufacturing
processes and technologies it has, the resources and skills which are
available, and the regulations and standards it must comply with. It
provides a comprehensive view of the factory’s capabilities and helps
to make informed decisions about the products and processes that can
be manufactured within the factory. It consists of two subclasses: simple
capability and combined capability. In the capability model, the simple
and combined capabilities are linked by ‘‘hasInputCapability’’ relations.

1. Simple capability (SC)
A simple capability is the capability that a single asset has. For
example, the fixture has the single capability of ‘‘fixturing’’.

2. Combined capability (CC)
Combined capabilities are combinations of two or more (simple
or combined) capabilities. It could be divided by functional
decomposition into simple, lower-level capabilities.

3.2.5. Capacity model
This model is a structured representation of manufacturing KPIs that

monitor the performance of the shop floor, focusing on reconfiguration.
Our capacity model in the manufacturing domain refers to a mathemat-
ical representation of the production capacity of a factory or production
line. It considers various factors such as available resources (e.g., ma-
chines, labor), production processes, and constraints to determine the
maximum output that can be achieved under certain conditions. The
capacity model adapts to changes in production conditions to achieve
reconfiguration, such as the introduction of new products, changes in
demand, or the introduction of new technologies.

In the OCCR model, the capacity model can include various key per-
formance indicators (KPIs) to measure the efficiency and effectiveness
of a system’s capacity. Some examples of KPI formulations that can be
used in the capacity model, along with a description of the cost model
used in the manufacturing context, are:

1. Cost:
In the capacity model, a cost model is a method used to estimate
and allocate costs associated with a system’s capacity. A cost
model typically includes factors such as fixed costs, variable
costs, and overhead costs. The specific cost model used will
depend on the nature of the system being measured and the goals
of the analysis. Some examples of cost models that can be used
in the capacity model include:

(a) Fixed cost model: This model assumes that fixed costs are
spread evenly across all units produced. The formula for
this model is:

𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝑃 𝑒𝑟𝑈𝑛𝑖𝑡 =

𝑇 𝑜𝑡𝑎𝑙𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝑠∕𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑈𝑛𝑖𝑡𝑠𝑃 𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (1)

(b) Variable cost model: This model assumes that costs vary
based on the number of units produced. The formula for
this model is:

𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶𝑜𝑠𝑡𝑃 𝑒𝑟𝑈𝑛𝑖𝑡 =

𝑇 𝑜𝑡𝑎𝑙𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶𝑜𝑠𝑡𝑠∕𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑈𝑛𝑖𝑡𝑠𝑃 𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (2)

By incorporating cost models into KPI calculations, the capacity
model allows for a more comprehensive analysis of the efficiency
and effectiveness of a system’s capacity. This can help companies
identify areas where they can reduce costs and improve their
5

overall performance. f
2. Capacity utilization rate:
This KPI measures the percentage of a manufacturing system’s
capacity that is currently being used. The fixed cost model is
commonly used with this KPI in manufacturing. The formula for
this KPI is:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =

(𝐴𝑐𝑡𝑢𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡∕𝐷𝑒𝑠𝑖𝑔𝑛𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) (3)

3. Cycle time:
This KPI measures the time it takes to complete a single cycle of
a manufacturing process. The process cost model is commonly
used with this KPI in manufacturing, as costs may be associated
with specific process steps. The formula for this KPI is:

𝐶𝑦𝑐𝑙𝑒𝑇 𝑖𝑚𝑒 = 𝑇 𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒∕𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑦𝑐𝑙𝑒𝑠 (4)

.2.6. Assets model
In the robotic manufacturing domain, assets are referred to as

hysical objects, machinery, equipment, and also software utilized in
roduction. Asset models represent these assets commonly used by
rganizations to manage, maintain, and optimize their utilization. The
emantic model classifies assets into four categories: hardware (equip-
ent and tooling), software, human workforce, and the reconfiguration

olver. Asset models include information about the asset’s location, age,
ondition, maintenance history, and other pertinent information to aid
n informed decisions regarding their utilization and replacement.

.2.7. Reconfiguration model
This model describes the features that make an RMS dynamic

ith the capacity and functionality to adapt to the customer request
hanges. The features can be decision variables, optimization variables,
onstraints in the reconfiguration scenarios. We defined three types
f reconfiguration in our current OCCR model: layout optimization,
esource selection in terms of reconfiguration, and job scheduling.

.2.8. Relationships between the seven semantic models
Fig. 1 depicts the relationships between the seven semantic mod-

ls. These semantic models work together to achieve the decision-
aking process and the cost-effectiveness of the reconfiguration of the

obotic manufacturing system. For the reconfiguration-related task and
he non-reconfiguration-related task, they have different processes for
tilizing the semantic models.

When a new task comes to the robotic manufacturing system, the
ask model figures out if the task is about reconfiguration or not.
epending on the type of task, we use our semantic model in different
ays to help make decisions and manage the reconfiguration process.

For a non-reconfiguration task (NRT), the task model displays the
ecessary product information and connects it with the product model
hrough the relationship ‘‘required product’’. The non-reconfiguration
ask model displays details such as product type, quantity, and delivery
imeline. Meanwhile, the product model showcases the product’s fea-
ures linked to the process model through the relationship ‘‘required
rocess’’. For instance, if the product requires a hole, then the drilling
rocess must be executed to meet this requirement.

The process model selects the relevant production process since
he task is non-reconfigurable. The process model also specifies the
equirements for each process, which vary among processes. Once the
ecessary process for producing the product has been determined, the
apability-matching process begins. This process entails identifying the
equired capabilities to execute the process using information from the
rocess model, such as the accuracy and force required for the process

‘Inserting’’.
The assets semantic model links with the capability model, so

nce the required capabilities are clear, the candidate assets that meet
he specifications can be identified. Additionally, dynamic parameters

rom the capacity model, such as utilization rate, cost, and working
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Fig. 1. Linking semantic models in the optimization and the decision-making process for the reconfiguration.
status, can be considered to optimize the capability-matching process.
Ultimately, the most suitable assets, possessing the required capabilities
and specifications, are selected.

In the context of reconfiguration-related tasks, the task semantic
model serves as a repository for the type of reconfiguration involved.
The OCCR model defines three types of reconfiguration, which can
be either a single type or a combination thereof. The task model is
linked directly to the reconfiguration model, enabling the retrieval of
information necessary for reconfiguration based on the type indicated
in the task model. The reconfiguration model provides information
about the decision variables, optimization objectives, and constraints
that should be considered during the reconfiguration process. The
task model is also linked to the process semantic model through the
relationship ‘‘required process’’.

For reconfiguration-related tasks (RT), there are two types of re-
quired processes. One type is the reconfiguration solution, such as the
‘‘layout reconfiguration process’’, ‘‘resource selection process’’, and ‘‘job
scheduling process’’. The other type is the current process that needs
reconfiguration. For instance, as depicted in Fig. 2, consider a work cell
consisting of a robot, a profile board storage rack, profile boards and
a frame on the automated guided vehicle. The robot picks the profile
board from the storage rack and places it on the frame. If the customer
requests to optimize the layout of the current work cell, the semantic
model identifies two types of processes. The reconfiguration solution
process, in this case, is the ‘‘layout reconfiguration process,’’ while the
current processes that will be subject to the reconfiguration are ‘‘pick
profile board’’ and ‘‘place profile board.’’

With the clear identification of the two types, the capability-
matching process commences. If resource selection is part of the recon-
figuration types of the RT task, then the capability matching process is
employed to determine the feasibility and viability of alternative assets
in replacing the existing ones in the production line. For the capability
6

Fig. 2. Example to show the relationship between the two types of the process in the
reconfiguration-related task.

matching of the reconfiguration solution, potential assets that are
capable of executing the reconfiguration are sought. For instance, the
appropriate algorithm and simulation platform can be identified.

In the OCCR model, all the semantic models can be described in
Eq. (5) [52]. In this equation, 𝐴𝑆𝑆, 𝑇𝐴𝑆, 𝑃𝑅𝑇 , 𝑅𝐸𝐶, 𝑃𝑅𝑆, 𝐶𝐴𝐵,
𝐶𝐴𝑃 are the seven semantic model which we proposed before. 𝑃
represents the property information of the semantic information. 𝑅
represents the relationship information, which describes the relation-
ship between the two models. For example, robot ‘‘hasCapability’’ force
applying. ‘‘hasCapability’’ is the relationship information, which is used
to describe the relationship between the ontology class ‘‘robot’’ and the
ontology class ‘‘force applying’’. 𝐿 describes the constraint rules for the
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formation of the classes. For example, the subclasses should inherit all
the properties from the parent class.

𝑂𝐶𝐶𝑅 = {𝐴𝑆𝑆 ∪ 𝑇𝐴𝑆 ∪ 𝑃𝑅𝑇 ∪ 𝑅𝐸𝐶

∪ 𝑃𝑅𝑆 ∪ 𝐶𝐴𝐵 ∪ 𝐶𝐴𝑃 ∪ 𝑃 ∪ 𝑅 ∪ 𝐿}
(5)

3.2.9. Special requirements of the OCCR model
To summarize, the specific requirements addressed by the OCCR

model are:

1. The Capability Model must outline the capabilities that can be
allocated to assets, along with their designations and their as-
sociated capability characteristics. The model should strive for
comprehensive and adaptable properties to augment its scalabil-
ity.

2. The Assets Model should have a unified definition and general
properties for assets, which would facilitate further optimization,
such as cost, running status, and size.

3. The Capacity Model should provide a performance monitoring
report on the current production state, calculated by evaluating
the utilization rate through statistical assessment of KPIs related
to the output and efficiency of the shop floor’s assets.

4. The Reconfiguration Model should provide explicit information
on the type of reconfiguration required for a particular activity,
utilizing a vendor-neutral approach.

5. The suggested Knowledge Representation must support reasoning
and enable actions, such as matching asset capabilities to prod-
uct needs, searching for and selecting appropriate assets, and
offering practical reconfiguration recommendations.

3.3. Reconfiguration information in the OCCR model

As previously mentioned in Section 3.2, a new semantic model
has been defined to capture the necessary information for supporting
reconfiguration in manufacturing systems. As described in Section 2.3,
various types of reconfiguration exist. In the current model, the sub-
classes of layout reconfiguration, resource selection, and job scheduling
have been selected to represent the different types of reconfigura-
tion. These subclasses have been included under the reconfiguration
semantic model, as shown in Fig. 1. Decision variables, optimization ob-
jectives, constraints, and reconfiguration results have been used as sub-
classes of each of the three subclasses to describe the reconfiguration
information.

In manufacturing reconfiguration optimization, decision variables are
values that can be chosen or adjusted to optimize the objective, such as
cost, efficiency, or production rate. Optimization objectives are the objec-
tives that can be optimized depending on the specific application and
goals of the reconfiguration optimization problem in the manufacturing
domain. Constraints in the manufacturing reconfiguration domain refer
to limitations or restrictions on the decision variables that must be met
to ensure a feasible and practical solution. The reconfiguration result
records the results of the optimization problem, which can be used
as an experience for further reconfiguration problems in the future. A
subclass in the asset semantic model is also considered: Reconfiguration
solver. This subclass represents the enabling technology for achieving
the reconfiguration, such as the algorithm, the simulation platform,
virtual reality (VR), and augmented reality (AR).

In the following subsections, the three reconfiguration types in the
reconfiguration semantic model will be explained in detail.

3.3.1. Layout reconfiguration
In the field of RMSs, the performance of operations on products

(or product families) according to their operational requirements is
crucial. Layout design and optimization play a key role in RMSs since
these systems require different layout configurations when switching
from one product family to another. The following information has
been identified as essential and has been classified as subclasses in the
proposed semantic model:
7

• Decision-Variables: The position information of assets (e.g., co-
ordinates and rotation angles) is considered as subclasses of the
decision variables in the manufacturing reconfiguration optimiza-
tion. The position information is classified into coordinates (such
as Cartesian coordinates, cylindrical coordinates, polar coordi-
nates, and spherical coordinates) and orientation (such as Euler
angles and rotation matrices).

• Optimization Objectives: The optimization objectives in the
semantic model include cost, quality, cycle time, space utilization,
and robot maneuverability.

• Constraints: Constraints include inequality constraints and
equality constraints. They are mathematical relationships used in
optimization problems to ensure that the solutions satisfy certain
requirements or limitations. In the context of layout optimization
in manufacturing, these constraints can represent various physical
or operational restrictions.

1. Inequality Constraints: These are constraints that establish
upper or lower bounds on the values of the decision vari-
ables or on functions of the decision variables. In the layout
optimization problem, inequality constraints may include:

(a) Non-collision constraints (NC): Ensuring that ma-
chines do not overlap or collide with each other
in the layout. This can be formulated by setting a
minimum distance between the edges of any pair of
machines.

(b) Reachability constraints (RC): Ensuring that ma-
chines or workstations are accessible to workers or
material handling equipment, such as robots or con-
veyor systems. This can be formulated by setting a
maximum distance between machines or specifying
a minimum clearance for pathways or aisles.

(c) Area constraints (AC): Ensuring that the total area
occupied by the machines does not exceed a prede-
fined maximum area. This constraint can be formu-
lated as the sum of the areas of individual machines
being less than or equal to the maximum allowed
area.

2. Equality Constraints: These are constraints that require an
exact relationship between the decision variables or func-
tions of the decision variables. In the layout optimization
problem, some of the equality constraints may include:

(a) Resource Allocation Constraints (RAC): These con-
straints ensure that the total number of certain types
of machines or resources within the entire layout is
fixed. For example, if there are a limited number
of robotic assembly cells available, the layout op-
timization problem should include a constraint that
ensures the exact number of robotic assembly cells
is used in the layout.

(b) Grouping Constraints (GC): These constraints ensure
that a specified number of certain types of ma-
chines or resources are grouped together within a
specific section of the layout. For instance, if a cer-
tain manufacturing process requires three specific
machines to be located close together for efficiency,
the layout optimization problem should include a
constraint that ensures exactly these three machines
are grouped together in the layout.

Both inequality and equality constraints help to model the physi-
cal and operational limitations of the manufacturing environment
and ensure that the resulting layout is practical, feasible, and
efficient.
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One example of optimizing the layout of a manufacturing system is
depicted below. The optimization objectives are:

1. Minimize Space Utilization (SU)
2. Minimize Cycle Time (CT)
3. Minimize Total Distance between Machines (TD)

The decision variables in this problem are the coordinates of each
machine in the manufacturing system. The optimization problem can
be formulated as:
minimize 𝑓 (𝑥) = {𝑆𝑈 (𝑥), 𝐶𝑇 (𝑥), 𝑇𝐷(𝑥)}

subject to 𝑁𝐶𝑖(𝑥) ≤ 0, 𝑖 = 1,… , 𝑚1

𝑅𝐶𝑗 (𝑥) ≤ 0, 𝑗 = 1,… , 𝑚2

𝐴𝐶𝑘(𝑥) ≤ 𝐴max, 𝑘 = 1,… , 𝑛1
𝑅𝐴𝐶𝑙(𝑥) = 𝑅𝑙 , 𝑙 = 1,… , 𝑛2
𝐺𝐶𝑚(𝑥) = 𝐺𝑚, 𝑚 = 1,… , 𝑛3

(6)

where:

• 𝑥: A vector representing the coordinates of each machine in the
manufacturing system.

• 𝑓 (𝑥): A vector containing the objective functions to be minimized,
which include SU, CT, and TD.

• 𝑁𝐶𝑖(𝑥): The 𝑖th non-collision constraint function that must be
satisfied by the coordinates 𝑥.

• 𝑅𝐶𝑗 (𝑥): The 𝑗th reachability constraint function that must be
satisfied by the coordinates 𝑥.

• 𝐴𝐶𝑘(𝑥): The 𝑘th area constraint function that must be satisfied by
the coordinates 𝑥, with 𝐴max being the maximal allowed maximal
area.

• 𝑅𝐴𝐶𝑙(𝑥): The 𝑙th resource allocation constraint function that must
be satisfied by the coordinates 𝑥, with 𝑅𝑙 being the exact number
of a certain type of resource required.

• 𝐺𝐶𝑚(𝑥): The 𝑚th grouping constraint function that must be satis-
fied by the coordinates 𝑥, with 𝐺𝑚 being the exact number of a
certain type of resource required in a specific group.

• 𝑚1: The number of non-collision constraints.
• 𝑚2: The number of reachability constraints.
• 𝑛1: The number of area constraints.
• 𝑛2: The number of resource allocation constraints.
• 𝑛3: The number of grouping constraints.

By solving this optimization problem, the optimal layout for the
manufacturing system can be determined, considering the objectives
and constraints. The layout reconfiguration can be achieved by adjust-
ing the decision variables (i.e., the coordinates and rotation angles) of
the assets within the manufacturing system. This process allows the
system to be reconfigured efficiently for different product families or
operational requirements.

3.3.2. Resource selection in reconfiguration
Resource selection for reconfiguration refers to the process of choos-

ing the right assets (e.g., hardware, software, personnel) to implement
changes in a system or to apply to processes to achieve a desired
outcome. This involves evaluating various options based on factors such
as cost, compatibility, performance, and availability and selecting the
ones that best meet the needs of the reconfiguration effort. Resource
selection aims to ensure that the reconfiguration is carried out effi-
ciently and effectively, with minimal disruption to existing operations.
It aims to find if the current assets in the production line meet the
requirement and if they are needed to be replaced. The following
aspects are important in this section, and thus this information is stored
as the ontology model classes in our model:

• Decision-Variables: The resource information, the number of
product types, product requirements, and job information are
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considered the decision variables in our model. These factors are
implemented as the subclasses of the decision variables in the
proposed semantic model.

• Optimization Objectives: Resource utilization, cost (investment
cost, capital cost), workload, running status of the machines,
energy consumption, and remaining useful life are considered to
be the optimization objectives.

• Constraints: In the context of resource selection, constraints can
be categorized into equality and inequality constraints.

1. Inequality Constraints

(a) Demand Constraints (DC): Ensuring that the se-
lected resources are sufficient to meet the demand
of the reconfiguration task without exceeding the
available resources.

(b) Investment Constraints (IC): Ensuring that the to-
tal investment for the selected resources does not
exceed the budget allocated for the reconfiguration
task.

(c) Space Constraints (SC): Ensuring that the selected
resources can be accommodated within the avail-
able space in the production line or facility.

2. Equality Constraints

(a) Total Resource Allocation (TRA): Ensuring that the
total number of required resources is equal to the
available resources in the system.

(b) Specific Resource Requirements (SRR): Ensuring
that the selected resources meet the exact spec-
ifications or requirements for the reconfiguration
task.

As one example, the goal is to optimize resource selection for
reconfiguration, considering the following objectives:

1. Minimize Resource Utilization (RU)
2. Minimize Cost (C)
3. Minimize Time (T)

The decision variables in this problem are the resources chosen for
the reconfiguration effort. The optimization problem can be formulated
as:
minimize 𝑓 (𝑥) = {𝑅𝑈 (𝑥), 𝐶(𝑥), 𝑇 (𝑥)}

subject to 𝐷𝐶𝑖(𝑥) ≤ 0, 𝑖 = 1,… , 𝑚1

𝐼𝐶𝑗 (𝑥) ≤ 0, 𝑗 = 1,… , 𝑚2

𝑆𝐶𝑘(𝑥) ≤ 0, 𝑘 = 1,… , 𝑚3

𝑇𝑅𝐴𝑙(𝑥) = 0, 𝑙 = 1,… , 𝑛1
𝑆𝑅𝑅𝑚(𝑥) = 0, 𝑚 = 1,… , 𝑛2

(7)

where:

• 𝑥: A vector representing the resources chosen for the reconfigu-
ration effort.

• 𝑓 (𝑥): A vector containing the objective functions to be minimized,
which include Resource Utilization (RU), Cost (C), and Time (T).

• 𝐷𝐶𝑖(𝑥): The 𝑖th demand constraint function that must be satisfied
by the resources 𝑥.

• 𝐼𝐶𝑗 (𝑥): The 𝑗th investment constraint function that must be sat-
isfied by the resources 𝑥.

• 𝑆𝐶𝑘(𝑥): The 𝑘th space constraint function that must be satisfied
by the resources 𝑥.

• 𝑇𝑅𝐴𝑙(𝑥): The 𝑙th total resource allocation constraint function that
must be satisfied by the resources 𝑥.

• 𝑆𝑅𝑅𝑚(𝑥): The 𝑚th specific resource requirements constraint func-
tion that must be satisfied by the resources 𝑥.
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Fig. 3. Construction of the entity layer of the reconfiguration knowledge graph.
• 𝑚1: The number of demand constraints.
• 𝑚2: The number of investment constraints.
• 𝑚3: The number of space constraints.
• 𝑛1: The number of total resource allocation constraints.
• 𝑛2: The number of specific resource requirements constraints.

By solving this optimization problem, the optimal resource selection
for the manufacturing system reconfiguration can be determined, con-
sidering the objectives and constraints. Resource reconfiguration can
be achieved by adjusting the decision variables (i.e., the types and
quantities of resources) of the assets within the manufacturing system.
This process allows the system to efficiently adapt to different prod-
uct families or operational requirements while minimizing resource
utilization, cost, and time.

3.3.3. Job scheduling
In the proposed ontology model, the scheduling problem is de-

scribed as a set of decisions concerning the sequence of parts to be
released into the system, the selection of the operation/resource pair,
and the sequence of parts assigned to each resource in the production
process. This model includes the following information as subclasses of
the decision variables.

• Decision-Variables: Available assets to perform the manufactur-
ing jobs, jobs that need to be performed, and a set of operations
for all the jobs, which must be performed in a given order based
on the constraints.

• Optimization Objectives: Makespan, the workload of the most
loaded resource, production rate, flow time, tardiness, and re-
source utilization.

• Constraints: In the context of job scheduling, constraints can be
categorized into equality and inequality constraints.

1. Inequality Constraints

(a) Shortest Processing Time (SPT): The job with the
shortest processing time should be processed first.

(b) First In, First Out (FIFO): The job that entered the
system first should be processed first.

(c) Most Work Remaining (MWKR): The job with the
most work remaining should be processed first.

(d) Earliest Due Date (EDD): The job with the earliest
due date should be processed first.

2. Equality Constraints

(a) Machine Constraints (MC): A job can only be pro-
cessed on one machine at a time.
9

(b) Job Constraints (JC): A job must be completed be-
fore the next job can be started.

(c) Asset Constraints (AC): An asset can only be used by
one job at a time.

(d) Precedence Constraints (PC): Certain jobs may have
a specific order in which they must be processed.

As one example, we aim to optimize the job scheduling for recon-
figuration considering the following objectives:

1. Minimize Makespan (M)
2. Minimize Workload of the Most Loaded Asset (WL)
3. Minimize Tardiness (T)

The decision variables in this problem are the sequence of parts to
be released into the system, the selection of the operation/asset pair,
and the sequence of processes assigned to each asset in the production
process. The optimization problem can be formulated as follows:

minimize 𝑓 (𝑥) = {𝑀(𝑥),𝑊 𝐿(𝑥), 𝑇 (𝑥)}

subject to 𝐸𝐷𝐷𝑖(𝑥) ≤ 0, 𝑖 = 1,… , 𝑚1

𝑀𝐶𝑗 (𝑥) = 0, 𝑗 = 1,… , 𝑛1
𝐽𝐶𝑘(𝑥) = 0, 𝑘 = 1,… , 𝑛2
𝐴𝐶𝑙(𝑥) = 0, 𝑙 = 1,… , 𝑛3
𝑃𝐶𝑚(𝑥) = 0, 𝑚 = 1,… , 𝑛4

(8)

where:

• 𝑥: A vector representing the decision variables.
• 𝑓 (𝑥): A vector containing the objective functions to be minimized,

which include Makespan (𝑀(𝑥)), Workload Balance (𝑊𝐿(𝑥)), and
Total Time (𝑇 (𝑥)).

• EDD𝑖(𝑥): The 𝑖th earliest due date constraint function that must
be satisfied by the decision variables 𝑥.

• MC𝑗 (𝑥): The 𝑗th machine constraint function that must be satisfied
by the decision variables 𝑥.

• JC𝑘(𝑥): The 𝑘th job constraint function that must be satisfied by
the decision variables 𝑥.

• AC𝑙(𝑥): The 𝑙th asset constraint function that must be satisfied by
the decision variables 𝑥.

• PC𝑚(𝑥): The 𝑚th precedence constraint function that must be
satisfied by the decision variables 𝑥.

• 𝑚1: The number of earliest due date constraints.
• 𝑛1: The number of machine constraints.
• 𝑛2: The number of job constraints.
• 𝑛 : The number of asset constraints.
3
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Fig. 4. Knowledge inference process in the knowledge graph: a. Generation of the query in the knowledge graph. b. Ontology reasoning. c. Generation of the inference results
based on the ontology reasoning.
• 𝑛4: The number of precedence constraints.

By solving this optimization problem, the optimal solution for the
job scheduling problem can be found, considering the objectives and
constraints. The decision variables 𝑥 represent the allocation of jobs
to machines, and the constraints ensure that the schedule satisfies the
earliest due dates, machine capacities, job requirements, asset availabil-
ity, and job dependencies. The optimal solution helps to minimize the
makespan, balance the workload, and reduce the total time needed to
complete the job schedule.

3.4. Construction and utilization of the entity layer of the knowledge graph

The creation of the entity layer of the knowledge graph is based on
the OCCR model and the synthesized knowledge derived from the man-
ufacturing data. The schema layer is then continually refined through
the integration of bottom-up and top-down methods in the proposed
framework by incorporating valuable information and insights obtained
from the entity layer.

Fig. 3 shows the detailed steps of building the entity layer of the
knowledge graph. The implementation of each step will depend on the
application domain and organization. Detailed information about each
step is depicted below:

1. Initial ontology construction
Our proposed methodology uses the OCCR model as the initial
ontology.

2. Knowledge source identification
The next step is to identify the different sources of the manu-
facturing data, which will be used to tailor the model to the
application domain. In manufacturing scenarios, the knowledge
resource usually includes heterogeneous data sources, including
customer requirement documents, datasets, and CAD models.
These resources are multi-modal with different forms and hence
require separate processing methods.

3. Knowledge extraction
The knowledge extraction method is applied to extract the
source data. For the customer requirement document, natural
language processing techniques such as named entity recogni-
tion [53], relation extraction [54], and attribute extraction [55]
are utilized. The knowledge extraction process combines the
manufacturing domain knowledge and terms as the keyword
corpus. For the dataset, the time/frequency analysis and pattern
recognition process is applied to extract the data. For the CAD
model data, a data extraction tool such as API is applied to
extract the important geometry features, material information,
and kinematics [56].
10
Fig. 5. Physical layout of one of the test plants of the OMNIFACTORY.

4. Building the entity layer of the knowledge graph
The entity layer of the knowledge graph is established using the
extracted data and the ontology model provided by Section 3.2
to construct the schema layer. Despite being constructed from
multiple sources, the generated knowledge graph may still have
incomplete information, missing certain triples. To compensate
for this, knowledge graph completion is performed through a
combination of manual completion by engineers, completion
based on established rules, and automatic completion utilizing
either graph structure or embedding-based algorithms [57].

5. Knowledge storage
Once the entity layer of the knowledge graph has been estab-
lished and updated, it can be stored in either graph databases
[58] or Resource Description Format (RDF) format [50]. These
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Fig. 6. Construction of the industry reconfiguration knowledge graph.
storage solutions provide efficient querying capabilities and ef-
fective management of substantial volumes of knowledge graph
data.

6. Knowledge inference
After the creation of the schema layer and entity layer of the
knowledge graph, the resulting knowledge graph can be ap-
plied to various aspects of RMS and beyond. The proposed
ontology model enables reasoning for capability matching and
recommendations for reconfiguration solutions, as illustrated in
Fig. 4. Capability matching should consider not only the static
requirements, such as the required payload and reachability but
also the capacity information, such as the cost and utilization
rate. If there are multiple candidate assets after the capabil-
ity matching process, Mo et al. developed a resource selection
process in [59] to select the most appropriate assets. Once
the reconfiguration model recommends a solution, the engineer
would decide on the criteria for optimizing the reconfigura-
tion. Layout optimization, resource selection, and job scheduling
are typically multi-objective optimization problems. If the en-
gineers can decide the weights of the objectives in advance,
then the multi-objective optimization problem can be converted
into a single-objective optimization problem [60]. Otherwise,
a posteriori method can be used, aiming to produce all Pareto
optimal solutions or a representative subset of the Pareto optimal
solutions [61].

4. Implementation and validation

To validate the proposed methodology, a dataset was created based
on information from the OMNIFACTORY demonstrator at the Uni-
versity of Nottingham [62] as shown in Fig. 5. The OMNIFACTORY
serves as a national demonstrator and testbed for smart manufacturing
systems in the United Kingdom, with the aim of enabling fast and
accurate reconfiguration on the shop floor based on customers’ cus-
tomized requirements. The OMNIFACTORY is a new facility that cost
£3.8 million and is designed to revolutionize manufacturing, making
it more efficient and cost-effective. It is located on the University’s
Jubilee Campus and features a bespoke flooring system that provides
a unique reconfigurable environment. Despite this reconfiguration po-
tential, understanding what configuration is required to produce a
new or changed product is an unsolved problem. The dataset used
for validation was created based on technical documents, equipment
information, and product design documents from OMNIFACTORY and
partner companies. The dataset is comprised of 101 distinct tasks,
11
Fig. 7. Query command to find the required process for ‘‘Task 100’’ in Neo4j.

each of which is categorized as either reconfiguration-related or non-
reconfiguration-related. For each task, the dataset specifies the require-
ments that need to be fulfilled, as well as the processes necessary to
complete the task. Besides, the dataset includes 161 candidate assets
with information supporting capability matching and the reconfigura-
tion process. These assets include the production line assets and assets
from the asset pool, such as hardware, software, human workforce, and
reconfiguration solvers to support the production and reconfiguration
process. To maintain confidentiality, an anonymization process was
applied, including changing the task names to ‘‘Task 1’’, ‘‘Task 2’’ etc.,
and the customer names to ‘‘Company A’’, ‘‘Company B’’ etc. Similarly,
product features were replaced with generic names such as ‘‘Feature 1’’
and ‘‘Feature 2’’.

4.1. Building the schema layer and the entity layer of the knowledge graph
for OMNIFACTORY

Neo4j was utilized as the implementation platform for visualiz-
ing the knowledge graph and developing knowledge graph applica-
tions [63]. To establish a connection between the Neo4j graph database
and the programming interface, Py2neo was used as it allows for the
manipulation of the Neo4j database within a Python environment [64].
The decision to use Py2neo was motivated by its ability to auto-
matically construct the knowledge graph in Neo4j through Python
programming, as well as its ease of updating the knowledge graph in
Neo4j. The advantages of Py2neo align with the objective of achieving a
high degree of automation in the reconfigurable manufacturing system.

As mentioned in Section 3, in the manufacturing domain, the se-
mantic model can never be exhaustive enough to cover all concepts.
For example, to achieve reconfigurability, technologies are always de-
veloping. New software or algorithms to achieve reconfigurability will
be updated to the semantic model continuously. As previously stated,
the combination of the top-down and the bottom-up approaches was
applied in our validation case. The schema layer was created based
on the OCCR model and the experience of the engineers according
to the top-down approach at first. Then the entity layer was updated
based on the data we utilized and the generated schema layer. Due to
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Fig. 8. Information about task 100 and its related nodes in the knowledge graph.
Fig. 9. Capability matching for ‘‘MarkingActionCapability’’ with the help of ontology reasoning.
the characteristics of the bottom-up approach, the schema layer was
updated based on the entity layer’s data. Taking one of the subclasses
of the assets semantic model as an example, at first, we got the
information from the OCCR model to create the schema layer of the
robots in our knowledge graph. Then we utilized a Python crawler
package with the name of ‘‘Scrapy’’ to extract the robot information
12
from the internet, communicated with the engineers, and referred to
the technical documents to get the entity information of the robot data.
Then the entity layer was updated. At last, the subclass of the schema
layer was updated [65,66].

Fig. 6 is the generated knowledge graph with explicit relationships.
To enhance and complete the knowledge graph, an ontology-rule-based
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Fig. 10. The capacity model enhances the resource selection process.
Fig. 11. Capability decomposition process for PickAndPlace capabiltiy.

methodology was employed in our study, as described in the work of
Chen et al. [57].

4.2. Use cases of the knowledge graph applications

Once the knowledge graph has been established, its effectiveness
and the improvements it brings to the reconfiguration process can
be demonstrated through two specific use cases. The first use case
addresses the selection of resources for a task characterized as non-
reconfiguration-related, while the second use case deals with providing
reconfiguration recommendations for a reconfiguration-related task.

4.2.1. Use case 1: Resource selection for NRT
In our first use case, task 100 in the knowledge graph is selected as

the demonstration task. ‘‘Task 100’’ is non-reconfiguration-related. We
13
used the knowledge graph to help the task find the most appropriate
assets. This process consists of two steps: finding the required process
to produce the product from ‘‘Task 100’’ (step 1), capability matching
between the required process and the available capability, and finding
the candidate assets based on the capability information (step 2). In
this example, we will not only show the capability matching based
on ontology reasoning but also show how to decompose the combined
capability to find the potential assets for the input capability of the
combined capability. For the first step, the required process for ‘‘Task
100’’ can be found via the query command as shown in Fig. 7 in Neo4j.
Through the implemented methodology, it was discovered that product
100 has two distinct features.

Fig. 8 demonstrates that feature 1 necessitates the ‘‘PickAndPlace’’
and ‘‘MarkingAction’’ processes, while feature 2 requires the ‘‘Press-
ing’’ and ‘‘Metrology’’ processes.In relation to the capability matching
process (step 2), Fig. 8 demonstrates also that the requirements for
various processes within the task can be queried utilizing the generated
knowledge graph. As an example, for feature 1, ‘‘PickAndPlace’’ and
‘‘MarkingAction’’ are the necessary processes. Given that the ‘‘Marking-
Capability’’ is categorized as a simple capability, while the ‘‘PickAnd-
PlaceCapability’’ is a combined capability in the OCCR model, we can
employ the capability matching process to illustrate how our model
functions with different types of capabilities. Specifically, the match-
ing process for the ‘‘MarkingAction’’ process and the ‘‘PickAndPlace’’
process can be demonstrated.

The specification requirement of ‘‘MarkingAction’’ is ‘‘requiredAc-
curacy: 0.05’’ and ‘‘requiredResolution: 500’’. The capacity require-
ment is the cost and utilization rate. The allowed maximum cost for
‘‘MarkingAction’’ is 1500, and the allowed maximum utilization rate is
0.4. The ontology reasoning approach was used in our use case to find
the potential assets based on the requirements and specifications, as
well as the capacity information. The knowledge graph made inferences
(ontology reasoning) in the capability-matching process. As shown in
Fig. 9, with this ontology reasoning approach, not only the related
assets for the ‘‘MarkingActionCapability’’ can be found, but also the
assets which have the capability of the subclass of ‘‘MarkingAction-
Capability’’ can be found. In this figure, SCO means ‘‘subclass of’’.
The subclasses of the ‘‘MarkingActionCapability’’ are ‘‘LaserMarkingCa-
pability’’, ‘‘InkMarkingCapability’’, ‘‘PrintingCapability’’, ‘‘StampMark-
ingCapability’’, and ‘‘LabellingCapability’’. The related assets for these
subclasses could be automatically found without any extra effort. The
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Fig. 12. Finding candidate assets for ‘‘ForceApplying’’, ‘‘Moving’’, ‘‘Grasping’’ and ‘‘Releasing’’ capability.
knowledge inference process (ontology reasoning) in Neo4j is essential
because it allows the representation and manipulation of complex
relationships between entities in a graph database. Using ontologies,
or formal models of a particular domain, the system can automatically
deduce new information (in our case, the subclasses of the ‘‘MarkingAc-
tionCapability’’) based on the rules encoded in the ontology. This can
improve data accuracy, consistency, and completeness and help users
make more informed decisions.

The results of the capability matching process are presented in
Fig. 10. For the marking process in task 100, six assets were identified
to satisfy the requirement according to the capability matching pro-
cess, based on the specification requirement (accuracy and resolution),
without considering the capacity information. The capacity model was
employed to improve the resource selection process. In our study, cost
and utilization rate were utilized to represent the capacity informa-
tion of the candidate assets. It was observed that only ‘‘InkMarker-3’’
fulfilled all the requirements and was thus chosen.

Regarding the execution of the process for ‘‘PickAndPlace’’, Fig. 8
indicates that the specifications for ‘‘PickAndPlace’’ process include
‘‘requiredPayload: 200’’, ‘‘requiredGraspingForce: 300’’, and ‘‘require-
dReachability: 3000’’. The capacity requirements include ‘‘Maximum-
Cost: 4000’’ and ‘‘MaximumUtilizationRate: 0.5’’. Compared with the
capability matching process for a simple capability, this process has
an extra process called capability decomposition. Since the ‘‘PickAnd-
Place’’ capability is a combined capability, the capability decomposi-
tion of the combined capability must be performed. The decomposed
capability was found based on ontology reasoning as shown in Fig. 11.

It can be observed that ‘‘Moving’’, ‘‘Releasing’’, ‘‘Grasping’’, and
‘‘ForceApplying’’ are the decomposed capabilities (input capabilities).
In our OCCR model, ‘‘Moving’’ and ‘‘ForceApplying’’ are two sim-
ple capabilities of the robots. Hence, only one robot is required to
execute these two capabilities. The same approach applies to ‘‘Releas-
ing’’ and ‘‘Grasping’’, where only one gripper is necessary to execute
these two capabilities. Utilizing ontology reasoning, we obtained the
capability-matching results, which are presented in Fig. 12.
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The candidate assets for the ‘‘ForceApplying’’ and ‘‘Moving’’ ca-
pability, without considering the capacity information, were Fanuc
M-900iB/400L, KUKA KR210 R3300 K ultra, KUKA KR 2100 R3100
ultra, Fanuc M-200iA/900L, KUKA KR 240 R3330, KUKA KR 210–
2 3100, Fanuc M-2000iA/1700L. Similarly, the candidate assets for
the ‘‘Grasping’’ and ‘‘Releasing’’ capabilities were Vacuum Gripper-6,
Vacuum Gripper-5, Finger Gripper-5, Finger Gripper-6, and Finger Gripper-
4. To enhance the capability results, the capacity model was utilized,
and the cost information considered both the cost of the robot and the
gripper. From Fig. 13, it was observed that two combinations satisfied
the requirement, namely [KUKA KR210 R3100 ultra, Finger Gripper-
4], and [KUKA KR210 R3100 ultra, Vacuum Gripper-5]. According to
the asset selection method proposed by Fan et al. [59], mentioned in
Section 3.4, [KUKA KR210 R3100 ultra, Finger Gripper-4] was chosen to
execute the pick and place process for ‘‘Task 100’’.

It’s important to note that the calculated costs for these robots
and grippers may not align perfectly with their actual market prices.
However, these difference doesn’t detract from the effectiveness of
our model, as our primary aim is to demonstrate how incorporating
capacity information can refine the capability matching results.

4.2.2. Use case 2: Enhancing the reconfiguration task with the semantic
reconfiguration model

In this use case, we will demonstrate how we use the reconfiguration
model to enhance the reconfiguration process in a use case from the
OMNIFACTORY project of the University of Nottingham. This task was
stored in the knowledge graph and marked as ‘‘Task 50’’. As shown
in Fig. 14, task 50 is a reconfiguration task in the aerospace domain.
There were two types of processes in the reconfiguration task. One type
is the current process which needs to be reconfigured. The other type is
the reconfiguration solution, such as the layout reconfiguration process,
resource selection process, and job scheduling process. With these two
types of processes, reconfiguration can be better described. Not only the
information about the current production but also the solutions which

are needed to do reconfiguration are explained.
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Fig. 13. Detailed process about finding candidate assets for ‘‘ForceApplying’’, ‘‘Moving’’, ‘‘Grasping’’ and ‘‘Releasing’’ capability.
Fig. 14. Information about Task 50.

Regarding the process which needs to be reconfigured, as shown in
Fig. 15, there is a frame on the AGV, and the robot needs to pick the
front and aft beam to assemble them on the frame so that the frame
can be further used for assembling parts. The processes required for
the reconfiguration are described below:

1. Mount the pick-and-place end effector
The robot should at first mount the pick-and-place end effector
to enable the pick-and-place capability.
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2. Pick-and-place the front beam
The robot picks the front beam and places it on the upper side
of the frame.

3. Pick-and-place the aft beam
The robot picks the aft beam and places it on the lower side of
the frame.

4. Unmount the pick-and-place end effector
The robot unmounts the pick-and-place end effector and places
it on the tool stand.

5. Mount the metrology end effector
The robot mounts the metrology end effector to enable the
metrology capability

6. Execute metrology operation
The robot utilizes the metrology end effector for metrology on
the mounted front beam and the after beam.

7. Unmount the metrology end effector
At last, the robot unmounts the metrology end effector and puts
it on the tool stand.

On the other hand, the reconfiguration solution for this task com-
prises two main components: ‘‘resource selection’’ and ‘‘layout opti-
mization’’. Through ontology reasoning in the knowledge graph, the
resource selection model offers guidance on the objectives, decision
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Fig. 15. Use case 2: Reconfiguration task.
Fig. 16. Reconfiguration model to enhance the resource selection process.
variables, constraints, and reconfiguration solutions that should be
considered for this task, as depicted in Fig. 16.

Similarly, the layout optimization semantic model assists in this task
by providing recommendations for layout optimization via ontology
reasoning in the knowledge graph. These recommendations pertain
to the objectives, decision variables, constraints, and reconfiguration
16
solutions in the asset model that should be considered during the
reasoning process, as illustrated in Fig. 17.

The reconfiguration model acquires recommendations by querying
the process model and capability model. The capability model supplies
information about potential assets capable of executing the recon-
figuration solution process. For instance, the reconfiguration process
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Fig. 17. Reconfiguration model to enhance the layout reconfiguration process.
necessitates resource selection and layout optimization, as discussed
in Task 50. The capability model offers potential assets to execute
the ‘‘ProcessNeedsReconfiguration’’ and information regarding the re-
configuration solution required for resource selection. Moreover, the
capability model determines whether it is essential to change the
current assets for reconfiguration. The reconfiguration solution for
layout optimization is identified through the connection between the
capability semantic model and the asset semantic model. As shown in
Fig. 18, various reconfiguration solutions are available to address the
layout optimization problem.

The optimization process is executed based on the enhanced in-
formation from the reconfiguration model, capability model, capacity
model, and process model. A framework designed by Mo et al. [59]
is employed for the optimization process. The experimental results are
then stored in the semantic model to serve as a reference for future use
cases. In summary, the reconfiguration model is capable of performing
a series of tasks to optimize the layout and resource selection processes.

1. Provide recommendations about the objects, constraints, and
decision variables to be considered in the reconfiguration opti-
mization problem.

2. Help the reconfiguration-related task to find the potential assets
to do the reconfiguration task (in our case, resource selection
and layout optimization).

3. Store the optimization information in the knowledge graph for
future reference.

5. Conclusion

In conclusion, this research paper presents a comprehensive and
unified ontological framework that effectively captures capability, ca-
pacity, and reconfiguration information in a vendor-neutral manner
17
within the context of robot manufacturing cells. The proposed method-
ology, which combines top-down and bottom-up strategies, stream-
lines the construction and updating of the knowledge graph, conse-
quently offering significant advantages for intelligent search, tailored
recommendations, and perceptive query resolution.

The capability of the knowledge graph to manage real-time inquiries
and dynamic modifications is validated through two distinct use cases.
The first use case focuses on a non-reconfiguration task, which em-
ploys the knowledge graph to identify the most appropriate assets and
requisite processes for product production. Moreover, it demonstrates
the process of decomposing combined capabilities to uncover potential
assets for the input capability of the combined capability. The second
use case examines a reconfiguration task from the OMNIFACTORY
project at the University of Nottingham. This case underscores the
application of the reconfiguration model in the aerospace domain,
illustrating the role of current processes necessitating reconfiguration
and reconfiguration solutions in specific reconfiguration types, such as
layout, resource selection, and job scheduling processes.

These practical examples substantiate the efficacy of the ontolog-
ical model and knowledge graph in optimizing the utilization of re-
configurable manufacturing systems. Additionally, the semantic mod-
eling approach contributes to long-lasting improvements in system
reconfiguration by documenting past experiences.

Future research endeavors will investigate the relationship between
control reconfiguration and the three categories of reconfiguration
discussed in the paper. The objective is to incorporate these distinct as-
pects into a comprehensive reconfiguration model, thereby augmenting
the framework’s overall comprehension and applicability. Additionally,
this methodology will be applied to various industrial use cases to
further validate its effectiveness and adaptability. Concurrently, the
possibility of enhancing the knowledge graph through semantic em-
bedding techniques will be explored, aiming to improve the system’s
overall performance.
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Fig. 18. Recommendations from the knowledge graph to solve the layout optimization problem.
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