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Abstract

SHM methods for damage detection and localisation in plate-like structures have
typically relied on post-processing of ultrasonic guided waves (GWs) features. The
time-of-flight is one of these features, which has been extensively used by the SHM
community. A followed technique to obtain the time of flight is by applying a particular
time-frequency (TF) transform to get the frequency and energy content of the wave at
each instant of time. From these transforms, the selection of a TF model has typically
been based on experience, or simply based on minimising the computational cost. In
this paper, a full probabilistic method based on the Bayesian inverse problem (BIP)
is originally proposed to obtain the most probable model over a set of candidates.
To this end, the problem of TF model selection is addressed using a two-stage BIP:
(i) first, the posterior PDF of the dispersion parameter is obtained and then, (ii) the most
plausible a posteriori value is introduced in the likelihood function to estimate the most
evident TF model. The results have revealed the efficiency of the proposed methodology
in automatically selecting the most suitable TF model for a relevant case study. No
preference for any particular TF model has been found; the most probable TF model is
case specific.

1. Introduction

Post-processing techniques of ultrasonic guided waves (GWs) are massively used for
damage reconstruction and SHM in many fields of the engineering. Particularly, the
aerospace industry has focused on GW based SHM techniques due to its ability to ex-
plore large areas with relatively small attenuation [1]. Potential safety and economical
implications in the condition based maintenance can be obtained from the use of these
autonomous techniques. In addition, aircrafts have a great number of structual compo-
nents that are out of visual inspection, and hence the need for techniques that allow the
remote and automatic exploration of the health state of a structure is more accentuated in
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these applications. When a damaged structure is detected, a higher level of information
is typically required for further decision making. Hence, one can decide whether (i) to
apply model-based inverse problems to obtain highly detailed damage information from
the signal (e.g. the severity of damage) [2] at a considerable computational cost, or (ii)
to efficiently find the position of the damage. Regarding (ii), several damage reconstruc-
tion techniques have been reported in the literature [1, 3–5]. One common point of all of
them is the need of obtaining the time of flight of the scattered signal, as the basis of the
reconstruction techniques.

TF representation techniques have been widely used for the time of flight extraction
purpose. These techniques are able to provide the energy content of each frequency at
each instant of time [6]. Amongst them, it is worth mentioning the Hilbert-Huang trans-
form (HHT), the continuous wavelet transform (CWT), the short-time Fourier transform
(STFT) and the Wigner-Ville distribution (WVD) [6–8], as the most commonly used tech-
niques. The usefulness of these transforms in GW based SHM problems have been proven
by many authors [9–11]. The selection of one of these methods is typically based on expe-
rience or on frequency resolution characteristics. It is important to note that the selection
of a suboptimal model may result in biased identification or misidentification. Direct com-
parisons between different TF techniques have been carried out by some authors [12, 13],
showing differences between model outputs and when compared to theoretical results.
However, a rigorous comparison between TF models is still missing in the literature.

The question of which TF transform is the most appropriate, given the existence of many
similar techniques that provide with the same type of outcome, needs to be addressed. In
this paper, Bayesian inverse approach is used to address the issue of uncertainty quantifi-
cation and model ranking over a set of candidates. Uncertainties coming from (i) material
propreties, (ii) noise in the acquisition system, and (iii) systematic uncertainty in the TF
model due to the Heisenberg uncertainty principle [6, 14] are taken into account. A two-
stage BIP is proposed: (I) to infer the dispersion parameter probability density function
(PDF) and (II) to obtain the most plausible model. The proposed approach relies on
rigorous probabilistic-logic assumptions for model class selection and as such, it avoids
experience-based decisions about the optimal post-processing technique. Here, probabil-
ity is interpreted as a multi-valued logic that expresses the degree of belief of a proposition
conditioned on the given information [15, 16]. Therefore, the degree of belief of the dis-
persion parameter, and the model choice for time of arrival extraction is quantified.

The paper is organised as follows: Section 1 contains the introduction and motivation.
Section 2 shows the TF models used in the proposed model selection problem. Section 3
comprises the probabilistic methodology used to obtain the most evident TF model. Sec-
tion 4 contains a case study where the methodology is applied. Finally, Section 5 provides
concluding remarks.

2. TF models

Amongst the most used TF models, a probabilistic assessment of four of them is proposed
in this paper. Particularly, HHT, CWT, STFT, and WVD are investigated here and their
basic theoretical foundations are presented in this Section.
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2.1. Hilbert-Huang transform

The Hilbert transform (HT) as a procedure to obtain the envelope of a guided wave is
widely used in SHM [7, 12]. In this sense, for an arbitrary time series, X(t), the HT, Y (t),
can be defined as:

Y (t) =
1
π

P
∫

∞

−∞

X(t ′)
t− t ′

dt ′, (1)

where P denotes the Cauchy principal value. With this definition, X(t) and Y (t) form a
complex conjugate pair, so we can have an analytical signal, Z(t), as:

Z(t) = X(t)+ iY (t) = a(t)eiθ(t), (2)

where

a(t) = [X2(t)+Y 2(t)]1/2, θ(t) = arctan
(

Y (t)
X(t)

)
. (3)

The magnitude a(t) of the analytical signal Z(t) is used as the envelope of the input time
series X(t). However, this formulation does not provide information about the energy
content for each frequency at each instant of time. Thus, Huang et al. introduced the con-
cept of intrinsic mode functions (IMF) whereby the spectrum is defined after performing
the HT over each IMF component as [7]:

HHT (t) =
n

∑
j=1

a j(t)exp
(

i
∫

ω j(t) dt
)
. (4)

Equation 4 represents the amplitude and instantaneous frequency as functions of time.
Thus, the TF representation can be obtained, known as Hilbert-Huang transform (HHT).

2.2. Continuous wavelet transform

The continuous wavelet transform (CWT) has been used in analysing guided waves due
to its good resolution in time and frequency domains. This transform uses TF wavelets
to obtain the TF representation of the assessed signal. The CWT of a time series X(t) is
defined by [8]:

CWT (b,a) =
1√
a

∫
∞

−∞

X(t)Ψ
(

t−b
a

)
dt, (5)

where a > 0 is the scale factor, b is the time-shift variable, and the overbar indicates the
complex conjugate. In Equation 5, Ψ(t) denotes the analysing wavelet [17].

2.3. Short-time Fourier transform

Other similar transform to CWT is the short-time Fourier transform (STFT). This tech-
nique provides with a TF representation of the signal to be analysed. This is particularly
useful when assessing Lamb waves, which has a inherently dispersive nature. The basic
idea behind it is to perform Fourier transforms to a moving window in the signal. Thus,
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the signal is swept and the frequency spectrum is obtained for each of these overlapping
time windows [6, 18]. The STFT of a function X(t) is defined as:

ST FT (ω, t) =
1

2π

∫
∞

−∞

e−iωτX(τ)h(τ− t)dτ, (6)

where h(t) is a window function. The energy density spectrum of an STFT, which is
defined by E(ω, t) = |S(ω, t)|2, is known as the spectrogram.

2.4. Wigner-Ville Distribution

The Wigner-Ville distribution (WVD) is a Fourier transform with respect to τ of the func-
tion X(t +[τ/2])X(t− [τ/2]), which is given by [6]:

WV D(ω, t) =
∫

∞

−∞

X
(

t +
τ
2

)
X
(

t− τ
2

)
e−iωτdτ. (7)

Which can be seen as a measure of the signal’s local time-frequency energy [18].
Amongst the capabilities of the WVD, it is worth mentioning that this transform is able
to localise Dirac impulses and sinusoids.

3. Probabilistic methodology

A rigorous probabilistic-logic two-stage model selection BIP is proposed and developed
in this Section. First, the stochastic embedding of the TF models introduced above is
described. Then, a procedure is proposed to solve the BIP whereby the PDF of the dis-
persion parameter is obtained. Finally, the TF model Bayesian selection procedure, by
which the most plausible model is obtained, is explained.

3.1. Stochastic embedding of TF models

Given a TF model g j that has a discrete signal D (k) ∈ Rn as input, one can define the
time at which the first maximum d̂ ∈ R is received (time of flight) by the sensor as
d̂ j = g−1

j (D (k)). It should be emphasized that each model g is only a representation of the
reality [16], and thus d̂ j would be more accurately represented as a stochastic variable as:

d̂ j = g−1
j

(
D (k)

)
+ e, (8)

where e is an error term which measures the discrepancy between the modelled and the
measured values for d̂ j. This error can be assumed to be modelled as a zero-mean Gaus-
sian distribution with variance σe, i.e., e∼N (0,σe). This assumption is supported by the
Principle of Maximum Information Entropy (PMIE) [15, 16], which provides a rational
way to establish a probability model for the error term e such that it produces the largest
uncertainty (largest Shannon entropy). Then, considering Equation 8, a probabilistic de-
scription of the TF model can be obtained as:

p
(
d̂k|M j,σe

)
=
(
2πσ2

e
)− 1

2 exp

−1
2

 d̂k−g−1
j

(
D (k)

)
σe

2. (9)
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Each of these stochastic embedding models conforms a model class M j. These candidate
model options are subsequently assessed to obtain the most plausible one within the set
M = {M1, . . . ,M j, . . . ,MNm}, where Nm is the number of TF models.

Stochastic model
p(d̂k|M j,σe)

Error variance (σe)
ToF model choice Mi

Likelihood function
p(d̂|Mi,σe)

Prior PDF
p(Mi,σe)

Posterior PDF
p(Mi,σe|d̂)

Set of ToF models
M = {M1, . . . ,MN}

Likelihood function
p(d̂|Mi,σM)

Prior probability
P(Mi)

Posterior probability
P(Mi|d̂,σM)

I.
E

rr
or

pa
ra

m
.

II
.T

oF
m

od
el

s

(d̂)

(Bayes’ Th.)

(Bayes’ Th.)

(σM = argmaxσe
p(σe|d̂))

Figure 1: Flowchart of the two-stage model selection BIP. First level (I) estimates the dispersion parameter of
the likelihood function by solving a BIP and obtaining the marginal posterior PDF p(σe|d̂). Second level (II)

establishes the probability of each ToF model taking as a constant the error parameter estimated in (I).

3.2. Level I: dispersion parameter estimation

The likelihood function (Equation 9) needs to be completely defined to address the TF
models ranking problem. However, Equation 9 is sensitive to the dispersion parameter
σe, and therefore, the first stage of the BIP is designed to obtain the most plausible value
of σe. To this end, it is necessary to investigate the joint posterior PDF of the i-th TF
model (Mi) and the dispersion parameter σe given a set of data d̂ =

{
d̂1 . . . d̂N

}
, namely

p(Mi,σe|d̂). From this joint PDF, the marginal posterior p(σe|d) is derived whereby σM
is subsequently obtained as a maximum a posteriori (MAP) value of p(σe|d), as shown in
Figure 1. The set of data is obtained as the result of applying the TF models to the Lamb
wave signal D (k). Thus, by using the Bayes’ theorem, the posterior PDF is given by:

p
(
Mi,σe|d̂

)
∝ p

(
d̂|Mi,σe

)
p(Mi,σe) , (10)

where p(d̂|Mi,σe) is the likelihood function, which expresses how likely the dataset d̂
is obtained by the stochastic model in Equation 9 if model class Mi is adopted as shown
in Figure 2. This likelihood function can be obtained by substituting the values d̂ as the
output of the stochastic model, as:

p
(
d̂|Mi,σe

)
=

N

∏
`=1

p
(
d̂`|Mi,σe

)
. (11)

The prior information term p(Mi,σe) in Equation 10 can be addressed separately assum-
ing the stochastic independence of Mi and σe, as p(Mi,σe) = P(Mi)p(σe). Therefore,
Equation 10 rewrites as:

p
(
Mi,σe|d̂

)
∝

{
N

∏
`=1

p
(
d̂`|Mi,σe

)}
P(Mi) p(σe) . (12)
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Figure 2: Likelihood function defined in one specific time of flight (d̂ j). The other data provided by the rest of
TF models are also evaluated in the defined likelihood function p(d̂|M j,σe).

An updating algorithm is needed to obtain the numerical estimate the posterior PDF of
the dispersion parameter σe, which is essential for the problem of model selection, as
shown in Figure 1. The well-known Metropolis-Hastings (M-H) [19, 20] is adopted due
to its efficiency and simplicity for implementation. The marginal posterior PDF of the
standard deviation of the dispersion parameter p(σe|d̂) is obtained, and then the model
selection problem (level II) can be addressed as depicted in Figure 1. The representative
value of the dispersion parameter is selected as the MAP estimate, σM , from the marginal
posterior PDF p(σe|d̂) and it is given by:

σM = argmax
σe

p(σe|d̂) = {σe|p(σe|d̂) = max
σ ′e

p(σ ′e|d̂)}. (13)

3.3. Level II: model selection

The model selection problem can now be addressed by introducing the MAP estimate of
the dispersion parameter, σM, in the likelihood function as a deterministic value. This is
enforced by the asymptotic Laplace’s approximation [16] which states that:

p
(
d̂|Mi

)
≈ p

(
d̂|Mi,σe

)
. (14)

This approximation is valid if p(σe|d̂) is globally identifiable, i.e. if the PDF has a unique
global maximum value. From this standpoint, the model selection problem can be solved
by applying the Bayes’ Theorem. Therefore, the plausibility of the i-th TF model Mi
given the set of data d̂ is defined as follows:

P
(
Mi|d̂,σM

)
∝

{
N

∏
`=1

p
(
d̂`,σM|Mi

)}
P(Mi) . (15)

The probability of each TF model can be obtained by evaluating each of these likelihood
functions and by multiplying by the prior information. As can be deduced, Equation 15
may be analytically evaluated, since the likelihood function is modelled by a Gaussian
distribution and the prior information is known.
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4. Case Study

This section describes the case study applied to test the proposed methodology over a set
of guided waves numerically acquired through a finite element model (FEM). The models
described in Section 2 are then ranked by using the proposed probabilistic methodology,
as shown below.

4.1. Numerical model

Ultrasonic guided waves were obtained by making use of an aluminium plate modelled in
Abaqus®, inspired by the FEM proposed in [10]. The model represents a 0.3 [m]×0.3 [m]
aluminium plate, which properties are summarised in Table 1. An aluminium alloy 2024-
T351 [21], commonly used in aerospace, is selected in this case study. The Abaqus ex-
plicit module is used to obtain the transient representation of the ultrasonic guided waves
in four arbitrary points of the plate. The origin of the coordinate system is assumed in
the center of the plate, where the actuator is placed, i.e (0, 0) [m]. The four sensors
coordinates are as follows: (i) sensor 1 in (0, 0.1) [m], (ii) sensor 2 in (0.1, 0.05) [m],
(iii) sensor 3 in (-0.09, -0.07) [m], and (iv) sensor 4 in (-0.03, -0.12) [m].

Table 1: Material properties (aluminium alloy 2024-T351 [21]) used in the Abaqus model.

Young’s modulus Poisson’s ratio Density Thickness
[GPa] [-] [kg/m3] [mm]

73.1 0.33 2780 2

A uniform square mesh of 1mm element size is used with a S4R shell element type. Free
boundary conditions are considered in this model. The load is generated as a sine tone-
burst centred at 100 kHz with 5 cycles. The direction of application of this load is normal
to the surface of the plate, since the piezoceramic sensors and actuator are not modelled
to gain computational efficiency. Then, a hole in square shape was modelled to mimic
damage in the plate. The signals acquired in undamaged and damaged conditions are
then subtracted to obtain the scattered signals, shown in Figure 3, that carry the damage
information. These signals are then the data D used in the probabilistic methodology to
rank the different TF models.

4.2. Model selection results

The signals shown in Figure 3 are introduced in the probabilistic model selection method-
ology presented in Section 3. As there is no initial guess on the standard deviation of the
dispersion parameter, a uniform PDF is selected as prior PDF for all the signals assessed.
This standard deviation σe parameter is defined by a factor ρ that multiplies the time of
arrival, d̂ j as: σe = ρ d̂ j. Thus, the prior PDF is defined as the uniform distribution for
ρ ∈ (0,0.5].
The obtained posterior PDFs of the standard deviation factor ρ of the selected TF models
are depicted in Figure 4. Then, the value of the maximum pseudo-posterior probability is
selected to be introduced in level II of the methodology as presented in Section 3.3. To
do so, some analytical PDFs are fitted to the PDFs to address the search of the standard
deviation factor that holds the maximum pseudo-posterior plausibility. As observed in
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Figure 3: Scattered signals of the damaged structure obtained in the FEM. Signal 1: top left figure. Signal 2:
top right figure. Signal: bottom left figure. Signal 4: bottom right figure. The numbering corresponds to the

sensors order.

Table 2: Standard deviation (σM) and standard deviation factor (ρM) of the dispersion parameter per model
and signal in the level I of the proposed methodology.

Model: HHT Model: CWT Model: STFT Model: WVD

Signal 1
ρM 0.0110 0.0115 0.0178 0.0173
σM 6.1719e-7 6.4064e-7 1.0102e-6 9.5510e-7

Signal 2
ρM 0.0223 0.0140 0.0148 0.0219
σM 1.1888e-6 7.3652e-7 7.7034e-7 1.1281e-6

Signal 3
ρM 0.0032 0.0037 0.0060 0.0050
σM 1.6739e-7 1.9317e-7 3.1530e-7 2.6055e-7

Signal 4
ρM 0.0027 0.0045 0.0049 0.0026
σM 1.6769e-7 2.8038e-7 3.0307e-7 1.6768e-7

Figure 4, the best PDF that fits the posterior PDFs is the generalised extreme values
distribution [22]. The MAP value is selected and therefore the standard deviation factor
ρM is obtained and presented in Table 2. Then, the standard deviation σe that corresponds
to the selected factors ρ are obtained and shown in Table 2. Finally, these values are
introduced in the level II to obtain the most probable TF model.

The pseudo-posterior probabilities used to rank the TF models for each signal are shown
in Table 3. Based on the results, HHT results to be the most evident TF model for signals
1, 3 and 4, whereas CWT is the most plausible in the case of signal 2. It is worth mention-
ing that for signal 4, both HHT and WVD holds a very similar plausibility (1.2252e+24
and 1.2251e+24 respectively). This can be explained since both TF models obtained very
similar ToA (6.2106e-5 and 6.2103e-5 respectively), as shown in Table 3.

5. Conclusions

A two-stage Bayesian methodology that ranks TF models to rigorously obtain the most
plausible one is presented in this paper. This methodology addresses the problem while
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(a) Model: HHT; Signal: 1 (b) Model: CWT; Signal: 2

(c) Model: HHT; Signal: 3 (d) Model: HHT; Signal: 4

Figure 4: Marginal prior p(σe) and posterior PDFs p(σe|d̂) of the selected TF models for each signal.

Table 3: Pseudo-posterior probability (p(M j|d̂)) and time of arrival (d̂ j) in the level II of the proposed
methodology.

Model: HHT Model: CWT Model: STFT Model: WVD

Signal 1
p(M j|d̂) 7.1162e+21 6.0796e+21 9.1050e+20 1.1568e+21

d̂ j [s] 5.6108e-5 5.5708e-5 5.6750e-5 5.5208e-5

Signal 2
p(M j|d̂) 4.8418e+20 3.3713e+21 2.8439e+21 6.0744e+20

d̂ j [s] 5.3309e-5 5.2609e-5 5.2050e-5 5.1509e-5

Signal 3
p(M j|d̂) 1.1726e+24 7.3260e+23 1.0021e+23 2.2705e+23

d̂ j [s] 5.2309e-5 5.2209e-5 5.2550e-5 5.2109e-5

Signal 4
p(M j|d̂) 1.2252e+24 1.6406e+23 1.1844e+23 1.2251e+24

d̂ j [s] 6.2106e-5 6.2306e-5 6.1850e-5 6.2103e-5

accounting for the several sources of uncertainty, therefore, providing a rigorous tool to
obtain the time of arrival for damage reconstruction. The effectiveness of the method is
shown using a case study with four different guided wave scatter signals. Overall, no
preference in TF model selection is observed, thus showing the importance of consider-
ing a model selection problem before facing an ultrasound-based damage identification
problem.
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