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Abstract. This paper proposes a model for unmanned aerial vehicles (UAV) grid-based cov-
erage path planning, considering coverage completeness and energy consumption in complex 
environments with multiple obstacles. The work is inspired by the need for more efficient ap-
proaches to oil and gas exploration, but other application areas where UAVs can be used to ex-
plore unknown environments can also benefit from this work. An energy consumption model is 
proposed that considers acceleration, deceleration, and turning manoeuvres, as well as the dis-
tance to obstacles, to more accurately simulate the UAV’s movement in different environments. 
Three different environments are modelled: desert, forest, and jungle. The energy-aware cover-
age path planning algorithm implemented seeks to reduce the energy consumption of a single 
drone while increasing coverage completeness. The model implementation and experiments were 
performed in the ROS/Gazebo simulation software. Obtained results show that the algorithm 
performs very well, with the drone able to manoeuvre itself in a combination of hills, valleys, 
rugged terrain, and steep topography while balancing coverage and energy consumption. 
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1 Introduction 
 
Environmental concerns have brought challenges to the oil and gas industry, including 
pressure to reduce and stabilise costs for competitive advantage, improve its environ-
mental blueprint, and optimise its performance. In recent years, the production of most 
onshore oil fields has declined [12] in part because, after a certain level of recovery, 
production costs do not justify further investment. Oil and gas exploration often takes 
place in difficult-to-reach environments where the use of robotic systems can be useful 
[37]. Petroleum deposits are generated by a natural process that commonly occurs at 
great depth and is often poorly understood and predicted by earth scientists. Hence large 
areas with significant oil and gas potential remain unexplored [25]. In 2015, Shell Oil 
decided to abandon efforts to find and develop hydrocarbon resources in the Chukchi 
Sea, despite having spent billions of dollars in exploration, which in the end turned out 
to be a dry hole [38]. This type of risk cannot be eliminated, but it can be reduced 
through technological innovations. An example of such technology is magnetic explo-
ration which measures variations in the earth’s magnetic field to identify rocks contain-
ing hydrocarbon [1]. Aeromagnetic surveys are used to measure magnetic anomalies 
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using low-flying aircraft carrying a high-precision magnetometer, a sensor for magnetic 
anomaly detection [2]. However, aeromagnetic surveying with low-flying aircraft 
brings challenges in terms of safety, terrain complexity, quality of data, and costs. An 
attractive alternative is to conduct magnetic exploration with UAVs [38]. UAVs can 
fly close to the surface at optimal speed with efficient coverage for gathering good-
quality magnetic data [42]. UAVs are fast becoming an attractive solution for many 
scenarios like search and rescue [19], precision agriculture [31], and delivery systems 
[26]. 

Magnetic exploration with UAVs requires effective path planning in unknown envi-
ronments and with possibly multiple obstacles (e.g., trees, large rocks, etc.). The robotic 
path planning problem can be divided into two main categories: motion path planning 
and coverage path planning. In motion path planning, there is a clear start point and an 
end point; the goal is to optimally cover the distance between the start to the endpoint 
at minimum cost while avoiding obstacles [35]. Coverage path planning (CPP) finds an 
optimal collision-free path that a robot must take to pass over each point in an area of 
interest in the given environment [10]. CPP is related to the covering salesman problem 
where an agent must travel a minimum-length tour covering the subsets of given cities 
or customers [46-24]. CPP can be offline or online depending on the availability of a 
priori information about the area of interest [18], and several algorithms exist to tackle 
this problem [40]. In CPP, the area of interest can be decomposed into smaller regions 
or not at all. Simple and regular-shaped environments require no decomposition, and 
simple geometric patterns such as back-and-forth (BF), zigzag movement, or spiral pat-
terns can be used to solve the problem [34]. When the exploration area is irregular-
shaped and complex, decomposition can be done in different ways, like exact cellular 
decomposition [28], approximate cellular decomposition [21,8], or grid-based decom-
position [18]. For the scenarios investigated in this paper, grid-based decomposition 
was used to ensure that every cell within the area of interest is visited once. This method 
requires computational power to represent the cells at higher resolution grids [24]. After 
the grid is produced, a traveling salesman algorithm is applied to generate a sequence 
of nodes or subregions to visit [4].  The coverage path is generated by connecting these 
nodes in sequence using back-and-forth motion perpendicular to the sweep direction 
from the start to the goal region [9,28].  

Magnetic surveying with UAVs for oil/gas exploration requires complete coverage 
of the area of interest. Performing CPP with UAVs in an environment with multiple 
obstacles is energy-demanding due to the need for obstacle avoidance, and limited en-
ergy capacity is a feature of UAVs [20]. The approach in this paper minimised energy 
consumption by limiting accelerations, decelerations, and turning manoeuvres by the 
drone while at the same time maximising coverage. Aided by simultaneous localisation 
and mapping (SLAM), a model for coverage path-planning in a regular and irregular-
shaped environment is developed in ROS/Gazebo platform. The regular-shaped envi-
ronment has a perfect square-shaped setting with no mountains, hills, or valleys. In 
contrast, the irregular-shaped environment has a complex terrain with no specific shape. 
Experiments were conducted to study the tradeoff between area coverage and energy 
consumption. Section 2 outlines related research on coverage path planning. Section 3 
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describes the methodology and cost function. Section 4 presents the experimental result 
and discussions, and concluding remarks are presented in Section 5. 

 

2 Related Research  
 
Coverage path planning (CPP) has been extensively studied in the literature but is still 
an open problem in robotics [40]. Different approaches have been adopted to classify 
the problems into (i) increasing the coverage completeness, (ii) reducing the path over-
lapping, (ii) reducing the energy consumption, (iv) optimising the number of turns, and 
(v) reducing the time to completion. A randomised approach does not require sensors 
and algorithms for localisation, but such an approach is inefficient when dealing with 
large coverage areas requiring more energy and time to complete the coverage [14]. A 
distributed strategy and model for UAVs oil spill mapping used randomness and prob-
abilistic guessing to avoid visiting all the cells and hence reduce the total distance trav-
elled, but coverage completeness decreased [32]. Different geometric patterns and 
shapes for coverage patterns have been studied, including back-and-forth (BF), Hilbert 
curves, LMAT (chain of equilateral triangles), S curves, and spiral patterns [5]. An 
optimal line-sweep decomposition path planner to minimise the time required for cov-
ering the area with obstacles in an unknown environment was presented in  [4]. The 
authors claimed that changing the sweep direction, as shown in Fig. 1, helps in mini-
mising the number of turns and hence reducing the time to completion. Similarly, re-
ducing the number of turns using optimal sweep direction and coverage pattern was 
considered in [24,3] in a quest to reduce energy consumption. Energy-aware CPP is an 
active area of research aiming at minimum energy consumption and maximum area 
coverage. Some studies considered energy optimisation based on the UAV structure, 
aerodynamic properties, rotor efficiency, and energy consumed in onboard data pro-
cessing and controls [17-44]. 

 

Fig. 1. Coverage path-planning with sweep direction changed to reduced turning angles. 

Energy-aware coverage path planning algorithms with a high emphasis on trajectories 
that reduce power consumption during operations have been proposed [36,15]. It has 
been found that the length of the trajectory, the UAV speed, and the way to make turns 
along the trajectory are the main energy sinks during the operation. In the literature, the 
performance index for energy consumption was to reduce the path length traveled dur-
ing the coverage to minimise the energy consumption [45,47], improve time-to-com-
pletion for both single and multi-robot coverage [20,30,13], and reduce the number of 
turns [11,41]. An algorithm for single-robot coverage path planning under constrained 
energy was presented in [39]. The robot was aware of its energy limitation, and hence 
the total distance traveled to refueling was minimised. Boustrophedon cellular 
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decomposition using back-and-forth or “ox-plow” motions and Dijkstra's algorithm 
were used. Although reducing the total distance to refueling is important, most of the 
energy is often consumed during the coverage and turning manoeuvres. Grid-based 
coverage path planning exhibits excellent performance in several robotic applications 
in irregular shapes and no fly-zones environments [5,7]. In the work proposed by [43], 
the irregular-shaped area of interest was decomposed into regular cells of equal sizes, 
using an approximate cellular decomposition technique. The authors introduced a cost 
function to minimise the number of turning manoeuvres to save energy but did not take 
into account important factors like optimal energy and energy consumption due to ac-
celerations and decelerations. The energy-aware algorithm proposed by [6] drastically 
reduced the energy consumption for the entire coverage. The model was based on op-
timising the turning manoeuvres, and avoiding sharp angles while reducing speed, ac-
celeration, and deceleration at the turning angles. An improved cost function aimed at 
minimising energy consumption in an irregular shape was proposed in [7]. The model 
was good in energy saving, and it may scale well in a simplistic environment, especially 
those applications that do not require a high degree of coverage completeness. Only a 
single occlusion point was considered in their experiment, but multiple obstacles can 
have a significant effect on the coverage completeness. 

Then, optimising the coverage completeness, energy consumption, and distance to 
obstacles in complex oil and gas environments with multiple occlusions is an interest-
ing problem that has not been investigated to the best of our knowledge. The problem 
is unique because magnetic survey for oil/gas exploration requires near optimum line 
spacing and flight height, and the coverage completeness can be easily affected when 
trying to avoid obstacles. The environment is often mixed with regular and irregular 
settings of different terrains. In addressing this problem, the following question arises: 
Can an intelligent coverage path-planning algorithm that reduces the number of sharp 
turns for obstacle avoidance in a highly irregular-shaped environment reduce the 
amount of energy consumed by the UAV without reducing the coverage completeness? 
 

3 Proposed Methodology  
 

The proposed model was implemented in the ROS/Gazebo simulation software using a 
drone package hector quadrotor noetic [33]. As a proof of concept for the magnetome-
ter, the drone is integrated with a magnetic sensor to read the magnetic field of the 
Gazebo environment. The modelled exploration environment is rugged terrain with 
steep topography, variations in the surface elevations, and thick vegetation cover, as 
illustrated in Fig. 2. The environment E is then partitioned into a grid with multiple 
cells of equal size 𝑀௫  ×  𝑀௬ as illustrated in Fig. 3. Each cell (x, y) has an associated 
value u(x, y, t) ∊ [0,1] that represents the UAV’s uncertainty about the target distribu-
tion in the cell at time interval t, for occupancy grid mapping, implemented using the 
slam_gmapping package provided in ROS [22]. The distance between each grid cell for 
cell-to-cell movement can be calculated using equation (1) where 𝑥௜, 𝑦௜  are the target 
goal point [27]. 

𝑑(𝑥, 𝑦) = ∑ | 𝑥௜ − 𝑦௜|௠
௜ୀଵ                                            (1) 
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Fig. 2. Example of forest environment modeled in the Gazebo simulation software for  
oil and gas exploration. 
 

3.1 Energy Model  

To derive the energy model, we first analysed energy consumption data obtained from 
real flights of a HEIFU drone [29] with a 22,000mAh LiPo battery, and the nominal 
voltage and current were at 24V and 60A, respectively. The drone consumes around 
23.5 volts for hovering, 20.3 volts for liner movement at a constant speed, 21.7 volts 
when turning at a soft angle, and 22.6 volts at a sharp bend. The nominal voltage drops 
drastically at around 35min of flight from 25.2 V to 18.6 V; hence the drone has to 
come back for refueling. The drone's weight was 7.5 kg with maximum payload of 6 
kg for a maximum take-off weight of 13.5 kg. To develop the energy cost function, we 
split the UAV path into a set of segments as in [7,16]. The first segment consists of the 
path for constant speed (straight line movement), which does not consume much en-
ergy, compared to the second segment, the variable speed of the UVA, which includes 
hovering and angular movements for maneuvering and obstacle avoidance. The varia-
ble speed consumes energy due to the acceleration, deceleration, and point of disconti-
nuity along the path. It is important to note that the energy model proposed by [43] and 
extended by [7] does not consider the effect of minimising the energy on coverage 
completeness, especially in multiple obstacle environments. Following the same idea, 
the cost function has been extended to consider coverage completeness and energy min-
imisation as two conflicting objective functions. 
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Fig. 3. Drone coverage path-planning with grid decomposition in an occluded environment. 

 

Fig. 3 illustrates the concept of obstacle avoidance in coverage path planning. It shows 
a UAV flying at a fixed height h from the ground acquiring magnetic data from a cell 
in the grid. The field of view is the magnetometer's projected area of size 1×1 square 
meter. An obstacle in the form of a tree is shown at the center of the exploration envi-
ronment. Three possible waypoints are shown, marked as a, b, and c. Waypoint (a)  
maximises coverage in the occluded region but consumes more energy due to the sharp 
angles at the path. Waypoint (b) minimises energy consumption due to the reduced 
distance by the resultant vector but still consumes energy due to turning manoeuvres. 
Waypoint (c) consumes less energy because of the smoothed angle on the waypoint but 
with reduced coverage. The problem lies in optimising Delta Δ, the distance between 
the drone and the obstacle during the coverage as a constraint to be imposed for obstacle 
avoidance by the UAV. Minimising the delta increases the coverage, and maximising 
it reduces energy consumption. 

Given an initial position (𝑥௢, 𝑦௢) and target goal points (𝑥௜, 𝑦௜), a collision-free path 
ensures that at no time should the UAV enter into the no-fly-zone region. The equation 
for collision avoidance is presented as follows: 
 

∀ 𝑝 ∈ [1 … 𝑁], ∀ 𝑖 ∈ [0 … T] 
| 𝑥௜௣ − 𝑥௞| ≥ Δ                                                    (2) 
| 𝑦௜௣ − 𝑦௞| ≥ Δ                                                    (3)   

In the Eqs. (2), (3)  above, 𝑥௜௣ , 𝑦௜௣ are the drone position in the x and y axis at the T 
time instance, and 𝑥௞ , 𝑦௞  are the obstacle position at the x-axis and y-axis, respectively. 
Since most obstacles in the forest can be approximated to the shape of a sphere or circle 
in 2D, equations (2) and (3) can be written as equation (4). 

ห 𝑥௜௣ − 𝑥௞ห sin θ + | 𝑦௜௣ − 𝑦௞| cos θ  ≥ Δ                              (4) 
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The instantaneous power for the flight scenarios is calculated with equation (5), where 
V is an instantaneous voltage, and I is the instantaneous current consumed by the drone. 

𝑃 = 𝑉𝐼                                                           (5) 

The total energy consumption can be calculated by integrating the power over the pe-
riod of the mission, as shown in the energy equation (6), where E is the energy con-
sumed in joules, P is the instantaneous power consumed in watts, and t is the time in-
terval for the flight mission. 

𝐸 = ∫ 𝑃𝑑𝑡
௧

଴
= ∫ 𝑉𝐼𝑑𝑡

௧

଴
                                                 (6)  

The energy consumed when moving at a straight line to cover a distance d at constant 
speed v can be calculated with equation (7). 

𝐸௖ = ∫ 𝑃௖𝑑𝑡
ௗ/௩

଴
= 𝑃௖

ௗ

௩
                                                (7) 

The energy consumed for variable speed due to acceleration and deceleration can be 
calculated with equation (8). 

𝐸௩௔௥ = ∫ 𝑃௔௖௖𝑑𝑡
ௗ೔/௩೔

ௗ೚/௩೚
= 𝑃௩(𝑡ଶ − 𝑡ଵ) +  ∫ 𝑃ௗ௘௖௖𝑑𝑡

ௗ೚/௩೚

ௗ೔/௩೔
= 𝑃௩(𝑡ଶ − 𝑡ଵ)         (8) 

The energy consumed for hovering is calculated using equation (9). 

𝐸௛ = ∫ 𝑃௛𝑑𝑡
௛/௩೎೗೔೘್

଴
= 𝑃௛(𝑡ଶ − 𝑡ଵ)                                (9) 

In this work, the drone is restricted not to flying above trees for quality data collection 
as well as for manoeuvability. Hence the maximum height is set to 1 meter as a con-
straint. Finally, the energy consumed during the rotation, maneuvering, and turning at 
a certain angle θ, with angular speed ω is calculated with equation (10). 

𝐸௧௨௥௡ = ∫ 𝑃௧௨௥௡𝑑𝑡
୼஘/ன೔

୼஘ /ன೚
=  𝑃௧௨௥௡

୼஘

ன
                               (10) 

The cost function can be written by summing the total energy consumed in straight line 
movement, which also has sub-components of the constant speed and variable speed 
due to acceleration and deceleration, and the energy consumed in the rotational move-
ment for turning and maneuvering in obstacle avoidance. The cost function is given by 
equation (11). 

𝐸௖ = ෍ ቀ∫ 𝑃௔௖௖𝑑𝑡
௩೔

଴
+  ∫ 𝑃ௗ௘௖𝑑𝑡

଴

௩೔
+ ∫ 𝑃௖𝑑𝑡 + ∫ 𝑃௧௨௥௡𝑑𝑡

୼஘/ன೔

୼஘୭/ன೚
 

ௗ/௩

଴
ቁ

௠

௜ୀଵ
              (11) 

While the total energy needed for the coverage can be computed with equation (12). 

𝐸௧௢௧௔௟ = ෍ ቀ∫ 𝑃௔௖௖𝑑𝑡
௩೔

଴
+  ∫ 𝑃ௗ௘௖𝑑𝑡

଴

௩೔
+ ∫ 𝑃௖𝑑𝑡 +  ∫ 𝑃௛𝑑𝑡

௛/௩೎೗೔೘್

଴

ௗ/௩

଴
+

௠

௜ୀଵ

 ∫ 𝑃௧௨௥௡𝑑𝑡
୼஘/ன೔

୼஘ /ன೚
ቁ                                                                                   (12) 
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3.2 Coverage-Path Pseudocodes  

Given the above energy model for the UAV, the coverage path planning shown below 
was implemented. The algorithm can be summarised in three sequential main steps: 
decomposition, planning, and execution. First, a cellular decomposition technique is 
applied over the irregular-shaped area to discretise the map to regular equal size cells. 
Second, a coverage path planning algorithm finds the nearest cell in back-and-forth 
movement based on the coverage goal received. The solution to the movement is ac-
cording to the predefined cost function and obstacle avoidance constraint in the model. 
Finally, the resulting path is executed, and the coverage mission is completed. 
 
BEGIN 

1. grid <= convertMaptoGrid(Map) 

2. initialPoint<=Origin(0,0) 

3. coverageGoal<=getCoverageGoal() 

4. EnergyCost <= 0 

5. path<=recursiveFunc(coverageGoal,EnergyCost) 

6. loop 

7. neighbors<= computeNeighbors(cells) 

8. if no neighbors 

9.    return  

10. End if 

11. For each neighbors(i) do  

12.   path<= path+ neighbors(i) 

13.   cost<= ෍ ቀ∫ 𝑃௔௖௖𝑑𝑡
௩೔

଴
+ ∫ 𝑃ௗ௘௖𝑑𝑡

଴

௩೔
+ ∫ 𝑃௖𝑑𝑡 + ∫ 𝑃௧௨௥௡𝑑𝑡

୼஘/ன೔

୼஘୭/ன೚
 

ௗ/௩

଴
ቁ

௠

௜ୀଵ
  

14.   Obstacle <= ห 𝑥௜௣ − 𝑥௞ห sin θ + | 𝑦௜௣ − 𝑦௞| cos θ  ≥ Δ                                           
15.   Cost<= +prevCost  

16.   If cost < minCost       
17.      Path <= recursiveFunc(coverageGoal,EnergyCost)  
18.   Else:    

19.     minCost <= cost  

20.     minPath <= Path 

21.   Endif  

22.  End for  

23. End loop                                
 
The UAV energy model, environment model, and coverage path planning approach 
were all implemented in the ROS/Gazebo simulation software. Several experiments 
were conducted for various types of exploration scenarios. The scenarios consist of a 
perfect square regular-shaped environment and an irregular-shaped environment 
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characterised by arbitrarily shaped obstacles. We investigated the tradeoff between cov-
erage completeness and energy consumption in these environments.  

4 Experimental result  

Three different environments usually seen in oil/gas exploration were modelled: a de-
sert with low obstacles, including hills and valleys; a forest with a combination of hills, 
valleys, and moderate vegetation; and a jungle depicted rugged terrain and steep topog-
raphy. A survey conducted by [48] shows that flying drones at varying altitudes of 
0.5m, 1.3m, and 2.2m above the ground with line spacing of 1 m provides a good result. 
The flight altitude was set to 1 meter, and the speed was set to v = 2 m/s for the entire 
experiment. The experiment in a desert environment is considered a benchmark to eval-
uate the coverage quality, assuming the drone could successfully cover the cell with 
minimum energy consumption without obstacles. 
 
4.1 Exploration Scenarios 

First, an experiment was conducted in a rectangular-shaped environment, and three 
flights were performed to compare the algorithm's effectiveness in deserts, forests, and 
jungles. The environment is first decomposed into 20 cells of equal size (5×4) and delta 
set to 0.55m. The obtained result shows that exploration in the desert consumes less 
energy and provides full coverage. The energy consumption doubled in the forest, and 
the coverage was 19 cells out of 20 target cells. The worst performance was recorded 
in the jungle exploration, in which the mean coverage was 11 cells out of 20 target cells, 
and the energy consumption was still high. A cross-section of the simulation result from 
the ROS-rviz software is shown in Fig. 4. 

 

 
(A)                                       (B)                                          (C) 

Fig. 4. The red dots represent the area in which the drone performs coverage path planning. The 
gray area represents a region in which the UAV is certain there is no obstacle, i.e., path-planning 
can be performed on it. The dark edges in the gray regions are obstacle or no-fly zones identified 
based on the principle of occupancy grid mapping, and the remaining part of the graph in light 
green represents the unexplored area. 

To further assess the performance of the algorithm, another experiment was conducted 
using the same parameters but in a much bigger and irregular map illustrated in Fig. 5. 
The area was decomposed into 110 cells of equal size, and the algorithm scales well in 
the desert, and also performs well in the forest with few obstacles (Fig. 5b), as well as 

Gray-region   
Gray-region   
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in the jungle with more obstacles (Fig. 5c). In the jungle exploration, the number of 
uncovered cells was 31 compared to 36 in the forest. In the second scenario, the delta 
was set to 0.75m, and an experiment was also conducted again in a regular-shaped en-
vironment, decomposed into 20 cells of equal size (5×4). It was also run in an irregular-
shaped environment decomposed into 110 cells of equal size. Like the first scenario, 
three flights were performed to compare the algorithm's effectiveness in deserts, forests, 
and jungles. In the third scenario, the delta was set to 1.0m, and the experiment was 
conducted similarly to scenarios one and two. The regular-shaped environment was 
decomposed into 20 cells of equal size (5×4). The irregular-shaped environment was 
decomposed into 110 cells of equal size. Three flights were performed to compare the 
algorithm's effectiveness in deserts, forests, and jungles. Setting the delta to 1.0m makes 
the coverage very difficult in an obstacle environment. In most cases, the drone has to 
abandon the mission because it was trapped for over 8 minutes facing an obstacle, i.e., 
it cannot pass through a narrow path because the delta is too big. Hence, the energy 
consumed in the jungle was less than what was consumed in the forest. The trees in the 
forest along the way point were dense, and the drone was trapped hence abandoning 
the mission before completion. 

 

(A)                                       (B)                                          (C) 
Fig. 5. Coverage path planning in desert, forest, and jungle for more complex environments. 

 
In some cases, the drone was only able to cover 7 out of the 20 cells in a regular-shaped 
forest environment and 29 out of 110 cells in an irregular-shaped forest environment. 
Tables 1 and 2 show the average value of the energy consumption and coverage for the 
three flights performed in deserts, forests, and jungles. 

 
Table 1. Mean energy  (J) vs. Coverage (sq m) regular-shaped environment. 

 
   Delta = 0.55m Delta = 0.75m Delta = 1.0m 

 Environment 
Mean 

Energy 
Mean 

Coverage 
Mean 

Energy 
Mean 

Coverage 
Mean 

Energy 
Mean 

Coverage 

Desert  411.5 20 417.0 20 402.1 20 

Forest  1120.9 19 393.5 19 724.7 7 

Jungle  1198.2 11 523.6 11 259.2 4 
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Table 2 Mean energy (J) vs. Coverage (sq m) irregular-shaped environment. 

   Delta = 0.55m Delta = 0.75m Delta = 1.0m 

 Environment 
Mean 
Energy 

Mean 
Coverage 

Mean 
Energy 

Mean 
Coverage 

Mean 
Energy 

Mean 
Coverage 

Desert  2451.6 110 2388.8 110 2434.3 110 

Forest  3462.7 73 942.7 26 2070.6 29 

Jungle  2639.8 78 1380.5 28 1256.9 24 
 
 
4.2 Evaluation of Experimental Results 

The algorithm's performance was evaluated in terms of increased coverage and reduced 
energy consumption. The coverage results for regular-shaped and irregular-shaped en-
vironments are compared in Fig. 1 and Fig. 2, where the vertical axis is the number of 
cells covered, and the horizontal axis shows the various delta values for experiments in 
the desert, forest, and jungle. As can be seen, the algorithm achieved better coverage 
results in a regular-shaped environment when the delta was set to 0.55m and 0.75m, 
but the result for forest and jungle got worst when the delta was set to 1.0m. The find-
ings from these studies suggest that delta plays an important role and it has significance 
on energy consumption and coverage completeness. It allows the drone to maneuver 
freely out of the obstacle. That is, the higher the delta, the less energy consumption; the 
lower the delta, the more coverage completeness. As expected, there is a tradeoff be-
tween the number of cells covered and energy consumption in the occluded environ-
ment. Fig. 6 and 7 compare energy consumption and coverage completeness for both 
regular and irregular-shaped environments. 
 

  

Fig. 6. Coverage completeness for regular-shaped and irregular-shaped environments.
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Fig. 7. Mean energy (J) in regular and irregular-shaped environments. 

 

5 Conclusion 

This paper described a model for UAV Path Planning considering the tradeoff between 
area coverage and energy consumption. The work is inspired by magnetic data survey-
ing for oil/gas exploration, where environments are usually unknown and present mul-
tiple obstacles. Simulations were implemented in ROS/Gazebo for three environments: 
desert, forest, and jungle. A parameter delta is used to set the constraint for obstacle 
avoidance, and experiments with different values (0.5m, 0.75m, and 1.0m) were con-
ducted. Experimental results show that the drone effectively maneuvered itself in dif-
ferent environmental settings, achieving high coverage and moderate energy consump-
tion when the delta was set to 0.5m in a desert environment. As the complexity of the 
environment increases, energy consumption increases due to obstacle avoidance while 
the coverage optimality reduces. The overall best results were obtained when the delta 
was set to 0.5m, skipping a few cells while performing coverage in forest and jungle 
but with added energy consumption compared to exploration in the desert. The worst 
coverage result was obtained when the delta was set to 1.0m in the forest and the jungle. 
These results show that the delta value influences energy consumption and coverage 
completeness. The larger the delta value, the less energy consumption due to the 
smoothed angle and less acceleration and deceleration along the obstacle avoidance 
path. The lower the delta value, the more coverage completeness. There was a tradeoff 
between the number of cells covered and energy consumption in the occluded environ-
ment, and in some cases, the drone was trapped by the obstacles. Further work will look 
at more sophisticated path-planning algorithms and multiple drones. 
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