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Abstract
In the study of discrete dynamical systems, we typically start with a function from a
space into itself, and ask questions about the properties of sequences of iterates of the
function. In this paper we reverse the direction of this study. In particular, restricting
to the complex plane, we start with a sequence of complex numbers and study the
functions (if any) for which this sequence is an orbit under iteration. This gives rise to
questions of existence and of uniqueness. We resolve some questions, and show that
these issues can be quite delicate.
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1 Introduction

Complex dynamics usually begins with a function f : X → X , for some Riemann
surface X . For a point z ∈ X , we then consider the properties of the orbit of z; in other
words, the sequence of images under iteration of f

z, f (z), f 2(z) := f ( f (z)), . . . .

Our goal in this paper is to reverse these considerations, at least in the slightly
restricted case where X = C. In other words, we begin with a sequence (zn)n≥0 of
elements of C, and then ask the following questions.
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(I) Does there exist a function f that realises the sequence? In other words, for each
n ∈ N, we have that f n(z0) = zn .

(II) If (zn)n≥0 is realised by some function f , then is f unique with this property?
(III) Do the answers to (I) and (II) change if we restrict to different classes of

functions? For example,wemight restrict to polynomials, entire functions,mero-
morphic functions or quasiregular functions.

It is immediately clear that not every sequence can be an orbit; it is easy to see, for
example, that the sequence 1, 2, 1, 3, . . . cannot be realised by any function since the
point 1 cannot map both to 2 and to 3. We will show that the following definition is
natural.

Definition 1.1 Suppose that (zn)n≥0, is a sequence of complex numbers. We say that
(zn)n≥0 is a candidate orbit if the following condition holds. Suppose that z ∈ C and
that (n j ) j∈N is a sequence of non-negative integers such that zn j → z as j → ∞.
Then there is a point z′ ∈ C, which depends only on z, such that zn j+1 → z′ as
j → ∞.

Remark Note that in this definition we allow the sequence (n j ) j∈N to be constant. In
particular, if (zn)n≥0 is a candidate orbit, then z p = zq implies that z p+k = zq+k for
k ∈ N.

Our first result justifies the definition of a candidate orbit, and also gives a complete
answer to (I) and (II) in the case of continuous functions.

Theorem 1.2 Suppose that (zn)n≥0 is a sequence of complex numbers. Then (zn)n≥0
is a candidate orbit if and only if there is a continuous map f : C → C that realises
(zn)n≥0. Moreover, f is unique with this property if and only if the set {zn : n ≥ 0} is
dense in C.

Next we consider the case of entire functions. While Theorem 1.2 gives a complete
answer for continuous functions, it is clear that the condition of being a candidate orbit
is far from sufficient for it to be realised by an entire function. In this case we are able
to give a complete answer to the uniqueness question, but we do not fully resolve the
question of existence.

We require some additional definitions. First, we say that a candidate orbit (zn)n≥0
is periodic if there exist n �= n′ ∈ N such that zn = zn′ ; note that this definition
includes sequences that are often called “preperiodic”. Second, we say that (zn)n≥0 is
escaping if zn → ∞ as n → ∞. Finally, (zn)n≥0 is bounded if there exists L > 0
such that |zn| ≤ L , for all n ≥ 0, and it is bungee if it is not bounded and not escaping.

We then have the following, where we distinguish carefully between polynomials
and transcendental entire functions.

Theorem 1.3 Suppose that (zn)n≥0 is a candidate orbit. Then exactly one of the fol-
lowing holds.

(a) (zn)n≥0 is periodic, and is realised by infinitely many transcendental entire func-
tions and infinitely many polynomials.

(b) (zn)n≥0 is escaping, and is realised by infinitely many transcendental entire func-
tions and at most one polynomial.
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(c) (zn)n≥0 is bungee, and is realised by at most one transcendental entire function
and no polynomials.

(d) (zn)n≥0 is bounded and not periodic, and is realised by at most one entire function
(which may be transcendental or a polynomial).

Remark An interesting implication of this theorem is the following,which also follows
from the Identity theorem. It is now common in complex dynamics, see, for example,
[4], to classify orbits into three type; escaping, bounded, and bungee. Suppose we are
given, as data, a bungee orbit of a transcendental entire function, but are not given the
function; note that a polynomial cannot have a bungee orbit, whereas these are always
present for transcendental entire functions, see [4]. Then Theorem 1.3 implies that
this orbit completely determines the transcendental entire function, and so from this
orbit alone we can, in principle, deduce all the other dynamics of the function. This is
never true of an escaping orbit, and is true for a bounded orbit if and only if it is not
periodic.

Theorem 1.3 gives a complete result for transcendental entire functions apart from
the following question.

Question 1 If (zn)n≥0 is a candidate orbit that is either bungee, or bounded but not
periodic, does there exist a transcendental entire function that realises (zn)n≥0?

In general, this question seems difficult. Note that the sequences considered in
Question 1 are exactly those that have a finite accumulation point. In order to provide
terminology required for our result concerning candidate orbits that have a finite
accumulation point, we first prove the following.

Proposition 1.4 Suppose that (ζn)n≥0 is a sequence of points of C, tending to a point
ζ , and with ζn �= ζ for all n. Suppose also that (wn)n≥0 is a sequence of points of C,
tending to a point w. Suppose finally that U is a disc centred at ζ containing all the
ζn and that there is a function f , analytic on U, such that f (ζn) = wn, for n ≥ 0.
Then the following limits (defined iteratively) all exist:

p := lim
n→∞

log |wn − w|
log |ζn − ζ | ;

ap := lim
n→∞

wn − w

(ζn − ζ )p
;

ap+k := lim
n→∞

(wn − w) − ∑k−1
j=0 ap+ j (ζn − ζ )p+ j

(ζn − ζ )p+k
, for k ≥ 1;

where p ∈ N and ap �= 0. Moreover, the formal Taylor series

f (z) = w + ap(z − ζ )p + ap+1(z − ζ )p+1 + · · · , (1)

converges on U.

Our result giving a necessary condition for Question 1 is the following immediate
consequence of Proposition 1.4.
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Theorem 1.5 Suppose that (zn)n≥0 is realised by a transcendental entire function f ,
and that zn j is a convergent subsequence tending to a finite point ζ with zn j �= ζ for
all j . Then the limits in Proposition 1.4 all exist, with ζ j = zn j , w j = zn j+1 and
w = f (ζ ), and f has a Taylor series expansion about ζ as given in (1) that converges
on C.

Finally, we restrict to the case that (zn)n≥0 is a candidate orbit with a unique finite
accumulation point ζ . Observe that, by considering instead the sequence (zn − ζ )n≥0,
we can assume that ζ = 0. It follows from Theorem 1.5 that there are very strong
constraints for a sequence tending to zero to be realised by an analytic function; in
view of the Identity theorem this is perhaps unsurprising. We discuss some examples
of candidate orbits tending to zero that cannot be realised by any analytic function in
Sect. 3 below.

It is natural to ask, therefore, if these constraints can be relaxed ifwe consider instead
classes of functions that generalise analytic maps. Quasiregular functions provide
a well-known example of such a class. Roughly speaking, a map from C to C is
quasiregular if it is continuous, differentiable almost everywhere, and has uniformly
bounded distortion; see [5,6] for a more precise definition. A quasiconformal map
is a quasiregular map that is also a homeomorphism. By a result of Stoïlow, every
quasiregular map on C can be expressed as a composition of a quasiconformal map
and an analytic function. Moreover, quasiregular maps can be usefully defined in more
than two (real) dimensions, and the dynamics of suchmaps have been studied bymany
authors.

Our final results show that in the quasiregular setting the constraints on the sequence
can be significantly weaker. First we give a necessary condition for a sequence tending
to zero to be realised by a quasiregular map.

Theorem 1.6 Suppose that (zn)n≥0 is a sequence of points of C that tends to zero. If
(zn)n≥0 is realised by a quasiregular map, then there exist μ, ν > 0, C > 1, and
n0 ∈ N such that

1

C2

( |zn|
|zn+1|

)μ

≤ |zn+1|
|zn+2| ≤ C2

( |zn|
|zn+1|

)ν

, for n ≥ n0 such that |zn| ≥ |zn+1|,
(2)

and

1

C2

( |zn+1|
|zn|

)μ

≤ |zn+2|
|zn+1| ≤ C2

( |zn+1|
|zn|

)ν

, for n ≥ n0 such that |zn| ≤ |zn+1|.
(3)

Remark It seems natural to ask if the inequalities (2) and (3) are equivalent to the
condition that there exist α, β > 0 such that

|zn|α ≤ |zn+1| ≤ |zn|β, for all sufficiently large values of n. (4)

We show in the Appendix that slightly weaker conditions than (2) and (3) do indeed
imply (4), but we give an example to show that the reverse implication does not hold.



Which sequences are orbits? Page 5 of 14    53 

The following result gives a sufficient condition for a sequence to be realised by a
quasiregular map.

Theorem 1.7 Suppose that (zn)n≥0 is a sequence of points of C, tending to zero and
of strictly decreasing modulus. Suppose also that there exist μ, ν, n0 > 0 and C > 1
such that (2) holds. Suppose finally that there exists D ∈ (0, 1) such that

|zn+1| ≤ D|zn|, for n ≥ 0. (5)

Then (zn)n≥0 is realised by a quasiconformal map of C.

Remark It is natural to ask if it is possible to omit the condition (5), provided that
the other conditions of Theorem 1.7 are satisfied. We give two examples below to
illustrate the difficulties involved in such questions. Example 5 gives such a sequence
which is, in fact, realised by a quasiregular map, but which cannot be realised using
the techniques used in the proof of Theorem 1.7. Example 6 is a sequence of strictly
decreasing modulus, which satisfies (2), but which we show cannot be realised by
any quasiregular map. It seems that giving both necessary and sufficient conditions
for a sequence which tends to zero to be realised by a quasiregular map is a difficult
problem.

Finally, we observe that that is easy to see how Definition 1.1 can be modified to
apply to a sequence of points of Rd for d ≥ 1. It is equally straightforward to modify
Theorems 1.2 and 1.6 to apply in this more general setting.

2 Continuous functions

This section is dedicated to the proof of Theorem 1.2, which requires the Tietze
extension theorem; see, for example, [[7], Theorem 15.8].

Theorem 2.1 Suppose that X is a normal topological space, that A ⊂ X is closed,
and that f : A → R is continuous. Then there exists a continuous map F : X → R

that agrees with f on A.

Proof of Theorem 1.2 In one direction, suppose that f : C → C is a continuous map
that realises the sequence (zn)n≥0. Suppose that (n j ) j∈N is a sequence of natural
numbers such that the sequence zn j tends to a point z ∈ C. It follows by the continuity
of f that the sequence zn j+1 = f (zn j ) tends to a limit z′ such that z′ = f (z). This
completes the proof in this direction.

In the other direction, suppose that (zn)n≥0 is a candidate orbit. Set

S := {zn : n ≥ 0}.

We begin by constructing a function f : S → C. First we define f on S by setting

f (zn−1) = zn, for n ∈ N.
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Note that the fact that (zn)n≥0 is a candidate orbit implies that this choice is well-
defined.

Now suppose that z ∈ S\S. Then there is a sequence (n j ) j∈N such that zn j → z
as j → ∞. By the definition of a candidate orbit, there is a point z′ ∈ C, which
depends only on z, such that zn j+1 → z′ as j → ∞. We define f (z) = z′. Note that
this function is well-defined because of the assumption in the definition of a candidate
orbit that z′ depends only on z.

Next,we claim that for any z ∈ S and ε > 0 there exists zn ∈ S such that |z−zn| < ε

and | f (z) − f (zn)| < ε. This is clear if z ∈ S; we pick zn = z. If z ∈ S\S, then there
is a sequence zn j → z and by definition

f (z) = lim
j→∞ zn j+1 = lim

j→∞ f (zn j ),

so the claim follows by taking n = n j with j large.
We now prove that f is continuous on S. To this end, we take a sequence of points

(wp)p∈N in S tending to a point w ∈ S and aim to prove that f (wp) → f (w) as
p → ∞. By the claim above, we can find zn p ∈ S such that

|wp − zn p | <
1

p
and | f (wp) − f (zn p )| <

1

p
, for p ∈ N. (6)

In particular, lim p→∞ zn p = lim p→∞ wp = w. Hence, by definition and construction,
limp→∞ f (zn p ) = f (w); to see this in the case that w ∈ S, say w = zN , we use the
fact that the constant sequence (zN )p∈N has the same limit as (zn p )p∈N and thus by
Definition 1.1,

lim
p→∞ f (zn p ) = lim

p→∞ zn p+1 = lim
p→∞ zN+1 = f (w).

It now follows from (6) that f (wp) → f (w) as p → ∞, proving continuity on S.
The first part of the result then follows by applying the Theorem 2.1 first to the real

part of f in S, and then to the imaginary part of f in S.
The claim regarding uniqueness can be seen to be true as follows. First we note that

the construction of f in S was clearly unique. Hence, if S is dense in the plane then f
is unique. However, if S is not dense in the plane, then prior to applying Theorem 2.1
we can choose a point w /∈ S and any point z ∈ C, and fix f (w) = z. We may then
apply Theorem 2.1 to the set S∪{w}, and obtain infinitely many continuous functions
that realise the candidate orbit. ��

3 Entire functions

Proof of Theorem 1.3 First we prove (a), and so we suppose that (zn)n≥0 is a periodic
candidate orbit. Let n be the least integer such that zn+1 = zn′ for some 0 ≤ n′ ≤ n.
We need to find functions such that the orbit of z0 begins z0, z1, . . . , zn, zn′ . For
convenience, denote these numbers by w0, w1, . . . , wn, wn+1.
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Let P be the polynomial

P(z) :=
n∏

k=0

(z − wk).

Let F be any polynomial if we are trying to find a polynomial, or any transcendental
entire function if we are trying to find a transcendental entire function. Consider the
function

f (z) :=
n∑

k=0

(
P(z)

(z − wk)
·
(

F(z) − F(wk) + wk+1
∏n

k′=0,k′ �=k(wk − wk′)

))

. (7)

This function has the required properties. (Note that this part of the result can also be
proved using the same technique as used later for escaping sequences, but the explicit
nature of (7) is appealing.)

Next we prove (d). Let (zn)n≥0 be a bounded candidate orbit that is not periodic
and suppose that (zn)n≥0 is realised by two entire functions f and g. Then the set
{zn : n ≥ 0} is bounded and infinite and so accumulates at some point z ∈ C. But
each zn is a zero of the entire function f − g, and therefore f ≡ g.

The case (c) is almost identical to (d), and we omit the details. It is easy to see that
no polynomial can realise a sequence of this type.

To prove case (b), suppose that (zn)n≥0 is an escaping candidate orbit. We first
show that there is a transcendental entire function f that realises this orbit; note that
this is essentially [[3], Exercise 6, p.26]. By the Weierstrass factorization theorem,
there exists a transcendental entire function f0 such that f0(zn) = 0, for n ≥ 0, and
all these zeros are simple. By Mittag-Leffler’s theorem, there exists a transcendental
meromorphic function f1 with simple poles at the points zn , with residues at these
points equal to zn+1/ f ′

0(zn), and with no other poles. Then the transcendental entire
function f (z) := f0(z) f1(z) realises the orbit (zn)n≥0. To see that there are many
such functions, choose any entire function h and set g(z) := f0(z) · ( f1(z) + h(z)).
Then g is a transcendental entire function that realises (zn)n≥0.

Note finally that (zn)n≥0 cannot be realised by two polynomials, P, Q say, as
otherwise the non-constant polynomial P − Q has infinitely many zeros. Here we
make the additional remark that (zn)n≥0 can only be realised by a polynomial if
log |zn+1|/ log |zn| tends to an integer as n → ∞. ��

Proof of Proposition 1.4 Suppose that the hypotheses of the proposition all hold. We
must have f (ζ ) = w. Since f is analytic in a neighbourhood of ζ , there is a Taylor
series for f about ζ of the form (1). Since f (ζn) = wn , for n ≥ 0, we obtain

wn = w + ap(ζn − ζ )p + ap+1(ζn − ζ )p+1 + · · · . (8)

The statements regarding the limits are then consequences of (8), since ζn → ζ as
n → ∞. ��
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As promised in the introduction, we end this section with some examples of appar-
ently straightforward candidate orbits, tending to zero, which cannot be realised by an
analytic function.

Example 1 Consider the candidate orbit 1, 1
2 ,

1
4 ,

1
16 ,

1
256 , . . .; each term, apart from the

second, is the square of the one before. The limits obtained from Proposition 1.4 give
f (z) = z2, unsurprisingly. Since f (1) �= 1

2 , this sequence cannot be realised by an
analytic function.

Example 2 In the previous example, the function “fails” at the first term, but does
correctly generate the rest of the orbit. Let εn be a sequence of positive numbers that
tends to zero much more quickly than 2−2n ; for example εn = 2−10n+1

. Then consider
the candidate orbit

1

2
+ ε1,

1

4
+ ε2,

1

16
+ ε3,

1

256
+ ε4, . . . .

Again the limits obtained fromProposition 1.4 give f (z) = z2, but f does not generate
any part of the orbit above.

Example 3 Choose 1 < a < 2 and set

zn := 2−an , for n ≥ 0.

This sequence cannot be realised by an analytic function, since the first limit resulting
from Proposition 1.4 is not an integer.

Example 4 The final example is more complicated. For each m ≥ 3, let Nm be a large
integer, to be determined, and set

σm,n :=
{
0, for 0 ≤ n < Nm,

2m
2
, otherwise.

Then consider the candidate orbit given inductively by

{
z0 := 1

2 ,

zn+1 := z2n + σ3,nz3n + σ4,nz4n + σ5,nz5n + · · · .

By choosing the terms in the sequence Nm to be sufficiently large, we can ensure that
(zn)n≥0 tends to zero, and indeed is very close to the sequence 1

2 ,
1
4 ,

1
16 , . . .. However,

the limits obtained from Proposition 1.4 give rise to the formal power series

f (z) = z2 + 23
2
z3 + 24

2
z4 + 25

2
z5 + . . . ,

the radius of convergence of which is zero.

These examples show that it is very difficult for a sequence tending to zero to be
realisable by an analytic function.Note thatTheorem1.7 shows thatall these sequences
can be realised by quasiconformal maps.
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4 Quasiregular maps

This section is dedicated to the proofs of Theorems 1.6 and 1.7, together with some
comments on the hypotheses of those theorems. We require the following, which is a
version of [[1], Theorem1.1]; see also [[2], Lemma 3.9]. Here for a quasiregular map
f : C → C, we denote the maximum modulus by M(r) := max|x |=r | f (x)|, and the
minimum modulus by m(r) := min|x |=r | f (x)|.
Theorem 4.1 Suppose that f : C → C is quasiregular and non-constant with f (0) =
0. Then there exist C > 1 and μ, ν, r0 > 0 with the following property. If T ∈ (0, 1]
and r ∈ (0, r0), then

T−μ ≤ M(r)

m(Tr)
≤ C2T−ν, (9)

and
1

C2 T
−μ ≤ m(r)

M(Tr)
≤ T−ν . (10)

Proof of Theorem 1.6 Suppose that f : C → C is a quasiregular map that realises
(zn)n≥0. Choose n0 sufficiently large that |zn| < r0 for all n ≥ n0, where r0 is the
constant from Theorem 4.1. Suppose, for some n ≥ n0, we have |zn| ≥ |zn+1|. Set
T = |zn+1|

|zn | ≤ 1. We deduce from (9), with r = |zn|, that

|zn+1|
|zn+2| ≤ M(|zn|)

m(|zn+1|) ≤ C2
( |zn+1|

|zn|
)−ν

.

Similarly we deduce from (10) that

1

C2

( |zn+1|
|zn|

)−μ

≤ m(|zn|)
M(|zn+1|) ≤ |zn+1|

|zn+2| .

These inequalities give (2).
On the other hand, suppose, for some n ≥ n0, we have |zn| ≤ |zn+1|. Set T =

|zn |
|zn+1| ≤ 1. We deduce from (9), with r = |zn+1|, that

|zn+2|
|zn+1| ≤ M(|zn+1|)

m(|zn|) ≤ C2
( |zn|

|zn+1|
)−ν

.

Similarly we deduce from (10) that

1

C2

( |zn|
|zn+1|

)−μ

≤ m(|zn+1|)
M(|zn|) ≤ |zn+2|

|zn+1| .

These inequalities give (3). ��
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Proof of Theorem 1.7 We first construct a model map, and it is slightly easier to do this
in logarithmic coordinates. Suppose that g : R → R and θ : R → R are differentiable,
with g′(x) > 0 for x ∈ R. We define a map φ : C → C by

φ(x + iy) := g(x) + i(y + θ(x)).

It is then a calculation that

dφ

dz
= 1

2

(
dφ

dx
− i

dφ

dy

)

= 1

2

(
g′(x) + 1 + iθ ′(x)

)
,

and

dφ

dz̄
= 1

2

(
dφ

dx
+ i

dφ

dy

)

= 1

2

(
g′(x) − 1 + iθ ′(x)

)
.

Hence the complex dilatation μφ := dφ/dz̄

dφ/dz
satisfies

|μφ(x + iy)|2 = (g′(x) − 1)2 + θ ′(x)2

(g′(x) + 1)2 + θ ′(x)2
. (11)

For φ to be quasiregular, we require |μφ | to be bounded strictly below one. In other
words, we need there to exist ε > 0 such that

(g′(x) − 1)2 + θ ′(x)2

(g′(x) + 1)2 + θ ′(x)2
≤ 1 − ε.

By a calculation this is equivalent to requiring that there exists L > 0 such that

(

g′(x) + 1

g′(x)

)

+ θ ′(x)2

g′(x)
≤ L. (12)

We now focus on the special case that g and θ are the linear maps given by g(x) =
(d ′/d)x and θ(x) = (α/d)x , where d, d ′ > 0 and −4π ≤ α ≤ 4π . That is, we
consider the real-linear map φ : C → C of the form

φ(x + iy) = d ′x
d

+ i
(
y + αx

d

)
. (13)

Since θ ′(x)2 = α2/d2 ≤ 16π2/d2, we deduce from (12) that φ is K -quasiconformal
where K depends only on an upper bound for the quantity

d ′

d
+ d

d ′ + 16π2

dd ′ . (14)
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In particular, for any n ≥ 0, if we take

d = log
|zn|

|zn+1| , d ′ = log
|zn+1|
|zn+2| and α = 2 arg zn+1 − arg zn − arg zn+2, (15)

choosing the principle value of the argument in each case, then d, d ′ ≥ log(1/D) > 0
by (5). Moreover, for n ≥ n0, the assumption (2) gives that (14) is bounded above by

1

μ
+ ν +

(

2 + 2

μ

)
logC

log(1/D)
+ 16π2

(log(1/D))2
.

Since this bound is independent of n, there exists K ≥ 1 such that for any n ≥ 0 the
map φ given by (13) and (15) is K -quasiconformal.

Nextwedefine aquasiconformalmap f : C → C, as follows. Firstwe set f (0) = 0.
For each n ≥ 0, we define f on the annulus

An := {z ∈ C : |zn+1| < z ≤ |zn|}

by setting

f (z) := zn+2 exp

(

φ

(

log
z

zn+1

))

, for z ∈ An,

where φ is as in (13) with constants chosen as in (15). Note that f is well-defined
on each An because, by definition, φ(z + 2π i) = φ(z) + 2π i . In fact, f is a K -
quasiconformal map of An onto An+1. It is not hard to check that f (zneiβ) = zn+1eiβ

forβ ∈ R, fromwhich it follows that f realises the sequence (zn)n≥0 and is continuous
in {z ∈ C : |z| ≤ |z0|}. Therefore we obtain our required quasiconformal map on C

by setting f (z) = z1z/z0 for |z| > |z0|. ��
As mentioned in the introduction, it is natural to ask if it is possible to omit a

condition like (5) from Theorem 1.7. To illustrate the difficulty of such questions,
consider the following examples.

Example 5 Define a map P : C → C by choosing ε > 0 and s ∈ (0, 1) both small,
and setting

P(z) :=
{

|z|(1 − |z|)eit(arg z), for |z| ≤ s,

|z|(1 − s)eit(arg z), for |z| > s,

where

t(y) :=
{
2y + ε, for 0 ≤ y ≤ π/2,
2(y+π)

3 + ε, for π/2 < y < 2π,

and we choose the value of arg z in [0, 2π). It can be checked that if s is sufficiently
small, then P is a quasiconformal map of the plane.
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Next choose z0 ∈ (0, s), and define the sequence (zn)n≥0 iteratively by letting
zn+1 = P(zn), for n ≥ 0. Note that this sequence satisfies all the conditions of
Theorem 1.7, apart from (5).

Clearly the sequence (zn)n≥0 is realised by a quasiconformal map. However this
sequence cannot be realised by a quasiconformal map constructed as in the proof of
Theorem1.7. To see this, suppose that, in logarithmic coordinates,wehave interpolated
using the linear maps g and θ exactly as in the Proof of Theorem 1.7. Note that the ratio
|zn+1|/|zn| = 1− |zn| increases to 1 as n → ∞. It can be checked that the derivative
g′(x) tends to 1 as x tends to zero. However, the absolute value of the derivative θ ′(x)
can be arbitrarily large and thus the left-hand side of (12) is not bounded above. This
happens, for example, if ε is very small and arg zn is small and positive. We can then
calculate that arg zn+1 = 2 arg zn + ε and arg zn+2 = 2 arg zn+1 + ε, so for suitable
values of x we obtain

θ ′(x) = arg zn + ε

log(1 − |zn|) ,

which can have very large absolute value for large values of n.

Example 6 Define the sequence (zn)n≥0 by, for m ≥ 0,

⎧
⎪⎨

⎪⎩

z3m := e−(m+2),

z3m+1 := e−(m+2) − e−(m+2)2 ,

z3m+2 := − e−(m+2)

2 .

It can be checked that this is a candidate orbit which satisfies all the hypotheses of
Theorem 1.7 apart from (5). We show that it is not possible to realise this sequence
with a quasiregular map.

Suppose, by way of contradiction, that (zn)n≥0 is realised by map f which is
quasiregular on a neighbourhood,U , of the origin. It is known that quasiregular maps
satisfy a Hölder condition; see, for example, [[5], Theorem III.1.11]. In other words,
there exist α ∈ (0, 1], and r ,C > 0 such that

| f (x) − f (y)| ≤ C |x − y|α, for x, y ∈ {z ∈ C : |z| < r}.

In particular, taking x = z3m and y = z3m+1 yields, for large values of m, that

3

2
e−(m+2) − e−(m+2)2 ≤ Ce−α(m+2)2 .

This is impossible for sufficiently large values ofm, completing the proof of our claim.
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Appendix

Our goal in this appendix is to show that the inequalities (2) and (3) imply (4), but that
the reverse implication does not hold. First we have the following, which has slightly
weaker hypotheses than (2) and (3); we repeat (4) for the convenience of the reader.

Proposition 4.2 Suppose that (xn)n∈N is a sequence of positive numbers that tends to
zero. Suppose also that there exist μ, ν > 0, C > 1, and n0 ∈ N such that

xn+1

xn+2
≤ C2

(
xn
xn+1

)ν

, for n ≥ n0 such that xn ≥ xn+1, (16)

and
1

C2

(
xn+1

xn

)μ

≤ xn+2

xn+1
, for n ≥ n0 such that xn ≤ xn+1. (17)

Then there exist α, β > 0 such that

xα
n ≤ xn+1 ≤ xβ

n , for all sufficiently large values of n. (18)

Proof Let N ≥ n0 be sufficiently large that, for all n ≥ N , we have both xn < 1 and
also −2 logC

log xn
<

μ

2
. (19)

Set pn := log xn+1

log xn
, for n ≥ N , so that xn+1 = x pn

n and xn+2 = x pn pn+1
n .

We first establish the upper bound in (18) by showing that pn ≥ β := μ
2(μ+1) for

n ≥ N . Otherwise there exists n ≥ N such that pn < β < 1, in which case (17)
holds. It would then follow that

xn+2 ≥ xn+1

C2

(
xn+1

xn

)μ

= x pn(1+μ)
n

C2xμ
n

>
xμ/2
n

C2xμ
n

> 1,

where the final inequality uses (19). This contradicts the choice of N .
To complete the proof, we now take n ≥ N and seek an upper bound for pn+1. For

this n, either (16) holds or (17) holds, and we take λ to be ν or μ respectively. Taking
logarithms of (16) or (17) gives

pn(1 − pn+1) log xn ≤ 2 logC + λ(1 − pn) log xn .

http://creativecommons.org/licenses/by/4.0/
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Dividing by −pn log xn > 0 yields

pn+1 − 1 ≤ −2 logC

pn log xn
+ λ

(
pn − 1

pn

)

.

Therefore, by (19) and the first part of the proof, we find that pn+1 ≤ 1 + μ
2β + λ. ��

To see that the reverse implication does not hold, let x0 = 1
2 , and then set

xn :=
{

xn−1
2 , for n ∈ N even,

x2n−1, for n ∈ N odd.

Then x2n ≤ xn+1 ≤ xn , for n ≥ 0 and so (18) is satisfied. However, when n is odd
xn+1
xn+2

= 1
xn+1

and xn
xn+1

= 2, and so (16) cannot hold.

References

1. Fletcher, A.N., Nicks, D.A.: Superattracting fixed points of quasiregular mappings. Ergod. Theory Dyn.
Syst. 36, 781–793 (2016)

2. Gutlyanskiı̆, V.Y.,Martio, O., Ryazanov, V.I., Vuorinen,M.: On local injectivity and asymptotic linearity
of quasiregular mappings. Stud. Math. 128(3), 243–271 (1998)

3. Knopp,K.: Problembook in the theory of functions.Vol. II. Problems in the advanced theory of functions.
Dover Publications, Inc., New York, N. Y., (1953). Translated by F. Bagemihl

4. Osborne, J.W., Sixsmith, D.J.: On the set where the iterates of an entire function are neither escaping
nor bounded. Ann. Acad. Sci. Fenn. Math. 41(2), 561–578 (2016)

5. Rickman, S.: Quasiregular Mappings, vol. 26 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3).
Springer, Berlin (1993)

6. Vuorinen, M.: Conformal Geometry and Quasiregular Mappings, vol. 1319 of Lecture Notes in Math-
ematics. Springer, Berlin (1988)

7. Willard, S.: General Topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills,
Ont (1970)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Which sequences are orbits?
	Abstract
	1 Introduction
	2 Continuous functions
	3 Entire functions
	4 Quasiregular maps
	Acknowledgements
	Appendix
	References




