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Abstract 

N,N’,N’’-Tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane, tachpyr, has been 

studied for several years for its potential application in cancer therapy. Several studies 

have been carried out to understand the mechanism of action of this molecule and 

Planalp and co-workers have reported evidence to support the hypothesis that iron 

chelation, followed by iron deprivation in cells, are a likely reason for cytotoxicity.  

 

We have investigated the properties of tachpyr with the aim of improving cytotoxicity 

and gaining a deeper understanding of its mechanism of action. A series of tach-based 

ligands were synthesised with the purpose of modifying the general structure of 

tachpyr and evaluating the pharmacophores necessary for activity.  

 

The biological evaluation of the mechanism of action involved various techniques, 

such as dichroism and X-ray crystallography, and the anti-proliferative activity of all 

tri-amine compounds was evaluated with in vitro tests against tumour cells. A series of 

experiments to monitor the effect of increasingly higher concentrations of Fe on the 

toxicity of tachpyr against tumour cell lines were performed. These results disagree 

with those previously reported in the literature and show that the cytotoxicity of 

tachpyr is independent of the concentration of Fe (up to 400 µM), which is 

inconsistent with the proposed mechanism of action. 

 

A different cellular target was investigated. Binding experiments with DNA showed 

an interaction with tachpyr and co-crystallisation with a short DNA oligonucleotide 

produced crystals suitable for X-ray diffraction. Analysis of structure activity 

relationships gave insights on the essential features of these molecules to retain anti-

proliferative activity. The data obtained and presented in this thesis suggest a 

completely new potential mechanism of action for this class of compounds. 
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1. Introduction 

1.1 Cancer: statistics, genesis and characteristics 

Cancer is one of the leading causes of death worldwide, accounting for about 14% of 

all deaths, due to any cause, across the planet in 2008.
1-2

 Lung, liver, breast, colon and 

stomach cancers are responsible for most of the deaths due to cancer, which sum up to 

about 7.6 million people in the world in 2008.
2
 It has been estimated that by 2030 

there will be about 22.2 million new cases of cancer diagnosed annually in the world, 

which will cause about 13.1 million deaths.
1
 

 

More than 320,000 people were diagnosed with cancer in the UK in 2010, with breast 

and prostate cancer being the most common in females and males, respectively,
3
 while 

over 1.6 million new cases have been estimated to occur in the United States in 2013.
4
  

 

Cancer, more precisely defined as neoplasia, is characterised by the loss of regulating 

mechanisms of cell cycle and replication, which results in the uncontrolled growth of 

cells.
5
 Cancer includes over 200 different types of diseases, which can be divided into 

benign, if the tumour is not invasive and localised to a specific tissue, or malignant, if 

it is prone to aggressively invade the organ in which it was first developed and/or 

diffuse to organs different from the primary site of proliferation, giving rise to 

metastases.
5
 Cancer is caused by genetic mutations that occur in cells during the life 

due to the action of mutagens, carcinogens and radiations.
6-9

 Natural mutations can 

also occur during cell division, typically at the rate of 10
-5

 mutations per gene per 

replication.
10

 Considering the number of divisions which take place in the human body 

during a lifetime, which were estimated to be in the order of 10
16

 cell replications, it is 

clear that one single mutation is not enough to develop cancer, but several different 

changes need to occur in a cell to have the development of a tumour.
11-12

 For this 

reason, cancer is more often found in older people, with three out of five cases 

diagnosed to the over 65 in the UK,
3
 due to the accumulation of several mutations 

which interfere with the normal cell growth.  
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The mutations which occur in cancerous cells lead to several differences in the 

biological pathways when compared to normal cells. The main characteristic of cancer 

is the limitless replication of the cells, which is due to several mechanisms that can be 

summarised in the activation of oncogenes and the suppression of growth-control 

mechanisms and apoptosis.
13

 Cancer cells often express over-induction of cell-growth 

signals, such as growth and mitogenic factors, which deregulate the progression 

through the cell cycle.
13

 Due to the progressive decrease of checkpoints on the cell 

division, several control and repair mechanisms of the DNA replication are lost, 

increasing the chances to have mutations during the replication.
14-15

 On the other hand, 

down regulation of feedback mechanisms of cell-growth control, as, for instance, cell 

contact inhibition, can similarly produce abnormal proliferation of the cells.
13, 16

 The 

life of non-cancerous cells is controlled by programmed cell death, apoptosis, which is 

triggered in response to physiological damage or malfunction of the cell. Cancer cells 

can overcome the apoptotic signals, and for this reason they are often referred to as 

immortal.
13, 17

 As an example, the gene coding for the tumour suppressor protein p53 

has been found mutated in nearly all kind of tumours, with rates that change from 10% 

to up to nearly 100%,
18

 which shows how important the mutation of apoptotic signals 

is in cancer development. The immortalisation of the cells is also related to the 

presence of telomerases, enzymes involved in the maintenance of the length of the 

DNA.
19

 Telomeres are structures found at the end of chromosomes, formed by 

repetition of short nucleotide sequences.
17

 DNA replication causes a shortening of the 

telomeres which, after a certain number of cell divisions, leads to apoptosis. 

Telomerases are enzymes able to add oligonucleotide sequences on to the telomeres, 

preserving the length of the chromosome and immortalising the cells.
20

    

 

Due to their continuous growth, cancer cells are in need for increased amount of 

oxygen and nutrients. For this reason, several cancers have the ability to promote 

angiogenesis, i.e. the development of new blood vessels.
21

 However, the growth of 

these new vessels is usually chaotic and unstructured, which causes the appearance of 

hypoxic regions within the tumour, characterised by low oxygen levels.
22-23

 Hypoxia is 

associated with more malignant forms of cancer and resistance to radio- and 

chemotherapies.
24

  Cancer cells undergo a selection process during their development, 
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with the accumulation of genetic mutation being the selective criteria in the survival of 

unfavourable conditions (such as hypoxia) or external factors (such as 

chemotherapy).
25

 The result of this process is the appearance of more resistant and 

aggressive mutant cells over time, which are more difficult to treat.
26

  

 

 

1.2 Cancer therapy  

Cancer therapy is based on chemotherapy, radiotherapy and surgery, and quite often 

combinations of these methods. Due to their genesis from normal cells, tumours are 

usually difficult to treat due to lack of selective targets.
5
 For this reason, chemotherapy 

is often associated with severe adverse side effects, although a deeper understanding 

of cancer physiology and biochemistry is progressively leading to the development of 

therapeutic agents able to interact with cellular targets over-expressed in cancer cells.
5
 

 

One of the main problems in cancer therapy is the insurgence of resistance to the 

chemotherapeutic agents.  The resistance can be intrinsic or acquired, in relation to a 

lack of response to the drugs since the beginning of the therapy or its appearance after 

a certain time, respectively.
27

 The mechanisms of resistance can be various, such as 

decreased  uptake of the chemotherapeutic agent or alteration of metabolic pathways 

to overcome the effect of the drug.
27

 For example, resistance to cisplatin can be due to 

several different mechanisms, such as changes in the uptake/efflux of the compound, 

expression of sulfur-containing molecules to deactivate the drug or increased ability to 

repair or by-pass the DNA damages caused by cisplatin.
28

 Sometimes resistance is not 

restricted to one particular drug, but influences also compounds with different 

mechanisms of action and cellular targets. This phenomenon is known as multidrug 

resistance and it can affect significantly the outcome of the therapy.
29

 

 

The anti-cancer agents currently used in therapy have different targets inside the cells, 

from DNA to enzyme to cellular signalling.
5
 In the effort of improving activity and 

selectivity, the research of novel anti-cancer agents has involved thousands of people, 

with over £500 million invested in cancer research in 2010 in the UK.
30

 A 
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comprehensive review of all anticancer compounds developed and reported in the 

literature is beyond the purpose of this introduction, but a few examples are presented 

herein. 

 

It should be noted that some confusion is present in the literature on the definition of 

anti-cancer compounds. Compounds able to kill cells should be defined as “cytotoxic”, 

even if the cells frequently chosen for these tests are immortalised cell lines. Unless 

the compounds have proven to have at least some degree of selectivity for cancer cells 

over non-cancerous cells then they can be described as anti-cancer. The compounds 

described in this thesis are therefore defined as cytotoxic unless their selectivity has 

been tested.  

 

1.2.1 Anti-cancer compounds not targeting DNA 

Among the compounds acting on enzymes, methotrexate and 5-fluorouracil (Figure 

1.1) are two of the most used in chemotherapy. 

 

Figure 1.1: Structures of methotrexate (left) and 5-fluorouracil (right). 

Methotrexate inhibits the synthesis of DNA nucleotides, consequently slowing down 

cell division.
31-32

 Similarly, the suicide binder 5-fluorouracil is able to stop the 

synthesis of thymidine through the formation of a covalent bond with the thymidylate 

synthetase.
33

  

 

The mechanism of action of methotrexate was studied for several years, in order to 

gain a better understanding of its cellular targets and so improve the activity of the 

compound. Following the initial discovery of Osborn et al. that methotrexate was able 
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to inhibit the action of the dihydrofolate reductase,
34

 several other studies were carried 

out to elucidate further details about the effect of the molecule on cells. Borsa and 

Whitmore showed that the main cause of cell death due to methotrexate was the lack 

of thymidine, essential for the synthesis of new DNA.
32

 The study showed that 

addition of thymidine to the culture medium was able to stop the cytotoxic activity of 

methotrexate, and it also highlighted some possible causes of resistance to this anti-

cancer agent.
32

 The crystal structures of folic acid bound to human dihydrofolate 

reductase
35

 and of methotrexate in the active site of the enzyme
36

 allowed to 

understand the nature of the interaction between the anti-cancer compound and its 

target. Several derivatives of methotrexate have then been synthesised,
37-38

 although 

none of them has reached therapy so far. 

 

Several anti-cancer compounds are based on natural hormones and are used against 

tumours whose growth is regulated by hormones.
39

 One example is given by 

tamoxifen, shown in Figure 1.2, a synthetic agent widely used in the treatment of 

breast cancers which express estrogen receptors. This synthetic derivative is able to 

compete with estrogens for the binding to the receptor and hence inhibiting the 

hormone-induced cell growth.
5, 40

 

 

Figure 1.2: Structure of tamoxifen. 

A number of tamoxifen derivatives are reported in the literature and are being 

developed to increase the cytotoxic activity of this compound.
41-42
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Several other cellular targets have been exploited for cancer therapy, and the research 

has led to many compounds used in therapy, such as inhibitor of tubulin 

polymerisation and depolymerisation,
43

 protein kinase inhibitors
44-45

 and antibodies 

and gene therapy agents,
46

 just to name a few examples. 

 

Increasing attention has been given in recent years to organometallic and coordination 

metal-based anti-cancer compounds, a discussion of which is presented in section 3.1. 

 

1.2.2 Anti-cancer compounds targeting DNA 

Several anti-cancer compounds, both approved for therapy and still under 

development, have DNA as the target for their action. These compounds can be 

divided in three main categories: alkylating agents, intercalators and groove binders.  

 

1.2.2.1 Alkylating agents 

Alkylating agents are electrophilic molecules able to react with the nucleophilic sites 

present on DNA, typically guanine residues, to form a covalent bond which interferes 

with the replication of the genetic material.
47-48

 Some alkylating agents can react twice 

with nucleophiles, and so have the ability to form cross-links in the DNA double helix. 

Due to the strong covalent nature of the bond, alkylating agents are usually very toxic 

and show severe side effect due to the lack of selectivity for cancer cells.
49-50

 

Furthermore, these compounds can themselves be mutagenic or carcinogenic because 

of the damage to the DNA.
51

   

 

Nitrogen mustards are alkylating agents used in therapy since the 1940s and several 

compounds belonging to this class are currently used in cancer treatment.
5, 52

 

Chlormethine, shown in Figure 1.3, was the first molecule studied for its alkylating 

properties and its mechanism of action is reported below.
53

 Nitrogen mustards can 

undergo an intramolecular reaction which liberates chloride and forms the highly 

reactive aziridinium ion. This compound can then react with the DNA to form a 

covalent bond with the nucleotides. The process can be repeated on the other 
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chloroethyl moiety, causing cross linkage of the DNA mainly between guanine 

residues and, hence, stopping the replication of the genetic material.
53-54

 

 

Figure 1.3: Scheme of the alkylation of DNA by the nitrogen mustard chlormethine.   

Due to its high reactivity, chlormethine presented several problems when used in 

patients. To overcome toxicity and improve the selectivity, several nitrogen mustard 

derivatives have been synthesised and tested for activity. Among them, aryl 

substituted mustards, such as melphalan (L-phenylalanine mustard) and uracil mustard 

shown in Figure 1.4, were made to reduce the reactivity, and hopefully increase the 

selectivity, of the compound.  
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Figure 1.4: Structure of melphalan (left) and uracil mustard (right). 

In the melphalan molecule, the lone pair of electrons on the nitrogen atom can interact 

with the aromatic system, inhibiting the formation of the aziridinium ion and, 

therefore, reducing the reactivity of the compound.
55

 The phenylalanine moiety was 

added with the intention of adding a further site of interaction inside the cells. The 

compound could mimic the role played by phenylalanine in protein synthesis, hence 

alkylating ribosomes/enzymes and so stopping the protein synthesis.
55

 Similarly, uracil 

mustard was made to improve the selectivity of the anti-cancer compound for tumour 

cells. Cancer cells have an increased need for nucleic acid precursor, which causes the 

accumulation of the uracil mustard in these cells.
54, 56

 

 

An improvement in the use of nitrogen mustards was achieved with the introduction in 

to therapy of cyclophosphamide (Figure 1.5).
57
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Figure 1.5: Scheme of the activation of cyclophosphamide to phosphoramide mustard. 

Cyclophosphamide is a prodrug activated in the liver by an enzyme belonging to the 

cytochrome P450 family.
58

 The cyclic compound is oxidised by the enzyme and the 

reaction causes the ring opening shown in Figure 1.5. The active compound can then 

be liberated and its alkylating function exploited.
57

 Unfortunately the acrolein 

molecule liberated as a result of this rearrangement was shown to be the main cause of 

toxicity, limiting the use of cyclophosphamide.
59

 

Alkylation of the DNA is also proposed to be the mechanism of action of compounds 

belonging to the class of nitrosoureas
60

 and cisplatin and its derivatives (section 3.1). 

 

Although there are drawbacks for the use of alkylating agents, several compounds are 

currently used in cancer therapy and new molecules are developed in the continuous 

effort of producing new anti-cancer drugs with high selectivity and toxicity. Purine-

based,
61

 benzoic acid
62

 and quinazoline
63

 nitrogen mustard derivatives have been 

reported and showed promising activity against tumour cells.  

 

1.2.2.2 Intercalators 

DNA intercalators are molecules, typically planar and aromatic, able to insert between 

DNA base pairs causing distortion and lengthening of the double helix.
64

 This 
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distortion is responsible for the inhibition of replication and transcription of the 

genetic material.
65-66

 

 

Several intercalating agents are used, or are being developed, as fluorescent probes to 

study the structure and the interaction with the DNA.
67-69

 Among them, ethidium 

bromide is widely used to study the interaction of other intercalators with DNA
70-71

 

(section 4.3.1). 

 

For cancer therapy, anthracyclines have been shown to possess good intercalating and 

anti-cancer activity and are used in therapy for different kind of tumours.
72

 Although 

the mechanism of action has not been completely understood,
73-75

 evidence shows that 

these compounds act as poisons of the enzyme topoisomerase II.
76

  

 

Figure 1.6: Structure of doxorubicin. 

Topoisomerase II is an enzyme involved in DNA replication.
77

 This enzyme is able to 

cleave the phosphate backbone of both DNA strands to unwind the structure and 

release the tension due to the replication process.
78

 The enzyme binds to the phosphate 

through a tyrosine residue and causes a breakage in the phosphate chain. An intact 

double helix of DNA can then pass through the cut, and the topoisomerase can re-bind 

the phosphate backbone together, re-establishing the original structure of the DNA.
79

 

Doxorubicin (Figure 1.6) and the other anthracycline derivatives interfere with this 

step during replication, by stabilising the bond between the phosphate and tyrosine 

residue of topoisomerase.
80-81

 As a consequence, DNA experiences a permanent break 

in the structure, which triggers apoptosis.
82-83

 Due to the success of anthracyclines in 
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cancer therapy, new derivatives are currently under development
84-86

 to improve 

selectivity against cancer cells and overcome some of the adverse side effects 

(cardiotoxicity and nephrotoxicity being the most relevant) shown by doxorubicin and 

it analogues.
87-89

 

 

1.2.2.3 Groove binders 

Another class of molecules able to interact with DNA is represented by the groove 

binders. In recent years these compounds have been the focus of attention due to the 

discovery of very active molecules which act as DNA binders. Groove binder 

compounds can either irreversibly bind to the DNA through covalent bonds or form a 

reversible interaction which inhibits DNA replication.
90

 These compounds have been 

extensively reviewed in the past,
90-92

 but some significant examples are reported 

herein.  

Anthramycin and mitomycin (Figure 1.7) represent examples of binders able to form 

covalent bonds with the double helix of DNA.
93

 Anthramycin and its derivatives 

undergo activation inside the body on the benzodiazepine ring and react preferentially 

with the exocyclic N-2 nitrogen of guanine residues.
94-95

 Mitomycin shows very high 

sequence selectivity for C-G fragments
96-97

 and the alkylation mechanism has to be 

preceded by activation of the molecule in the liver.
98

 

 

Figure 1.7: Structure of anthramycin (left) and mitomycin (right). 

These compounds were found to be very active against several tumours, although they 

showed cardiotoxicity.
99
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Among molecules which act as non-covalent binders to DNA, distamycin, Figure 1.8, 

and its derivatives showed to be promising anti-cancer agents and specific binders to 

A-T DNA sequences.
100-101

  

 

Figure 1.8: Structure of distamycin. 

These compounds were shown to bind DNA without causing elongation or unwinding 

of the double helix and that the base pair selectivity was due to van der Waals 

interactions.
102-103

 It has been suggested that A-T regions in the DNA have a smaller 

minor groove, which allows for tight binding of the molecule to the double helix.
104

 

Furthermore, Coll and co-workers proposed that the presence of the -NH2 group of the 

guanine residues could cause steric hindrance for the binding.
104

 

 

In order to improve the cytotoxicity of these compounds, some mixed groove 

binder/alkylating agents were synthesised. Among them, tallimustine, shown in 

Figure 1.9, possessed good activity against cancer cells in vitro and entered phase II 

clinical trials, but it proved mainly inactive in vivo.
105
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Figure 1.9: Structure of tallimustine. 

From the structure it is clear how the distamycin moiety was modified through the 

addition of the nitrogen mustard. In contrast to the precursor chlormethine, 

tallimustine showed selectivity in the alkylating action for adenosine rather than 

guanine residues on the DNA.
106

 The rate of alkylation was quite poor and it was 

hypothesised that the alkylation followed the groove binding event. The distamycin 

moiety would therefore drive the interaction towards A-T rich segments of the DNA, 

decreasing the possibility for the nitrogen mustard moiety to be an effective alkylating 

agent.
106

 

 

Following the promising results shown by the minor groove binder presented above, 

several other derivatives have been described.
107-109

 Yang and co-workers reported 

novel minor groove binders able to interfere with the action of RNA polymerase,
110

 

while Vidal et al. showed that the minor groove binder lurbinectedin was able to 

inhibit cell growth in cisplatin-resistant ovarian cells.
111
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1.2.3 Understanding the mechanism of action to target activity 

A deeper understanding of the mechanism of action of compounds used in therapy can 

greatly contribute to the development of novel, more active and more selective 

compounds. The examples of this strategy in the history of pharmacology are various, 

both in cancer therapy and not. From a chemical perspective, the development of 

structure activity relationships (SARs) allows new target molecules to be identified, 

and information about the mode of action to be inferred. To highlight the importance 

of understanding how a candidate drug exploits its action, two selected examples are 

reported here. 

 

1.2.3.1 Topoisomerase I inhibitors 

Topoisomerase I is an enzyme which, similarly to topoisomerase II described in 

section 1.2.2.2, is able to release the stress of supercoiled DNA.
112

 In contrast to 

topoisomerase II, this enzyme breaks only one chain in the DNA to allow the 

relaxation of the DNA.
77

 As for the inhibitors of topoisomerase II, several compounds 

are able to bind to the DNA/enzyme complex, inhibiting the re-ligation of the DNA 

backbone and leading to apoptosis.
113

 Camptothecin and its derivatives, which are 

shown in Figure 1.10, are used in cancer therapy as inhibitors of topoisomerase I.
114

 

Although the mechanism of action of the compound was already understood, new 

insight on the interaction between the enzyme and its inhibitor emerged when the 

crystal structure of topoisomerase I and the camptothecin analogue topotecan was 

obtained.
115
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Figure 1.10: Structure of the topoisomerase I inhibitor camptothecin and its derivatives. 

The crystal structure showed that topotecan is able to intercalate at the site of the DNA 

cleavage and that the compound is present inside the active site of the enzyme in both 

the closed lactone and the open carboxylate forms.
115

 Furthermore, the crystal 

structure showed the steric availability around the binding pocket, which allows to 

have bulky R1, R2 and R3 substituent,
115

 confirming what had been previously reported 

by structural modifications and structure activity relationships.
116

 The quinoline 

moiety  is in fact oriented towards the major groove of the DNA, with plenty of space 

to accommodate rather large groups.
115

 

 

As a result of these studies and thanks to a better understanding of the interaction with 

the target, several camptothecin derivatives have been synthesised
117

 and two of them, 

topotecan and ironotecan, have been approved for cancer therapy.
118-119

  

 

1.2.3.2 Thalidomide 

A very different example of this approach is given by thalidomide, shown in Figure 

1.11. 
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Figure 1.11: Structure of thalidomide. 

Thalidomide is very well know for the phocomelia disaster during the 1960s.
120

 The 

compound was on the market as a sedative and was widely used to relieve pregnant 

women from morning sickness.
121

 Unfortunately, the compound proved to be a strong 

teratogen and caused deformities to over 10,000 babies worldwide.
122

   

 

Several studies were carried out to understand the mechanism of action of this 

molecule and, as a result, the compound was approved for use against leprosy.
123

 The 

activity seems to be related to the inhibition of the pro-inflammatory factor TNF-α.
123

 

Further studies focused on the elucidation of the cellular targets of the molecule and 

led to the discovery that thalidomide was able to inhibit angiogenesis.
124

 This feature 

of the molecule was exploited for cancer therapy and the compound was approved for 

treatment of multiple myeloma.
125

 Although the complete mechanism of action and all 

the cellular targets of thalidomide have yet to be fully elucidated, further studies on 

thalidomide have led to novel uses for this molecule and its derivatives.  

 

These examples show, in different ways, the importance of the understanding of 

molecular targets and mechanism of action in the development of new therapeutic 

agents.  

 

 

1.3 Tachpyr as a novel anti-cancer compound 

As described in this introduction, although extensive effort has been applied to find 

effective ways to treat cancer, the need for new selective and potent anti-cancer 

compounds is still a priority. 
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Cis,cis-1,3,5-triaminocyclohexane (tach) has been used as a scaffold for several 

applications due to its ability to act as a tri-dentate ligand. Due to its structure, this 

compound can form an adamantane-like structure upon complexation with metals, as 

shown in Figure 1.12.  

 

Figure 1.12: Change of conformation of tach upon complexation with metals. 

Tach has been reported in the literature in the study of the complexation with different 

metals in complexes of general structure [M(tach)2]
n+

.
126-127

 Alternatively, the amine 

nitrogen atoms can be used in the condensation with aldehydes to form Schiff base 

derivatives. The derivatives obtained have been used, mainly by Walton and co-

workers, as small-molecule functional analogues of active sites of enzymes.
128-130

   

 

Recently, Gamble et al. reported the use of cis-tach for the synthesis of ruthenium(II) 

complexes having the general structure shown in Figure 1.13.
131

 

 

Figure 1.13: General structure of Ru(II)-tach complexes. 

These complexes showed very high cytotoxicity against tumour cells, although their 

mechanism of action has not been clarified.
132

  

 

Among the tach derivatives, in the last decade several studies have been conducted, 

mainly by Planalp’s group, on N,N’,N’’-tris(2-pyridylmethyl)-cis,cis-1,3,5-
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triaminocyclohexane (tachpyr), an organic molecule with promising anticancer 

activity.
133

 

 

Tachpyr was shown to have cytotoxic activity against human and mouse bladder 

cancer cells lines with an IC50 value (inhibitory concentration which give 50% cell 

growth) of 4.6 ± 2.0 μM.
133

 The mechanism of action is not completely understood, 

but Planalp and co-workers suggest a role in iron deprivation.
134

 Tachpyr can bind 

strongly both Fe(II) and Fe(III), and complexation with Fe(III) causes the reduction of 

the metal to Fe(II).
135

 When the ligand is not bound to a metal, it is in the all equatorial 

conformation, in which the N-substituents are occupying the energetically most 

favourable equatorial position of the cyclohexane ring. When a metal is bound, 

instead, the arms can flip and assume the all axial conformation (Figure 1.14). 

Binding with iron can promote oxidation of one, two or three of the amine bonds to 

C=N double bonds. A low-level oxidative stress, caused by the complex, was also 

suggested as one of the possible mechanisms of action of this compound.
136

 (Figure 

1.14) 

 

Figure 1.14: Change of conformation of tachpyr upon complexation with a metal (top) and 

scheme of iron binding and oxidation (bottom). Scheme modified from Zhao et at.
134
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The effects of tachpyr on tumour cells have been compared with those of 

desferoxamine (Figure 1.15), an iron chelator used in the treatment of acute 

intoxication by FeSO4. Both compounds have a delay of 24 h before showing toxic 

effects on cells and they induce inhibition of ferritin synthesis.
133

  

 

Figure 1.15: Structure of desferioxamine B. 

To investigate further the mechanism of action, several metal complexes of tachpyr 

were tested on tumour cells: Fe(II)-, Zn(II)- and Cu(II)- complexes did not present any 

cytotoxic effect, while Ca(II)-, Mn(II)- and Mg(II)- complexes had the same activity 

profile as the free ligand.
133

 Similarly, the N-Me and N-Et tachpyr ligands were found 

inactive.
133

 The steric effect due to the alkyl groups on the amine nitrogen atoms upon 

complexation was considered responsible for the poor activity of these compounds. 

The N-alkylation of tachpyr causes a lengthening of the metal-nitrogen bonds upon 

complexation and makes the complex weaker, which might also provide a possible 

explanation of the poor activity of these compounds in vitro.
137

 All these results seem 

to support the hypothesis of a chelation mechanism. 

 

Tachpyr has also proved to activate caspases, enzymes involved in cell death, leading 

to apoptosis, whilst derivatives with alkylated tach nitrogen atoms did not show 

activation of this group of enzymes.
138
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Figure 1.16: General structure of tach tris(ethylendiamine) derivatives. 

Tris(ethylendiamine) derivatives, shown in Figure 1.16, were then synthesised and 

their cytotoxic and binding properties towards Ni(II), Cu(II) and Zn(II) studied. These 

compounds proved to be less cytotoxic than tachpyr, with IC50 values ranging between 

8 and 200 µM.
139

 

 

To gain information about the possible binding of tachpyr with metals present inside 

the cell, HPLC was performed on cell lysate both before and after treatment with 

tachpyr 50 μM for 16 h, with the intention of quantifying the amount of iron, zinc and 

their respective tachpyr complexes that could be observed.
134

 The analysis showed 

tachpyr to be the most abundant product, followed by the zinc and iron complexes. 

The partially re-oxidised ligand could also be identified. From the quantitative analysis 

it was possible to calculate that, during the incubation period, tachpyr had bound 

approximately 9% of intracellular iron and 13% of zinc.
134

 In the same study, Zhao et 

al. reported that pre-treatment of cells for 24 h with either zinc sulfate or iron sulfate at 

concentrations of 25 μM or 200 μM,  respectively, stops completely the cytotoxic 

activity of tachpyr and synthesis of caspase enzymes, protecting cells from tachpyr-

induced apoptosis.
134

 

 

Further evidence of the importance of the binding properties of tachpyr was obtained 

through structural modification of the pyridine moiety, in particular methylating 

positions 3, 4, 5 or 6 of the aromatic ring.
140

 A scheme of the methylation of the 

pyridine ring is shown in Figure 1.17. 
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Figure 1.17: Representation of the methyl substituted tachpyr complexes. 

It was reported by Childers et al. that 6-Me-tachpyr did not shown any cytotoxicity, 

which was rationalised by the presence of steric interactions which destabilise the 

metal complex or prevent its formation.
140

 Also, 3-Me-tachpyr was found to have a 

shorter delay time than tachpyr in its cytotoxic activity,
140

 possibly due to a difference 

in the kinetics of binding. 

 

In order to test the hypothesis that a more flexible ligand could show better chelation 

properties than tachpyr, some tris-2-aminoethylamine (tren) compounds were 

synthesised (Figure 1.18). Trenpyr was slightly less active than tachpyr, as was 

tren(5-Me)pyr, whilst trenpyr(C-Me), tren(3-Me)pyr and tren(4-Me)pyr presented 

approximately the same IC50 values as tachpyr, with the 3-Me derivative being the 

most active. The 6-Me derivative, instead, was found to be about 10 times less active 

than tachpyr.
141

 The difference in activity might be due to a difference in the iron 

complex formed.  
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Figure 1.18: Structure of trenpyr derivatives. 

A further variation on the general backbone of these compounds has been achieved 

with the tamepyr derivatives (Figure 1.19),
142

 but no studies into cytotoxicity have 

been conducted on these compounds so far. 

 

Figure 1.19: Structure of tamepyr. 

Tachpyr has proved to be a promising compound with good cytotoxicity and it could 

be used as the precursor for the development of a new class of anti-cancer agents. 
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1.4 Aims of the project 

Tachpyr showed good cytotoxic activity, and the original aim of the project was to 

exploit the properties of this compound to improve its cytotoxicity.  

 

An additional aim of the project was to gain a deeper understanding of the possible 

mechanism of action of tachpyr and related tach-based compounds. The hypothesis-

driven investigation of the structural characteristics of the compounds necessary to 

show cytotoxic activity is presented in this thesis.  

 

The study focused on the synthesis of tach-based derivatives, with different groups as 

substituents on the amine nitrogen atoms. The synthetic procedures and example of 

characterisation of such molecules are described in Chapter 2 .  

 

Some metal complexes of tachpyr were also synthesised to study the binding 

properties of the free ligand and to evaluate the cytotoxicity of Co and Ru complexes 

of tachpyr in cancer cells (Chapter 3). 

 

Finally, the biological evaluation of the cytotoxic activity of all the ligands was carried 

out, alongside the development of structure-activity relationships. An alternative 

hypothesis for the mechanism of action of tachpyr and other tach derivatives was 

developed and cellular targets and type of interaction were explored. These results are 

described in Chapter 4. 



 

 

 

  

Chapter 2 

Synthesis and 

characterisation of 

tach-based ligands 
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2. Synthesis and characterisation of tach-based ligands 

2.1 Introduction 

Schiff bases, obtained by the condensation of a primary amine with aldehydes or 

ketones, have been widely used in synthetic chemistry due to their facile synthesis and 

good stability in neutral or basic environments. Schiff bases are also indicated as 

aldimines or ketimines, depending on the precursor (i.e. aldehyde or ketone, 

respectively) used for the synthesis (Figure 2.1). These compounds have frequently 

been used in medicinal chemistry
143

 and the literature can offer plenty of examples of 

potential applications, such as anticancer,
144-147

 antibacterial,
148-150

 antiviral,
151

 anti-

HIV,
152

 anti-inflammatory,
153-154

 etc. agents and as scaffolds for metal complexes with 

biological applications.
155-157

 Some examples of Schiff bases developed for medicinal 

applications are shown in Figure 2.1. 

 

Figure 2.1: General structure of aldimines and ketimines (top) and some examples of Schiff 

bases studied for anticancer,
144

 antibacterial
148 

and antiviral activity
151

 (bottom). 
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All the compounds presented in this thesis belong to the class of aldimines, for which 

the general mechanism of formation is shown in Figure 2.2. Ketimines were not 

explored because the final targets of the syntheses are the reduced compounds and 

ketimines would give rise to stereogenic centres upon reduction.  

 

Figure 2.2: General mechanism of Schiff base formation. 

The general mechanism of formation involves the nucleophilic attack by the amine to 

the electrophilic carbon of the carbonyl group, followed by proton transfer to re-

establish a neutral charge. Protonation of the oxygen atom leads to the formation of 

the C-N double bond with elimination of water. Deprotonation of the imine nitrogen 

forms the final neutral Schiff base. Optimal conditions for Schiff base formation 

require mild acidic conditions (pH = 4.5)
158

 to favour the elimination of water without 

causing the protonation of the amine, which would stop the nucleophilic attack to the 

carbonyl. The whole condensation is a reversible process: re-protonation of the imine 

nitrogen and addition of water can hydrolyse the imine back to the starting materials. 

For this reason, Schiff bases are usually unstable in strong acid. Elimination of water 

from the reaction mixture is typically a good strategy to successfully synthesise Schiff 

bases for two main reasons: if water is subtracted from the reaction, the equilibrium is 

pushed towards the product and, on the other hand, the reverse hydrolysis reaction is 

inhibited. The stability of the Schiff base is often dependent on the electronic 

properties of the carbonyl group used for the reaction. A very electrophilic carbonyl, 
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in fact, reacts readily with the nucleophilic amine, but the resulting imine bond is more 

susceptible to hydrolysis. On the other hand, a less electron poor imine carbon would 

disfavour a nucleophilic attack on the imine bond, but the condensation would be 

harder to achieve.  

 

If, on one hand, synthesis of Schiff bases allows for the possibility of introducing 

almost endless chemical variations to molecules, on the other hand the imine bond has 

some major limitations, especially considering biological applications; above all, the 

low stability to acidic pH and the poor water solubility. To overcome these problems 

the imine can easily be reduced to an amine. Several advantages are obtained when 

Schiff bases are reduced: the corresponding amine compounds are more stable, more 

water soluble, more flexible (due to the lost of the rigid imine double bond), and a 

hydrogen bond donor is introduced in the molecule, which might contribute to 

interaction with biomolecules. All these characteristics can be of importance for 

biological application, therefore the reduced Schiff bases are the main focus of this 

thesis. Among the different reducing methods that can be used for the Schiff base 

reduction, sodium borohydride has proven to be a good reagent for this reaction.
159-160

 

Reduction with sodium borohydride provides a clean, relatively safe and facile 

reaction and, therefore, is the method of choice for the imine reductions described 

herein.  

 

In this chapter the synthesis and characterisation of several Schiff bases is described, 

as well as their reduction to amines, with relative characterisation. The amines 

synthesised were tested for cytotoxic activity against cancer cells, as discussed in 

Chapter 4. 

 

 

2.2 Nomenclature and numbering  

For clarity all of the ligands presented in this thesis are named according to their 

relation to the starting materials. Cis,cis-1,3,5-triaminocyclohexane is identified as 

“tach” across the thesis.  “Short names” and a numbering system have also been used. 
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All compounds synthesised from salicylaldehyde derivatives (section 2.5) are named 

with respect to the parent aldehyde (e.g. as cis,cis-1,3,5-tris(5-

chlorosalicylidenamino)cyclohexane rather than 2-hydroxy-5-chlorobenzyl-

derivative). The short names for all of the ligands are given by the moieties which 

form that compound and a scheme of the nomenclature is shown in Figure 2.3. For 

example, “tachpyr” is the tri-amine made by the condensation of tach and pyridine-2-

aldehyde, and subsequent reduction of the Schiff base. To indicate the Schiff base, the 

infix “-im-” is added to the name, so “tachimpyr” indicates the tri-imine formed by 

tach and pyridinaldehyde. Benzaldehyde derivatives are shortened as “ben”, 

salicylaldehyde derivatives as “sal” and the cyclohexylaldehyde derivative as “cyc”; 

the heterocycles are “pyr”, “prl” and “fur” for pyridine-, pyrrole- and furan- aldehydes, 

respectively. If a substituent is present on the aromatic rings, it is outlined in the short 

name (e.g. 4-Br-tachben). 

 

Figure 2.3: Diagram of the nomenclature scheme used. 

The mono-N-substituted tach derivatives (section 2.7) have the infix “mono”, to 

highlight the mono-substitution of the tach amines. All compounds are identified by 

progressive numbers. Related Schiff base/amine pairs are labelled with the same 

number with the addition of “a” or “b”, respectively, for a quick identification of the 
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oxidised or reduced ligand (e.g. tachimpyr is compound [3a] and tachpyr is [3b]). In 

the case of the mono-armed compounds (section 2.7), which required a multi-step 

synthesis, the final compound is labelled with a number, whilst the intermediates are 

numbered as [Compound no.-synthetic step no.]. 

 

All crystal structures presented in this thesis are numbered according to a common 

scheme, which is shown in Figure 2.4: the carbon atoms on the cyclohexane ring are 

always C(1)-C(6), the tach-nitrogen atoms are N(1)-N(3) and then the numbering 

proceeds to the arms, starting with C(7) bound to N(1) and continuing down the arm, 

then moving on to the arm bound to N(2) and finishing with the remaining arm bound 

to N(3).  

 

Figure 2.4: Example of numbering scheme for the crystal structures. 

Tables with crystal information and details of structural refinement for all the crystal 

structures included in this thesis can be found in the Appendix. 

 

 

2.3 Synthesis and characterisation of tach 

The synthesis of cis,cis-1,3,5-triaminocyclohexane (tach) follows the well-established 

procedure reported in the literature
161

 and outlined in Figure 2.5. Starting from the 

corresponding tricarboxylic acid, cis,cis-1,3,5-triaminocyclohexane was obtained 

through a Curtius rearrangement from the reaction of diphenyl phosphoryl azide 

(DPPA) and benzyl alcohol in the presence of triethylamine in benzene. The 



  Chapter 2 

48 

 

benzylcarbamate derivative [1] was isolated by filtration as a cream coloured 

compound with a high degree of purity and in good yield (67%).  

 

Figure 2.5: Synthetic scheme for tach·3HBr [2]HBr.
161

 

The carbamate derivative [1] was then hydrolysed under strongly acidic conditions to 

give the desired compound in 91% yield as a hydrobromide salt (tach·3HBr, 

[2]HBr),
161

 which can be used without further purification as a starting material for 

the preparation of the ligands described in the following sections. If the free amine 

was required instead of the HBr salt, compound [2]HBr was passed down an ion 

exchange column, sublimed and collected as a bright white solid.
128

 A significant 
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change in the NMR chemical shifts is evident after the process, as shown in Figure 

2.6. 

 

Figure 2.6: 
1
H NMR spectra in D2O of compounds [2]HBr (top) and free amine [2] after 

sublimation (bottom).  

Figure 2.6 also shows the characteristic NMR signals of tach, which can be explained 

by an analysis of the structure.  

 

Figure 2.7: Structure of tach [2] (right) and its NMR spectrum in D2O (left). 

The tach molecule presents a C3 rotation axis, so only non-equivalent protons are 

shown in Figure 2.7. Amine protons are usually not observed, presumably due to fast 

exchange with the solvent. Protons b are the most deshielded, at 2.75 ppm, due to the 

proximity of the electronegative nitrogen atoms. The splitting pattern for these protons 

is a triplet of triplets (Figure 2.8) due to the large coupling constant (ca. 12 Hz) with 

H2O 

aeq b aax 
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the two equivalent axial protons aax and the small coupling (ca. 4 Hz) with the two 

equivalent equatorial protons aeq. 

 

Figure 2.8: Detail of the NMR splitting of proton b in compound [2]. 

Geminal protons aax and aeq appear as two different signals at 0.89 and 1.94 ppm, 

respectively. The equatorial protons aeq appear as a broad doublet due to the large J 

geminal coupling (ca. 12 Hz) with protons aax. Protons aax, on the other hand, are 

affected by both axial-axial and geminal couplings, which coincidentally are very 

similar, therefore giving rise to a pseudo quartet signal. All the coupling constants 

observed fall in the range of values reported in the literature for cyclohexane systems 

(
2
J = 12-20 Hz; 

3
Jax-ax = 10-13 Hz; 

3
Jax-eq = 2-5 Hz).

162
 The NMR spectra also 

demonstrate, as expected, that the compound adopts the energetically favourable 

equatorial conformation when free in solution. The axial conformation, shown in 

Figure 2.9, would exhibit alternative NMR multiplicities due to different couplings 

between the tach protons. 

 

Figure 2.9: Structure of tach [2] in the axial conformation. 
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In the axial conformation, the coupling between protons b and aax would be smaller 

due to the change in the dihedral angle, resulting in a triplet with a 
3
Jax-eq coupling in 

the range of 2-5 Hz.
162

 Furthermore, protons b would also show the 
3
Jeq-eq coupling in 

the range of 2-5 Hz
162

 with protons aeq. Protons aeq and aax would display the large 
2
J 

geminal coupling, which would give a doublet for both of them, and the small 
3
J 

couplings with protons b. Therefore, as a result of the axial conformation, the 
1
H 

NMR spectrum would show, in first approximation, a multiplet and two doublet with 

possibly some fine structure for protons b, aax and aeq, respectively. Such a splitting 

pattern was never observed in the 
1
H NMR spectra of free tach in solution, thus 

confirming that the molecule is found in the equatorial conformation. 

 

All of the ligands described in sections 2.4-2.6 present similar symmetry and NMR 

spectra for the tach moiety as seen in compound [2] described above. 

 

 

2.4 Synthesis and characterisation of heterocyclic ligands 

The investigation of tach-based compounds began from previously published 

literature, presented in Chapter 1. The motivation for the syntheses of these molecules 

was to investigate the effect of different heterocycles, when they were added as “arms” 

to tach, on the biological activity of these compounds against cancer cells. The 

hypotheses which led to the developments of all the derivatives described in this 

chapter are explained in more details in Chapter 4. The heterocyclic ligands were 

made following the reported procedures or by their modification.
161, 163

 

 

2.4.1 Schiff bases 

For the synthesis of the Schiff bases, three equivalents of sodium hydroxide were 

added to one equivalent of tach·3HBr, [2]HBr, in water to neutralise the HBr and 

form the free amine. Subsequent reaction with three equivalents of the appropriate 

aldehyde afforded the desired Schiff base in good yields. The general synthetic 

scheme is shown in Figure 2.10. The imine formation was carried out in toluene for 
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tachimpyr and tachimprl, in benzene for tachimfur; in both cases a Dean-Stark 

apparatus was used to remove water (both used to dissolve the starting material and 

generated during the condensation). This minimised the reverse hydrolysis reaction 

and improved the yields. Although none of the reagents was air sensitive, inert 

atmosphere was used during the reflux, generally improving the yield of compound 

[3a] from 34% to 68%.  

 

Figure 2.10: General synthetic scheme for tach-heterocycles. 

To the best of our knowledge, the synthesis of the pyrrolyl derivative [4a] has not been 

reported before. To prepare this compound, the synthetic procedure used for [3a] was 

utilised. Tachimpyr and tachimprl were isolated by evaporation of the solvent and a 

subsequent wash with diethyl ether and pentane, and the compound typically used 

without further purification. For the furanyl derivative [5a], two different synthetic 

methods were explored. The literature reported the synthesis of this compound in 

benzene,
163

 but a safer synthesis was attempted using water and diethyl ether for a bi-

layer reaction. Tach·3HBr and sodium hydroxide were dissolved in water, furfural was 

added as a solution in diethyl ether and the reaction was vigorously stirred under a N2 

atmosphere for 16 h. Both methods produced the desired compound, although the 

benzene reaction with Dean-Stark apparatus gave better yields (62% instead of 45%). 

Evaporation of the solvent gave the final product as a yellow oil. Compounds [3a], 
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[4a] and [5a] were isolated in 68, 45 and 62% yields, respectively. The presence of the 

Schiff base was indicated by the appearance of a characteristic singlet signal in the 
1
H 

NMR spectrum at low field, typically at 8.0-8.5 ppm in CDCl3, with a relative 

integration of three and belonging to the N=CH protons. Similarly, a signal at 148-160 

ppm in the 
13

C NMR belonging to the imine carbon was diagnostic of the presence of 

the Schiff base.  

 

2.4.1.1 Characterisation: selected example 

A selected example is presented herein to illustrate how the compounds were analysed 

and the NMR signals assigned. The same general methods and techniques, mainly 1D- 

and 2D-NMR and mass spectrometry (MS), have been used for all other compounds 

described in the chapter. Particular examples are discussed in the appropriate sections 

and full characterisation data for the compounds made can be found in Chapter 6.  

 

Tachimpyr [3a] is used as an example for the characterisation of the Schiff bases. 

  

Figure 2.11: Tachimpyr [3a]. 

The 
1
H NMR spectrum of the compound, Figure 2.12, shows the characteristic 

splitting patterns of the tach moiety in the aliphatic region. The ligand has the same 

symmetry as compound [2], so each signal has a relative integration of three protons. 

The aromatic region of the spectrum includes, among others, two very diagnostic 

signals: the strongly deshielded doublet of doublets belonging to protons h at 8.64 

ppm, which falls at low field due to the proximity of the nitrogen atom, and the singlet 

of the imine protons c at 8.48 ppm. The presence of tach and imine signals, together 

with the correct integration of the protons, were usually a clear indication of the 

presence of the desired compound for all the Schiff bases described in this chapter. 
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Figure 2.12: 
1
H NMR spectrum of tachimpyr [3a] with relative integration of the signals, 

recorded in CDCl3. 

The doublet at 8.02 ppm was assigned to protons e, which are the only ones for which 

a doublet is expected due to the coupling to protons f. Protons f and g were assigned 

on the basis of 2D-NMR experiments, as discussed below.   

 

13
C and Distortionless Enhancement by Polarisation Transfer (DEPT) 135 NMR 

experiments were used to characterise the carbon signals (Figure 2.13). DEPT 135 

experiments give characteristic anti-phase signals for carbons bound to two protons 

and they highlight quaternary carbons, as they are observed in the 
13

C spectrum, but 

not in the DEPT.  

CHCl3 

aeq b aax 

Tach signals 

e c h f g 
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Figure 2.13: 
13

C{
1
H} (bottom) and DEPT 135 (top) NMR experiments for compound [3a], 

recorded in CDCl3. The small signals between 125 and 130 ppm belong to residual toluene 

from the reaction. 

The aliphatic region of the 
13

C NMR spectrum presents, as expected, two signals for 

the tach carbons. The most deshielded of the two (66.3 ppm) was assigned to carbons 

b, which are bound to the nitrogen atoms. The signal at 40.7 ppm was therefore 

assigned as the tach CH2 carbons a, as confirmed by DEPT 135. Carbons d were also 

assigned on the basis of DEPT 135 spectrum to the signal at 154.8 ppm. The 

assignment of the remaining carbons required the use of 2D-NMR experiments, 

primarly 
1
H-

13
C Heteronuclear Single Quantum Correlation (HSQC) and 

Heteronuclear Multiple Bond Correlation (HMBC). 

 

Figure 2.14 shows the aromatic region of the Correlation Spectroscopy (COSY) NMR 

of tachimpyr [3a]. Beginning from protons h and following the cross peaks in the 

spectrum it was possible to assign all the remaining pyridine protons in the molecule. 

Protons h show coupling with the multiplet at 7.31 ppm, indicating that this signal 

belongs to protons g. It is then possible to observe coupling between g and the triplet 

CHCl3 
e g f b 

a 
d 

h 
c 
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at 7.74 ppm, which was assigned as protons f. Finally, protons f are coupled to the 

doublet at 8.02 ppm, belonging to protons e.  

 

Figure 2.14: COSY NMR of tachimpyr [3a], detail of the aromatic region, recorded in CDCl3. 

On the basis of the assignment, it is possible to explain the splitting pattern of the 

signals observed in Figure 2.12. Protons h appear as a doublet of doublets due to the 

coupling to both g (
3
J = 4.8 Hz) and f (

4
J = 1.2 Hz).  Protons g, which are a doublet of 

doublets of doublets, have two different 
3
J values for the coupling with protons f and h 

of 7.6 and 4.8 Hz respectively, which gives rise to a doublet of doublets. A small 
4
J 

coupling constant of 1.2 Hz with protons e is also observed, which splits the signal 

into a further set of doublets. Protons f, a triplet of doublets in the 
1
H spectrum, are 

coupled to protons e and g apparently with the same coupling constant, which 

therefore produces a triplet. The small 
4
J coupling constant with protons h (1.2 Hz) 

splits the triplet into doublets, giving the fine structure observed in Figure 2.12. 

Interestingly, protons e do not show the splitting due to the coupling with g, appearing 

as a slightly broad doublet with a J coupling of 7.6 Hz with protons f.   

 

e c h f g 

e 

c 

h 

f 

g 
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Heteronuclear experiments allowed to complete and confirm the assignment of 
1
H and 

13
C spectra. HSQC is a 

1
H-

13
C heteronuclear 2D experiment which highlights the 

1
JH-C 

couplings, correlating the protons to the carbon which they are bound to.  

 

Figure 2.15: HSQC spectrum of tachimpyr [3a], recorded in CDCl3. Detail of the aromatic 

region (left); detail of tach signals (right). 

Figure 2.15 shows the HSQC spectrum of tachimpyr, with details of the aromatic 

region, on the left, and the tach signals, on the right. The tach region confirms the 
1
H 

and 
13

C assignment, with the deshielded protons b bound to the most deshielded 

carbon and both the quartet and the doublet of protons a bound to the same carbon. In 

the aromatic region, the assignment of the proton signals done through COSY NMR 

permitted full assignment of the signals in the 
13

C spectrum. 

 

Similarly to HSQC, HMBC is a 
1
H-

13
C heteronuclear 2D experiment, but shows long 

range 
1
H-

13
C correlations, from 

2
J to 

4
J coupling, which are visualised as cross peaks 

in the spectrum.  

 

 

 

 

 

 

e c h f g b a 

b 

a 

e 

c 

h 

f 

g 

d 
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Figure 2.16: HMBC of tachimpyr [3a], recorded in CDCl3. 

Figure 2.16 shows the HMBC spectrum of compound [3a]. In particular, coupling 

between the imine protons c and both the tach carbons b (
3
J) and the quaternary 

carbons of the pyridine ring d (
2
J) are observed, which confirms the assignment of the 

signals.  

 

Compound [3a], similar to compounds presented later in the chapter, showed 

selectivity for the tri-substituted compound in the Schiff base formation. No evidence 

of mono- or di-substitution was observed by NMR spectroscopy. Mono- or di- 

substitution would change the symmetry of the molecule, giving rise to a different 

NMR pattern, predominantly in the tach region. Mono-substitution and its 

consequences on the appearance of the NMR spectra are discussed further in section 

2.7.  

 

Mass spectrometry generally showed the presence of mono- and di-armed derivatives 

for all of the compounds. Figure 2.17 shows the MS of tachimpyr. The protonated 

molecule peak was observed in low abundance at m/z 397.2128, consistent with the 

b a e c h f g 

b 

a 

e 

c 

h 

f 

g 

d 
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elemental composition of the molecule. The highest peak in the spectrum at m/z 

308.1864 was assigned to the di-armed fragment. The mono- or di-armed species of 

the compounds were likely to have formed in the MS instrument rather than being 

impurities of the reaction, considering that no other evidence for them was observed 

and elemental analysis confirmed the purity of the compounds made.  

 

Figure 2.17: Positive mode high resolution ESI-MS of tachimpyr [3a]; m/z values reported on 

the x axis.  

 

2.4.2 Tri-amines 

The Schiff bases presented in section 2.4.1 were reduced with sodium borohydride to 

form the corresponding tri-amines (Figure 2.18). 
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Figure 2.18: General synthetic scheme for the reduction of Schiff bases to tri-amines. 

The reducing agent was slowly added to a solution of tri-imine in methanol and the 

mixture stirred for 16 h. Extraction with chloroform or dichloromethane gave the final 

tri-amine compounds in high yields (96, 94 and 97% for [3b], [4b] and [5b], 

respectively) and high purity, as confirmed by elemental analysis. 
1
H NMR 

spectroscopy shows disappearance of the imine signal with the corresponding 

appearance of the methylene signal at 3.5-4 ppm, a clear indication of the success of 

the reduction. Similarly, 
13

C and DEPT 135 NMR experiments show the signal of the 

amine carbon at 44-52 ppm. Figure 2.19 shows the 
1
H NMR of compound [3b] 

overlaid with the spectrum of the analogous Schiff base [3a]. After reduction, several 

changes in the 
1
H NMR are present: the majority of the signals are shifted, the imine 

singlet at 8.48 ppm can no longer be observed, while a new signal at 3.80 ppm with a 

relative integration of six protons, which can be assigned to the CH2 of the amine, 

dominates the spectrum.  



  Chapter 2 

61 

 

 

Figure 2.19: 
1
H NMR spectra of tachimpyr [3a] (top) and tachpyr [3b] (bottom). Relative 

integration is shown for [3b]; spectra recorded in CDCl3. 

Full characterisation of the compounds was performed by NMR and MS, as explained 

for compound [3a] in section 2.4.1.1. The amines were usually isolated as pure 

compounds, with no further purification needed. Tachpyr and tachfur were light 

yellow or bright orange oils, respectively, whilst tachprl was isolated as a cream 

coloured solid.  

 

The 
1
H NMR spectrum of compound [4b] shows the characteristic signal of the 

pyrrolyl proton at 8.99 ppm and COSY NMR (Figure 2.20) highlights the coupling 

between the pyrrolyl proton and all the other protons on the aromatic ring. This 

coupling is the cause of the fine structure of the aromatic protons, which appear as 

multiplets.  

 

CHCl3 

H2O + NH 

amine 

CH2 

imine 

CH 
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Figure 2.20: COSY NMR of tachprl [4b], detail of the aromatic region; recorded in CDCl3. 

Compound [4b] was crystallised as fine needle-like crystals suitable for X-ray 

diffraction by slow evaporation of chloroform. The asymmetric unit, shown in Figure 

2.21, contains two molecules of [4b] and three molecules of chloroform. The diagram 

of the crystal structures, as the other presented in this thesis, were done using Ortep3 

software.
164

 

 

Figure 2.21: ORTEP diagram (thermal ellipsoids at 50% probability level) of tachprl [4b]. 

Hydrogen atoms omitted for clarity, except for hydrogens bound to heteroatoms.  
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An intermolecular hydrogen bond (defined as the non-covalent interaction between H 

and an atom carrying a full or partial negative charge)
165

 network is present in the 

lattice of the crystal structure between amines and pyrrolyl moieties, with the pyrroles 

acting as hydrogen bond donors and the amines as hydrogen bond acceptors. All H-

bonding hydrogen atoms were located by difference electron density maps. Hydrogen 

bond distances and angles are presented in Table 2.1.  

D H A d(D-H) / Å d(H∙∙∙A) / Å d(D∙∙∙A) / Å D-H∙∙∙A / ° 

N(4) H(4) N(7) 0.82(3) 2.14(3) 2.944(3) 166(3) 

N(6) H(6) N(8)
1
 0.87(3) 2.09(3) 2.947(3) 169(3) 

N(10) H(10A) N(1) 0.84(3) 2.09(3) 2.918(3) 174(3) 

Table 2.1: Hydrogen bond lengths and angles in the crystal structure of tachprl [4b]. 

1
Symmetry generated N(8), symmetry operator: -1+X,1+Y,+Z. 

Table 2.1 contains also the hydrogen bond between N(6) and the symmetry generated 

N(8) contained in the next asymmetric unit, which is not shown in the ORTEP plot in 

Figure 2.21. 

 

 

2.5 Synthesis and characterisation of salicylaldehyde derivatives 

The synthesis of salicylaldehyde derivatives was based on the PhD thesis by E. 

Lewis.
166-167

 The rationale for making this series of derivatives was to investigate the 

biological role of the heteroatom present on the compounds showed in section 2.4. The 

hypotheses behind these structural modifications are described in further details in 

Chapter 4. Compounds [3b], [4b] and [5b] have a heteroatom as part of the rings 

which compose the arms of the derivatives. The compounds described in this section 

were made using various salicylaldehyde derivatives, therefore the heteroatom was no 

longer part of the ring, but now substituent at the 2-position of the phenyl ring. An 

alternative would have been to use 2-aminobenzaldehyde, which has previously been 

used for the condensation with different amines,
168

 instead of salicylaldehyde, in order 

to keep the nitrogen atoms as in tachpyr [3b]. However, salicylaldehyde derivatives 
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had proven to offer a facile synthesis with tach,
167

 and so were well suited candidates 

for a preliminary investigation. Furthermore, as explained in detail in Chapter 4, the 

role of the oxygen atom was subjected to investigation in relation to the biological 

activity. 

 

2.5.1 Schiff bases 

The general scheme for the synthesis of these derivatives is shown in Figure 2.22. 

 

Figure 2.22: Synthetic scheme for salicyl tri-imine tach ligands. 

The salicyl tri-imine tach (salimtach) ligands were readily synthesised from the 

condensation between tach·3HBr and the appropriate salicylaldehyde derivative either 

in a water/methanol mixture or as a bi-layer reaction in water/diethyl ether, allowing 

the ether to evaporate over a 16 h period. Usually a clear colour change from 

colourless to bright yellow was observed upon addition of the aldehyde. The tri-imine 

product precipitated from the water solution to give the desired compound in good to 

high yield (63-89%) and good purity. As for the heterocyclic Schiff-bases, the imine 



  Chapter 2 

65 

 

group gave a characteristic signal at 8.5-9 ppm in the 
1
H NMR and 163-165 ppm in 

the 
13

C NMR. With the exception of salimtach, the other compounds of the series 

displayed the distinctive splitting pattern, shown in Figure 2.23 for compound [7a], 

due to 1,2,5-substitution on the phenyl ring.  

 

Figure 2.23: Aromatic region of 
1
H NMR of 5-Cl-salimtach [7a]; recorded in d6-DMSO. 

The protons labelled as b appear as a doublet with a small 
4
J coupling constant (2.8 

Hz) with protons c. The signal from protons c is split by the large 
3
J coupling with 

protons d (8.8 Hz) and the 
4
J coupling with b, resulting in a doublet of doublets. 

Finally, protons d show the coupling with c only, appearing as a doublet.     

 

Salimtach [6a] and 5-Me-salimtach [9a] were crystallised, respectively, from slow 

diffusion of ethanol layer into a chloroform solution of [6a] or slow diffusion of water 

layer into a DMSO solution of [9a], producing single crystals suitable for X-ray 

diffraction. For compound [6a], the bright yellow needle-like crystals were sent to the 

National Crystallography Service for data collection due to their very weak diffraction. 

The two structures are very similar, both showing an intramolecular hydrogen bond 

between the –OH on the aromatic rings and the imine nitrogen atoms. As an example, 

an ORTEP diagram of compound [6a] is presented in Figure 2.24, which shows such 

intramolecular hydrogen bonds. The H-bonding hydrogen atoms were located by 

difference electron density maps and lengths and angles of these  hydrogen bonds are 

reported in Table 2.2. 

 

b a d c 
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D H A d(D-H) / Å d(H∙∙∙A) / Å d(D∙∙∙A) / Å D-H∙∙∙A / ° 

O(1) H(1A) N(1) 1.01(4) 1.67(4) 2.580(3) 147(3) 

O(2) H(2) N(2) 0.96(3) 1.72(3) 2.585(2) 149(3) 

O(3) H(3A) N(3) 1.02(4) 1.69(4) 2.591(3) 145(3) 

Table 2.2: Hydrogen bond lengths and angles of salimtach [6a]. 

 

Figure 2.24: ORTEP diagram (thermal ellipsoids at 50% probability level) of salimtach [6a]. 

Hydrogen atoms omitted for clarity, except for oxygen-bound hydrogens.  

It can be noticed that the hydrogen bonds observed in the crystal structures of the 

salimtach derivatives are much shorter than those found in the crystal structure of 

compound [4b]. This difference is likely to be due to the difference in the nature of the 

H-bond (intra- or intermolecular). Similarly, the angles of the bonds are restrained by 

the structure, resulting in a smaller value than that found in tachprl.  

 

The intramolecular hydrogen bond can be observed in other crystal structures of Schiff 

bases derived from salicylaldehyde.
169-171

  

 

2.5.2 Tri-amines 

The Schiff bases [6a]-[9a] were reduced with sodium borohydride in methanol, either 

under reflux for 4 h or at ambient temperature for 16 h, to form the corresponding tri-

amine tach ligands in good yields (63-92%), as shown in Figure 2.25. 
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Figure 2.25: General synthetic scheme for saltach derivatives. 

As for the heterocyclic tri-amines, the formation of the product was easily monitored 

by 
1
H NMR, which showed the disappearance of the signal for the imine protons and 

the emergence of the CH2 protons at 3.8-4.0 ppm as a sharp singlet.  

 

Single crystals suitable for X-ray diffraction were obtained for compounds [6b], [7b] 

and [9b] from slow diffusion of water into a concentrated DMSO solution of the 

salicylaldehyde derivative in an NMR tube. The crystals obtained were yellow or 

colourless fine needles. 
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Figure 2.26: ORTEP diagram (thermal ellipsoids at 50% probability level) of saltach [6b]; in 

the box, the asymmetric unit of the crystal lattice. Hydrogen atoms omitted for clarity, except 

for hydrogen atoms bound to heteroatoms.  

In the crystal lattice of [6b], [7b] and [9b] the asymmetric unit is given by only one 

third of the whole molecule due to the three-fold axis present in the structure (space 

group for all three compounds is P31c). An ORTEP diagram of the crystal structure of 

[6b] and the asymmetric unit (in the box) are shown in Figure 2.26. The 

intramolecular hydrogen bond observed in the crystal structures of the imine 

derivatives [6a] and [9a] is still present in the reduced compounds, as shown for 

compound [6b]. Hydrogen bond distances and angles for saltach [6b] are presented in 

Table 2.3, the positions of the hydrogen atom was found by electron density 

difference maps. 

D H A d(D-H) / Å d(H∙∙∙A) / Å d(D∙∙∙A) / Å D-H∙∙∙A / ° 

O(1) H(1) N(1) 0.95(5) 1.73(5) 2.594(3) 155(4) 

Table 2.3: Hydrogen bond lengths and angles of saltach [6b]. 

All the compounds described so far in this section ([6b]-[9b]) showed very poor water 

solubility (cf. section 4.3.2), probably due to the intramolecular hydrogen bond 

observed in the solid state and highlighted in Figure 2.26. In order to increase the 

water solubility, which is an important requirement for biological applications, 5-Cl-
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saltach [7b] was added to a solution of approximately 3 equivalents of HCl in water to 

form the hydrochloride salt [7b]HCl. A clear downfield shift of all signals in the 
1
H 

NMR spectrum was evident after protonation, and two broad signals integrating for 3 

and 6 protons at very low field were observed. These were assigned to the phenol and 

ammonium protons respectively (Figure 2.27). 

 

Figure 2.27: 
1
H NMR spectra of compounds [7b] (top) and [7b]HCl (bottom); recorded in d6-

DMSO. 

The effect of protonation of the amines is noticeable in the chemical shifts of the 

surrounding protons. The positive charge on the nitrogen atoms causes a greater 

electron withdrawing effect, with consequent downfield shifts of the tach and 

methylene protons. On the other hand, the phenol proton can no longer form a 

hydrogen bond with the nitrogen lone pair of electrons, hence decreasing the electron 

donating effect of the oxygen to the aromatic ring and causing a downfield shift of the 

aromatic protons compared to the neutral compound. Although the hydrochloride salt 

[7b]HCl showed excellent water solubility, it was very poorly soluble in buffer or cell 

culture medium (cf. section 4.3.2). For this reason, no other attempts were made to 

synthesise salts of the amine ligands and the class of derivatives was not developed 

further.   

+ 

CH2 

OH NH2 

DMSO 

H2O 
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2.6 Synthesis and characterisation of benzaldehyde derivatives 

A further series of derivatives based on the benzaldehyde moiety was developed to 

investigate the biological role of the heteroatom on the tach arms of the compounds 

presented in section 2.4 and to understand if the electronic properties of the aromatic 

rings had an effect on the cytotoxicity of the ligands. The results of the biological tests 

for the compounds described in this chapter, together with some preliminary structure-

activity relationships (SARs), are presented and analysed in Chapter 4. 

 

2.6.1 Schiff bases 

The unsubstituted benzaldehyde derivative tachimben [10a] was made by a modified  

version of the reported synthesis
172-173

 and the general scheme is shown in Figure 

2.28.  

 

Figure 2.28: Synthetic scheme for tachimben [10a].  

Tach·3HBr was dissolved in water with 3 equivalents of sodium hydroxide and 

benzaldehyde was added as a solution in diethyl ether. The bi-layer reaction was 

vigorously stirred at room temperature for 16 h under a N2 atmosphere. The layers 
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were then separated and extraction of the aqueous layer with diethyl ether afforded the 

desired Schiff base in a 71% yield. Traces of the aldehyde starting material were seen 

by 
1
H NMR, and so the crude reaction mixture was purified by re-crystallisation at 4 

°C from diethyl ether/hexane to give white fine needles. Unfortunately the crystals, 

although single, were too small for X-ray diffraction and gave very weak diffraction, 

so a crystal structure of this compound could not be obtained.  

 

The synthetic route used for tachimben [10a] proved to be unsuitable when a 

substituent was present on the aromatic ring. A new general procedure was developed, 

with adaptations made for the different 4-substituted aldehydes according to the 

substituent. The final isolated yields were usually good and ranged between 65% and 

93%. 4-NMe2-, 4-OMe- and 4-CF3-tachimben derivatives, [11a], [12a] and [15a] 

respectively, were synthesised by leaving the reaction mixture under reflux for 16 h in 

methanol or ethanol. The synthesis of compound [15a] was carried out under nitrogen 

to minimise oxidation of the aldehyde to the corresponding carboxylic acid. The 4-Br- 

and 4-F-tachimben derivatives were synthesised in methanol, but reflux was not 

necessary to obtain good yields and the reactions were therefore performed at room 

temperature. The general synthetic scheme is reported in Figure 2.29. 
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Figure 2.29: General synthetic scheme of 4-substituted tachimben derivatives. 

The products were isolated adding diethyl ether or chloroform to the mixture after 

evaporation of the reaction solvent. This addition caused the precipitation of unreacted 

tach and NaBr salt, which could be removed by filtration. Evaporation of the solvent 

yielded the Schiff base derivative. The only exception to this general procedure was 4-

Br-tachimben [14a], because this derivate precipitated from the methanol solution and 

was therefore isolated as pure compound by vacuum filtration. When aldehyde was 

still present in the crude of the reaction, the Schiff base derivatives were washed with 

the appropriate solvent or re-crystallised. Due to stability problems, the Schiff bases 

were often used for the reduction step without further purification from the aldehyde 

starting material, as discussed in more detail in section 2.6.2. Similarly to the other 

Schiff bases described in previous sections, the benzaldehyde derivatives showed the 

typical 
1
H NMR splitting pattern of the tach moiety and the imine signal between 8.2 

and 8.5 ppm, in agreement with what has been reported for related molecules.
174

 The 

yields of the Schiff base condensation for the benzaldehyde derivatives were usually 

very good, ranging between 65 and 93%. When the imine was not purified from the 
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aldehyde, the yield was calculated with respect to the equivalents of aldehyde visible 

in the 
1
H NMR spectrum relative to the Schiff base. 

 

The electronic properties of the aromatic rings in compounds [10a]-[15a] are affected 

by the different substituents in the 4-position. Although not with a strong correlation, 

these trends can be seen by NMR spectroscopy, as shown in Figure 2.30.  

 

Figure 2.30: Plot of difference chemical shift (Δδ = δsubst – δH) against Hammett σ parameter 

for compounds [10a]-[15a]. Points represent single measurements. 

Plotting the difference of chemical shift between the substituted compound and 

compound [10a] (Δδ) against the σ Hammett parameter, a trend can be seen for both 

the tach CH and the imine protons, although with a non-perfect fit. The imine signal 

shows a downfield shift of 0.18 ppm going from the electron-donating NMe2 to the 

electron-withdrawing CF3 compound. The partial trend can still be observed in the 

tach CH proton, quite far away from the aromatic ring, with a Δδ of 0.14 ppm. The 
13

C 

NMR of the imine signal, instead, does not seem to be affected by the substituent on 

the ring, with no real trend present. The values of chemical shift for the tach CH 

proton (CH-N), the imine proton (N=CH) and the imine carbon (N=CH) for 

compounds [10a]-[15a] are reported in Table 2.4. The unsubstituted compound is a 

slight outlier in the series when the derivatives are listed in order of increasing 

Hammett parameter,
175

 but the reasons for this are not really clear. 4-OMe-tachben 

[12a] was not included in the analysis of the trend because the spectra could not be run 

in chloroform due to solubility issues.  
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Compound  σ-para CH-N N=CH N=CH 

[11a], NMe2 -0.83 3.50 8.24 159.2 

[10a], H 0.00 3.59 8.39 159.6 

[13a], F 0.06 3.56 8.34 158.1 

[14a], Br 0.23 3.55 8.30 158.4 

[15a], CF3 0.54 3.64 8.42 158.3 

Table 2.4: 
1
H and 

13
C chemical shift on the Schiff base series, compounds in increasing order 

of Hammett σ parameter. All spectra run in CDCl3.  

Single crystals suitable for X-ray diffraction were obtained for compounds [11a] and 

[15a], which are shown in Figure 2.31. 

 

 

Figure 2.31: ORTEP diagram (thermal ellipsoids at 50% probability level) of compounds 

[11a] (top) and [15a] (bottom). Hydrogen atoms omitted for clarity, except EtOH hydrogen.  
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The crystal structure of 4-NMe2-tachimben [11a] shows one of the imine nitrogen 

atoms, N(1), engaged in a hydrogen bond with an ethanol molecule, disordered over 

two positions. 4-CF3-tachimben [15a] presents some disorder of one of the CF3 

groups, which was modelled over 3 positions. Selected bond lengths and angles are 

reported in Table 2.5. Ebrahimpour et al. reported the crystal structures of three tach-

benzaldehyde molecules: 2,6-(OMe)2-, 2-CF3- and 2-OMe- derivatives.
174

 The imine 

bond lengths reported for these compounds range between 1.267(2) and 1.272(2) Å,
174

 

in agreement with those observed in compounds [11a] and [15a]. 

 

[11a]·EtOH [15a] 

C(7)-N(1) 1.276(2) C(7)-N(1) 1.266(2) 

C(16)-N(2) 1.265(2) C(14)-N(2) 1.268(2) 

C(25)-N(3) 1.264(2) C(21)-N(3) 1.265(2) 

C(1)-N(1) 1.462(2)   

C(3)-N(2) 1.465(2)   

C(5)-N(3) 1.464(2)   

C(11)-N(4) 1.376(3)   

C(20)-N(5) 1.370(3)   

C(29)-N(6) 1.366(2)   

C(7)-N(1)-C(1) 116.94(16) C(7)-N(1)-C(1) 118.35(15) 

C(16)-N(2)-C(3) 117.10(17) C(14)-N(2)-C(3) 116.44(16) 

C(25)-N(3)-C(5) 115.68(17) C(21)-N(3)-C(5) 115.69(15) 

Table 2.5: Selected bond lengths (Å) and angles (°) for compounds [11a] and [15a]. 

The hydrogen bond of N(1) with the molecule of ethanol in the crystal lattice of 

compound [11a] causes an increase in the bond length of the N(1)-C(7) bond, which is 

slightly longer than the other imine bonds. Furthermore, the bond lengths between 
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N(4), N(5) and N(6) and the carbons they are bound to on the aromatic rings, C(11), 

C(20) and C(29) respectively, are approximately 0.1 Å shorter than a pure single bond 

(e.g. tach-nitrogen bond C(1)-N(1)) and 0.1 Å longer than a pure double bond (e.g. the 

imine bond C(7)-N(1)). This demonstrates the effect of the resonance of the electron 

donating group NMe2 with the aromatic ring, with the C-N bonds displaying partial 

double bond character. 

 

2.6.2 Tri-amines 

The Schiff bases [10a]-[15a] were then reduced with sodium borohydride to give the 

corresponding tri-amines, as shown in Figure 2.32.  

 

Figure 2.32: General synthetic scheme of tachben derivatives. 
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In some cases, the crude reaction mixture from the Schiff base reaction was used for 

the reduction step without purification and the benzyl alcohol derived from the 

reduction of the aldehyde starting material was separated from the desired tri-amine 

product. After the standard work-up of the reduction step, which involves extraction of 

the product and evaporation of the solvent, the residue was dissolved in 0.1 M HCl 

solution and washed with diethyl ether to remove the benzyl alcohol. Change of pH to 

basic (pH = 12-14) with NaOH and extraction with dichloromethane allowed for 

isolation of the final tri-amine in good yields (63-98%). This purification method was 

usually preferred to the purification of the Schiff base due to better stability of the tri-

amine compared to the tri-imine. Furthermore, for the compounds presented, the 

purification of the Schiff bases was often challenging, with the low stability of the 

imines to different pHs and water restricting the range of possible purification 

methods. Moreover, not all the different tri-imines could be easily crystallised. The 

process led to lower yields and sometimes the resulting tri-amine still needed an 

acid/base wash after the reduction to be isolated as pure compound. For all these 

reasons, when the purification of the Schiff base could not be achieved in a 

straightforward way, they were considered as a “reaction intermediate” and used 

directly for the reduction, while the tri-amines underwent an extra wash to eliminate 

all the impurities. Elemental analysis confirmed the purity of the final compounds. 

 

The tri-amines were fully characterised by MS and NMR and purity confirmed by 

elemental analysis. Compounds [13b] and [15b], as their precursors [13a] and [15a], 

were characterised also by 
19

F NMR spectroscopy. The presence of fluorine (
19

F I=½, 

100% abundance) gave a characteristic splitting pattern in both 
1
H and 

13
C NMR 

spectra. As an example, the 
13

C spectrum of 4-F-tachben is shown in Figure 2.33.  
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Figure 2.33: Detail of the aromatic region of the 
13

C NMR spectrum of 4-F-tachben [14b], 

recorded in d4-MeOH.  

All signals in the aromatic region appear as doublets due to the coupling with fluorine. 

The quaternary carbon bound to the fluorine is, as expected, the most deshielded due 

to the –I effect of the halogen atom. Assignment of the signals was completed using 

the JC-F coupling constants, which decrease from 243.6 Hz for the 
1
J with carbon e to 

3.1 Hz for the 
4
J with carbon b in relation to the number of bonds dividing carbon and 

fluorine. All C-F coupling constants for compounds [13a-b] and [15a-b] were 

compared to literature values and found in good agreement with the reported ranges.
176

 

 

Similar to the 
13

C spectrum, the effect of coupling between the aromatic protons and 

the fluorine is displayed in the 
1
H NMR spectrum of compound [13b], as shown in 

Figure 2.34. 

 

b 
e 

d c 
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Figure 2.34: 
19

F (left) and 
1
H (right) NMR spectra of compound [13b], recorded in d4-MeOH. 

The 
1
H NMR of compound [13b] shows the characteristic fine splitting of a AA’BB’ 

system,
177

 due to the magnetic inequivalence of the two c protons and the two d 

protons (which should be labelled as c/c’ and d/d’). The small inside lines visible in 

the spectrum are the result of this inequivalence and are due to the coupling between 

all four kind of protons. If approximated to a simple AB system, the spitting pattern 

observed in both 
19

F and 
1
H spectra can be explained as follows. The protons labelled 

as d, in ortho position to the fluorine, appear as a triplet, due to the J coupling to both 

proton c and fluorine which are similar in value (8.4 Hz). Protons c, instead, are a 

doublet of doublets due to a larger 
3
JH-H coupling of 8.4 Hz with d (in the range of 7-

10 Hz, typical 
3
Jortho coupling

162
), and a smaller 

4
JH-F coupling of 5.2 Hz with fluorine. 

The same coupling constant values, which are in agreement with literature values,
177

 

are observed in the 
19

F spectrum to give a triplet of triplets. The multiplicity of the 

fluorine signal is not a classic triplet of triplets, although its shape can be rationalised 

as explained in the diagram below.  

F 
d 

c 
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In 4-F-tachben, the fluorine signal is split by the two protons in the ortho position first, 

protons d, with a coupling constant of 8.4 Hz, giving the first set of triplets. Each 

signal is then split by the two protons in the meta position to the fluorine, protons c, J 

= 5.2 Hz, to form the triplet of triplets. However, due to the value of the coupling 

constants, the signals in the centre of the multiplet are very close to each other, so that 

the signal in 
19

F NMR spectrum gains the shape shown in Figure 2.34.  

 

As for the Schiff bases, a chemical shift trend is visible in 
1
H NMR spectra in relation 

to the electronic properties of the substituent in the 4-position of the aromatic ring, 

whilst the 
13

C signals are not affected. A 0.21 ppm downfield shift is evident moving 

from the electron donating NMe2 to the electron withdrawing CF3 derivative. The 

effect on the tach proton CH-NH is now negligible (0.05 ppm), although the shift 

follows the same trend. Figure 2.35 and Table 2.6 highlight these trends for the 

signals close to the nitrogen atoms.   
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Figure 2.35: Plot of difference chemical shift (Δδ = δsubst – δH) against Hammett σ parameter 

for compounds [10b]-[15b]. 

Compound σ-para CH-NH NH-CH2 NH-CH2 

[11b], NMe2 -0.83 2.44 3.67 50.8 

[12b], OMe -0.27 2.45 3.71 50.7 

[10b], H 0.00 2.47 3.78 51.4 

[13b], F 0.06 2.48 3.77 50.6 

[14b], Br 0.23 2.46 3.75 50.7 

[15b], CF3 0.54 2.49 3.88 50.9 

Table 2.6: 
1
H and 

13
C chemical shift on the tri-amine series, compounds in increasing order of 

Hammett σ parameter. All spectra run in d4-MeOH.  

 

 

2.7 Mono-armed ligands 

All the ligands presented so far in the chapter have the same substituent on the three 

tach amines. The synthesis of mono-substituted tach compounds was investigated with 

the idea of understanding the importance of the arms for the biological activity. 

Furthermore, having a reliable synthetic method to make “mono-armed” derivatives 
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would open to the possibility of adding different substituents on the three tach amines, 

with widening of the possible pharmacological applications.  

Two mono-armed compounds were investigated: the mono-benzyl and the mono-

cyclohexylmethyl derivatives, shown in Figure 2.36. These two compounds were 

chosen for different reasons: compound [16], tachmonoben, allows a direct 

comparison with the corresponding three-armed derivative tachben [10b] in terms of 

biological activity. On the other hand, compound [17], tachmonocyc, can give insights 

on the biological role of the aromatic ring, to evaluate if aromaticity is an essential 

requirement for activity. The results of the biological tests are presented in Chapter 4. 

The two mono-armed ligands were synthesised in two different ways: tachmonoben 

from modification of reported literature procedures,
166, 178

 tachmonocyc through a 

Boc-protection route. 

 

Figure 2.36: Tachmonoben [16] (left) and tachmonocyc [17] (right). 

 

2.7.1 Tachmonoben 

Tachmonoben [16] was synthesised following the reported literature procedures. 

Greener et al. reported the selective hydrolysis of tach derivatives upon complexation 

with copper
172

 and Archibald et al. used nickel nitrate to synthesise mono-substituted 

tach derivatives.
166, 178
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Figure 2.37: Synthetic scheme of tachmonoben [16]. 

The reaction scheme for the synthesis of tachmonoben [16] is shown in Figure 2.37. 

The three-armed tachimben [10a] was synthesised as described in section 2.6.1 and 

added to one equivalent of nickel nitrate hexahydrate in a 2:1 

methanol/dichloromethane mixture. Complexation with nickel selectively hydrolyses 

two of the three arms,
178

 resulting in the Ni(II)-mono-substituted-tach complex. 

Diethyl ether was added to the reaction mixture to help precipitation and compound 

[16-1] was isolated by filtration as a bright turquoise powder in 68% yield. The 

complex was then suspended in MeOH and sodium borohydride added to reduce the 

imine bond and form compound [16-2], which was used for the demetallation step 

without being isolated. Sodium cyanide was added to the reaction mixture to remove 

the nickel and the free ligand was isolated as a colourless oil. Although the metal 

hydrolysis gave very good yields, the reduction/demetallation step was very low 

yielding (7%) and the final product could not be isolated as pure compound. Several 

purification methods were attempted, but with little success.  
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Figure 2.38: 
1
H NMR spectrum of tachmonoben [16] with relative integration of the signals, 

recorded in d4-MeOH. 

The 
1
H NMR of the impure tachmonoben is shown in Figure 2.38. It is immediately 

possible to notice the difference in the characteristic tach signals in comparison to the 

ligands described so far. Mono-substitution of the tach moiety causes the lost of the C3 

symmetry shown by the fully substituted compounds. Tachmonoben, as tachmonocyc 

described in the next section, presents instead a mirror plane containing the arm. For 

this reason, two sets of signals for each of the tach protons are evident in the NMR, 

one for the protons contained in the mirror plane and one for the others. Similarly, 
13

C 

NMR shows five signals in the aliphatic region of the spectrum: one for the benzyl 

carbon and four belonging to the tach moiety. Although promising for the possibility 

of forming mono-substituted benzaldehyde derivatives, this synthetic method proved 

to be unreliable and low yielding for the unsubstituted benzaldehyde. Furthermore, the 

final product could not be obtained as a pure compound, as also evident by 
1
H NMR 

spectrum in Figure 2.38. The integration of the tach protons is very close to what 

expected, but the aromatic and the CH2 signals, which should integrate for five and 

two protons, respectively, show instead a higher value of relative integration, 

suggesting the presence of impurities. Further minor unidentified impurities are clear 

in the aliphatic region of the spectrum. 

b’ aeq 

a’eq 
c 

e+f+g 

aax+a’ax 

b 

H2O 

MeOH 
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2.7.2 Tachmonocyc 

Due to the difficulties experienced in the synthesis of [16] and the high toxicity of the 

reagents used (i.e. nickel and cyanide), a different strategy was developed for the 

synthesis of tachmonocyc [17], as shown in Figure 2.39 and Figure 2.40.  

 

Figure 2.39: Synthetic scheme for Boc-protection of tach·3HBr. 

The first step of the synthesis of compound [17] was the protection of two out of three 

tach nitrogens with di-tert-butyl dicarbonate (Boc anhydride, Boc2O), as presented in 

Figure 2.39. Boc is widely used in organic synthesis as a protecting group for amines 

due to its low cost, the relatively good stability and the facility of the deprotection step 

in acidic conditions.
179

 Tach·3HBr was dissolved in methanol and two equivalents of 

triethylamine were added to the solution. A dilute solution of Boc anhydride in 

methanol was slowly added dropwise over a 16 h period to the dilute solution of tach. 

The addition was very slow to minimise as much as possible the possibility of forming 

the tri-protected tach. The solvent was then evaporated and the residue was dissolved 

with basic water (pH = 10) and ethyl acetate. Using this method, the protected product 

was extracted into the organic layer, while unreacted tach and triethylamine were left 

in the aqueous layer. The procedure afforded the di-protected product tach-diBoc [17-

1] as a bright white solid in good yield (75%). The splitting pattern of the tach region 

and the relative integration of the signals in the 
1
H NMR showed complete selectivity 
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for the di-Boc product, although a small peak of protonated tri-Boc derivative was 

usually present in the positive mode high resolution ESI-MS at m/z 430.2900. 

However, the presence of tri-protected tach is not to be considered an issue for the 

synthesis because the tri-Boc tach would not subsequently react with the aldehyde and, 

in the deprotection step, the Boc group would be hydrolised releasing free tach, which 

could be easily separated from the product with a simple extraction in the appropriate 

conditions. On the other hand, there is no evidence of mono-Boc tach, which instead 

would represent a problem, in either NMR or ESI-MS. Having a synthetic method to 

protect only one or two tach amines is a great advantage for the synthesis of tach 

derivatives with different functionalities on the amines. 

 

Tach-diBoc [17-1] was used for the condensation with cyclohexanecarboxaldehyde as 

shown in Figure 2.40. The synthetic procedure used reductive amination of the tach 

amine and was based on modifications of the synthesis of related compounds reported 

in the literature.
180

 One equivalent of aldehyde was added to compound [17-1] and the 

mixture was stirred at room temperature for 24 h, after which sodium borohydride was 

added in portion to reduce the imine bond formed. The presence of the Schiff base was 

monitored by ESI-MS on small aliquots of the reaction mixture. Compound [17-2] 

could be isolated as a white solid, but the yields of the reaction were usually low and 

the NMR showed presence of cyclohexylmethanol, derived from the reduction of 

unreacted aldehyde. The lability of Boc to acid conditions made the purification of 

compound [17-2] very difficult, hence it was used for the hydrolysis without further 

purification. 
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Figure 2.40: Synthetic scheme of tachmonocyc [17]. 

Trifluoroacetic acid (TFA) is usually the preferred choice for Boc hydrolysis,
181

 but 

when used on compound [17-2] problems were encountered. Although the amines 

were successfully deprotected, compound [17] could not be isolated in high purity and 

a signal in the 
19

F NMR was observed, showing the presence of TFA tightly bound to 

the compound, although the compound had been extracted with organic solvent from a 

very basic water solution. For these reasons, the hydrolysis was performed using HCl, 

which overcame these problems. The final yield for [17] were usually very low (8%), 

making the purification and characterisation of tachmonocyc very difficult. ESI-MS 

showed evidence for the protonated molecule at m/z 266.2273, in agreement with the 

expected elemental composition, and no peaks for the di-armed compound where 

present. Furthermore, 
1
H NMR showed the characteristic mono-substitution pattern 

seen in compound [16] with the correct integration of the protons. The presence of the 

cyclohexylmethyl substituent makes the aliphatic region of the spectrum very difficult 
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to assign, as shown in Figure 2.41, although the main tach signals and the doublet due 

to the amine protons (c) are clearly present.  

 

Figure 2.41: 
1
H NMR spectrum of tachmonocyc [17], with relative integration of the signals, 

recorded in d4-MeOH. 

 

Reduction with sodium borohydride and Boc deprotection are generally very high 

yielding reactions, therefore the low yields obtained for compound [17] are likely to be 

due to very poor rate of Schiff base formation in the reductive amination step. This 

would not be surprising, considering that the Schiff base formation for compound [17] 

is not driven by increased conjugation of the system. The Boc protection route was 

used to attempt the synthesis of compound [16] as an alternative to the method 

described in section 2.7.1.  In this case, the diBoc-monoarmed derivative could easily 

be made in 78% yield, confirming that the condensation efficiency plays a crucial role 

in the synthesis. Unfortunately, the deprotection conditions used to remove the Boc 

groups caused also the hydrolysis of the benzyl arm. These preliminary studies had 

shown that, with optimisation of the reaction conditions, a promising synthetic route 

for the synthesis of mono-armed tach derivatives can be obtained. 

 

a’eq + aeq 

c 

b’ 

aax+a’ax 

b 
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2.8 Chapter conclusions 

Cis,cis-1,3,5-triaminocyclohexane (tach) offers a good scaffold for the facile synthesis 

of Schiff bases. The amine nitrogens of [2]HBr were used for the condensation with 

different classes of aldehydes. To overcome solubility and stability problems, the 

Schiff base derivatives were reduced with sodium borohydride to obtain the 

corresponding tri-amine compounds. All the ligands made were fully characterised by 

NMR spectroscopy, mass spectrometry and, when good quality crystals were obtained, 

X-ray diffraction. Elemental analysis was performed on all the tri-amines to ensure 

purity for the biological tests and on most of the Schiff bases. 

 

Synthetic methods for the preparation of mono-substituted derivatives were explored 

and two mono-armed compounds were made. Although the procedures need 

optimisation to improve purity and yields, they formed the basis for further 

investigation and expansion of  tach-related library of compounds.  

 

The ligands reported were designed to investigate structure-activity relationships, 

which are presented in Chapter 4. 
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3. Synthesis, characterisation and biological evaluation of 

tachpyr-containing metal complexes 

3.1 Introduction 

Cis-diaminodichloroplatinum, cisplatin, and its derivatives (Figure 3.1) are among the 

few inorganic drugs that have been approved in cancer therapy to date. Since the 

fortuitous discovery of the cytotoxic properties of cisplatin
182

 and its introduction on 

the market in the late 70s, several other inorganic, organometallic and coordination 

compounds have been synthesised and tested as potential anticancer agents or 

diagnostic tools, but a small number of them have entered clinical trials and only few 

have been introduced in therapy.
183-184

  

 

Figure 3.1: Structure of cisplatin (left), carboplatin (centre) and oxaliplatin (right).  

Cisplatin (Figure 3.1, on the left) has proved to be active on several different tumours, 

in particular against testicular cancer, for which it increases greatly the chances of 

survival,
185

 as this particular kind of cancer appears to have an intrinsic sensitivity to 

this compound
186

 due to lack of DNA-repair mechanisms of DNA-platinum-adducts 

compared to other cell lines.
187

 Unfortunately, cisplatin presents several side effects, 

including nephro- and neuro-toxicity. Also, resistance to cisplatin can occur during the 

treatment or it can be inherent, limiting the efficacy of the therapy.
28

 The mechanism 

of resistance might involve several pathways: reduced uptake of the drug inside the 

cells or increased efflux;
28, 188

 inhibition of cisplatin by glutathione or other sulfur-

containing proteins;
189-190

 increased ability to repair the DNA damage due to cisplatin 

binding
188

 or to ignore apoptosis signals.
191

 In order to improve the activity profile and 

overcome resistance, several cisplatin derivatives have been made, but only two of 

them, carboplatin and oxaliplatin (Figure 3.1), have been introduced in therapy and 

reached world-wide usage. 
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The mechanism of action of these compounds has still not been completely clarified, 

but it is understood that they undergo an aquation process which leads to the active 

species, able to bind DNA. For cisplatin, the chloride atoms are replaced with water 

molecules, mostly in cells, where the chloride concentration is quite low. In the blood 

stream the high concentration of chloride ions reduces the extent of aquation 

process.
186

 Once the compound is in its active form, it can irreversibly bind the DNA 

with both intra-
192-193

 and inter-
194

 strand links (Figure 3.2), preferably through 

coordination bonds between guanine residues.
186, 195

 The main product responsible for 

action (and side effects) of cisplatin is the intra-strand compound, whilst the inter-

strand contributes a small percentage to the total amount of Pt-DNA adduct.
196

 The 

distortion of the DNA after coordination with cisplatin prevents replication and 

transcription of the genetic material, leading to apoptosis, i.e. programmed cell death. 

For this reason, cisplatin is regarded as a genotoxic agent, even if its mode of action is 

still a matter of debate and other mechanisms, such as interaction with proteins, may 

be possible. 

 

Figure 3.2: X-ray crystal structures of cisplatin-DNA adducts. Examples of intrastrand (a and 

b, PDB codes 1AIO and 1DA4, respectively) and interstrand (c, PDB code 1A2E) complexes. 

Image adapted from Todd and Lippard.
195

 

The activity of cisplatin seems to be related to the kinetics of the aquation process.
183

 

In order to decrease the side-effects of cisplatin, a compound with slower exchange 

rate, carboplatin, was designed. It is less reactive than cisplatin, therefore it can be 
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administered at higher doses than the parent compound. Carboplatin can form the 

same DNA adducts as cisplatin with the only difference in the kinetics of binding
197

 

and it is usually used for the same kind of tumours.
183

 

 

A further development was obtained with the introduction into therapy of another 

cisplatin derivative, oxaliplatin. This compound was found to be active on cisplatin-

resistant and other types of tumours, such as for example metastases and colorectal 

cancer, probably due to the slightly different DNA-binding mode.
183, 195, 198

 

 

3.1.1 Non-platinum metal-based anticancer agents 

Following the considerable success of platinum-based anticancer drugs, several other 

complexes with different metals have been synthesised and tested in the last 30 years, 

with some promising results.
184

 Resistance and side effects are the two main problems 

related with cisplatin therapy; furthermore, some patients can develop cisplatin-

induced cancer several years after the end of the treatment due to the DNA adducts 

formed with cisplatin, because the cross link is irreversible and, over the years, can 

cause mutations of the genetic material due to mistakes in the DNA replication process 

and post-replication mechanisms.
199

 For all these reasons, developing new compounds 

able to overcome the problems related with cisplatin therapy is a big challenge in 

anticancer research.  

 

Metal complexes offer several advantages in drug design due to some unusual 

characteristics of metals; for example different redox states for the same metal, 

possible in situ activation (e.g. photo-activation), a relatively rigid structure and the 

possibility to bind, more or less strongly, to biomolecules. Furthermore, all these 

features can in theory be finely tuned, a key feature in drug design. A classification 

based on the role played by the metal, rather than the biological target, of inorganic, 

organometallic or coordination compounds which have shown interesting activity 

against tumour cells has been attempted by Gianferrara, Bratsos and Alessio.
200

 It is 

interesting to note from this study that the same compound can present more than one 
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mode of action. The uncertainty about the mechanism of action can make its 

assignment to a class a challenging task. 

 

One way to exploit some of the properties of metal complexes is to combine them with 

bioactive organic molecules. In this way, the metal complex might have either a 

merely structural role, protecting the ligand from early activation (or de-activation), or 

it might improve some bio-physical characteristic of the organic moiety (e.g. 

solubility) and actively play a role in cell toxicity. An interesting example is given by 

ferrocifen, (Figure 3.3) in which the organometallic complex ferrocene has been 

added to the anticancer agent hydroxytamoxifen (Figure 3.3). Tamoxifen and 

hydroxytamoxifen are potent anticancer agents for breast cancers which express the 

estrogen receptor (ER+), but it is inactive when this receptor is not present. 

Combination with ferrocene makes the resulting compound active on both ER+ and 

ER− breast cancers, showing that the ferrocene moiety added a further mechanism of 

action to the organic molecule.
200

  

 

Figure 3.3: Ferrocifen (left) and hydroxytamoxifen (right). 

To evaluate the role played by the ferrocene moiety, the iron atom was substituted 

with ruthenium by Pigeon et al.
201

 and the resulting compound showed to be active 

only against ER+ tumours, with no activity on ER− cells. This result seems to suggest 

a possible redox mechanism involved in the action of ferrocifen, supported by 
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electrochemical studies of the ruthenocene derivatives, which demonstrated that the 

ruthenium-moiety decomposes after electron transfer.
201

 

 

In other cases, the metal centre might be used only for a structural role, to maintain a 

particular conformation of the ligand. For example, the ruthenium complex outlined in 

Figure 3.4 was made to mimic the structure of the anticancer agent staurosporine,
202

 a 

protein kinase inhibitor, showing good inhibitory activity against this enzyme.
203

 

 

Figure 3.4: Structure of staurosporine (left) and the ruthenium complex made to mimic it 

(right). 

In 1993 the first non-platinum-based complex to enter clinical trials for the treatment 

of cancer was titanocene dichloride (Figure 3.5). 

 

Figure 3.5: Titanocene dichloride. 

The mechanism of action for titanocene dichloride has not been completely clarified, 

but titanocene has been found in cellular compartments rich in nucleic acids and it 

seems to inhibit nucleic acid synthesis.
204

 It has been reported by Guo et al. that 
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titanocene binds to DNA, but in a different way than cisplatin. Instead of coordinating 

nitrogen atoms of nucleotides, titanocene seems to interact with the phosphate groups 

present in the backbone,
205

 which is in contrast with an early study of its binding mode 

which showed the possibility of formation of complexes with nitrogen atoms on DNA 

bases.
206

 It has been proven that titanocene can bind serum transferrin, the protein 

responsible for delivering iron to cells,
207

 and that serum albumin might play an 

important role in transport and delivery of this compound.
208

 Despite the fact that 

titanocene was found to be active on cisplatin resistant cell lines in vitro and was 

shown to have mild toxicity (except for hepatotoxicity, which was the dose-limiting 

side-effect), the response in vivo was poor and the clinical trials on the molecule were 

stopped in 1998.
209

 Since the introduction in clinical trials of titanocene dichloride, 

several derivatives have been synthesised in order to improve the activity, the 

solubility profile and the coordination properties. Mono- and di-alkylamino,
210-211

 

alkenyl
212

 and peptide-substituted
213

 derivatives have been synthesised so far, but none 

of them has passed through clinical trials, in spite of showing even better results in 

vitro than titanocene dichloride.
210-211, 214

  

 

Among the transition metals, cobalt has proved to be a good candidate for anticancer 

agents, also thanks to its cytotoxicity. Some pyrrolo[3,2-f]quinoline cytotoxins,
215

 

nitrogen mustards
216

 and a cobalt complex of marimastat (a potent inhibitor of an 

enzyme called matrix metalloproteinase (MMP) involved in connective-tissue 

breakdown, overexpressed in tumour)
217

 have been made. Examples of these 

compounds are shown in Figure 3.6. 
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Figure 3.6: Structure of a cobalt (III) complex of a nitrogen mustard
216

 (left) and 

marimastat
217

 (right).  

In these complexes, the metal usually has a protective role for the ligand, preventing it 

from early activation and reducing side-effects. The complex acts as a prodrug, in 

which the oxidation state of the metal avoids dissociation of the ligand. In this context 

Co(III) complexes have potential as the complexes are relatively inert but, when in 

cancerous cells, the metal can be reduced to a Co(II) species by the reducing 

environment often found in tumours.
23

 The complex so formed is more labile than the 

starting one and can dissociate, releasing both the cytotoxic ligand and the metal. The 

latter might have its own role in the apoptotic process (cobalt is known to be 

cytotoxic), possibly increasing the effect of the ligand.  

 

Among the metal complexes made and tested for anticancer activity, ruthenium 

complexes have been proved to possess interesting characteristics and often very good 

anticancer properties.
218-220

 Two ruthenium-based compounds, called NAMI-A and 

KP1019
221

 and shown in Figure 3.7, are currently in Phase II clinical trials.
218
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Figure 3.7: Ruthenium-based anticancer complexes in clinical trials: NAMI-A (left) and 

KP1019 (right). 

The mechanism of action of these compounds has not been clarified yet, but, similar to 

cisplatin, they are believed to be activated by chloride dissociation, with a possible 

activation by a reduction step. NAMI-A has shown antimetastatic properties,
222-223

 and 

KP1019 is able to promote apoptosis in several cell lines.
224

 

 

Besides these two compounds, several other Ru-based complexes have been made; 

among them, RAPTA compounds synthesised by Dyson’s group
225-226

 and Sadler’s 

ethylenediamino complexes,
227

 shown in Figure 3.8, have proven to possess 

interesting activity against tumours.  

 

Figure 3.8: Example of Sadler’s Ru-ethylenediamino complex
228

 (left) and Dyson’s RAPTA-

C complex
229

 (right).  
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Ethylenediamino compounds cause DNA damage similarly to cisplatin,
228

 showing 

potent cytotoxicity against tumour cells. RAPTA compounds, instead, seem to target 

other cellular components than DNA, probably proteins, with very low toxicity against 

healthy cells.
229-230

 

 

Due to the very promising results showed by ruthenium complexes and the 

cytotoxicity of cobalt which could potentially be exploited against cancer cells, these 

two metals were used for the complexation with tachpyr [3b]. This chapter describes 

the synthesis and characterisation of such complexes and their in vitro evaluation 

against cancer cells.  

 

  

3.2 Synthesis and characterisation of cobalt complexes 

Tachimpyr [3a] and tachpyr [3b] were used to synthesise the corresponding cobalt(II) 

complexes [18]Cl2 and [19]Cl2, as shown in Figure 3.9. Both reactions were 

performed in deoxygenated solvent under N2 atmosphere for 16 h. Addition of one 

equivalent of cobalt dichloride hexahydrate to the colourless ligand solution caused an 

immediate change of colour to the mixture, which turned orange for both [3a] and 

[3b].  
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Figure 3.9: Synthetic scheme for the formation of [Co(II)-tachimpyr]Cl2, [18]Cl2 (top), and 

[Co(II)-tachpyr]Cl2, [19]Cl2 (bottom). 

Addition of diethyl ether to the solutions caused the precipitation of a yellow/brown 

solid, which was isolated by filtration (crude yield of 53 and 30% for [18]Cl2 and 

[19]Cl2, respectively) and stored under N2 atmosphere.  

 

As expected for a d
7
 Co

2+
 system, the 

1
H NMR was very broad and featureless. ESI-

MS showed the presence of both the singly and doubly charged ions, with the charge 

deriving from the metal centre, for compound [18] at m/z 455.1395 and 227.5689, 

respectively, in agreement with the molecular composition, C24H24CoN6
n+

. The ESI-

MS of the Co(II)-tachpyr complex [19], on the other hand, did not show any peak for 

the complex. The spectrum was dominated by the doubly charged peak at m/z 

228.5754, which could be assigned to the compound with formula C24H26CoN6
2+

 

(error = 1.6 mDa). A small peak at m/z 459.1696, corresponding to the molecular 

formula C24H28CoN6
+
 (error = 0.6 mDa), was also observed. These two peaks 
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correspond to the partially oxidised complexes, whose structures are shown in Figure 

3.10. 

 

Figure 3.10: Proposed structures for the molecular ion peaks observed in the ESI-MS 

spectrum of compound [19]. 

The presence of these peaks could be explained by the oxidation of compound [19] 

inside the MS instrument and Park et al. observed a similar behaviour for the 

equivalent Fe(II) complex of tachpyr, which could easily form the mono-, di- or tri-

imine when exposed to air.
135

 Unfortunately, elemental analysis did not match the 

calculated values for the expected elemental composition, hence the purity of neither 

compound [18]Cl2 nor [19]Cl2 could be proven, although crystals for both compounds 

were obtained.   

 

3.2.1 Structural investigation of cobalt complexes 

Crystals of [18]Cl2 suitable for X-ray diffraction could be grown from EtOH/Et2O 

layer as orange blocks and the crystal structure obtained is shown in Figure 3.11.  
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Figure 3.11:  Structure (left) and ORTEP diagram (thermal ellipsoids at 50% probability 

level) of [Co(II)-tachimpyr]Cl2 [18]Cl2. Hydrogen atoms and EtOH solvent molecules omitted 

for clarity.  

The metal presents a distorted trigonal prismatic geometry, as already reported by 

Wentworth et al.,
231

 due to the presence of the ligand, which forces the metal ion to 

assume this particular geometry rather than an octahedral structure. The coordination 

geometry around the cobalt, showing the six coordinating nitrogen atoms, is shown in 

Figure 3.12. Looking at the structure from the pseudo three-fold rotation axis, it is 

possible to determine that the complex is in the Δ configuration and the twist of the 

pyridine arms, which contributes to the distortion of the geometry compared to an 

idealised trigonal prism, becomes very visible. 
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Figure 3.12: Detail of the distorted trigonal prismatic geometry of [18]Cl2. 

A way to estimate the geometry and the extent of the distortion around the metal 

centre is to calculate the twist angle α of the pyridine nitrogen atoms compared to the 

imines, as shown in Figure 3.13.
232

  

 

Figure 3.13: Scheme of the arrangement around the metal centre and the twist angle of the 

complex.   

In a perfect trigonal prismatic geometry, α = 0°, while the angle is 60° for a perfect 

octahedral. For [18]Cl2 the three twist angles were 20.40°, 19.90° and 19.73°, giving 

an average of 20.01°. The complex, therefore, tends to trigonal prismatic geometry, 

but it is very distorted. The equivalent Zn(II) complex with tachimpyr reported by 

Gillum et al. had an almost perfect trigonal prismatic geometry, with an average twist 

angle of 4.6°,
233

 whilst the Ni(II)-tachimpyr reported by Fleischer et al. showed an 
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arrangement around the metal centre halfway between trigonal prismatic and 

octahedral, with an average α = 32°.
234

 Fleischer et al. rationalised these findings by 

considering the different factors which can affect the geometry of the complex, most 

notably the rigidity of the ligand and the ligand-field stabilisation energies of the 

different metals.
234

 The rigidity of the ligand due to the presence of the imine bonds 

forces the complex in a trigonal prismatic conformation, which is the most suited to 

minimise the strain on the conformation. On the other hand, ligand-field stabilisation 

energies are greater for octahedral geometry than trigonal prismatic, and the greater 

the electronic stabilisation, the more the complex would tend towards an octahedral 

geometry. The balance between conformation strain and ligand-field energy gives the 

shape of the final complex, which, in the case of [18]Cl2, was a distorted trigonal 

prism. 

 

Crystals suitable for X-ray diffraction were also obtained for the Co(II)-tachpyr 

complex [19] from MeOH/Et2O layer. The crystal structure of the complex is shown in 

Figure 3.14. The hydrogen atoms of the amines were found by electron density 

difference maps.  

 

Figure 3.14: Structure (left) and ORTEP diagram (thermal ellipsoids at 50% probability level) 

of [Co(II)-tachpyr]CoCl4 [19]CoCl4. Hydrogen atoms omitted for clarity, except for amine 

hydrogen atoms.  
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As shown in Figure 3.14, the complex crystallised with an unexpected counter ion. The 

two positive charges due to the cobalt were balanced by a tetrachlorocobaltate anion, 

instead of the expected dichloride seen in the crystal structure of compound [18]. 

Differently from compound [18], the Co(II)-tachpyr complex adopts the Λ 

configuration in the solid state. 

 

The Co(II)-tachpyr complex shows a distorted octahedral geometry for the metal 

centre, with an average twist angle of 44.95°. The higher flexibility of the ligand due 

to the reduction of the imine double bonds decreases the strain on the structure. As a 

result, the complex tends towards a more octahedral geometry, which is the favoured 

by electronic factors. Table 3.1 and Table 3.2 show selected bond lengths and angles 

for the two cobalt complexes [18] and [19].  

Bond Bond length / Å 

 [18]Cl2∙2.5EtOH [19]CoCl4 

Co(1) - N(1) 2.099(2) 2.143(3) 

Co(1) - N(2) 2.138(2) 2.126(3) 

Co(1) - N(3) 2.111(2) 2.129(3) 

Co(1) - N(4) 2.187(2) 2.146(3) 

Co(1) - N(5) 2.197(2) 2.118(3) 

Co(1) - N(6) 2.196(2) 2.133(3) 

C(7) - N(1) 1.267(4) 1.471(5) 

C(13) - N(2) 1.269(4) 1.464(5) 

C(19) - N(3) 1.271(4) 1.475(5) 

Table 3.1: Selected bond lengths (Å) in Co(II)-tachimpyr [18] and Co(II)-tachpyr [19] 

complexes. 

 

 

 



  Chapter 3  

106 

 

Bond Bond angle / ° 

 [18]Cl2∙2.5EtOH [19]CoCl4 

N(1) – Co(1) – N(2) 83.09(9) 89.80(12) 

N(1) – Co(1) – N(3) 85.64(9) 89.31(12) 

N(3) – Co(1) – N(2) 83.08(9) 89.98(12) 

N(4) – Co(1) – N(5) 90.89(9) 93.98(12) 

N(4) – Co(1) – N(6) 93.47(9) 91.76(11) 

N(6) – Co(1) – N(5) 89.99(9) 98.52(11) 

N(1) – Co(1) – N(4) 76.58(9) 78.95(12) 

N(2) – Co(1) – N(5) 75.12(9) 79.48(12) 

N(3) – Co(1) – N(6) 76.10(9) 79.73(12) 

Table 3.2: Selected bond angles (°) in Co(II)-tachimpyr [18] and Co(II)-tachpyr [19] 

complexes. 

A literature search for the Co(II)-tachpyr complex shows that this compound was 

previously synthesised by Park et al.,
137

 although its crystal structure has not been 

previously reported. Several other tachpyr complexes with different metals have been 

analysed by X-ray crystallography in the past, which include Ga(III) and In(III),
232

 

Zn(II), Cd(II) and Hg(II),
235

 Cu(II),
236

 Ni(II) and Mn(II).
137

 The complexes have 

different geometries around the metal centre, highlighted by the twist angles shown in 

Table 3.3. 
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Metal complex Ionic radius
237-238

 / Å Twist angle / ° 

Mn(II)-tachpyr
137

 0.97 2.5(1) 

Co(II)-tachpyr 0.88 44.9 

Ni(II)-tachpyr
137

 0.83 45.5(2) 

Cu(II)-tachpyr
236

 0.87 - 

Zn(II)-tachpyr
235

 0.88 43.7(2) 

Cd(II)-tachpyr
235

 1.09 20.8(4) / 11.4(9) 

Hg(II)-tachpyr
235

 1.16 5(1) 

Ga(III)-tachpyr
232

 0.76 22.40 

In(III)-tachpyr
232

 0.94 18.23 

Table 3.3: Table of the twist angles in different complexes of tachpyr. The value for the 

Cu(II) complex was not reported in the literature, as well as some standard deviation values.  

As shown, the metal complexes of the first row transition metal prefer to adopt a 

distorted octahedral geometry over trigonal prismatic, with the Mn(II) complex being 

the only exception. Increasing the size of the metal from Zn(II) to Cd(II) to Hg(II), the 

complex moves from a distorted octahedral to more and more a trigonal prismatic 

geometry, in order to accommodate the bigger cation.
235

 A similar behaviour was 

shown by Hilfiker et al. for the Ga(III)- and In(III)-tachpyr complexes.
232

 

 

 

3.3 Synthesis and characterisation of ruthenium complex 

As briefly described in section 3.1.1, ruthenium has been extensively employed for the 

development of new anti-cancer compounds, with very promising results. The 

complexation of tachpyr [3b] with ruthenium to form the Ru(II)-complex was 

therefore explored, as shown in Figure 3.15. 
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Figure 3.15: Synthetic scheme for the formation of [Ru(II)-tachpyr]Cl2, [20]Cl2. 

The reaction was attempted in several different solvents and with several different 

methodologies because the complexation was quite difficult to achieve. 

 

When performed in methanol, the 
1
H NMR spectrum of the reaction showed the 

presence of different compounds, including [3b] starting material and several 

unknown by-products, with little Ru-complex in the reaction mixture. To try to drive 

the reaction towards the final complex, potassium hexafluorophosphate was added to 

tachpyr [3b] and RuCl2(DMSO)4 in ethanol to cause the precipitation of the desired 

ruthenium complex from the reaction mixture. A red precipitate was indeed formed 

during the reaction, but both ESI-MS and 
1
H MNR showed no evidence for the Ru(II)-

tachpyr complex. In particular, the 
1
H NMR did not exhibit the aromatic signals due to 

the pyridyl rings, suggesting that hydrolysis of the arms might have occurred during 

the reaction.   

 

Water was found to give better results when used as the solvent for the complexation 

reaction. The reaction was first done on a 5 mg scale in a sealed NMR tube using 

degassed deuterated solvent, in order to monitor the formation of the product by 
1
H 

NMR spectroscopy. Addition of the Ru(II) precursor to the colourless solution of 

tachpyr did not cause any change of colour at room temperature, but the reaction 

mixture turned to a dark orange colour upon heating. Leaving the reaction at reflux for 

a further 2 h led to a dark red/brown solution.  
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Figure 3.16: 
1
H NMR spectra of the reaction mixture of Ru(II)-tachpyr [20] after reaction in 

d4-MeOH (top) and D2O (bottom). 

Figure 3.16 shows the improvement in the reaction obtained by changing the solvent 

used for the reaction from deuterated methanol to D2O. Although still containing some 

unknown by-products, the reaction in D2O appeared to give more selective conversion. 

The presence of the Ru(II)-tachpyr complex could be easily determined by 
1
H NMR 

due to the appearance of two characteristic doublets at 4.47 and 4.24 ppm, belonging 

to the methylene protons bound to the amines, as also observed for other tachpyr 

complexes.
139-140, 232

 The CH2 protons of the ligand are diastereotopic and give rise to 

the two doublets (
2
J = 18.9 Hz), which is an indication of the rigidity of the complex 

on a NMR timescale. Although clear evidence for the presence of the complex was 

given by NMR spectroscopy, the charged complex or any other related peak could not 

be observed by ESI-MS, whilst the signals present in the mass spectrum were not 

identified.  

 

After assessing the procedure for the synthesis of complex [20] in a NMR tube, the 

reaction was scaled up, but unfortunately all attempts were unsuccessful. Several 

reaction conditions were tested, but no product could be isolated unless the reaction 

N-CH2-pyr 

MeOH 

Pyridyl 

DMSO 

H2O 
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was performed in a Young’s tap sealed NMR tube. Using a sealed vessel for the 

synthesis of the compound causes an increase in the pressure upon heating, with 

consequent increase in the boiling point of the solvent used for the reaction. For this 

reason, the synthesis of Ru(II)-tachpyr was attempted both in 1-butanol (b.p. = 117 °C) 

and in a sealed ampoule to reproduce the conditions used in the NMR tube, but in 

neither case the complex could be isolated. Increasing the reaction time also caused 

problems due to the hydrolysis of the pyridyl arms of the ligand. For all these reasons, 

Ru(II)-tachpyr could never be isolated pure and yields of reaction could not be 

determined. 

 

Several crystallisations methods were tried in the effort of isolating the complex, 

which led to single crystals suitable for X-ray diffraction. The crystals appeared from 

MeOH/Et2O layer as pink blocks and, surprisingly, solution and refinement of the 

structure showed that the crystal obtained did not belong to the expected Ru(II) 

complex, but to the Ru-dimer showed in Figure 3.17.  
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Figure 3.17: Structures (left) and ORTEP diagrams (thermal ellipsoids at 50% probability 

level) of Ru-dimers. Methanol solvent molecule and hydrogen atoms omitted for clarity, 

except for hydroxo and water hydrogen atoms.  

The crystal contained two different species, both of them containing two ruthenium 

atoms bound to three DMSO molecules and connected by three bridging atoms. The 

difference between the two complexes was found in the bridging groups between the 

two ruthenium centres, which gave rise to the diRu(II)-trihydroxo dimer 

[Ru2(OH)3(DMSO)6]Cl and the diRu(II)-dichlorido-hydroxo dimer 

[Ru2Cl2(OH)(DMSO)6]Cl. The relative occupancies for the two complexes were 0.77 
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and 0.23 for the Ru2(OH)3 and the Ru2Cl2(OH) dimer, respectively. The bridging 

groups had an influence in the arrangement of the chloride counter ion and the water 

molecule present in the crystal lattice. In the trihydroxo dimer (Figure 3.17, top), one 

of the hydroxyl groups forms a hydrogen bond with the chloride counter ion, which is 

in turn engaged in a hydrogen bond interaction with a water molecule. In the 

dichlorido dimer (Figure 3.17, bottom), instead, one of the chlorido ligands shows a 

hydrogen bond with a water molecule, which is also bound to the chloride counter ion 

through a hydrogen bond interaction. The hydrogen bond distances between the atoms 

were ranging between 3.19 and 3.24 Å, in agreement with what reported in literature 

for O-H∙∙∙Cl hydrogen bond interactions.
239-240

 

Bond Bond length / Å 

Ru(1) – Ru(2) 2.9588(4) 

Ru(1) – O(1) 2.080(3) 

Ru(1) – O(2) 2.099(16) 

Ru(1) – O(3) 2.100(9) 

Ru(2) – O(1) 2.072(3) 

Ru(2) – O(2) 2.108(17) 

Ru(2) – O(3) 2.072(9) 

Ru(1) – Cl(1) 2.35(2) 

Ru(1) – Cl(2) 2.394(10) 

Ru(2) – Cl(1) 2.34(2) 

Ru(2) – Cl(2) 2.407(11) 

Table 3.4: Selected bond lengths (Å) in the crystal structure of the Ru-dimers. 

The Ru–Ru distance was found in good agreement with the similar Ru(II)-dinuclear 

complex [Ru2(OH)3(η
6
-C6H6)2]Cl∙3H2O reported in the literature (Ru(1)-Ru(2) 

distance = 2.9812(7) Å)
241

 and is indicative of a metal-metal bond. Similarly, the Ru-O 

bond distances are in very close agreement with the reported values.
241

 For the Ru(II)-

dichlorido complex, a literature search did not show any related structures, therefore a 

comparison of bond angles could not be performed. 
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The presence of the Ru dimer in the reaction mixture might be one of the reasons for 

the difficulty in obtaining the Ru(II)-tachpyr complex, because the formation of the 

dimer would decrease the amount of ruthenium available for the complexation with 

tachpyr [3b]. 

 

After several attempts, the Ru(II)-tachpyr complex [20]Cl2 was crystallised from 

MeOH/Et2O diffusion as dark red blocks. The structure of the complex is shown in 

Figure 3.18. The hydrogen atoms bound to the amine groups were found by difference 

electron density maps. 

 

Figure 3.18: ORTEP diagram (thermal ellipsoids at 50% probability level) of [Ru(II)-

tachpyr]Cl2 [20]Cl2. Chloride counter ions and hydrogen atoms omitted for clarity, except for 

hydrogen atoms bound to amines. 

As clear from Figure 3.18, the structure presented disorder around one of the arms due 

to partial oxidation of ligand. In particular, one of the N - C bonds was always an 

imine bond (N(1) - C(7)), one bond was always a single bond (N(2) - C(13)), whilst 

the last N - C bond was present in the imine form in the 70.5% of the crystal and as an 

amine bond in the remaining 29.5% of the cases. Due to the mixed oxidation state of 

the ligand, any evaluation of the geometry around the metal centre would be affected 

by uncertainty, therefore the twist angles were not calculated. Partial oxidation of the 
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tri-amine bonds to Schiff base might be one of the causes of the difficulty of isolating 

the complex in good yields and high purity.   

 

 

3.4 In vitro evaluation 

A preliminary evaluation of the activity against cancer cells of compounds [18]Cl2, 

[20]Cl2 and the Ru-dimer was carried out against A549 human lung adenocarcinoma 

cells. As further discussed in section 4.2, the metal complexes presented in this chapter 

were made to, on one hand, exploit the cytotoxic activity of metals such as cobalt and 

ruthenium and, on the other hand, tune the cytotoxic action of tachpyr against cancer 

cells (cf. section 4.2). The tests were performed being aware that the purity of the 

compounds had not been proven by elemental analysis, therefore the results should be 

looked at only as indicative of a trend rather than to produce a value of activity. 

Co(II)-tachpyr [19] was not used for the tests due to the possible presence of the 

tetrachlorocobaltate counter ion, which is not suitable for cell cultures due to possible 

intrinsic toxicity. All compounds showed complete water and culture medium 

solubility up to mM concentrations, which is an essential requirement for cell tests. 

 

All tests were carried out following the procedure described in detail in Chapter 4. 

Briefly, A549 human adenocarcinoma cancer cells were plated at the seeding 

concentration of 1000 cells/well in a 96 well plate. The cells were incubated at 37°C, 

90% RH for 16 h, after which time a solution of the metal complex in medium was 

added to the wells. The cells were then incubated with the complex for 3 days and the 

cell viability was visualized using 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT).  

 

Surprisingly, no loss of viability was observed for any of the compounds up to 250 

µM (data not shown), implying, in the case of the Ru(II)-tachpyr complex, that not 

only did the metal not show toxicity, but it also stopped the action of the free ligand, 

which is reported to be cytotoxic (section 1.3).
133
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The ruthenium dimer was also inactive, although other Ru(II) and Ru(III) complex 

with sulfur-based ligands have been reported to have extremely high toxicity against 

cancer cells.
242-244

  

 

Due to their poor cytotoxic activity, the metal complexes were not developed further, 

whilst a detailed investigation of the activity of tachpyr and related molecules was 

carried out, as outlined in Chapter 4. 

 

 

3.5 Chapter conclusions 

The ligands tachimpyr [3a] and tachpyr [3b] were used for the complexation with 

Co(II) and Ru(II).  

 

Both cobalt complexes Co(II)-tachimpyr [18] and Co(II)-tachpyr [19] could be 

characterised by ESI-MS and their X-ray crystal structure obtained, although their 

purity could not be confirmed by elemental analysis. The crystal structures showed 

that the geometry of the complex is related to the ligand used for the complexation and 

changes from distorted trigonal prismatic in [18] to distorted octahedral in complex 

[19] due to the greater flexibility of the tachpyr ligand present in complex [19]. 

 

The complexation with Ru(II) proved to be challenging, and, although the Ru(II)-

tachpyr complex [20] could be characterised by NMR spectroscopy, no purity data 

was obtained. X-ray diffraction showed the unexpected presence of dinuclear Ru(II) 

species, which appeared to be relatively rare in the literature. The crystal structure of 

the Ru(II)-tachpyr complex was also obtained and showed partial oxidation of the 

ligand to the relative Schiff base. 

 

Preliminary evaluation of the cytotoxic effect of these compounds against cancer cells 

showed complete lack of activity, which suggested that a detailed investigation of the 

biological activity of tachpyr and its mechanism of action was needed. Given the poor 

cytotoxicity, these compounds were not pursued further. 
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4. Biological evaluation of tach-based compounds 

4.1 Introduction 

The biological evaluation of the activity of drug candidates is a crucial step in the 

assessment of potential hits for new compounds. Similarly, study of the possible 

mechanism of action of new or commercially available molecules can lead to 

structural modifications to improve binding to the cellular target(s) and, hence, 

improve the activity or decrease the side effects.  

 

The investigation of the mechanism of action of tachpyr [3b] is discussed in this 

chapter, with particular focus on the hypotheses developed during this evaluation. 

Furthermore, the in vitro assessment of the cytotoxic activity of the tach-based amines 

described in Chapter 2 is presented and analysed. The purity of all the compounds 

analysed in this chapter was confirmed by elemental analysis (± 0.4% deviation from 

the calculated values) prior to their use on cancer cells.  

 

4.1.1 In vitro evaluation of activity via MTT assay 

In order to evaluate the cytotoxic activity of the compounds described in Chapter 2, 

several in vitro tests have been carried out against A549 human adenocarcinoma and 

A2780 human ovarian cancer cell lines following the general procedure described by 

Torti et al.
133

 The tests were conducted via the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay.  

 

MTT is a widely used assay to evaluate cell viability.
245-246

 It exploits the change in 

solubility and absorbance of the tetrazolium salt (MTT) after reduction to formazan, as 

shown in Figure 4.1.  
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Figure 4.1: Schematic of the reduction of MTT bromide to formazan. 

This reduction happens in mitochondria in viable cells only, transforming the yellow 

water soluble MTT compound to the insoluble formazan product, which precipitates in 

the aqueous medium.
247

 The blue-purple formazan crystals can be dissolved using an 

organic solvent and the UV/Vis absorbance at 540 nm of the obtained solution 

measured. The intensity of the purple colour is related to the amount of formazan 

formed, therefore to the number of viable cells present in the well. The percentage of 

viable cells can therefore be determined from the value of the absorbance in 

comparison to the negative and positive controls and plotted against concentration of 

compound added as a logarithmic dose-response curve.  

 

Figure 4.2: Picture of a 96-well plate at the end of the MTT assay (left) and viability against 

concentration plot (right).  
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Figure 4.2 shows a picture of a 96-well plate after addition of MTT and dissolution of 

formazan in DMSO (on the left) and the obtained cell viability against concentration 

plot (on the right). One plate enables the testing of each concentration in octuplicate, 

from which the standard deviation for each measurements is calculated. A sigmoidal 

line can be fitted to the data and the IC50 value estimated as the concentration which 

gives 50% loss of cell viability. Two controls are always added to the plates: the 

positive control, which consisted in medium only to reference as 0% viability; and the 

negative control, which contained cells, but no compound, to have a reference for 

100% viability. As a control for activity (positive control), cisplatin, well known for its 

anti-tumour activity, was used against the cells. As a control of reproducibility of the 

tests on different batches of cells, tachpyr was tested at least once on every batch, to 

ensure that the resulting cytotoxicity was consistent across the experiments. 

 

Due to the inherit characteristics of non-cancerous cells, the first stages of 

development of new anti-cancer compounds are generally carried out on immortalised 

(cancerous or non-cancerous) cells, which are robust, have a fast growth and can be 

kept in culture for long periods of time. For this reason, and in common with this 

accepted approach, the compounds described in this thesis were also tested against 

cancer cells. Compounds [3b] and [11b] were also tested against a non-cancerous 

immortalised cell line.  

 

Every compound presented in this chapter was tested in at least triplicate and the 

different IC50 values obtained with their standard deviations were combined according 

to the formula reported by Lyons
248

 and shown in Equation 4.1. An average value 

expressed as (a ± σ), where a is the average IC50 value and σ is the average standard 

deviation on the measure, was obtained. The IC50 values and the corresponding 

standard deviations derived from the fitted sigmoid of the plates are expressed as ai 

and σi. 
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Equation 4.1: Average IC50 and standard deviation values calculated from plate replicates. 

 

4.1.1.1 General procedure for MTT assays 

A detailed method description for the MTT assay can be found in Chapter 6. As a 

general overview, the general procedure for all in vitro tests discussed in the chapter 

consisted of adding the cells to a 96-well plate in appropriate seeding density and 

incubating them for 18 h before addition of a solution of compound in medium. When 

the tested compound was not freely soluble in culture medium, DMSO was added to 

dissolve the molecule and the solution was then diluted with medium; all the tachben 

derivatives (compounds [10b]-[15b]) required DMSO to be dissolved in medium. 4-

Br-tachben [14b] was insoluble in medium even when DMSO was present, therefore it 

was not tested. The concentration of DMSO added to the wells containing the cells 

was never higher than 1% and in these cases DMSO was also added to the controls. 

DMSO did not cause detectable loss of cell viability at these concentrations. The 

solution of tested compound was filtered to be sterilised, added at different 

concentrations to the wells and left with the cells for 72 h. Cell viability was then 

evaluated by MTT assay and the cytotoxicity of the compound against the particular 

cell line was expressed as IC50 value, standardised to the positive and negative 

controls.  

  

4.1.2 DNA and correlated techniques 

Deoxyribonucleic acid (DNA) is the molecule in which the inherited genetic 

information of every cell of every living organism is encoded. DNA, whose double 

helical structure was firstly deduced by Watson and Crick in 1953, is made by four 

nucleobases, shown in Figure 4.3, and 2-deoxyribose monosaccharide units alternated 

with phosphate groups, which form the negative backbone of the DNA strand.
77
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Figure 4.3: Nucleobases found in DNA. 

The nucleobases are divided in purines, adenine (A) and guanine (G), and pyrimidines, 

thymine (T) and cytosine (C). The bases can interact with each other through hydrogen 

bond interactions and, in particular, the A-T pair is bound by two hydrogen bonds, 

while the G-C pair has three. This interaction is a fundamental characteristic of the 

double helix found in the DNA.
77

 The sequence of DNA is usually reported following 

the 5’ → 3’ direction, according to the numbering of the monosaccharide unit, as 

shown in Figure 4.4. 
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Figure 4.4: Example of a DNA dinucleotide.  

The DNA double helix can assume different conformations, called polymorphs,  as 

shown in Figure 4.5. 

 

Figure 4.5: B-, A- and Z- form of DNA double helix. The arrows represent the 5’ → 3’ 

direction. Image adapted from Lodish et al.
249
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The B-DNA is the classic, right-handed Watson and Crick’s double helix, 

characterised by 3.4 Å rise per base pair and 10.1 base pairs per turn of the helix. 

When the hydration state of the DNA is reduced, the A-form of the DNA can be 

observed. This structure still shows a right-handed turn, but now the rise-per-base is of 

only 2.3 Å and every turn of the helix contains 11 base pairs. The Z-DNA form has 

been reported in the literature for short oligonucleotides and often in conditions of 

high salt concentration. The Z-DNA conformation presents a left-handed turn, with 12 

base pairs per turn of the helix and a rise per base pair of 3.8 Å.
77

 The biological 

function of the different forms of DNA is not completely clear, especially for the Z-

DNA. This form is so different from the B-DNA that it is usually not recognised by 

DNA-binding proteins, although it has been reported that a RNA editing enzyme was 

able to specifically bind Z-DNA,
250

 opening up the possibility that this polymorph of 

the DNA might have some biological functions. Several other alternative structures of 

DNA have been characterised and their biological functions explored,
251-253

 but they 

are not going to be the main focus of this discussion.  

 

The interest in DNA and its interaction with different molecules has increased in the 

last years in the continuous effort to find compounds able to regulate gene 

expression.
254

 Among the various techniques employed for the study, circular and 

linear dichroism offer a facile procedure to study nucleic acids and their interaction 

with other molecules.
255

 Both techniques are based on the interaction between DNA 

and polarised light. Circular dichroism (CD) exploits the difference absorption of left- 

and right-handed circularly-polarised light by chiral molecules.
256

 For this reason, 

circular dichroism is highly suited for DNA. The double helix of the DNA is a source 

of very high asymmetry and gives therefore very intense CD spectra.
256

 The CD 

spectra of DNA are usually recorded in the UV/Vis range and this technique is very 

sensitive to conformational changes in the DNA structure, and for this reason it is 

often used to study modifications of the secondary structure of DNA.
257-259

 As an 

example, the left-handed Z-DNA was observed for the first time during CD 

experiments.
260

 Linear dichroism (LD), on the other hand, exploits the difference in 

absorption of parallel and perpendicular polarised light by oriented molecules. 

Electronic transitions in isolated molecules usually happen in a particular direction, 
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but when the molecules are in solution, their random arrangement in the solvent causes 

the absorption to be the same regardless of the direction of the light. If the molecules 

are mostly oriented in a particular direction, however, the absorption will change 

according to the direction of the incident light beam.
256, 261

 For this reason, LD is very 

suited for molecules that can be easily oriented, like fibres or long polymers, which 

can be oriented using a flow apparatus, or polymeric electrolytes, which can be 

oriented with an electric field.
256

 If the binding of molecules to the DNA affects its 

orientation, a change in the absorption of the light is obtained and, hence, also a 

change in the LD spectrum is visible. For these reasons, linear dichroism is often used, 

together with circular dichroism, to study the interaction between DNA and other 

molecules.
262-263

 An extensive review on this technique and its use in the study of 

nucleic acids has been published by Nordén et al..
264

  

  

  

4.2 In vitro evaluation of tachpyr and Fe assays 

The cytotoxicity of tachpyr [3b] was evaluated via MTT assay against A549 human 

adenocarcinoma and A2780 human ovarian cancer cell lines in order to compare the 

activity against these two cell lines with the results reported in the literature (IC50 = 4.6 

± 2.0 µM).
133

  

 

The effect of tachpyr on cells was very noticeable when cells were observed with a 

microscope. Addition of [3b] to the cell culture caused a complete change in the 

appearance of the cells, as shown in Figure 4.6. The cells became small, dark masses 

and their number decreased clearly upon addition of tachpyr. The loss of viability was 

usually clear after 20-24 h from addition. 
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Figure 4.6: Pictures of cells before and after addition of tachpyr [3b] and 72 h incubation. 

Top, A549 lung cells before (left) and after (right) addition. Bottom, A2780 ovarian cells 

before (left) and after (right) addition. 

 

The MTT tests were performed according to the protocol described in section 4.1.1.1 

and Chapter 6 and repeated in triplicate on both cell lines, resulting in an average IC50 

value of 4.99 ± 0.02 μM against A549 and 4.01 ± 0.03 μM against A2780 cells, in line 

with the reported value of 4.6 ± 2.0 μM, obtained against MBT2 mouse bladder 

tumour cells.
133

 Figure 4.7 shows an example of IC50 plots of tachpyr against the two 

cell lines. 
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Figure 4.7: IC50 graphs of tachpyr [3b] against A549 (left) and A2780 (right) cells. 

The in vitro tests of tachpyr against cancer cells highlighted a distinctive property of 

this compound. The profile of the fitted sigmoidal line was shown to be sharp, going 

from 100% to 0% cell viability within a small concentration range (2-3 μM). The 

steepness of the sigmoid can be expressed by the value of the power (p), which can be 

obtained from the equation of the fitted sigmoid, shown in Equation 4.2. The higher 

the value of p, the sharper the sigmoid is. 

   
   

   
 

    
 
   

Equation 4.2: Equation of the fitted sigmoidal line. 

A profile like the one shown in Figure 4.2 is not ideal for a candidate compound to 

therapy, because the therapeutical concentration is restricted to a very small range. 

This implies that the toxic dose can be too close to the active dose needed, which 

would make the compound dangerous to use. Similar cases are very rare in therapy, 

with probably the only main exception represented by digoxin, which can illustrate 

how the measure of p is used. Digoxin is a compound used to treat various heart 

conditions, the therapeutic range of which is 0.8-1.9 ng/mL.
265

 A small therapeutic 

range is accepted for therapy only if the advantages derived from the use of that 

molecule overcome the risks of toxicity, as in the case of digoxin. 

 

To compare the activity of tachpyr (and the other tach-based compounds) to 

commercial anti-cancer drugs, cis-diaminodichloroplatinum, cisplatin, was used as a 
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reference for activity against these cell lines. Cisplatin was tested in the same 

experimental conditions employed for the tach-derivatives and an example of viability 

plot is shown in Figure 4.8.  

 

Figure 4.8: Structure of cisplatin (left) and its IC50 plot against A549 cells (right). 

The viability plot of cisplatin shows clearly the difference in the shape of the sigmoid 

compared to tachpyr. IC50 values and p values for tachpyr and cisplatin against the two 

cells lines are reported in Table 4.1.  

 

Compound 

A549 A2780 

IC50 /μM p IC50 /μM p 

Tachpyr [3b] 4.99 ± 0.02 29.9 ± 1.9 4.01 ± 0.03 39.4 ± 2.4 

Cisplatin 2.85 ± 0.24 1.3 ± 0.1 0.40 ± 0.01 1.0 ± 0.1 

Table 4.1: Table of IC50 and power values for tachpyr [3b] and cisplatin. 

It should be noted that possible activation processes of cisplatin (cf. section 3.1) might 

play a role in the resulting cytotoxicity profile. Nevertheless, cisplatin shows a better 

activity profile against the cancer cells than tachpyr, with a shallow profile of the 

dose-response curve. It has to be noticed that the value of p is not necessarily related 

to the range of adverse side effects shown by a compound, but it is merely an 

indication of the possible safety range related to a molecule. Furthermore, in vivo 

absorption processes and interaction with plasma proteins can greatly alter the 

pharmacokinetics of a molecule. For this reason, the value of p is usually not reported 

in the literature, so no comparisons can be done with other anti-cancer compounds. 
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Improving the activity profile of tachpyr was one of the challenges of the project and 

for this reason the metal complexes presented in Chapter 3 were made and tested. The 

hypothesis was that addition of a metal to the free ligand would, on one hand, add a 

dissociation step to the cytotoxic mechanism, possibly slowing down and tuning the 

activity of the free ligand and, on the other hand, addition of a toxic metal could 

improve the overall activity against cancer cells. As reported in section 3.4, metal 

complexes of tachpyr surprisingly did not show significant cytotoxicity, therefore 

more detailed investigation of the mechanism of action was performed. As described 

in Chapter 1, the reported mechanism of action
133-136

 for tachpyr involves iron 

chelation and apoptosis resulting from iron deprivation, therefore the starting point for 

a further investigation was a study of how the activity profile of tachpyr changed upon 

addition of different concentrations of iron.  

 

A series of experiments was therefore designed to further investigate the possible 

interaction between tachpyr and iron in solution. Iron(II) sulfate heptahydrate was 

added to the plate where cells were incubated and the IC50 of tachpyr evaluated by 

MTT assay. The main purpose of the experiments was to evaluate how the shape of 

the sigmoidal curve and the IC50 value changed depending on the concentration of iron 

added to the wells. Each plate had two negative controls: cells with added iron 

solution, but no compound; and cells with no iron and no compound, to monitor any 

possible effect of iron itself on cell growth. The medium enriched with iron was used 

to suspend the cells or added to the plate at different times of the assay; the 

concentration of iron added to the cells was either 47 μM, 94 μM, 188 μM or 377 μM. 

The Fe-enriched medium was sterile-filtered prior of use on the cells and the final 

concentration of Fe in the culture medium was confirmed by atomic absorption 

spectroscopy (AAS).    

 

Furthermore, to evaluate if the moment of addition of iron had an influence on the 

result, the metal ion was added at different stages of the assay:  

 with the cell suspension on day 1 of the assay;  

 with tachpyr on day 2, either pre-incubating the solutions of iron and tachpyr 

together before adding the mixture to the cells or adding the Fe solution first, 
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followed by tachpyr;  

 8 h after addition of tachpyr to the cells.  

The experiment reported by Zhao et al.
134

 was also repeated: cells were plated in 

medium enriched with 200 μM Fe for 24 h, then the medium was removed, the 

cells were washed with phosphate buffer saline (PBS) and tachpyr was added in Fe-

free medium. Detailed methods can be found in Chapter 6 and all IC50 values are 

reported in the Appendix. Examples of IC50 plots and a table of illustrative 

experiments are shown in Figure 4.9, Table 4.2 and Table 4.3.  

 

Figure 4.9: Cell viability plots of tachpyr [3b] in the presence of 189 μM of iron against A549 

(left) and A2780 (right) cells. The graphs are referred to addition of Fe on day 2 of the assay 

followed by tachpyr. In the box, the value of viability of the negative control with Fe. 

Iron concentration / μM IC50 / μM - A549 IC50 / μM - A2780 

0  4.99 ± 0.02 4.01 ± 0.02 

47  5.59 ± 0.15 4.40 ± 0.02 

94  5.28 ± 0.14 4.18 ± 0.12 

189  6.46 ± 0.15 4.50 ± 0.02 

377 7.27 ± 0.34 5.26 ± 0.14 

Table 4.2: Selected IC50 values of tachpyr [3b] against A549 and A2780 cells in the presence 

of increasing concentrations of iron. The values are referred to addition of Fe with tachpyr on 

day 2 of the experiment.  
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Moment of Fe addition IC50 / μM - A549 IC50 / μM - A2780 

day 1  5.02 ± 0.09 2.98 ± 0.07 

day 2, Fe first-then [3b] 6.03 ± 0.15 4.35 ± 0.08 

day 2, Fe incubated with [3b] 6.46 ± 0.15 4.50 ± 0.02 

day 2, 8 h after [3b] 5.27 ± 0.16 2.03 ± 0.17 

Table 4.3: Selected IC50 values of tachpyr [3b] against A549 and A2780 cells in the presence 

of iron 189 µM added at different times of the assay.  

In all cases, the activity profile and IC50 values of tachpyr were not or very little 

affected by the concentration of iron in the plate and the time of addition of the metal. 

The presence of iron did not generally affect the cell viability in the controls; a partial 

loss of viability could be observed only when the iron enriched medium was used to 

plate the cells on day 1 of the assay. Figure 4.9 shows that the shape of the fitted 

sigmoidal line is not affected by the presence of iron if compared to the experiment 

with no iron in the culture medium (cf. Figure 4.7). In the same way, the IC50 values 

of tachpyr against the two cell lines show only a very small change upon increasing 

concentrations of iron or time of addition of the metal, Table 4.2 and Table 4.3. The 

change in IC50 can be plotted against the concentration of Fe added to the cells to give 

the graph shown in Figure 4.10. 

 

Figure 4.10: IC50 values of tachpyr [3b] against Fe concentration. The data refers to the 

addition of Fe with tachpyr on day 2 of the experiment.  
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As shown above, the change in IC50 value follows the increase in iron concentration 

and a line can be fitted for the two sets of data, with R
2
 values of 0.59 and 0.90 for 

A549 and A2780 data, respectively. However, the IC50 values increased by a 

maximum of 3 µM, which is almost negligible if considered that the Fe concentration 

ramped from 0 to 400 µM and that the lowest concentration of iron is about five times 

higher than the highest concentration of tachpyr. 

 

The results obtained from the other experiments, in which iron was added at different 

moments of the assay, are very similar to what is reported above. Also the repetition of 

the experiment reported by Zhao et al.
134

 gave completely different results from those 

published in the original paper, with no loss of activity detected for compound [3b] 

when Fe was added. These results show that pre-treatment with iron, as well as 

presence of iron in the extracellular medium, is not able to inhibit the cytotoxic 

activity of tachpyr [3b]. The results are even more surprising if it is considered that 

complexation between iron and [3b] is essentially instantaneous: addition of Fe(II) to a 

solution of tachpyr shows an immediate change of colour from colourless to a dark 

red, sign of successful formation of the metal complex, as also reported by Park et 

al.
135

 Also complexation with Fe(III) causes an immediate change of colour of the 

colourless tachpyr solution to a dark emerald green. Therefore, a change in the IC50 

value was expected at least when iron and tachpyr were pre-incubated together before 

addition to the cells if iron was involved in the mechanism of action. This result is 

clearly in contrast with that reported in the literature,
133-136

 but the data in our hands 

seem to suggest that the extracellular concentration of iron does not play any particular 

role on the activity of tachpyr and that chelation is unlikely to be the only mechanism 

of action. The reasons for the difference in the experimental results compared to those 

reported by Zhao et al. against SUM149 breast cancer cells
134

 are not clear, but the 

experiments reported in this chapter were repeated several times and no change in the 

activity of tachpyr was ever observed. 

 

If the concentration of iron is the limiting factor in the growth of cells, then on 

increasing the concentration of iron in solution a change in either the IC50 value or the 

slope of the sigmoid would have been expected in the case of complexation between 
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tachpyr and the metal ion. However, very little difference can be observed. The 

intracellular concentration of iron is well controlled by cells,
266

 therefore addition of 

iron to the cell culture medium does not affect the amount of iron present in the cells. 

However, the extra-iron added to the medium should prevent cell death due to iron 

deprivation, either binding tachpyr before entering the cells or re-supplying the cells 

with the iron sequestered by the ligand. The cytotoxic activity of tachpyr should hence 

be completely suppressed in these conditions, especially considering that iron is in 

great excess. As compound [3b] keeps its activity, chelation can be considered not 

important  for cytotoxicity. 

 

These experiments therefore placed doubts on the reported mechanism of action of 

compound [3b]. Further investigation was needed to evaluate different possible 

cellular targets as a better understanding of the mechanism of action is a main 

requirement to improve the activity and the selectivity towards cancer cells. 

 

 

4.3 Evaluation of the mechanism of action of tachpyr 

In the light of the previous results, showing that tachpyr does not inhibit tumour cells 

growth by iron sequestration, it was decided to investigate other modes of action. The 

possible targets for tachpyr inside the cells can vary from enzymes to DNA to various 

kind of proteins, without considering possible disruption of cell pathways.  

 

In the first instance, analysis of the structure of tachpyr gave some clues as to the 

feasible targets. Some important features of this compound need to be highlighted: 

first of all, the planar, yet still quite flexible, structure of compound [3b]. The tach 

moiety and the free rotation of the pyridine arms around the amine bond gives a few 

degrees of flexibility for possible binding to biomolecules. In addition, the presence of 

the planar aromatic rings as N-substituents on the tach moiety is optimal for possible 

π-stacking interactions with other aromatic rings of amino acids in proteins or 

intercalation to DNA nucleotides. Another important structural characteristic of 

tachpyr is the presence of the nitrogen atoms of the tach moiety, which, due to their 
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basic nature (pKa of secondary ammonium ion = 10 - 11),
267

 will be protonated in 

biological conditions. The cation so formed can interact with negatively charged 

molecules inside the cells, making negatively charged phosphate within the backbone 

of DNA and other ribonucleic acids a possible target.  

 

Whilst the pyridine nitrogen atoms are unlikely to be protonated at pH 7 (pKa of 

pyridium = 5.2),
267

 the tach amines give tachpyr three possible sites of protonation, 

making the molecule structurally quite similar to the natural polyamines, shown in  

Figure 4.11.  

 

Figure 4.11: Natural polyamines. 

It is well established that natural polyamines play a very important role in the cell 

cycle and they are able to interact and stabilise DNA,
268

 with the binding getting 

stronger with the number of amine groups.
269

 The metabolism of the natural 

polyamines is highly controlled and is regulated by several feedback mechanisms, and 

if, for any reason, the natural polyamine concentration in cells is too low, apoptosis 

occurs within a few cell cycles.
268, 270-271

 Natural polyamines seem to play also a role 

in cancer growth
272-273

 and for this reason their metabolic pathway has been considered 

as a possible target for cancer treatment.
274

 Some spermine derivatives are already 

reported in the literature as potential anti-cancer agents interfering with the 

metabolism of the natural polyamine.
275-276

 The molecules shown in Figure 4.12, for 

example, are cytotoxic against cancer cell in the range of 1-10 μM.
274
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Figure 4.12: Examples of cytotoxic spermine derivatives.
274

 

The mechanism of action of spermine-like derivatives seems to involve depletion of 

the natural polyamine pool. These synthetic derivatives up-regulate all biochemical 

pathways involving spermine, inhibiting its synthesis and uptake and accelerating its 

catabolism. They can be recognised as spermine by the cell, but they cannot achieve 

the same biological functions that spermine has, leading to apoptosis.
268

 

 

One of the hypothesis considered evaluating the potential sites of interaction of 

tachpyr was therefore the possibility that [3b] could interfere with the polyamine 

metabolism acting as a spermine mimic, inhibiting the polyamine cycle and/or 

interacting with the phosphate groups of the DNA, leading to cell apoptosis.  

 

For these reasons, the hypothesis that DNA could be the target of the action was 

investigated and DNA was used for the preliminary study of the mechanism of action 

of compound [3b]. 

 

4.3.1 Interaction with DNA 

The first step in the investigation of the mechanism of action of tachpyr was to 

establish if it could bind to DNA. Various techniques were employed, with particular 

focus on circular and linear dichroism.  

 

Circular dichroism (CD) was used to evaluate the effect of tachpyr on the structure of 

DNA. A titration was performed adding increasing amounts of the test compound to a 

buffered solution of calf thymus (ct)-DNA at a constant concentration of 300 μM bp 

(bp = base pair). As a control, tach [2], inactive against A549 and A2780 cells (IC50 > 
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250 μM, see section 4.3.2), was also tested, in order to compare the results from the 

cytotoxic compound [3b] with the non-cytotoxic compound [2]. The CD spectra of the 

titrations are shown in Figure 4.13. 

 

Figure 4.13: Plots of CD titrations of ct-DNA with tachpyr [3b] (top) and tach [2] (bottom). 

As evident from Figure 4.13, the CD spectra did not show changes for either 

compound across the range of concentration tested. This result indicates that tachpyr 

and tach do not interfere with the secondary structure of DNA, unwinding or 

disrupting the double helix.  

 

Different results were obtained by linear dichroism (LD), again using ct-DNA at a 

constant concentration of 300 μM bp and titrating with either tachpyr or tach. This 
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time, a change in the spectra was recorded for both compounds (Figure 4.14), in 

particular for tachpyr.  

 

Figure 4.14: Plots of LD titrations of ct-DNA with tachpyr [3b] (top) and tach [2] (bottom). 

The arrows exemplify the direction and relative intensity of the LD change (e.g. arrow up 

shows a positive change in the LD absorbance).  

The change in the LD spectra is due to a loss of orientation, consistent with the DNA 

losing linearity on interaction with the compound. Although both compounds showed 

the ability to interact with DNA, the cytotoxic tachpyr gave a greater shift in the 

recorded LD signals. In particular, it is possible to observe two different interactions, 

as outlined by plotting the LD absorbance against concentration or LD absorbance 

against the ratio DNA/compound (Figure 4.15).  
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Figure 4.15: Plots of LD absorbance against concentration (left) or DNA/compound ratio 

(right) for tachpyr [3b] and tach [2]. In the box, the absorbance of DNA alone.  

The plots show clearly that the effect of tachpyr is greater than the change caused by 

tach. The graphs shown in Figure 4.15 are complementary and, observing the plot of 

the absorbance against DNA/compound ratio, it is possible to notice that both 

compounds gave the maximum change when they were in a 8:1 ratio with DNA. After 

that point, tach shows just a small change, while tachpyr presumably starts a second 

kind of interaction which reverses the effect on the LD spectrum. What is evident from 

the LD experiments is that these molecules are able to interact with DNA and disrupt 

the linearity of the double helix, but not its helicity. Spermine was shown to cause a 

change in the LD spectrum of DNA, although the effect did not reverse upon further 

addition of spermine.
277

 The spermine derivative shown in Figure 4.16, instead, gave 

LD spectra similar to those observed for tachpyr, with a change in the direction of the 

LD signal at high concentration of spermine derivative,
277

 similar to what happened 

during the titration with compound [3b].  

 

Figure 4.16: Structure of the spermine derivative anthracene-9-carbonyl-N’-spermine.  
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LD experiments gave evidence that tachpyr might potentially work as a spermine-

mimic, binding to the DNA and causing apoptosis. The structure of [3b] has a main 

difference if compared to spermine, which is due to the presence of the aromatic rings. 

From a structural point of view, tachpyr presents several similarities with the 

anthracene derivative shown in Figure 4.16, which was found to be a groove binder 

rather than an intercalator,
277

 despite the presence of the flat aromatic anthracene 

moiety. However, for tachpyr, the possibility that a spermine-like kind of binding 

directs the compound to the DNA, where intercalation of the pyridine rings to the base 

pairs might happen, could not be excluded. In order to gain some information about 

this hypothesis, an ethidium bromide displacement titration was performed.  

 

Figure 4.17: Ethidium bromide. 

Ethidium bromide displacement is often used to evaluate possible intercalating 

agents,
70, 278-279

 exploiting the change of fluorescence when ethidium bromide (Figure 

4.17) is displaced from its binding with DNA. The fluorescence of ethidium bromide 

in solution is quenched by the interaction with the solvent, but this compound shows 

strong fluorescence in the presence of DNA due to the intercalation of the molecule 

between base pairs. In the presence of other intercalating agents able to displace the 

molecule from its binding sites with DNA, fluorescence is quenched and a decrease in 

the maximum of emission can be measured.
71, 280-281

 Ethidium bromide was added to 

ct-DNA and the fluorescence measured before starting the titration. Tachpyr [3b] or 

tach [2] were added up to a 1:1 ratio with ethidium bromide, whilst the concentrations 

of ethidium bromide and DNA were kept constant during the titration at 15 μM and 12 

μM, respectively. The experiments did not show any change in the fluorescent 
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emission of ethidium bromide for either compound. This result is not surprising for 

compound [2], which does not possess aromatic rings, while it suggests that tachpyr is 

not an intercalating agent, that its binding constant is lower than that of ethidium 

bromide, or that the binding of tachpyr does not affect the binding of ethidium 

bromide. The first option would support a spermine-like binding to the DNA and also 

the results of the CD experiments, because intercalation causes major changes in the 

CD spectra, while backbone and groove binding is typically not visualised by CD.
282

  

 

Agarose gel electrophoresis was carried out on compounds [3b] and [2] mixed with 

pBR-322 circular plasmid DNA, to evaluate a possible change in the coiling of the 

DNA double helix. Tachpyr or tach were incubated with pBR-322 plasmid DNA for 3 

h at 37 °C at different DNA/compound ratios. The solutions were then analysed using 

gel electrophoresis and the results visualised with ethidium bromide, as shown in 

Figure 4.18. 

 

Figure 4.18: Agarose gel of tachpyr [3b] and plasmid DNA. Controls contained DNA only. 

The numbers refer to the DNA/tachpyr ratio. 

Development of the agarose gel did not show change in the supercoiled/relaxed ratio 

of the DNA compared to the controls for either compound, which is indicative that 

[3b] and [2] did not affect the coiling of the circular plasmid in the experimental 

conditions used. The results support the hypothesis of a mechanism of action which 

does not involve intercalation, because increase in the supercoiling of plasmid DNA is 

not shown. 

relaxed 

supercoiled 
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4.3.2 Structural modifications 

Another method to gain information about the mechanism of action of a compound is 

to modify its structure and evaluate structure-activity relationships (SARs), and so to 

highlight which are the principal pharmacophores of the molecule. For this reason, the 

structure of tachpyr [3b] was modified and the compounds presented in Chapter 2 

were made and tested using MTT assay.  

 

Firstly, the pyridyl rings of compound [3b] were substituted with different 

heterocycles to evaluate the role of the heteroatom (section 2.4); for the same reason, 

the salicylaldehyde derivatives were prepared (section 2.5). The nitrogen atom of the 

pyridine ring of [3b] was then completely eliminated in the tachben series (section 

2.6). Finally, mono-N-substituted compounds were made (section 2.7) and a 

preliminary evaluation of their activity was performed and compared to the three-

armed derivatives. A scheme of the structural modifications made on the tach moiety 

is shown in Figure 4.19.   

 

Figure 4.19: Scheme of the structural modifications of the tachpyr ligand. 
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The activity of tach [2] was also evaluated, both to have information about the 

cytotoxicity of the non-substituted molecule and as a control of starting material. 

Similarly, pyridine-2-carboxaldehyde and furfural were evaluated for activity as 

negative controls, to ensure that the toxicity shown by the N-substituted derivatives 

was not due to the parental aldehyde after hydrolysis in the cells.  

 

Unfortunately, the saltach derivatives [6b]–[9b] (section 2.5) were completely 

insoluble in culture medium, even in the presence of 1% DMSO, therefore they could 

not be tested for activity. The lack of solubility of these compounds could be due to 

the intramolecular hydrogen bond between the tach amines and the OH group of the 

aromatic ring, highlighted in the crystal structures of these derivatives (section 2.5.2). 

In an attempt to increase the water solubility of these compounds and so to evaluate 

their cytotoxic effect, the HCl salt of compound [7b], 5-Cl-saltach, was made, as 

described in section 2.5.2. Compound [7b]HCl showed complete water solubility up 

to mM concentration, but it was very poorly soluble in the buffered medium used for 

the biological tests. The concentration of [7b]HCl in phosphate buffer saline (PBS) 

solution was evaluated by UV/Vis absorption. [7b]HCl was dissolved in water at 

different concentrations and the UV/Vis spectra recorded and used to determine the 

value of the molar extinction coefficients (ε = 21077 dm
3
∙mol

-1
∙cm

-1
 for maximum at 

228 nm, ε = 8168 dm
3
∙mol

-1
∙cm

-1
 for maximum at 286 nm). PBS was then added to 5-

Cl-saltach∙3HCl and the mixture was left for 16 h, after which time it was filtered to 

eliminate the undissolved [7b]HCl. The UV/Vis spectrum of the obtained solution was 

measured, from which it was possible to calculate the concentration of tach-derivative 

in PBS. To do so the molar extinction coefficients calculated from water were used as 

a first approximation, although we were aware that the change of pH could have an 

impact on them. The concentration of [7b]HCl in PBS was found to be 11 µM, 

therefore very low, especially considering that, due to the MTT protocol, the 

concentration of compound in solution is halved upon addition to the cells, hence the 

highest concentration added to the cells could not exceed 5.5 µM. However, 

compound [7b]HCl was tested against A549 cells, but it was found to be completely 

inactive at such concentration. For this reason, the saltach derivatives were not further 

developed.  



  Chapter 4  

142 

 

Except for the saltach derivatives, all the amines presented in Chapter 2 were tested 

in triplicate against A549 and A2780 cells and the results are reported in Table 4.4. 

The mono-armed derivatives were tested only on one plate against A549 cells due to 

very low yields obtained from the reaction (section 2.7). 

Compound IC50 / μM - A549 IC50 / μM - A2780 

Cisplatin  2.85 ± 0.24 0.40 ± 0.01 

Tach [2] > 250 > 250 

Tachpyr [3b] 4.99 ± 0.02 4.01 ± 0.03 

Tachprl [4b] 188.2 ± 21.4 147.7 ± 7.1 

Tachfur [5b] 34.6 ± 2.6 85.2 ± 1.0 

Tachben [10b] 6.65 ± 0.21 3.03 ± 0.10 

4-NMe2-tachben [11b] 1.03 ± 0.03 1.24 ± 0.02 

4-OMe-tachben [12b] 2.07 ± 0.08 1.72 ± 0.03 

4-F-tachben [13b] 3.49 ± 0.06 2.62 ± 0.04 

4-CF3-tachben [15b] 2.42 ± 0.09 6.06 ± 0.07 

Tachmonoben [16] 73.1 ± 6.4 - 

Tachmonocyc [17] 86.9 ± 11.8 - 

Pyridine-2-carboxaldehyde 108.9 ± 13.1 69.0 ± 3.2 

Furfural > 250 > 250 

Table 4.4: IC50 values for all the compounds tested against A459 and A2780 cells. Values are 

reported as average of three triplicate tests with their standard deviation. Refer to fold-in page. 

Comparisons between the two cell lines cannot be drawn because different cell lines 

might have different interactions with the same compound (e.g. absorption, membrane 

proteins, etc.) which would cause a difference in the final IC50 value. General trends in 

the IC50 values for all compounds, however, can give some insights on possible 

structure-activity relationships in the series. Tach [2] is completely inactive against 

cancer cells, but the lack of activity might be due to the inability of compound [2] to 

cross the cell membrane due to its very polar nature. As a control experiment, the 

water soluble aldehydes pyridine-2-carboxaldehyde and furfural were tested to assess 
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if they were responsible for the cytotoxic activity after possible hydrolysis of the tach-

compound inside the cells, but these were all shown to be inactive. This indicates that 

the cytotoxicity is probably not due to the singular components of the compounds, but 

the overall molecule (tach and arms) is the active pharmacophore. Pyridine-2-

carboxaldehyde showed mild toxicity, but the IC50 value is a lot higher than that of 

tachpyr to consider the aldehyde as the only responsible for activity.  

 

4.3.2.1 Heterocyclic derivatives 

The heterocyclic compounds, tachprl and tachfur, showed very low activity against the 

cells, with tachprl [4b] being almost completely inactive. The change from the basic 

nitrogen atoms of the pyridine rings in tachpyr (pKa of pyridinium ion = 5.2)
267

 to the 

acidic pyrrole nitrogen atoms of tachprl (pKa pyrrolium ion = -3.8)
267

 causes a 

complete loss of activity, which might be due to a different interaction of these two 

groups with the target molecule. The effect of the arm on the cytotoxicity of 

compounds [3b] and [4b] could be rationalised considering that the nature of the two 

different aromatic rings can have an influence also on the tach nitrogen atoms, as 

illustrated in Figure 4.20. This difference might completely change the interaction 

with the target by changing the pKa of the tach amines, which might be crucial if the 

amine nitrogens are responsible for the cytotoxic activity of the molecule.  
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Figure 4.20: Diagram of possible intramolecular hydrogen bond interaction in tachpyr [3b] 

and tachprl [4b].  

In compound [3b], the basic nature of the pyridine nitrogen atoms might form an 

intramolecular hydrogen bond with the tach amines, in which the amine acts as the 

hydrogen bond donor and the pyridine as the hydrogen bond acceptor. This hydrogen 

bond would make the lone pair of electrons on the tach amines more available for an 

interaction with the target molecule or a proton to form the protonated species. On the 

other hand, in compound [4b] the nitrogen atoms of the tach moiety would be the 

hydrogen bond acceptor while the pyrrole atoms could act as the hydrogen bond donor 

in case of intramolecular hydrogen bond. In this situation, the lone pair of electrons of 

the amines would be mostly unavailable to interact with the target/protonation. It 

should be highlighted that such an intramolecular hydrogen bond was not observed in 

the crystal structure of compound [4b] (section 2.4.2), but the solid state might not be 

representative of the equilibria present in solution.  

  

To test the hypothesis that an intramolecular hydrogen bond might be the cause of the 

lack of activity in tachprl, tachfur [5b] was synthesised. If the hypothesis was correct, 

the presence of a hydrogen bond acceptor on the aromatic rings would allow the 

compound to re-gain the cytotoxic activity lost with tachprl [4b]. As shown in Table 

4.4, tachfur showed mild activity against the two cell lines, although the IC50 values 
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were not as low as those shown by tachpyr. The experiment seemed to support the 

hypothesis that the protonated tach amines might be involved in the interaction with 

the target, however further experiments, such as expanding the library of compounds 

containing H-bond donor or acceptor groups on the arms, are needed. It should also be 

noted that, together with the change of heteroatom, the size of the rings was modified, 

which is another parameter that can affect the activity.  

  

In order to maintain the size of the aromatic ring and add the oxygen atom as in 

tachfur, the salicylaldehyde series was developed, but for the reasons mentioned above 

it could not be tested. Furthermore, the crystal structures of these derivatives (section 

2.5.2) showed that the oxygen atom acts as the hydrogen bond donor in the interaction, 

therefore these compounds would not be able to test the hypothesis evaluated with 

tachfur. 

 

4.3.2.2 Tachben derivatives 

The change in the IC50 values of compounds [3b], [4b] and [5b] suggests that the 

heteroatom present on the arm of the derivative influences the activity against cancer 

cells. The results suggested the next obvious step for the investigation: evaluate if the 

presence of a heteroatom is crucial for the activity. Tachben [10b] was tested and it 

showed IC50 values comparable to tachpyr on both cell lines, as shown in Table 4.4. 

Similarly, all the 4-substituted tachben derivatives showed very high cytotoxicity 

against both cell lines, in some cases even higher than tachpyr and cisplatin. The result 

gives important insights about the mechanism of action of tachpyr, showing that the 

nitrogen atoms of the aromatic rings are clearly not required for activity. The data also 

support the hypothesis of a mechanism of action not based on iron chelation: the 

tridentate tachben molecule (or its 4-substituted derivative) is a much weaker ligand 

for iron than the hexadentate tachpyr, but their cytotoxic activity against the two cell 

lines is very similar, from which one can infer that the stability of the Fe complex is 

not relevant for the cytotoxic activity.   

 

The different tachben derivatives (compounds [11b]-[15b]) were synthesised also to 

evaluate if the presence of a substituent in the 4-position of the ring and the electronic 
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properties of the phenyl ring make a difference in the activity of the compounds. As 

shown in Table 4.4, the change in IC50 value is very small within the whole tachben 

series with no linear correlation between IC50 values and chemical properties of the 

compounds, which shows that the cytotoxic effect of these derivatives is not closely 

associated with the presence of a 4-substituent or the nature of the substituent. Another 

piece of information that can be gained from the test of the tachben series concerns the 

sterics around the site of interaction to accommodate the ligand. The data show that 

substituents as big as dimethylamino or methoxide can be accommodated when they 

are in the 4-position, with not distinct preference for a particular substituent over the 

others. The sterics of the substituents are therefore not important for the interaction 

with the target. All tachben derivatives showed the same steep sigmoidal fitting as was 

seen for tachpyr (section 4.2), suggesting that they are likely to share the same kind of 

general mechanism of action. 

 

4.3.2.3 Mono-N-substituted derivatives 

The importance of the aromatic rings was then evaluated by making the mono-

substituted derivatives [16] and [17]. MTT assays of the unsubstituted tach molecule 

had shown that the compound does not possess cytotoxic activity up to 250 µM, while, 

as said, the three-armed compounds can give very good IC50 values, which would 

suggest that the arms help cytotoxicity, either by making tach more lipophilic, hence 

increasing its ability of crossing membranes, or by actively interacting with the target. 

Tachmonoben [16] was synthesised and tested to verify if mono-substitution gave 

increased cytotoxicity to compound [2] and to have a direct comparison with the 

equivalent tri-amine tachben [10b]. For similar reasons, tachmonocyc [17] was tested 

to assess if aromaticity of the ring played a crucial role. It has to be highlighted that 

purity of compounds [16] and [17] could not be confirmed by elemental analysis (see 

also section 2.7), therefore their evaluation against cancer cells might have been 

affected by possible impurities and should hence been seen as a preliminary result. 

The data in Table 4.4 shows that both mono-armed derivatives have mild cytotoxicity 

against A549 cells with comparable IC50 values. The presence of at least one arm 

seems to be necessary to have some cytotoxic action, but having an aromatic rather 
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than an aliphatic substituent might not be crucial. Although the exact role played by 

the “arms” is yet to be clarified, their presence seems to improve the activity. 

 

4.3.2.4 SARs conclusions 

The analysis of the cytotoxicity of the tach derivatives highlights some key 

characteristics which these molecules should posses to show cytotoxicity. Firstly, the 

presence of the arms on the tach moiety is an essential requirement to have at least 

mild toxicity, although no major differences were shown between aromatic and 

aliphatic substituents. The presence of the nitrogen atom on the pyridine ring is not 

crucial to have high toxicity, but the presence of hydrogen bond donors on the arm 

decreases notably the cytotoxic action of the compound. Finally, substituents on the 4-

position of the aromatic rings do not affect the activity and the electronic nature of the 

substituent was found to be irrelevant for the cytotoxicity. Summarising all these 

findings together, two main properties seem to be important for the activity: the pKa of 

the tach nitrogen atoms and the lipophilicity of the tach derivative. The lipophilicity of 

a compound is often measured by its water/n-octanol partition coefficient, logP,
283

 

which gives an indication about the ability to cross the biological membrane. The IC50 

values of the tach derivatives can be plotted against pKa and logP to give the graph 

shown in Figure 4.21. 

 

Figure 4.21: Diagram of IC50 values against pKa against logP of the tach derivatives. The IC50 

values were taken from the MTT assays against A549 cells.  
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The logP values for the different compounds were calculated using the Molinspiration 

Property Calculation Service software. The pKa values were estimated starting from 

literature values
267

 and should be viewed only as an indication rather than an 

experimental measure. The pKa values were set to be equal to the literature value for 

secondary amines (compounds [2] and [10b]-[17], pKa = 10), higher than the literature 

value for compounds containing a hydrogen bond acceptor on the arms (compounds 

[3b] and [5b], pKa = 13), or lower than the literature value for compounds containing a 

hydrogen bond donor on the arms (compound [4b], pKa = 8). The graph in Figure 

4.21 shows a possible correlation between the basicity of the amines, the lipophilicity 

of the compound and the observed IC50 value. Most of the active (i.e. low IC50 value)  

compounds appear in the logP range between 4 and 7. LogP values lower than 4 give 

rise to poorly active or inactive compounds, unless the loss in lipophilicity is counter 

weighted by a greater basicity (i.e. higher pKa), as in the case of tachpyr [3b]. It is 

interesting to notice how compounds with very similar logP values, such as [4b] and 

[5b] or [3b] and [17], show very different cytotoxicity according to the basicity of the 

amines, which seems to support the hypothesis of a major involvement of the tach 

moiety in the interaction with the target for all the compounds presented. Although in 

need of further experiments to validate the hypothesis (e.g. measuring the pKa and 

logP of the tach compounds and evaluate if a correlation with the toxic activity is 

present), the pKa and logP properties of the compound should be considered important 

in the design of cytotoxic tach derivatives.  

 

4.3.3 Crystal structure 

The experiments described so far in this chapter showed that tachpyr [3b] is able to 

interact with DNA and this interaction might be responsible for the cytotoxic effect of 

this compound. In the hope of gaining a deeper understanding of the modality of the 

binding, which could not be determined from the experiments conducted so far, 

several attempts of co-crystallising [3b] with a short DNA oligonucleotide were made.  

 

One of the crucial points for the experiment was the choice of the oligonucleotide. 

This choice was made following the hypothesis that tachpyr could bind to the DNA in 
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a spermine-like fashion, to the phosphate backbone due to the positive charge(s) on the 

protonated amine nitrogen atoms. If the hypothesis was correct, the binding to DNA 

would be mainly non-specific, so independent of the base pair sequence. A non-

specific binding would be problematic for structural determination, especially if the 

DNA sequence was made by several base pairs, because the compound might be 

disordered on several positions across the oligonucleotide. The number of base pairs 

should be kept to a minimum to avoid this problem, but the shorter the sequence, the 

lower the melting temperature (temperature at which half of the DNA appears as 

single strand) of the DNA. A very low melting temperature would make the 

crystallisation difficult to achieve, because it would require low crystallisation 

temperatures to maintain the DNA as a double helix. For this reason, the oligomer was 

designed to have only G-C pairs, which increase the stability of the double helix due to 

the three hydrogen bonds between the bases. The oligonucleotide chosen for the 

experiment was the self-complementary (GC)3 hexamer, which has a melting 

temperature of 17 °C. The length of the oligomer was set to six base pairs, so that the 

fragment of DNA obtained would be long enough to allow binding of tachpyr, but not 

too long in order to minimise disorder due to the binding of tachpyr over several 

different positions.   

Several crystallisation screens and conditions were tested, including the conditions 

reported by Brzezinski et al.
284

 for their ultra-high resolution structure of a very 

similar DNA oligomer. The crystallisations were set up for both native DNA and a 

solution of DNA and tachpyr. Both commercial and proprietary screens were used, 

including Hampton and PACT screens, although modifications of successful literature 

conditions for similar DNA sequences
284-285

 produced the highest number of hits. The 

crystals were typically grown by hanging drop/vapour diffusion method against a 

reservoir of 2-methyl-2,4-pentan-diol (MPD) at 10 °C, isolated from the crystallisation 

drop with a rayon loop and frozen in liquid nitrogen without use of cryoprotectants. 

Several crystals, of different sizes and shapes, were obtained from the plates, but 

exclusively when DNA and tachpyr were both present in the starting solution. All 

attempts to crystallise native DNA were unsuccessful. Some of the crystals obtained 

are shown in Figure 4.22. 
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Figure 4.22: Examples of crystals obtained from DNA and tachpyr [3b] in different 

experimental conditions: a. 30 mM sodium cacodylate pH = 7.0, 10 mM spermine, 7.5 mM 

tachpyr, 0.7 mM DNA, 5% MPD; b. 50 mM HEPES pH = 7.0, 100 mM CaCl2, 2.5 mM 

spermine, 3.7 mM tachpyr, 0.7 mM DNA, 11% PEG 8K; c. 15 mM sodium cacodylate pH = 

7.0, 2.5 mM spermine, 5 mM tachpyr, 0.7 mM DNA, 5% MPD; d. 20 mM sodium cacodylate 

pH = 6.0, 40 mM NaCl, 10 mM BaCl2, 6 mM spermine, 7.5 mM tachpyr, 0.37 mM DNA, 

22.5% MPD. Concentration of DNA reported for the double strand. 

Cycles of optimisation of the crystallisation conditions were performed to improve the 

quality and the size of the crystals. Despite the number of crystals obtained, the quality 

was usually not very good, with very weak diffraction and resolution lower than 5 Å.  

 

After several attempts, better quality crystals were obtained from sitting drop/vapour 

diffusion method from a Natrix HT™ screen after 9 months at 10 °C (experimental 

details can be found in Chapter 6) and diffraction data collected at 1.5 Å resolution at 

the Diamond Light Source synchrotron. The crystal was a cluster, shown in Figure 

4.22 (d), and it contained several hexagonal shaped crystals, but it provided good 

enough quality data for structural determination. A detail of the diffraction pattern is 

a b

  a 

c d 
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shown in Figure 4.23, in which it is possible to see reflections almost at the edge of 

1.47 Å resolution. 

 

Figure 4.23: Diffraction pattern of DNA-tachpyr crystals, detail of reflections at high 

resolution. Data collected at Diamond Light Source synchrotron. 

The data presented a very strong anomalous signal, which is due to the interaction of 

the X-ray wave with heavy metals present in the structure.
286

 The crystallisation 

conditions included barium chloride, therefore the presence of a heavy atom in the 

crystal lattice could not be excluded. The structure was solved and refinement carried 

out using MOLREP,
287

 CCP4
288

 and Coot.
289

  

 

An image of the crystal structure is shown in Figure 4.24. The image shows clearly 

the DNA hexamers forming a left-handed double helix, characteristic of Z-DNA, a 

barium atom, disordered over two positions (shown as the grey cylinder in the 

picture), and residual electron density which could be assigned to a disordered tachpyr 

molecule. 
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Figure 4.24: Crystal structure of DNA and tachpyr [3b], electron density shown at 0.3 σ. 

Image produced with CCP4mg software.
290

 

The determination of the structure represented a crystallographic challenge for several 

reasons, which are briefly discussed herein. The structure showed very high symmetry, 

with the asymmetric unit formed by only two consecutive nucleobases (i.e. GC).  The 

structure was modelled as both a left- and right-handed double helix, and the data 

showed a better fitting for the left-handed structure, which gave the crystal a P6522 

space group assignment. This solution was quite surprising, because the literature 

reports very few examples of a 5’-purine start DNA sequence which gives Z-DNA. 

For small oligonucleotides (up to 12 base pairs) the direction of the rotation of the 

double helix seems to be associated to the sequence
291-293

 and to the nucleobase 

(purine or pyrimidine) found in the 5’-position.
294

 Z-DNA is typically found  in 

sequences with a 5’-pyrimidine start,
284-285, 295-296

 while 5’-purine oligos produce A-

DNA. The only exception to date is given by the decamer (GC)5 reported by Ban et al. 

(PBD code 279D)
297

, which showed a left-handed helix although possessing a purine 

start. Several other similarities between the structure reported by Ban et al.
297

 and our 

structure were found: both have the same asymmetric unit and belong to the hexagonal 
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P6522 space group. In both our study and Ban’s, DNA forms pseudo-continuous 

chains, with no clear distinction between one oligonucleotide and the next. Figure 

4.25 shows the arrangement of the DNA double helices in the unit cell and the detail 

of one double helix observed in the structure. 

         

Figure 4.25: Image of arrangement of the DNA double helices in the crystal packing (left) and 

example of continuous chain formed in the crystal lattice (right). Barium atom and [3b] 

omitted for clarity, image produced with CCP4mg software.
290

 

If the phosphate groups are represented as “p”, the DNA sequence used for the 

crystallisation can be expressed as 5’-GpCpGpCpGpC-3’. To have a continuous chain, 

an extra phosphate, which would act as the linker, is needed. What can be observed in 

the structure is that all the phosphate groups present in the double helix have 5/6 of 

occupancy and they are all equal, resulting therefore statistically disorder across the 

structure and giving the arrangement observed. The same behaviour was observed and 

reported by Ban et al.
297

 for their Z-DNA crystals.  

 

The presence of  these “quasi-polymers”, as described by Ban et al.
297

, is probably the 

cause of streaks observed in the diffraction pattern, which are shown in Figure 4.26.  
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Figure 4.26: Example of diffraction pattern of DNA crystals. In the circles, streaks observed 

in the diffraction. 

These reflections could not be included in the integration of the reflections, with 

consequent partial loss of information.  

 

As shown in Figure 4.27, the structural model of the nucleotides forming the DNA 

oligomer fits very well the electron density observed in the crystal. Next to the double 

helix, a clear ring of residual electron density is present. Tachpyr [3b], or at least part 

of it, gives a very good match with this residual electron density. The crystallisation 

conditions contained also spermine, which was checked for fitting in the residual 

electron density observed, but it did not give a good solution. This electron density 

was therefore modelled as a disordered tachpyr molecule. 
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Figure 4.27: Images of model and electron density in the asymmetric unit: the nucleotides 

forming the DNA oligo (left) and the residual electron density due to the ligand (right). 

Electron density shown at 0.3 σ, image produced with CCP4mg software.
290

 

The whole of the molecule of [3b] was not visible for probably two main reasons: the 

molecule is disordered across the lattice and the asymmetric unit is too small to 

accommodate the whole molecule of tachpyr. The ligand, in fact, cannot fit into the 

required symmetry, so what is modelled can be considered as an average of different 

arrangements around the DNA fragment and all the atoms have indeed only partial 

occupancies. From the electron density it is not possible to distinguish clearly if the 

ring observed in the structure belongs to the tach moiety or it is one of the pyridine 

rings, therefore no final conclusions can be drawn about the possible binding mode. 

However, what can be deduced is that the tachpyr molecule interacts with the 

“outside” of the DNA, probably in a hydrogen bond interaction with the phosphate 

backbone, as shown in Figure 4.28. 
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Figure 4.28: Scheme of possible interaction between tachpyr [3b] and the phosphate 

backbone of DNA. 
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The final structure and refinement parameters for the crystal are shown in Table 4.5.   

Parameter  

Unit cell dimensions (Å) a = b = 17.869 

 c = 42.398 

Space group P6522 

Resolution range (Å) 15.68 – 1.52 

Final R value (%) 33.1 

R free value (%) 36.8 

RMS deviation from ideal geometry: 

Bond lengths (Å) 

Bond angles (°) 

 

0.009 

2.213 

Table 4.5: Crystal and refinement parameters of the DNA hexamer d(GCGCGC) and tachpyr 

[3b]. 

The very high final R value after refinement can be explained by the presence of all 

the problems discussed in this section: intrinsic disorder, partial integration of the data 

and possibly some bad reflection due to the clustering of the crystal. Nonetheless, 

crystallography showed clearly a very rare structure of a 5’-purine oligonucleotide in 

the Z-DNA form and, most importantly for our study, the presence of tachpyr in the 

proximity of the DNA double helix. Although the structure does not allow to establish 

with absolute certainty the mode of binding to the DNA, it supports the data obtained 

from the other experiments: tachpyr is able to interact with DNA in the solid state as 

well as in solution (as shown by LD experiments), is found in close proximity of the 

phosphate backbone of the DNA and does not show intercalation. Structure activity 

relationships obtained by the study of the different tach derivatives were also 

consistent with these findings: the tach moiety plays a central role in the interaction, 

with the pKa of the amines being crucial for activity, as it would be expected in case of 

binding to the negatively charged phosphates of DNA. The hypothesis that [3b] might 

show a spermine-like binding to the DNA is therefore a valid alternative to the 

reported metal chalation mechanism.
133-136
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4.4 Evaluation of activity on non-cancerous cells 

The cytotoxic activity against cancer cells of the compounds presented in the previous 

sections shows that these molecules can potentially be active against tumours, but a 

control against non-cancerous cells is needed. Selectivity is an essential requirement to 

decrease side effects and have an effective therapeutic drug. For this reason, cisplatin, 

tachpyr [3b] and 4-NMe2-tachben [11b] were tested against 293T human embryonic 

kidney immortalised cells as a preliminary evaluation of selectivity. Immortalised cells 

were plated in a 96-well plate following the standard MTT procedure, the IC50 

evaluated and the results after triplicate test are reported in Table 4.6. 

Compound IC50 value / μM 

Cisplatin 2.20 ±0.14 

Tachpyr [3b] 3.82 ± 0.11 

4-NMe2-tachben [11b] 0.57 ± 0.02 

Table 4.6: IC50 values against 293T cells. 

As shown, none of the compound tested presented significant difference in activity 

between the non-cancerous and the cancer cell lines. 4-NMe2-tachben was actually 

more active on 293T cells than A2780 (cf. Table 4.4). Although this result is not very 

promising, a few considerations should be made. Cisplatin, which is the benchmark 

reference, did not show selectivity toward cancer cells either. Furthermore, this 

particular cell line was made immortal by silencing genes involved in the replication 

cycle
298

 to allow the line to survive for long periods in culture. For this reason, the 

immortalised cells present some of the characteristics of cancer cells. The lack of 

selectivity might be a consequence of the immortalisation process and/or the 

interaction of the compounds with elements of the immortalised cells. To have a more 

accurate description of possible selectivity of action, the compounds should be tested 

on non-cancerous, non-immortalised cells in order to discriminate if the molecules are 

anti-tumour compounds or poisons. 
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4.5 Chapter conclusions 

The iron chelation mechanism of action of tachpyr [3b], previously considered as the 

cause of the cytotoxic activity of this compound, was investigated. This study led to 

the conclusion that metal chelation is not involved in the cytotoxic activity of this 

compound and a new possible target for the action was found in DNA.  

 

Tachpyr showed the ability to interact with DNA, highlighted in LD experiments, 

without acting as an intercalator. The structural investigation of tachpyr and its 

derivatives showed the pharmacologically-important features of these compounds, 

helped develop new hypotheses about the potential mechanism of action, such as the 

interaction with the phosphate backbone of DNA via a spermine-like binding, and 

offered new molecules with very high cytotoxic activity.  

 

Co-crystallisation of DNA and tachpyr [3b] was attempted and produced crystals of 

good enough quality for structural determination. The obtained crystal structure is one 

of the first examples of a 5’-purine oligo in the Z-DNA form and it clearly shows 

residual electron density that can be associated to tachpyr. The experimental data 

represents clear evidence that Fe chelation is unlikely to be the mechanism of action of 

tachpyr and that DNA (or possibly other ribonucleic acids in the cells) might be a 

target for the action. The data obtained can also explain some of the results reported by 

Planalp and co-workers during their investigation. The loss of activity due to 

substitution on the 6-position of the pyridine ring described by Childers et al.
140

 might 

be explained by steric hindrance and inhibition of the interaction with the DNA. 

Similarly, the tris(ethylendiamine) derivatives reported by Ye et al.
139

 showed poor 

toxicity, which could be due to a low logP value derived by the presence of six amine 

groups on the molecule.  

 

Tachpyr [3b] and the most active of its derivatives, 4-NMe2-tachben [11b], were 

tested against non-cancerous immortalised cells, and they did not show any selectivity 

for cancer over non-cancerous cells. Similarly, cisplatin showed the same lack of 

selectivity, therefore a deeper evaluation of selectivity against different cell lines, 

including non-cancerous non-immortalised cells, is needed. 



 

 

 

  

 Chapter 5 

Conclusions and 
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5. Conclusions and future work 

5.1 Conclusions 

The aims of this project involved the synthesis and in vitro evaluation of tach 

derivatives, and the study of the mechanism of action of these molecules, with 

particular focus on tachpyr. 

 

Several tach-based Schiff bases were synthesised and reduced to the corresponding tri-

amines. The choice of the N-substituent on the tach amines was led by the need to 

incorporate the structural modifications into the tachpyr molecule required to explore 

structure activity relationships. The heterocyclic compounds [4a-b] and [5a-b] were 

synthesised to study the effect of different heteroatoms on the aromatic rings, whilst 

compounds [6a-b]-[9a-b] were made to explore the effect of the oxygen atom of the 

salicyl moiety, although the in vitro evaluation of these molecules could not be 

performed. The roles of the pyridyl nitrogen atom of tachpyr and the 4-substituents on 

the aromatic ring were evaluated in the tachben series (compounds [10a-b]-[15a-b]). 

Finally, new synthetic methods for the development of mono-N-substituted derivatives 

were explored, which led to promising procedure to expand the tach-based library of 

compounds.  

 

The complexation of tachpyr with Co(II) and Ru(II) was studied and new crystal 

structures obtained for the two complexes. The geometry of the cobalt complex was 

shown to be dependent on the oxidation of the ligand, changing from distorted trigonal 

prismatic to distorted octahedral for the complex with [3a] or [3b], respectively. The 

complexation with Ru(II) proved to be challenging and yielded an unexpected Ru(II)-

dimer. Preliminary in vitro tests against cancer cells were performed for the complexes 

and the Ru(II)-dimer,  however they all showed very poor cytotoxicity.  

 

The mechanism of action of tachpyr [3b] was investigated and this study led to the 

conclusion that iron chelation, which was reported to be the cause of the cytotoxic 

action of tachpyr,
133-136

 is unlikely to be the main cause of the cytotoxic activity of this 

molecule. Tachpyr showed the ability to interact with the DNA in a non-intercalating 
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fashion. The study of tach and its derivatives, compounds [2]-[17], highlighted the 

structural features (basic nitrogen atoms on the tach moiety, presence of at least one 

arm to improve lipophilicity) of the molecule necessary for activity and gave new 

molecules with high toxicity against cancer cells.  

 

A crystal structure was obtained which showed tachpyr [3b] in close proximity to the 

DNA phosphate backbone. This is consistent with the hypothesis of a mechanism of 

action different from iron chelation. Furthermore, the structure represents one of the 

first examples of a 5’-purine start oligonucleotide crystallising in the Z-DNA form. All 

data obtained represent clear evidence that the action of tachpyr in cells does not 

involve metal chelation and the crystal structure indicates that DNA or other nucleic 

acid might be the target of the cytotoxicity. The set of evidence collected by Planalp 

and co-workers during their studies explores the ability of tachpyr and its derivatives 

to be effective hexadentate iron chelators,
133, 135-136, 140

 but the metal binding abilities 

of the ligands might not be related to its mechanism of action. The evidence collected 

and presented in Chapter 4 suggested clearly a non-chelating mechanism, which 

should be considered and further investigated.  

 

Evaluation of the mechanism of action of a molecule is a long process that can require 

decades. Cisplatin, for example, was studied since the discovery of its cytotoxic 

properties during the 1960s and the full mechanism of action is still not completely 

understood. In recent years new research highlighted a new activation mechanism and 

possible binding target of cisplatin in sulfur-containing membrane molecules.
299

 

Similarly, the evaluation of the mechanism of action of tachpyr, started about 15 years 

ago, is far from complete. This thesis described the hypothesis-driven evaluation of the 

mechanism of action of tachpyr and other tach-based molecules. The results obtained 

open up the possibility of having a cellular target not previously considered for these 

molecules, with further investigation of the binding to DNA and other ribonucleic 

acids needed. New active cytotoxic compounds have been described and synthetic 

methods for mono-substituted tach derivatives developed. The promising and exciting 

results obtained are worth further investigation to expand the understanding and 

knowledge of the action of tachpyr on cancer cells. 
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5.2 Future work 

The possible developments in the study of tach-based ligands and their action against 

cancer cells are numerous.  

 

Several alternatives to continue the evaluation of structure activity relationships are 

available. The tachben series of derivatives might be expanded with more 4-

substituents and the position of the substituent on the aromatic ring could also be 

varied, to explore the steric effects around the site of interaction and, hence, the effect 

on the activity. Furthermore, if ketones are used for the Schiff base condensation with 

tach, chiral derivatives would be produced after reduction of the imine bond. This 

modification would obviously raise the problem of obtaining pure stereoisomers, but 

important structure activity relationships might be gained by this evaluation. Similarly, 

the mono-substituted derivatives might be developed, with almost endless variations 

possible. The addition of fluorescent probes to visualise sites of accumulation in cells 

should also be evaluated. 

 

Considering the promising results reported by Gamble et al.
131-132

 for the cytotoxicity 

of Ru(II)-tach complexes, but the lack of activity shown by Ru(II)-tachpyr, the mono-

armed tach derivatives might be used for complexation with ruthenium or other 

metals. This might lead to improved cytotoxicity and further understanding of the 

mechanism of action for both the free ligand the metal complex. 

 

The molecules described in this thesis were tested against two cancer cell lines only, 

therefore more in vitro tests should be carried out against several other cell lines, 

including cisplatin-resistant cells. The ultimate goal in cancer treatment is to obtain 

compounds highly cytotoxic against cancer cells, but inactive against normal cells, 

therefore the activity of the most promising compounds should be evaluated against 

non-cancerous, non-immortalised cell lines to assess the selectivity profile of the 

derivatives. More co-crystallisations with DNA, both with tachpyr and other 

derivatives (e.g the highly cytotoxic tachben derivatives), might be attempted, together 

with the evaluation of possible interaction with other nucleic acids, such as mRNA and 

tRNA.  



  Chapter 5  

164 

 

The hypothesis of the correlation between logP, pKa and cytotoxicity exposed in 

Chapter 4 might be explored through evaluation of experimental logP and pKa values. 

The synthesis of more derivatives and their evaluation against cancer cells might give 

insights on the validity of this hypothesis, which, if confirmed, might give a powerful 

tool for the design of new active compounds.   

 

Finally, computational methods such as density functional theory (DFT) and 

molecular dynamics may be used for the evaluation of the interaction with 

biomolecules.  
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6. Experimental 

6.1 Notes 

For clarity, the ESI-MS ions and fragments were assigned according to the following 

nomenclature:  

 The protonated molecule is indicated as [M+H]
+
 or [M+2H]

2+
 in case of double 

protonation. 

 The fragment ions are indicated as [M+H−Arm]
+
 to represent structures as the 

ones shown below for the tri-imines and tri-amines, respectively: 

 

 

 

6.2 Synthesis and characterisation of ligands - Materials and 

methods 

Materials and solvents were used as supplied by Sigma Aldrich, Alfa Aesar and Fluka 

without further purification. Cis,cis-1,3,5-cyclohexanetricarboxylic acid was 

purchased from TCI UK and used for the synthesis of cis,cis-1,3,5-

triaminocyclohexane according to literature procedures.
128, 161

 Compounds [3a-b],
161

 

[5a-b],
163

 [6a-b] to [9a-b],
166

 [10a-b]
172-173

 and [16]
166, 178

 were made following 

reported literature procedures or by their modification. 
1
H, 

19
F and 

13
C NMR spectra 

were recorded either on a JEOL EXC-400 or a JEOL ECS-400 spectrometer (
1
H 400 

MHz, 
13

C 100.6 MHz, 
19

F 376.2 MHz) at 295 K. Chemical shifts (δ) are quoted in 

parts per million referenced to residual proton signal of the solvent; J values are 

quoted in Hz and are referred to 
1
H-

1
H couplings, unless otherwise stated. All 

13
C 

NMR spectra were recorded with 
1
H decoupling. Mass spectra were recorded on a 

Bruker micrOTOF electrospray mass spectrometer (ESI-MS). Elemental analyses 

were performed using an Exeter Analytical Inc. CE-440 analyser. Melting points were 
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measured on a Stuart Scientific SMP3 apparatus. Diffraction data for X-ray 

crystallography was collected using an Oxford Diffraction SuperNova system with 

EOS CCD camera at 110 K. Crystal structures were solved with Olex2
300

 using 

Superflip
301

 structure solution program and refined with ShelXL.
302

  

 

 

6.3 Synthesis of ligands 

6.3.1 Synthesis of tach 

Cis,cis-1,3,5-cyclohexanetris(benzylcarbamate), [1] 

 

Triethylamine (7.02 g, 9.7 mL, 69.38 mmol, 3 eq.) and diphenylphosphorylazide 

(DPPA) (19.09 g, 14.9 mL, 69.38 mmol, 3 eq.) were added to a suspension of cis,cis-

1,3,5-cyclohexane tricarboxylic acid (5.0 g, 23.13 mmol, 1 eq.) in 125 mL of benzene. 

The mixture was heated at reflux until it became a clear solution. Benzyl alcohol (7.50 

g, 7.2 mL, 69.38 mmol, 3 eq.) was added and the reaction mixture was maintained at 

reflux for 16 h. The resulting cream suspension was filtered and the white solid 

washed with cold diethyl ether. The compound was used without further purification.  

Yield: 8.2 g, 15.4 mmol, 67% 

1
H NMR: (d6-DMSO) δ 7.34 (15H, m, f+g+h), 5.00 (6H, s, d), 3.40 (3H, m, b), 1.88 

(3H, bd, aeq), 1.05 (3H, ap.q, aax). 
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Cis,cis-1,3,5-triaminocyclohexane trihydrobromide, tach·3HBr, [2]HBr 

 

A solution of HBr 33% wt in acetic acid (60 mL) was added to tach(benzylcarbamate) 

(5.5 g, 10.3 mmol, 1 eq.) and the mixture was left stirring at room temperature for 16 

h. Ethanol (100 mL) was then added and the mixture was left stirring at room 

temperature for a further 24 h. The white precipitate formed was isolated by filtration 

and washed with chilled ethanol, then dried under vacuum. The compound was used 

without further purification. 

Yield: 3.3 g, 8.76 mmol, 91% 

1
H NMR: (d6-DMSO) δ 3.50 (3H, tt, 

3
Jax-ax = 12.2, 

3
Jax-eq = 4.0, b), 2.44 (3H, bd, 

2
J = 

12.2, aeq), 1.62 (3H, ap.q, 
3
J = 

2
J = 12.2, aax). 

 

 

Cis,cis-1,3,5-triaminocyclohexane, tach, [1] 

 

Cis,cis-1,3,5-triaminocyclohexane trihydrobromide, tach·3HBr, (1.0 g, 2.69 mmol) 

was dissolved in the minimum amount of water and passed through a Dowex 1X4-50 

(300 g) ion exchange column, which had previously been washed with, in order,  

water, 1 M HCl, 1 M NaOH and finally with water again till neutral pH. The fractions 

with basic pH were collected and solvent evaporated. The residue was sublimed at 10
-2

 

mbar at 70 °C using a liquid nitrogen cold finger, giving a bright white solid which 

was stored under inert gas. 

 Yield: 0.081 g, 0.63 mmol, 23%. 

1
H NMR: (D2O) δ 2.75 (3H, tt, 

3
Jax-ax = 11.6, 

3
Jax-eq = 3.2, b), 1.94 (3H, ap.d, 

2
J = 

11.6, aeq), 0.89 (3H, ap.q, 
3
J = 

2
J = 11.6, aax). 
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6.3.2 Synthesis of heterocyclic ligands 

Cis,cis-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexane, tachimpyr, [3a] 

 

Tach·3HBr (250 mg, 0.67 mmol, 1 eq.) was dissolved in 1 mL of water and NaOH (80 

mg, 2.01 mmol, 3 eq.) added. The mixture was stirred until the solid was completely 

dissolved and 50 mL of toluene were then added. The reaction was heated at reflux 

and water was removed by azeotropic distillation using a Dean-Stark apparatus. When 

no water remained in the reaction flask, pyridine-2-carboxaldehyde (215 mg, 190 μL, 

2.01 mmol, 3 eq.) was added and the mixture was maintained at reflux with the Dean-

Stark under nitrogen for 16 h. After cooling to room temperature, the mixture was 

filtered and toluene was evaporated under vacuum, leaving a yellow solid, which was 

washed with pentane and diethyl ether. The resulting white solid was dried under 

vacuum for 16 h and used without further purification. 

Yield: 180 mg, 0.45 mmol, 68%. Melting point: 138-140°C. 

1
H NMR: (CDCl3) δ 8.64 (3H, dd, 

3
J = 4.8, 

4
J = 1.2, h), 8.48 (3H, s, c) 8.02 (3H, d, 

3
J 

= 7.6, e), 7.74 (3H, td, 
3
J = 7.6, 

4
J = 1.2, f), 7.31 (3H, ddd,

 3
Jg-f = 7.6, 

 3
Jg-h = 4.8, 

4
J = 

1.2, g), 3.70 (3H, tt, 
3
Jax-ax = 12.0, 

3
Jax-eq = 3.5, b), 2.11 (3H, ap.q, 

3
J = 

2
J = 12.0, aax), 

1.93 (3H, ap.d, 
2
J = 12.0, aeq). 

13
C{

1
H} NMR: (CDCl3) δ 160.8 (c), 154.8 (d), 149.5 (h), 136.7 (f), 124.9 (g), 121.7 

(e), 66.3 (b), 40.7 (a).  

ESI-MS: positive ion m/z 397.2128 ([M+H]
+
, calc. for C24H25N6

+
: 397.2135, error 0.7 

mDa); m/z 308.1864 ([M+H−Arm]
+
, calc. for C18H22N5

+
: 308.1870, error 0.6 mDa). 

Elemental Analysis: for C24H24N6: Calc. C 72.70; H 6.10; N 21.20; Rest 0.00%. 

Found C 72.44; H 6.09; N 20.96; Rest 0.50%. 
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N,N’,N’’-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane, tachpyr, [3b] 

 

Cis,cis-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexane, tachimpyr, (120 mg, 0.30 

mmol, 1 eq.) was dissolved in 10 mL of methanol and sodium borohydride (40 mg, 

1.06 mmol, 3.5 eq.) was slowly added in portions. The mixture was left stirring at 

room temperature for 16 h. Methanol was evaporated and the residue dissolved in 10 

mL of CHCl3. A 1:1 mixture of NaHCO3 sat. solution and NaCl sat. solution (10 mL 

in total) was added to the organic solvent and the mixture was left stirring vigorously 

for 1 h. The layers were separated and the aqueous one was extracted with CHCl3 (3×6 

mL). The organic layers combined were washed with brine (2×6 mL), dried over 

Na2SO4 and filtered. The solvent was removed by rotary evaporation, leaving a pale 

yellow oil. 

Yield: 116 mg, 0.29 mmol, 96%. 

1
H NMR: (d6-DMSO) δ 8.46 (3H, ddd, 

3
J = 4.8, 

4
J = 1.8, 

5
J = 0.9, h), 7.71 (3H, td, 

3
J 

= 7.6, 
4
J = 1.8, f) 7.40 (3H, bd, 

3
J = 7.6, e), 7.20 (3H, ddd, 

3
Jg-f = 7.6, 

 3
Jg-h = 4.9, 

4
J = 

0.9, g), 3.80 (6H, s, c), 2.36 (3H, ap.t, 
3
Jax-ax = 11.2, b), 2.11 (3H, ap.d, 

2
J = 11.2, aeq), 

0.84 (3H, ap.q, 
3
J = 

2
J = 11.2, aax). 

13
C{

1
H} NMR: (d6-DMSO) δ 159.8 (d), 149.3 (h), 136.5 (f), 122.4 (e), 122.0 (g), 53.8 

(b), 52.5 (c), 40.1 (a). 

ESI-MS: positive ion m/z 403.2606 ([M+H]
+
, calc. for C24H31N6

+
: 403.2605, error 

−0.1 mDa); m/z 425.2425 ([M+Na]
+
, calc. for C24H30N6Na

+
: 425.2424, error −0.1 

mDa); m/z 202.1302 ([M+2H]
2+

, calc. for C24H32N6
2+

: 202.1338, error 3.6 mDa). 

Elemental Analysis: for C24H30N6·1.7H2O: Calc. C 66.85; H 7.76; N 19.49; Rest 

5.90%. Found C 66.60; H 7.45; N 19.44; Rest 6.50%. 
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Cis,cis-1,3,5-tris(pyrrole-2-carboxaldimino)cyclohexane, tachimprl, [4a] 

 

Tach·3HBr (500 mg, 1.34 mmol, 1 eq.) was dissolved in 3 mL of water and NaOH 

(160 mg, 4.03 mmol, 3 eq.) added. The mixture was stirred until the solid was 

completely dissolved and 80 mL of toluene were then added. The mixture was heated 

at reflux and water was removed by azeotropic distillation using a Dean-Stark 

apparatus. When no water remained in the reaction flask, pyrrole-2-carboxaldehyde 

(383 mg, 4.03 mmol, 3 eq.) was added and the mixture was maintained at reflux with a 

Dean-Stark apparatus under nitrogen for 16 h. After cooling to room temperature, the 

mixture was filtered and toluene was evaporated under vacuum, leaving a cream solid, 

which was washed with pentane and dried. The resulting white solid was then washed 

again with cold pentane and cold diethyl ether, dried under vacuum and used without 

further purification.  

Yield: 218 mg, 0.60 mmol, 45%. 

1
H NMR: (CDCl3) δ 8.09 (3H, s, c), 6.82 (3H, bs, g) 6.46 (3H, dd, 

3
J = 3.6, 

4
J = 1.2, 

e), 6.19 (3H, m, f), 3.40 (3H, bs, b), 1.83 (6H, m, aax+eq) 

13
C{

1
H} NMR: (CDCl3) δ 150.5 (c), 129.8 (d), 122.2 (g), 114.9 (e), 109.6 (f), 65.5 

(b), 41.5 (a). 

ESI-MS: positive ion m/z 361.2123 ([M+H]
+
, calc. for C21H25N6

+
: 361.2135, error 1.2 

mDa); m/z 181.1106 ([M+2H]
2+

, calc. for C21H26N6
2+

: 181.1104, error −0.2 mDa). 
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N,N’,N’’-tris(2-pyrrolylmethyl)-cis,cis-1,3,5-triaminocyclohexane, tachprl, [4b] 

 

Cis,cis-1,3,5-tris(pyrrole-2-carboxaldimino)cyclohexane, tachimprl, (150 mg, 0.42 

mmol, 1 eq.) was suspended in 20 mL of methanol and sodium borohydride (65 mg, 

1.66 mmol, 4 eq.) was slowly added in portions. The mixture was stirred for 16 h at 

room temperature. Methanol was concentrated to about 2 mL and 15 mL of water 

were added. The pale yellow mixture was extracted with CHCl3 (3×15 mL), the 

organic layers combined were dried over Na2SO4, filtered and the solvent removed by 

rotary evaporation, leaving a white solid. Needle-like crystals suitable for X-ray 

diffraction were grown from slow evaporation of CHCl3.  

Yield: 145 mg, 0.39 mmol, 94% 

1
H NMR: (CDCl3) δ 8.99 (3H, bt, h), 6.70 (3H, m, g) 6.12 (3H, m, f), 6.02 (3H, bt, e), 

3.79 (6H, s, c), 2.52 (3H, ap.t, 
3
Jax-ax = 11.6, b), 2.13 (3H, ap.d, 

2
J = 11.6, aeq), 0.86 

(3H, ap.q, 
3
Jax-ax = 

2
J = 11.6, aax). 

13
C{

1
H} NMR: (CDCl3) δ 130.2 (d), 117.6 (g), 108.1 (f), 106.4 (e), 53.3 (b), 43.9 (c), 

39.8 (a). 

ESI-MS: positive ion m/z 367.2594 ([M+H]
+
, calc. for C21H31N6

+
: 367.2605, error 1.1 

mDa); m/z 288.2182 ([M+H−Arm]
+
, calc. for C16H26N5

+
: 288.2183, error 0.1 mDa); 

209.1756 ([M+H−2Arm]
+
, calc. for C11H21N4

+
: 209.1761, error 0.5 mDa); m/z 

130.1359 ([M+H−3Arm]
+
, calc. for C6H16N3

+
: 130.1339, error −2.0 mDa). 

Elemental Analysis: for C21H30N6·0.25Et2O·1.3H2O: Calc. C 64.55; H 8.67; N 20.53; 

Rest 6.25%. Found C 64.42; H 8.45; N 20.37; Rest 6.75%. 
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Cis,cis-1,3,5-tris(furan-2-carboxaldimino)cyclohexane, tachimfur, [5a] 

 

Tach·3HBr (250 mg, 0.67 mmol, 1 eq.) was dissolved in 1 mL of water and NaOH (80 

mg, 2.01 mmol, 3 eq.) added. The mixture was stirred until the solid was completely 

dissolved and 20 mL of benzene were then added. The mixture was heated at reflux 

and water was removed by azeotropic distillation using a Dean-Stark apparatus. When 

no water remained in the reaction flask, furfural (194 mg, 167 μL, 2.01 mmol, 3 eq.) 

was added and the mixture was maintained at reflux with the Dean-Stark for 16 h. 

After cooling to room temperature, the mixture was filtered and benzene was 

evaporated under vacuum, leaving a yellow oil.  

Yield: 152 mg, 0.42 mmol, 62% 

1
H NMR: (CDCl3) δ 8.16 (3H, s, c), 7.51 (3H, dd, 

3
J = 1.6, 

4
J = 0.4, g), 6.74 (3H, dd, 

3
J = 3.2, 

4
J = 0.4, e), 6.47 (3H, dd, 

3
J = 3.2, 

4
J = 1.6, f), 3.50 (3H, ap.tt, 

3
Jax-ax = 12, 

3
Jax-eq = 4, b), 2.05 (3H, ap.q, 

3
Jax-ax = 

2
J = 12.0, aax), 0.86 (3H, ap.q, 

2
J = 12.0, aeq). 

13
C{

1
H} NMR: (CDCl3) δ 151.6 (d), 148.3 (c), 145.0 (g), 114.6 (e), 111.7 (f), 66.7 

(b), 40.9 (a). 

ESI-MS: positive ion m/z 364.1641 ([M+H]
+
, calc. for C21H22N3O3

+
: 364.1656, error 

1.5 mDa); m/z 386.1454 ([M+Na]
+
, calc. for C24H30N6NaO3

+
: 386.1475, error 2.1 

mDa); m/z 286.1547 ([M+H−Arm]
+
, calc. for C16H20N3O2

+
: 286.1550, error 0.3 mDa); 

208.1447 ([M+H−2Arm]
+
, calc. for C11H18N3O

+
: 208.1444, error −0.3 mDa); m/z 

182.5862 ([M+2H]
2+

, calc. for C21H23N3O3
2+

: 182.5864, error 0.2 mDa). 
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N,N’,N’’-tris(2-furanylmethyl)-cis,cis-1,3,5-triaminocyclohexane, tachfur, [5b] 

 

Cis,cis-1,3,5-tris(furan-2-carboxaldimino)cyclohexane, tachimfur, (152 mg, 0.42 

mmol, 1 eq) was dissolved in methanol (15 mL) and sodium borohydride (63 mg, 1.67 

mmol, 4 eq.) was slowly added in portions. The mixture was left stirring at room 

temperature for 16 h. Methanol was evaporated and the residue dissolved in 10 mL of 

CHCl3. A 1:1 mixture of NaHCO3 sat. solution and NaCl sat. solution (10 mL in total) 

was added to the organic solvent and the mixture was left stirring vigorously for 1 h. 

The layers were separated and the aqueous layer was extracted with CHCl3 (3×7 mL). 

The organic layers combined were dried over MgSO4, filtered and the solvent 

removed by rotary evaporation, leaving a yellow oil. 

Yield: 150 mg, 0.26 mmol, 97% 

1
H NMR: (CDCl3) δ 7.35 (3H, dd, 

3
J = 2.0, 

4
J = 0.4, g), 6.30 (3H, dd, 

3
J = 3.2, 

3
J = 

2.0, f), 6.15 (3H, dd, 
3
J = 3.2, 

4
J = 0.4, e), 3.81 (6H, s, c), 2.54 (3H, tt, 

3
Jax-ax = 11.2, 

3
Jax-eq = 3.6, b ), 2.15 (3H, ap.d, 

2
J = 11.2, aax), 0.86 (3H, ap.q, 

3
Jax-ax = 

2
J = 11.2, aeq). 

13
C{

1
H} NMR: (CDCl3) δ 154.0 (d), 141.9 (g), 110.3 (f), 106.9 (e), 52.9 (b), 43.6 (c), 

40.1 (a). 

ESI-MS: positive ion m/z 370.2110 ([M+H]
+
, calc. for C21H28N3O3

+
: 370.2125, error 

1.6 mDa); m/z 290.1856 ([M+H−Arm]
+
, calc. for C16H24N3O2

+
: 290.1863, error 0.7 

mDa). 

Elemental Analysis: for C21H27N3O3·0.5H2O: Calc. C 66.64; H 7.46; N 11.10; Rest 

14.80%. Found C 66.87; H 7.27; N 11.08; Rest 14.78%. 
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6.3.3 Synthesis of salicylaldehyde derivatives 

Cis,cis-1,3,5-tris(salicylidenamino)cyclohexane, salimtach, [6a] 

 

Tach·3HBr (250 mg, 0.67 mmol, 1 eq.) was dissolved in 7 mL of water and NaOH (80 

mg, 2.01 mmol, 3 eq.) was added to the solution, which was left stirring at room 

temperature for 10 min. A solution of salicylaldehyde (245 mg, 213 μL, 2.01 mmol, 3 

eq.) in 1 mL of diethyl ether was then added to the colourless water solution, which 

immediately turned to a bright yellow suspension. The mixture was left stirring at 

room temperature for 16 h, allowing ether to evaporate. The yellow solid was isolated 

by filtration and washed with chilled ethanol. The compound was used without further 

purification. Crystals suitable for X-ray diffraction were grown from CHCl3/EtOH 

layer as bright yellow fine needles.   

Yield: 260 mg, 0.59 mmol, 88%. Melting point: 206-207°C. 

1
H NMR: (CDCl3) δ 8.44 (3H, s, c), 7.32 (3H, m, 

3
J = 8.0, 

4
J = 1.6, g), 7.24 (3H, dd, 

3
J = 7.5, 

4
J = 1.6, i), 6.97 (3H, d,

 3
J = 8.0, f), 6.88 (3H, td, 

3
J = 7.5,

 4
J = 0.9, h), 3.57 

(3H, tt, 
3
Jax-ax = 11.6, 

3
Jax-eq = 4.0, b), 2.10 (3H, ap.d, 

2
J = 11.6, aeq), 1.98 (3H, ap.q, 

3
J 

= 
2
J = 11.6, aax). 

13
C{

1
H} NMR: (CDCl3) δ 163.8 (c), 161.1 (e), 132.6 (g), 131.5 (i), 118.8 (f), 118.8 

(d), 117.2 (h), 64.6 (b), 40.9 (a).  

ESI-MS: positive ion m/z 442.2126 ([M+H]
+
, calc. for C27H28N3O3

+
: 442.2125, error 

−0.1 mDa); m/z 221.6081 ([M+2H]
2+

, calc. for C27H29N3O3
2+

: 221.6099, error 1.8 

mDa). 

Elemental Analysis: for C27H27N3O3·0.2H2O: Calc. C 72.85; H 6.20; N 9.44; Rest 

11.51%. Found C 72.97; H 6.11; N 9.24; Rest 11.68%. 

 

 



  Chapter 6 

176 

 

Cis,cis-1,3,5-tris(salicylamino)cyclohexane, saltach, [6b] 

 

Cis,cis-1,3,5-tris(salicylidenamino)cyclohexane, salimtach, (150 mg, 0.34 mmol, 1 

eq.) was suspended in 28 mL of methanol and sodium borohydride (102 mg, 2.7 

mmol, 8 eq.) was slowly added in portions at 0°C. The mixture was stirred for 1 h at 

room temperature and, subsequently, heated at reflux for 16 h. Methanol was 

concentrated to about 7 mL and 30 mL of water were added. The pale yellow mixture 

was extracted with DCM (3×15 mL), the organic layers combined were dried over 

Na2SO4, filtered and the solvent removed by rotary evaporation, leaving a light yellow 

solid. Crystals suitable for X-ray diffraction were grown from DMSO/H2O layer as 

colourless fine needles.   

Yield: 140 mg, 0.31 mmol, 92%. Melting point: 198-199°C. 

1
H NMR: (d6-DMSO) δ 7.05 (6H, m, g+i), 6.69 (6H, m, f+h), 3.85 (6H, s, c), 2.40 

(3H, ap.t, 
3
Jax-ax = 11.4, b), 2.18 (3H, ap.d, 

2
J = 11.4, aeq), 0.87 (3H, ap.q, 

3
J = 

2
J = 

11.4, aax). 

13
C{

1
H} NMR: (d6-DMSO) δ 157.7 (e), 128.2 (g/i), 127.7 (g/i), 124.1 (d), 118.3 (f), 

115.4 (h), 52.3 (b), 47.8 (c), 38.3 (a).  

ESI-MS: positive ion m/z 448.2607 ([M+H]
+
, calc. for C27H34N3O3

+
: 448.2595, error 

−1.2 mDa); m/z 224.6308 ([M+2H]
2+

, calc. for C27H35N3O3
2+

: 224.6333, error 2.5 

mDa). 

Elemental Analysis: for C27H33N3O3·0.6H2O: Calc. C 70.75; H 7.52; N 9.17; Rest 

12.56%. Found C 70.63; H 7.32; N 9.09; Rest 12.96%. 

 

 

 

 



  Chapter 6 

177 

 

Cis,cis-1,3,5-tris(5-chlorosalicylidenamino)cyclohexane, 5-Cl-salimtach, [7a] 

 

Tach·3HBr (250 mg, 0.67 mmol, 1 eq.) was dissolved in 7 mL of water and NaOH (80 

mg, 2.01 mmol, 3 eq.) was added to the solution, which was left stirring at room 

temperature for 10 min. A solution of 5-chlorosalicylaldehyde (314 mg, 2.01 mmol, 3 

eq.) in 2 mL of methanol was then added dropwise to the colourless water solution, 

which immediately turned to a bright yellow suspension. The mixture was left stirring 

at room temperature for 16 h. The yellow solid was isolated by filtration and washed 

with chilled ethanol. 

Yield: 299 mg, 0.55 mmol, 82%.  

1
H NMR: (d6-DMSO) δ 8.65 (3H, s, c), 7.57 (3H, d, 

4
J = 2.8, i), 7.36 (3H, dd, 

3
J = 

8.8, 
4
J  = 2.8, g), 6.91 (3H, d, 

3
J = 8.8, f), 3.73 (3H, ap.t, 

3
Jax-ax = 11.3, b), 2.04 (3H, 

ap.d, 
2
J = 11.3, aeq), 1.79 (3H, ap.q, 

3
J = 

2
J = 11.3, aax). 

13
C{

1
H} NMR: (d6-DMSO) δ 163.4 (c), 159.2 (e), 131.8 (g), 130.4 (i), 121.7 (h), 

119.6 (d), 118.4 (f), 62.4 (b), 39.6 (a).  

ESI-MS: positive ion m/z 544.0955 ([M+H]
+
, calc. for C27H25Cl3N3O3

+
: 544.0961, 

error 0.6 mDa); m/z 406.1079 ([M+H−Arm]
+
, calc. for C20H22Cl2N3O2

+
: 406.1084, 

error 0.5 mDa); m/z 272.5497 ([M+2H]
2+

, calc. for C27H26Cl3N3O3
2+

: 272.5514, error 

1.7 mDa).  

 

 

 

 

 

 

 

 



  Chapter 6 

178 

 

Cis,cis-1,3,5-tris(5-chlorosalicylamino)cyclohexane, 5-Cl-saltach, [7b] 

 

Cis,cis-1,3,5-tris(5-chlorosalicylidenamino)cyclohexane, 5-Cl-salimtach, (150 mg, 

0.27 mmol, 1 eq.) was dissolved in 20 mL of methanol and sodium borohydride (82 

mg, 2.16 mmol, 8 eq.) were slowly added in portions. Immediately the bright yellow 

solution became a cream suspension. The mixture was left stirring for 2 h at room 

temperature and, subsequently, heated at reflux for 4 h. Methanol was concentrated to 

about 4 mL and 20 mL of water were added. The precipitate was isolated by filtration 

and washed with small amounts of chilled ethanol. Crystals suitable for X-ray 

diffraction were grown from DMSO/H2O layer as pale yellow fine needles.   

Yield: 119 mg, 0.22 mmol, 78%. Melting point: 202-203°C. 

1
H NMR: (d6-DMSO) δ 7.14 (3H, d, 

4
J = 2.8, i), 7.07 (3H, dd, 

3
J = 8.4, 

4
J  = 2.8, g), 

6.68 (3H, d, 
3
J = 8.4, f), 3.83 (6H, s, c), 2.41 (3H, ap.t, 

3
Jax-ax = 11.6, b), 2.16 (3H, 

ap.d, 
2
J = 11.6, aeq), 0.86 (3H, ap.q, 

3
J = 

2
J = 11.6, aax). 

13
C{

1
H} NMR: (d6-DMSO) δ 156.4 (e), 127.7 (i), 127.1 (g), 126.6 (d), 121.7 (h), 

116.8 (f), 52.3 (b), 46.9 (c), 38.3 (a). 

ESI-MS: positive ion m/z 550.1432 ([M+H]
+
, calc. for C27H31Cl3N3O3

+
: 550.1426, 

error −0.6 mDa). 

Elemental Analysis: for C27H30Cl3N3O3·0.2H2O: Calc. C 58.48; H 5.53; N 7.58; Rest 

28.41%. Found C 58.34; H 5.40; N 7.52; Rest 28.74%. 
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Cis,cis-1,3,5-tris(5-chlorosalicylamino)cyclohexane trihydrochloride, 5-Cl-

salimtach·3HCl, [7b]HCl 

 

Cis,cis-1,3,5-tris(5-chlorosalicylamino)cyclohexane, 5-Cl-saltach, (80 mg, 0.14 mmol, 

1 eq.) was dissolved in a 86 mM solution of HCl in water (0.43 mmol, 3 eq.). 

The mixture was left stirring for 10 min, allowing the solid to completely dissolve in 

the acid solution. Water was evaporated under vacuum, leaving a white solid. 

Yield: 90 mg, 0.14 mmol, 98%. Melting point: dec. >210°C. 

 
1
H NMR: (d6-DMSO) δ 10.66 (3H, s, k), 9.59 (6H, s, j), 7.58 (3H, d, 

4
J = 2.4, i), 7.28 

(3H, dd, 
3
J = 8.4, 

4
J = 2.4, g), 7.01 (3H, d, 

3
J = 8.4, f), 4.09 (6H, s, c), 3.27 (3H, bs, b), 

2.74 (3H, d, 
2
J = 11.8, aeq), 1.77 (3H, ap.q, 

3
J = 

2
J = 11.8, aax). 

ESI-MS: positive ion m/z 550.1426 ([M+H]
+
, calc. for C27H31Cl3N3O3

+
: 550.1426, 

error 0.0 mDa). 

Elemental Analysis: for C27H33Cl6N3O3·2.5H2O: Calc. C 45.98; H 5.43; N 5.96; Rest 

42.63%. Found C 45.94; H 5.14; N 6.10; Rest 42.82%. 

 

 

Cis,cis-1,3,5-tris(5-nitrosalicylidenamino)cyclohexane, 5-NO2-salimtach, [8a] 
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Tach·3HBr (250 mg, 0.67 mmol, 1 eq.) was dissolved in 7 mL of water and NaOH (80 

mg, 2.01 mmol, 3 eq.) was added to the solution, which was left stirring at room 

temperature for 10 min. A methanolic solution of 5-nitrosalicylaldehyde (336 mg, 2.01 

mmol, 3 eq.) was added dropwise to the colourless water solution, which immediately 

turned to a bright yellow suspension. The mixture was left stirring at room temperature 

for 16 h. The yellow solid was isolated by filtration and washed with chilled ethanol 

and a small amount of cold ether. 

Yield: 306 mg, 0.53 mmol, 79% 

1
H NMR: (d6-DMSO) δ 8.90 (3H, s, c), 7.52 (3H, d, 

4
J = 3.2, i), 8.13 (3H, dd, 

3
J = 

9.2, 
4
J  = 3.2, g), 6.84 (3H, d, 

3
J = 9.2, f), 3.96 (3H, ap.t, 

3
Jax-ax = 11.5, b), 2.31 (3H, 

ap.d, 
2
J  = 11.5, aeq), 1.94 (3H, ap.q, 

3
J = 

2
J = 11.5, aax). 

13
C{

1
H} NMR: (d6-DMSO) δ 172.5 (e), 164.7 (c), 136.1 (h), 130.3 (i), 128.6 (g), 

120.4 (f), 115.4 (d), 58.6 (b), 37.5 (a).  

ESI-MS: positive ion m/z 577.1667 ([M+H]
+
, calc. for C27H25N6O9

+
: 577.1683, error 

1.6 mDa). 

 

 

Cis,cis-1,3,5-tris(5-nitrosalicylamino)cyclohexane, 5-NO2-saltach, [8b]   

 

Cis,cis-1,3,5-tris(5-nitrosalicylidenamino)cyclohexane, 5-NO2-salimtach, (150 mg, 

0.26 mmol, 1 eq.) was suspended in 20 mL of methanol and sodium borohydride (79 

mg, 2.08 mmol, 8 eq.) was slowly added in portions. The mixture was left stirring for 

4 h at room temperature and, subsequently, heated at reflux for 2 h. The resulting 

yellow/orange solution was cooled to room temperature, methanol was concentrated to 

about 4 mL and 20 mL of water were added. The pH of the solution was adjusted to 7 

with 1 M HCl, resulting in the precipitation of a bright yellow compound, which was 

isolated by filtration and washed with chilled EtOH.  
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Yield: 131 mg, 0.22 mmol, 87%. 

1
H NMR: (d6-DMSO) δ 8.05 (3H, d, 

4
J = 2.8, i), 7.93 (3H, dd, 

3
J = 9.2, 

4
J  = 2.8, g), 

6.56 (3H, d, 
3
J = 9.2, f), 3.97 (6H, s, c), 2.76 (3H, ap.t, 

3
Jax-ax = 11.2, b), 2.32 (3H, 

ap.d, 
2
J = 11.2, aeq), 1.14 (3H, ap.q, 

3
J = 

2
J = 11.2, aax). 

13
C{

1
H} NMR: (d6-DMSO) δ 169.7 (e), 135.0 (h), 125.4 (g/i), 125.3(g/i), 122.8 (d), 

116.7 (f), 51.7 (b), 45.9 (c), 34.8 (a). 

ESI-MS: positive ion m/z 583.2162 ([M+H]
+
, calc. for C27H31N6O9

+
: 583.2147, error 

−1.5 mDa). 

 

 

Cis,cis-1,3,5-tris(5-methylsalicylidenamino)cyclohexane, 5-Me-salimtach, [9a] 

 

Tach·3HBr (250 mg, 0.67 mmol, 1 eq.) was dissolved in 10 mL of water and NaOH 

(80 mg, 2.01 mmol, 3 eq.) was added to the solution, which was left stirring at room 

temperature for 10 min. A solution of 5-methylsalicylaldehyde (273 mg, 2.01 mmol, 3 

eq.) in 2.5 mL of diethyl ether was then added dropwise to the colourless water 

solution, which immediately turned to a bright yellow suspension. The mixture was 

left stirring at room temperature for 16 h, allowing the ether to evaporate. The yellow 

solid was isolated by filtration and washed with chilled ethanol. Crystals suitable for 

X-ray diffraction were grown from DMSO/H2O layer in a NMR tube as bright yellow 

plates.   

Yield: 205 mg, 0.42 mmol, 63%. Melting point: 176-179°C. 

1
H NMR: (d6-DMSO) δ 8.60 (3H, s, c), 7.24 (3H, d, 

4
J = 2.0, i), 7.14 (3H, dd, 

3
J = 

8.2, 
4
J  = 2.0, g), 6.78 (3H, d, 

3
J = 8.4, f), 3.66 (3H, ap.t, 

3
Jax-ax = 11.6, b), 2.24 (9H, s, 

j), 2.01 (3H, ap.d, 
2
J = 11.6, aeq), 1.77 (3H, ap.q, 

3
J = 

2
J = 11.6, aax). 
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13
C{

1
H} NMR: (d6-DMSO) δ 164.3 (c), 158.0 (e), 132.8 (g), 131.4 (i), 127.0 (h), 

118.2 (d), 116.1 (f), 62.8 (b), 40.2 (a), 19.8 (j).  

ESI-MS: positive ion m/z 484.2604 ([M+H]
+
, calc. for C30H34N3O3

+
: 484.2595, error 

−0.9 mDa); m/z 242.6321 ([M+2H]
2+

, calc. for C27H35N3O3
2+

: 242.6333, error 1.2 

mDa). 

 

 

Cis,cis-1,3,5-tris(5-methylsalicylamino)cyclohexane, 5-Me-saltach, [9b] 

 

Cis,cis-1,3,5-tris(5-methylsalicylidenamino)cyclohexane, 5-Me-salimtach (100 mg, 

0.21 mmol, 1 eq.) was dissolved in 20 mL of methanol and sodium borohydride (79 

mg, 2.1 mmol, 10 eq.) were slowly added in portions at 0°C. The mixture was left 

stirring for 1 h at room temperature and, subsequently, heated at reflux for 4 h. 

Methanol was concentrated to about 3 mL and 7 mL of water were added. The 

resulting cloudy mixture was extracted with DCM (3×7 mL), the organic layers 

combined were dried over Na2SO4, filtered and the solvent removed by rotary 

evaporation, leaving a light yellow solid. Crystals suitable for X-ray diffraction were 

grown from DMSO/H2O layer as yellow needles.   

Yield: 64 mg, 0.13 mmol, 63%. Melting point: 194-196°C. 

1
H NMR: (CDCH3) δ 6.97 (3H, dd, 

3
J = 8.4, 

4
J  = 1.6, g), 7.77 (3H, dd, 

4
J = 1.4, i), 

6.73 (3H, d, 
3
J = 8.4, f), 3.97 (6H, s, c), 2.58 (3H, ap.t, 

3
Jax-ax = 11.6, b), 2.37 (3H, 

ap.d, 
2
J = 11.6, aeq), 2.24 (9H, s, j), 0.93 (3H, ap.q, 

3
J = 

2
J = 11.6, aax). 

13
C{

1
H} NMR: (CDCH3) δ 155.7 (e), 129.4 (g), 128.9 (i), 128.3 (h), 122.1 (d), 116.3 

(f), 52.6 (b), 49.9 (c), 34.4 (a), 20.5 (j). 
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ESI-MS: positive ion m/z 490.3079 ([M+H]
+
, calc. for C30H40N3O3

+
: 490.3064, error 

−1.5 mDa); m/z 370.2425 ([M+H−Arm]
+
, calc. for C22H32N3O2

+
: 370.2489, error 6.4 

mDa); m/z 245.6553 ([M+2H]
2+

, calc. for C30H41N3O3
2+

: 245.6568, error 1.5 mDa). 

Elemental Analysis: for C30H39N3O3·0.1H2O: Calc. C 73.32; H 8.04; N 8.55; Rest 

10.09%. Found C 73.24; H 8.16; N 8.45; Rest 10.15%. 

 

6.3.4 Synthesis of benzaldehyde derivatives 

Cis,cis-1,3,5-tris(benzylidenamino)cyclohexane, tachimben, [10a] 

 

Tach·3HBr (500 mg, 1.34 mmol, 1 eq.) was dissolved in 5 mL of water and NaOH 

(161 mg, 4.03 mmol, 3 eq.) added. The solution was left stirring for 10 min, then a 

solution of benzaldehyde (428 mg, 0.409 mL, 4.03 mmol, 3 eq.) in diethyl ether (7 

mL) was slowly added and the reaction mixture was left stirring at room temperature 

for 16 h under a N2 atmosphere. The two layers were separated and the aqueous one 

was extracted with ether (3x5 mL). The organic layers combined were dried over 

MgSO4, filtered and solvent evaporated by rotary evaporation, leaving a white solid, 

which was generally used without further purification. Colourless crystals of the 

compound could be obtained from a 1:1 mixture of diethyl ether and hexane at 4°C. 

Yield: 400 mg, 0.95 mmol, 71% 

1
H NMR: (CDCl3) δ 8.39 (3H, s, c), 7.75 (6H, dd, 

3
J = 6.0, 

4
J = 2.3, e) 7.41 (9H, m, 

f+g), 3.59 (3H, ap.tt, 
3
Jax-ax = 11.2, 

3
Jax-eq = 4.0, b),  2.06 (3H, ap.q, 

3
Jax-ax = 

2
J = 11.2, 

aax), 1.92 (3H, ap.d, 
2
J = 11.2, aeq). 

13
C{

1
H} NMR: (CDCl3) δ 159.6 (c), 136.5 (d), 130.7 (f/g), 128.7 (f/g), 128.3 (e), 66.5 

(b), 41.0 (a). 
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ESI-MS: positive ion m/z 394.2261 ([M+H]
+
, calc. for C27H28N3

+
: 394.2278, error 1.7 

mDa); m/z 306.1958 ([M+H−Arm]
+
, calc. for C20H24N3

+
: 306.1965, error 0.7 mDa); 

218.1627 ([M+H−2Arm]
+
, calc. for C13H20N3

+
: 218.1652, error 2.5 mDa).

 

 

 

Cis,cis-1,3,5-tris(benzylamino)cyclohexane, tachben, [10b] 

 

Cis,cis-1,3,5-tris(benzylidenamino)cyclohexane, tachimben, (316 mg, 0.80 mmol, 1 

eq.) was dissolved in methanol (4 mL) and sodium borohydride (60 mg, 1.6 mmol, 2 

eq.) was slowly added in portions. The solution was heated to reflux for 2 h in the 

presence of molecular sieves type 4A. After cooling to room temperature, the mixture 

was filtered and water added until a white suspension persisted (ca. 12 mL). The 

mixture was then extracted with diethyl ether, dried over MgSO4, filtered and the 

solvent removed by rotary evaporation, leaving a colourless oil, which was dried on a 

high vacuum line. 

Yield: 202 mg, 0.50 mmol, 63% 

1
H NMR: (d6-DMSO) δ 7.28 (12H, m, e+f), 7.20 (3H, tt, 

3
J = 6.8, 

4
J = 1.8, g), 3.70 

(6H, s, c), 2.29 (3H, ap.t, 
3
Jax-ax = 11.2, b), 2.12 (3H, ap.d, 

2
J = 11.2, aeq),  0.79 (3H, 

ap.q, 
3
Jax-ax = 

2
J = 11.2, aax). 

13
C{

1
H} NMR: (d6-DMSO) δ 141.4 (d), 128.0 (f/e), 127.8 (f/e), 126.3 (g), 52.8 (b), 

50.0 (c), 39.9 (a). 

ESI-MS: positive ion m/z 400.2736 ([M+H]
+
, calc. for C27H34N3

+
: 400.2747, error 1.1 

mDa); m/z 310.2274 ([M+H−Arm]
+
, calc. for C20H28N3

+
: 310.2278, error 0.4 mDa); 

220.1791 ([M+H−2Arm]
+
, calc. for C13H22N3

+
: 220.1808, error 1.7 mDa).

 

Elemental Analysis: for C27H33N3·0.8H2O: Calc. C 78.33; H 8.42; N 10.15; Rest 

3.10%. Found C 78.35; H 8.37; N 10.12; Rest 3.16%. 
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Cis,cis-1,3,5-tris(4-(dimethylamino)benzylidenamino)cyclohexane, 4-NMe2-

tachimben , [11a]  

 

Tach·3HBr (200 mg, 0.54 mmol, 1 eq.) was dissolved in 14 mL of EtOH and NaOH 

(64 mg, 1.61 mmol, 3 eq.) added. The solution was left stirring for 10 min, then 4-

(dimethylamino)benzaldehyde (240 mg, 1.61 mmol, 3 eq.) was slowly added and the 

reaction mixture was heated at reflux for 16 h. Upon heating, the initially colourless 

reaction mixture became a bright yellow solution. After cooling down, the solvent was 

evaporated and 30 mL of CHCl3 added to the residue, causing the precipitation of a 

white solid (unreacted tach and NaBr) from the yellow solution, which was filtered 

and solvent evaporated by rotary evaporation, leaving a yellow solid. The solid was re-

crystallised from slow evaporation of a EtOH/DCM mix. The yellow crystals were 

filtered and washed several times with cold EtOH. Needle-like crystals suitable for X-

ray diffraction were grown with the same method. 

Yield: from reaction: 264 mg, 0.50 mmol, 93%; from crystals: 130 mg, 0.25 mmol, 

46%. Melting point: decomposition 218-221° C 

1
H NMR: (CDCl3) δ 8.24 (3H, s, c), 7.61 (6H, d, 

3
J = 8.4, e), 6.68 (6H, d, 

3
J = 8.4, f), 

3.50 (3H, ap.t, 
3
Jax-ax = 11.2, b), 2.99 (18H, s, h), 1.95 (6H, m, a). 

13
C{

1
H} NMR: (CDCl3) δ 159.2 (c), 152.1 (g), 129.7 (e), 124.8 (d), 111.7 (f), 66.5 

(b), 41.5 (a), 40.4 (h). 

ESI-MS: positive ion m/z 523.3533 ([M+H]
+
, calc. for C33H43N6

+
: 523.3544, error 1.0 

mDa); m/z 262.1800 ([M+2H]
2+

, calc. for C33H44N6
2+

: 262.1808, error 0.8 mDa).
 

Elemental Analysis: for C33H42N6·1.1EtOH: Calc. C 73.73; H 8.54; N 14.66; Rest 

3.07%. Found C 73.50; H 8.42; N 14.89; Rest 3.19%. 
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Cis,cis-1,3,5-tris(4-(dimethylamino)benzylamino)cyclohexane, 4-NMe2-tachben, 

[11b]  

 

Cis,cis-1,3,5-tris(4-(dimethylamino)benzylidenamino)cyclohexane, 4-NMe2-

tachimben, (130 mg, 0.25 mmol, 1 eq.) was suspended in methanol (15 mL) and 

sodium borohydride (38 mg, 1.0 mmol, 4 eq.) was slowly added in portions. The pale 

yellow suspension turned in to a colourless solution. The mixture was stirred at room 

temperature for 16 h. Methanol was evaporated and the residue was taken with H2O (7 

mL) and DCM (7 mL). The layers were separated and the aqueous layer was extracted 

with DCM (3×7 mL). The organic layers combined were dried over MgSO4, filtered 

and the solvent removed by rotary evaporation, leaving a colourless oil. 

Yield: 109 mg, 0.21 mmol, 82% 

1
H NMR: (CD3OD) δ 7.16 (6H, d, 

3
J = 8.8, e), 6.74 (6H, d, 

3
J = 8.8, f), 3.67 (6H, s, c), 

2.89 (18H, s, h), 2.44 (3H, ap.t, 
3
Jax-ax = 11.6, b), 2.18 (3H, ap.d, 

2
J = 11.6, aeq),  0.98 

(3H, ap.q, 
3
Jax-ax = 

2
J = 11.6, aax). 

13
C{

1
H} NMR: (CD3OD) δ 151.6 (g), 130.5 (e), 128.6 (d), 114.2 (f), 53.5 (b), 50.8 

(c), 41.1 (h), 39.1 (a). 

ESI-MS: positive ion m/z 529.3991 ([M+H]
+
, calc. for C33H49N6

+
: 529.4013, error 2.3 

mDa); m/z 396.3111 ([M+H−Arm]
+
, calc. for C24H38N5

+
: 396.3122, error 1.1 mDa). 

Elemental Analysis: for C33H48N6·0.55H2O: Calc. C 74.58; H 9.19; N 15.60; Rest 

0.63%. Found C 74.07; H 9.17; N 15.07; Rest 1.69%. 
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Cis,cis-1,3,5-tris(4-methoxybenzylidenamino)cyclohexane, 4-OMe-tachimben, 

[12a] 

 

Tach·3HBr (150 mg, 0.40 mmol, 1 eq.) was dissolved in 10 mL of EtOH and NaOH 

(48 mg, 1.21 mmol, 3 eq.) added. The solution was left stirring for 10 min, then 4-

methoxybenzaldehyde (163 mg, 143 μL, 1.21 mmol, 3 eq.) was slowly added and the 

reaction mixture was heated at reflux for 16 h. After cooling down, the solvent was 

evaporated and 20 mL of CHCl3 added to the residue, causing the precipitation of a 

white solid (unreacted tach and NaBr) from the solution, which was filtered and 

solvent evaporated by rotary evaporation, leaving a yellow solid. The compound was 

usually used without further purification. 

Yield: 140 mg, 0.29 mmol, 72%.  

1
H NMR: (CD3OD) δ 8.39 (3H, s, c), 7.72 (6H, d, 

3
J = 8.8, e), 6.98 (6H, d, 

3
J = 8.8, f), 

3.83 (9H, s, h), 3.60 (3H, ap.t, 
3
Jax-ax = 11.6, b), 1.98 (3H, ap.q, 

3
Jax-ax = 

2
J = 11.6, aax),  

1.87 (3H, ap.d, 
2
J = 11.6, aeq). 

13
C{

1
H} NMR: (CDCl3) δ 163.6 (g), 162.8 (c), 131.2 (e), 129.8 (d), 115.1 (f), 67.5 

(b), 55.9 (h), 42.0 (a). 

ESI-MS: positive ion m/z 484.2575 ([M+H]
+
, calc. for C30H34N3O3

+
: 484.2585, error 

2.0 mDa); m/z 366.2170 ([M+H−Arm]
+
, calc. for C22H28N3O2

+
: 366.2176, error 0.6 

mDa); m/z 242.6284 ([M+2H]
2+

, calc. for C30H35N3O3
2+

: 242.6333, error 4.9 mDa). 
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Cis,cis-1,3,5-tris(4-methoxybenzylamino)cyclohexane, 4-OMe-tachben, [12b] 

 

Cis,cis-1,3,5-tris(4-methoxybenzylidenamino)cyclohexane, 4-OMe-tachben, (140 mg, 

0.29 mmol, 1 eq.) was dissolved in methanol (15 mL) and sodium borohydride (44 

mg, 1.16 mmol, 4 eq.) was slowly added in portions. The pale yellow solution turned 

immediately colourless. The mixture was stirred at room temperature for 16 h. 

Methanol was evaporated and the residue was taken with H2O (10 mL) and CHCl3 (10 

mL). The layers were separated and the aqueous layer was extracted with CHCl3 

(3×10 mL). The organic layers were combined and the solvent removed by rotary 

evaporation. The residue was re-dissolved in 12 mL of 0.1 M HCl solution and washed 

with diethyl ether (2×10 mL). The aqueous solution was basified with NaOH, 

becoming a white cloudy suspension as soon as the pH became basic. The mixture was 

extracted with CHCl3 (4×10 mL), dried with MgSO4, filtered and the solvent 

evaporated, leaving a colourless oil.  

Yield: 116 mg, 0.24 mmol, 82% 

1
H NMR: (CD3OD) δ 7.24 (6H, d, 

3
J = 8.4, e), 6.87 (6H, d, 

3
J = 8.4, f), 3.78 (9H, s, 

h), 3.71 (6H, s, c), 2.45 (3H, ap.t, 
3
Jax-ax = 11.6, b), 2.20 (3H, ap.d, 

2
J = 11.6, aeq),  

1.00 (3H, ap.q, 
3
Jax-ax = 

2
J = 11.6, aax). 

13
C{

1
H} NMR: (CD3OD) δ 160.4 (g), 132.6 (d), 130.8 (e), 114.8 (f), 55.6 (h), 53.8 

(b), 50.7 (c), 39.3 (a). 

ESI-MS: positive ion m/z 490.3056 ([M+H]
+
, calc. for C30H40N3O3

+
: 490.3064, error 

0.8 mDa); m/z 370.2480 ([M+H−Arm]
+
, calc. for C22H32N3O2

+
: 370.2489, error 0.9 

mDa); m/z 350.1888 ([M+H−2Arm]
+
, calc. for C14H24N3O

+
: 250.1914, error 2.6 mDa). 

Elemental Analysis: for C30H39N3O3·0.3H2O: Calc. C 72.78; H 8.06; N 8.49; Rest 

10.67%. Found C 72.74; H 7.90; N 8.53; Rest 10.83%. 
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Cis,cis-1,3,5-tris(4-fuorobenzylidenamino)cyclohexane, 4-F-tachimben, [13a] 

 

Tach·3HBr (150 mg, 0.40 mmol, 1 eq.) was dissolved in 10 mL of MeOH and NaOH 

(48 mg, 1.21 mmol, 3 eq.) added. The solution was left stirring for 10 min, then 4-

fluorobenzaldehyde (150 mg, 130 μL, 1.21 mmol, 3 eq.) was added and the reaction 

mixture was stirred at room temperature for 16 h, during which time the initially 

colourless reaction mixture became a pale yellow solution. The solvent was 

evaporated and 20 mL of CHCl3 added to the residue, causing the precipitation of a 

white solid (unreacted tach and NaBr) from the solution, which was filtered and the 

solvent evaporated by rotary evaporation, leaving a white solid. The compound was 

usually used without further purification. 

Yield: 120 mg, 0.27 mmol, 68%.  

1
H NMR: (CDCl3) δ 8.34 (3H, s, c), 7.73 (6H, dd, 

3
JH-H = 8.6, 

4
JH-F = 5.5, e), 7.09 

(6H, ap.t, 
3
JH-H = 

3
JH-F = 8.6, f), 3.56 (3H, tt, 

3
Jax-ax = 11.6, 

3
Jax-eq = 4.0, b), 2.02 (3H, 

ap.q, 
3
Jax-ax = 

2
J = 11.6, aax),  1.88 (3H, dt, 

2
J = 11.6, 

3
Jax-eq = 4.0, aeq). NOTE: protons 

e/e’ and f/f’ showed magnetic inequivalence. 

13
C{

1
H} NMR: (CDCl3) δ 164.4 (d, 

1
J = 250.5, g), 158.1 (c), 132.8 (d, 

4
J = 3.0, d), 

130.1 (d, 
3
J = 8.6, e), 115.8 (d, 

2
J = 21.8, f), 66.3 (b), 41.0 (a). 

19
F NMR: (CDCl3) δ -109.6 (tt, 

3
JH-F = 8.6, 

4
JH-F = 5.5). 

ESI-MS: positive ion m/z 448.1994 ([M+H]
+
, calc. for C27H25F3N3

+
: 448.1995, error 

0.1 mDa); m/z 342.1776 ([M+H−Arm]
+
, calc. for C20H22F2N3

+
: 342.1776, error 0.0 

mDa); m/z 236.1501 ([M+H−2Arm]
+
, calc. for C13H19FN3

+
: 236.1558, error 5.7 mDa). 
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Cis,cis-1,3,5-tris(4-fuorobenzylamino)cyclohexane, 4-F-tachben, [13b] 

 

Cis,cis-1,3,5-tris(4-fluorobenzylidenamino)cyclohexane, 4-F-tachimben, (120 mg, 

0.27 mmol, 1 eq.) was dissolved in methanol (15 mL) and sodium borohydride (41 

mg, 1.08 mmol, 4 eq.) was slowly added in portions. The mixture was stirred at room 

temperature for 16 h. Methanol was evaporated and the residue was taken with H2O 

(10 mL) and DCM (10 mL). The layers were separated and the aqueous layer was 

extracted with DCM (3×10 mL). The organic layers were combined and the solvent 

removed by rotary evaporation. The residue was re-dissolved in 10 mL of 0.1 M HCl 

solution and washed with diethyl ether (2×10 mL).  The aqueous solution was basified 

with NaOH, becoming a white cloudy suspension as soon as the pH became basic. The 

mixture was extracted with DCM (4×10 mL), dried with MgSO4, filtered and the 

solvent evaporated, leaving a colourless oil.  

Yield: 117 mg, 0.26 mmol, 96%. 

1
H NMR: (CD3OD) δ 7.35 (6H, dd, 

3
JH-H = 8.4, 

4
JH-F = 5.2, e), 7.04 (6H, ap.t, 

3
JH-H = 

3
JH-F = 8.4, f), 3.77 (6H, s, c), 2.48 (3H, ap.t, 

3
Jax-ax = 11.6, b), 2.24 (3H, ap.d, 

2
J = 

11.6, aeq),  1.02 (3H, ap.q, 
3
Jax-ax = 

2
J = 11.6, aax). NOTE: protons e/e’ and f/f’ showed 

magnetic inequivalence. 

13
C{

1
H} NMR: (CD3OD) δ 163.4 (d, 

1
J = 243.6, g), 136.8 (d, 

4
J = 3.1, d), 131.4 (d, 

3
J 

= 7.9, e), 116.1 (d, 
2
J = 21.4, f), 54.0 (b), 50.6 (c), 39.4 (a). 

19
F NMR: (CD3OD) δ -117.9 (tt, 

3
JH-F = 8.4, 

4
JH-F = 5.2). 

ESI-MS: positive ion m/z 454.2475 ([M+H]
+
, calc. for C27H31F3N3

+
: 454.2465, error 

−1.0 mDa); m/z 346.2104 ([M+H−Arm]
+
, calc. for C20H26F2N3

+
: 346.2089, error −1.5 

mDa). 

Elemental Analysis: for C27H30F3N3·0.3H2O: Calc. C 70.66; H 6.72; N 9.16; Rest 

13.43%. Found C 70.54; H 6.67; N 9.35; Rest 13.44%. 
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Cis,cis-1,3,5-tris(4-bromobenzylidenamino)cyclohexane, 4-Br-tachimben, [14a] 

 

Tach·3HBr (150 mg, 0.40 mmol, 1 eq.) was dissolved in 10 mL of MeOH and NaOH 

(48 mg, 1.21 mmol, 3 eq.) added. The solution was left stirring for 10 min, then 4-

bromobenzaldehyde (224 mg, 1.21 mmol, 3 eq.) was added and the reaction mixture 

was stirred at room temperature for 16 h, during which time a white precipitate 

formed. The solid was filtered and washed with cold methanol. The compound was 

used without further purification. 

Yield: 164 mg, 0.26 mmol, 65%. Melting point: 166-167°C.  

1
H NMR: (CDCl3) δ 8.30 (3H, s, c), 7.59 (6H, d, 

3
J = 8.4, e), 7.52 (6H, d, 

3
J = 8.4, f), 

3.55 (3H, ap.t, 
3
Jax-ax = 12.0, b), 2.01 (3H, ap.q, 

3
Jax-ax = 

2
J = 12.0, aax),  1.86 (3H, 

ap.d, 
2
J = 12.0, aeq). 

13
C{

1
H} NMR: (CDCl3) δ 158.4 (c), 135.3 (d), 131.9 (f), 129.7 (e), 125.1 (g), 66.4 

(b), 40.9 (a). 

ESI-MS: positive ion m/z 627.9596 ([M+H]
+
, calc. for C27H25Br3N3

+
: 627.9593, error 

−0.3 mDa); m/z 462.0161 ([M+H−Arm]
+
, calc. for C20H22Br2N3

+
: 462.0175, error 1.4 

mDa); m/z 296.0738 ([M+H−2Arm]
+
, calc. for C13H19BrN3

+
: 296.0757, error 1.9 

mDa). 

Elemental Analysis: for C27H24Br3N3: Calc. C 51.46; H 3.84; N 6.67; Rest 38.03%. 

Found C 51.01; H 3.75; N 6.56; Rest 38.50%. 
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Cis,cis-1,3,5-tris(4-bromobenzylamino)cyclohexane, 4-Br-tachben, [14b] 

 

Cis,cis-1,3,5-tris(4-bromobenzylidenamino)cyclohexane, 4-Br-tachimben, (128 mg, 

0.20 mmol, 1 eq.) was dissolved in a 2:1 methanol/DCM mixture (12 mL) and sodium 

borohydride (31 mg, 0.80 mmol, 4 eq.) was slowly added in portions. The mixture was 

stirred at room temperature for 16 h. Methanol was concentrated to 1 mL and H2O (10 

mL) added. The mixture was extracted with CHCl3 (3×10 mL) and the organic layers 

combined were dried over MgSO4, filtered and the solvent removed by rotary 

evaporation, leaving a colourless oil. 

Yield: 121 mg, 0.19 mmol, 98% 

1
H NMR: (CD3OD) δ 7.47 (6H, d, 

3
J = 8.4, e), 7.26 (6H, d, 

3
J = 8.4, f), 3.75 (6H, s, c), 

2.46 (3H, ap.t, 
3
Jax-ax = 11.6, b), 2.21 (3H, ap.d, 

2
J = 11.6, aeq),  1.00 (3H, ap.q, 

3
Jax-ax 

= 
2
J = 11.6, aax). 

13
C{

1
H} NMR: (CD3OD) δ 140.1 (d), 132.6 (f), 131.5 (e), 121.8 (g), 54.0 (b), 50.7 

(c), 39.4 (a). 

ESI-MS: positive ion m/z 634.0067 ([M+H]
+
, calc. for C27H31Br3N3

+
: 634.0063, error 

−0.4 mDa); m/z 466.0480 ([M+H−Arm]
+
, calc. for C20H26Br2N3

+
: 466.0488, error 0.8 

mDa); m/z 298.0905 ([M+H−2Arm]
+
, calc. for C13H21BrN3

+
: 298.0913, error 0.8 

mDa). 

Elemental Analysis: for C27H31Br3N3: Calc. C 50.97; H 4.75; N 6.60; Rest 37.68%. 

Found C 50.83; H 4.63; N 6.48; Rest 38.06%. 
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Cis,cis-1,3,5-tris(4-(trifluoromethyl)benzylidenamino)cyclohexane, 4-CF3-

tachimben, [15a]   

 

Tach·3HBr (100 mg, 0.27 mmol, 1 eq.) was dissolved in 7 mL of MeOH and NaOH 

(32 mg, 0.81 mmol, 3 eq.) added. The solution was left stirring for 10 min and 

nitrogen gas bubbled through, then 4-(trifluoromethyl)benzaldehyde (141 mg, 111 μL, 

0.81 mmol, 3 eq.) was added and the reaction mixture was heated at reflux for 16 h 

under nitrogen. After cooling down, the solvent was evaporated and 20 mL of diethyl 

ether added to the residue, causing the precipitation of a white solid (unreacted tach 

and NaBr) from the solution, which was filtered and solvent evaporated by rotary 

evaporation, leaving a cream solid. The compound was usually used without further 

purification for the reduction step, but when necessary the solid was washed with 

pentane and dried. Crystals suitable for X-ray diffraction were grown from 

CHCl3/pentane layer as colourless plates.   

Yield: 132 mg, 0.22 mmol, 82%.  

1
H NMR: (CDCl3) δ 8.42 (3H, s, c), 7.86 (6H, d, 

3
J = 8.0, e), 7.66 (6H, d, 

3
J = 8.0, f), 

3.64 (3H, ap.t, 
3
Jax-ax = 12.0, b), 2.08 (3H, ap.q, 

3
Jax-ax = 

2
J = 12.0, aax), 1.92 (3H, ap.d, 

2
J = 12.0, aeq). 

13
C NMR: (CDCl3) δ 158.3 (c), 139.5 (q, 

5
J = 1.5, d), 132.4 (q, 

2
J = 32.5, g), 128.5 

(e), 125.7 (q, 
3
J = 3.6, f), 124.0 (q, 

1
J = 272.5, h), 66.4 (b), 40.7 (a). 

19
F NMR: (CDCl3) δ -62.6. 

ESI-MS: positive ion m/z 598.1925 ([M+H]
+
, calc. for C30H25F9N3

+
: 598.1899, error 

−2.6 mDa); m/z 442.1723 ([M+H−Arm]
+
, calc. for C22H22F6N3

+
: 442.1712, error −1.1 

mDa); m/z 286.1522 ([M+H−2Arm]
+
, calc. for C14H19F3N3

+
: 286.1526, error 0.4 

mDa). 
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Elemental Analysis: for C30H24F9N3·0.55H2O: Calc. C 59.32; H 4.16; N 6.62; Rest 

29.60%. Found C 59.03; H 3.87; N 6.77; Rest 30.30%. 

 

 

Cis,cis-1,3,5-tris(4-(trifluoromethyl)benzylamino)cyclohexane, 4-CF3-tachben, 

[15b] 

 

Cis,cis-1,3,5-tris(4-(trifluoromethyl)benzylidenamino)cyclohexane, 4-F-tachimben, 

(113 mg, 0.19 mmol, 1 eq.) was dissolved in a 2:1 methanol/DCM mixture (12 mL) 

and sodium borohydride (29 mg, 0.76 mmol, 4 eq.) was slowly added in portions. The 

mixture was stirred at room temperature for 16 h. The solvent was evaporated and the 

residue was taken with H2O (10 mL) and DCM (10 mL). The layers were separated 

and the aqueous layer was extracted with DCM (3×10 mL). The organic layers were 

combined and the solvent removed by rotary evaporation. The residue was re-

dissolved in 12 mL of 0.1 M HCl solution and washed with diethyl ether (2×10 mL).  

The aqueous solution was basified with NaOH, becoming a white cloudy suspension 

as soon as the pH became basic. The mixture was extracted with DCM (4×10 mL), 

dried with MgSO4, filtered and the solvent evaporated, leaving a colourless oil.  

Yield: 98 mg, 0.16 mmol, 85%. 

1
H NMR: (CD3OD) δ 7.62 (6H, d, 

3
J = 8.0, f), 7.54 (6H, d, 

3
J = 8.0, e), 3.88 (6H, s, c), 

2.49 (3H, ap.t, 
3
Jax-ax = 11.6, b), 2.25 (3H, ap.d, 

2
J = 11.6, aeq),  1.04 (3H, ap.q, 

3
Jax-ax 

= 
2
J = 11.6, aax). 

13
C NMR: (CD3OD) δ 145.6 (d), 130.3 (q, 

2
J = 32.2, g), 130.0 (e), 126.3 (q, 

3
J = 3.8, 

f), 125.8 (q, 
1
J = 271.1, h), 54.1 (b), 50.9 (c), 39.5 (a). 

19
F NMR: (CD3OD) δ -63.8 
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ESI-MS: positive ion m/z 604.2350 ([M+H]
+
, calc. for C30H31F9N3

+
: 604.2369, error 

1.9 mDa); m/z 446.2022 ([M+H−Arm]
+
, calc. for C22H26F6N3

+
: 446.2025, error 0.3 

mDa); m/z 302.6204 ([M+2H]
2+

, calc. for C30H32F9N3
2+

: 302.6221, error 1.7 mDa). 

Elemental Analysis: for C30H30F9N3·0.5H2O: Calc. C 58.82; H 5.10; N 6.86; Rest 

29.22%. Found C 59.06; H 4.90; N 6.61; Rest 29.43%. 

 

6.3.5 Synthesis of mono-armed ligands 

Ni(II)[1-benzylideneamino-3,5-diaminocyclohexane] dinitrate, [16-1] 

 

Cis,cis-1,3,5-tris(benzylidenamino)cyclohexane, tachimben, (394 mg, 1.0 mmol, 1 eq.) 

was dissolved in 5 mL of DCM and a solution of nickel nitrate hexahydrate (291 mg, 

1.0 mmol, 1 eq.) in 2 mL of MeOH was slowly added. Further MeOH (8 mL) was 

added and the green solution was stirred at room temperature for 16 h. Over this 

period of time, the solution became a turquoise suspension. EtOH (12 mL) was added 

to the reaction mixture to favour precipitation of the solid and the mixture was cooled 

in an ice bath for approximately 30 min. The solid was isolated by filtration and 

washed with diethyl ether. The product was used without further purification. 

(caution: due to its high toxicity, nickel nitrate should be handled with particular care 

and all nickel contaminated waste disposed of as special waste) 

Yield: 273 mg, 0.68 mmol, 68%. 

ESI-MS: positive ion m/z 320.0897 ([M]
+
, calc. for C14H20N3NiO2

+
: 320.0904, error 

0.6 mDa). N.B.: due to the MS conditions, the formate adduct was detected instead of 

the dinitrate. 
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Ni(II)[1-benzylamino-3,5-diaminocyclohexane] dinitrate, [16-2]  

 

The Ni(II)-complex [16-1] (273 mg, 0.68 mmol, 1 eq.) was suspended in 28 mL of 

MeOH and the mixture was cooled in a ice bath. Sodium borohydride (129 mg, 3.41 

mmol, 5 eq.) was slowly added in portion to the reaction mixture, which progressively 

turned grey/black . The reaction mixture was left to go back to room temperature and 

stirred for 16 h. The solvent was concentrated to approximately 1 mL and everything 

was used for the next reaction step.  

 

 

Cis,cis-1-benzylamino-3,5-diaminocyclohexane, tachmonoben, [16] 

 

The reaction mixture of [16-2] was re-suspended 28 mL of water and sodium cyanide 

(167 mg, 3.41 mmol, 5 eq., assuming 100% yield in the previous step) was slowly 

added in portions. The grey suspension turned to a pale yellow colour and the reaction 

mixture was stirred at room temperature for 10 min and then heated at reflux for 2.5 h, 

during which time the suspension became a pale yellow solution. Water was 

evaporated, leaving a yellow oil which was re-dissolved in water (20 mL) and 

extracted with DCM (3×20 mL). The organic layers combined were dried over 

MgSO4, filtered and the solvent was evaporated, leaving a light yellow oil. (caution: 

all glassware and water from extraction should be bleached to remove traces of 

cyanide) 

Yield: 10 mg, 0.04 mmol, 7%. 
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1
H NMR: (CD3OD) δ 7.32 (5H, m, e+f+g), 3.79 (2H, s, c), 2.68 (2H, tt, 

3
Jax-ax = 11.6, 

3
Jax-eq = 4.0, b’), 2.58 (1H, m, b), 2.13 (2H, d, 

2
J = 11.6, aeq), 2.02 (1H, m, a’eq), 0.97 

(3H,m, aax+ a’ax). 

13
C{

1
H} NMR: (CD3OD) δ 140.5 (d), 129.6 , 129.5 and 128.2 (e+f+g), 53.8 (b), 51.4 

(c), 48.5 (b’), 43.8 (a’), 41.1 (a). 

 

 

Cis,cis-1,3-di-tert-bythylcarbamate-5-aminocyclohexane, tach-diBoc, [17-1] 

 

Tach·3HBr (200 mg, 0.54 mmol, 1 eq.) was dissolved in 40 mL and triethylamine 

(109 mg, 150 μL, 1.08 mmol, 2 eq.) was added to the solution. Boc2O (236 mg, 248 

μL, 1.08 mmol, 2 eq.) was mixed with 40 mL of MeOH and the solution was slowly 

added dropwise (one drop every 10-12 sec) to the tach solution. The reaction was 

stirred at room temperature for 16 h. The solvent was evaporated leaving a white solid, 

which was dissolved with a NaOH solution at pH 10 in water (12 mL) and ethyl 

acetate (12 mL). The layers were separated and the aqueous layer was extracted with 

ethyl acetate (3×12 mL). An emulsion was usually formed during the extraction, 

which was left with the organic layer during the extraction. The organic layers 

combined were dried over MgSO4, filtered and the solvent was evaporated, leaving a 

white solid. 

Yield: 133 mg, 0.40 mmol, 75%.  

1
H NMR: (d6-DMSO) δ 6.84 (2H, m, c), 3.23 (3H, s, b+b’), 1.79 (3H, bt, aeq+ a’eq), 

1.37 (18H, s, f), 0.98 (2H, ap.q, aax), 0.87 (1H, ap.q, 
2
J = 11.6, a’ax).  

13
C{

1
H} NMR: (d6-DMSO) δ 154.8 (d), 77.5 (e), 47.3 (b’), 46.3 (b), 28.3 (f), 41.1 

(a/a’), 38.3 (a/a’). 
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ESI-MS: positive ion m/z 330.2373 ([M+H]
+
, calc. for C16H32N3O4

+
: 330.2387, error 

1.4 mDa). 

 

 

Cis,cis-1,3-di-tert-bythylcarbamate-5-cyclohexylmethylaminocyclohexane, [17-2] 

 

Tach-diBoc [17-1] (248 mg, 0.75 mmol, 1 eq.) was dissolved in a 1:2 MeOH/DCM 

mix (24 mL in total) and cyclohexanecarboxaldehyde (84 mg, 91 μL, 0.75 mmol, 1 

eq.) was added to the solution. The mixture was stirred at room temperature for 24 h. 

Sodium borohydride (142 mg, 3.75 mmol, 5 eq.) was slowly added in portion and the 

reaction was stirred at room temperature for a further 16 h. The solvent was 

evaporated and the residue was taken with water (15 mL) and extracted with DCM 

(4×15 mL). The organic layers combined were dried over MgSO4, filtered and the 

solvent evaporated, leaving a white solid that was used without further purification 

although containing cyclohexylmethanol.   

Yield: 215 mg of crude product.  

1
H NMR: (CD3OD) δ 2.45 (2H, d, NHCH2-cyclohex.), all other signals covered by 

impurities. 

ESI-MS: positive ion m/z 330.2373 ([M+H]
+
, calc. for C16H32N3O4

+
: 330.2387, error 

1.4 mDa). 
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Cis,cis-1-cyclohexylmethylamino-3,5-diaminocyclohexane, Tachmonocyc, [17] 

 

Compound [17-2] (215 mg crude) was suspended in 20 mL of MeOH and 4 mL of 

conc. HCl were added. To dissolve the compound, 8 mL of DCM were added to the 

mixture, which was left stirring at room temperature for 3 h. The solvent was 

concentrated down to about 5 mL and 20 mL of water were added. The mixture was 

extracted with ethyl acetate (2×20 mL) to remove the residual cyclohexylmethanol and 

the organic layers were discarded. The pH of the solution was basified with NaOH 

(pH 14) and extracted with DCM (4×20 mL). The organic layers combined were dried 

over MgSO4, filtered and the solvent evaporated, leaving a white solid. 

Yield: 9 mg, 0.04 mmol. 

1
H NMR: (CD3OD) δ 2.76 (2H, tt,

 3
Jax-ax = 11.6, 

3
Jax-eq = 3.6, b’), 2.59 (1H, tt,

 3
Jax-ax = 

11.6, 
3
Jax-eq = 3.6, b), 2.48 (2H, d, 

3
J = 6.8, c),  2.10 (d, 

2
J = 11.6, aeq) and 2.04 (d, 

2
J = 

11.6, a’eq) (3H between the two signals, partially overlapping), 1.77 – 0.94 (4 sets of 

multiplets, 17H in total, d, e, f, g, aax and a’ax).  

13
C{

1
H} NMR: (CD3OD) δ 55.2 (b), 54.3 (c), 48.5 (b’), 44.4 (a’), 41.2 (a), 38.7 (d), 

32.5 (e), 27.6 (g/f), 27.1 (g/f). 

ESI-MS: positive ion m/z 226.2273 ([M+H]
+
, calc. for C13H28N3

+
: 226.2278, error 0.5 

mDa). 

 

 

6.4 Synthesis of metal complexes 

All the complexes were synthesised using general Schlenk line techniques using de-

oxygenated solvents. The products were stored under inert atmosphere. 
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Cobalt(II)-cis,cis-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexane dichloride, 

[Co(II)-tachimpyr]Cl2, [18]Cl2 

 

Cis,cis-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexane, tachimpyr, (100 mg, 0.25 

mmol, 1 eq.) was dissolved in 5 mL of deoxygenated EtOH and a solution of 

CoCl2·6H2O (60 mg, 0.25 mmol, 1 eq.) in 2 mL of EtOH was added. The solution 

turned immediately dark red and a precipitate was formed. The reaction was left under 

N2 atmosphere for 16 h, then the precipitate was filtered and Et2O was added to the 

remaining solution. Crystals suitable for x-ray diffraction were formed as orange 

blocks. To isolate the crystals, the solvent was removed via cannula filtration and the 

crystals were dried and stored under N2 atmosphere.  

Yield: crude of reaction: 69 mg, 0.13 mmol, 52%. 

 ESI-MS: positive ion m/z 227.5689 ([M]
2+

, calc. for C24H24CoN6
2+

: 227.5691, error 

2.5 mDa); m/z 455.1395 ([M]
+
, calc. for C24H24CoN6

+
: 455.1389, error −1.2 mDa). 

 

 

Cobalt(II)-N,N’,N’’-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane 

dichloride, [Co(II)-tachimpyr]Cl2, [19]Cl2 
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N,N’,N’’-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane, tachpyr, (72 mg, 

0.18 mmol, 1 eq.) was dissolved in 5 mL of MeOH and a solution of CoCl2·6H2O (43 

mg, 0.18 mmol, 1 eq.) in 2 mL of MeOH was added. The colourless solution of ligand 

solution turned immediately to a yellow/orange colour. The reaction was left under N2 

atmosphere for 16 h, followed by addition of a layer of Et2O to the solution. Crystals 

suitable for x-ray diffraction were formed as green needles. To isolate the crystals, the 

solvent was removed via cannula filtration and the crystals were dried and stored 

under N2 atmosphere.  

Yield: crude of reaction: 28 mg, 0.05 mmol, 30%. 

 ESI-MS: positive ion m/z 228.5754 ([M]
2+

, calc. for C24H26CoN6
2+

: 228.5770, error 

1.6 mDa); m/z 459.1696 ([M]
+
, calc. for C24H28CoN6

+
: 459.1702, error 0.6 mDa). 

 

 

Ruthenium(II)-N,N’,N’’-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane 

dichloride, [Ru(II)-tachpyr]Cl2, [20]Cl2 

 

N,N’,N’’-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane, tachpyr, (5.1 mg, 

0.01 mmol, 1 eq.) was dissolved in 1 mL of D2O in a Young’s tap NMR tube under 

argon and RuCl2(DMSO)4 (6.1 mg, 0.01 mmol, 1 eq.) was added. The colourless 

solution of ligand solution turned yellow on addition of the Ru complex, but no further 

change of colour was noticed. The reaction was heated in the sealed NMR tube at 110 

°C  under N2 atmosphere for 2 h. Crystals suitable for X-ray diffraction were formed 

as dark red blocks after addition of a layer of Et2O.  

1
H NMR: (D2O) δ 7.65 (6H, m, f+h), 7.39 (3H, d, 

3
J = 8.2, e), 7.06 (3H, m, g), 4.47 

(3H, d, 
2
J = 18.9, c), 4.24 (3H, d, 

2
J = 18.9, c), 3.30 (3H, partially overlapping with 

other signals, m, b), 2.05 (6H, m, a).  



  Chapter 6 

202 

 

13
C{

1
H} NMR: (D2O) δ 165.0 (d), 150.9 (f), 135.9 (h), 124.5 (g), 121.2 (e), 56.5 (c), 

52.0 (b), 30.3 (a). 

 

 

6.5 Cell culture and MTT assay – Materials and methods  

Human lung adenocarcinoma A549 cells were donated by the Department of Biology, 

University of York. Human ovarian carcinoma A2780 cells were purchased from the 

European Collection of Cell Cultures (ECACC), Salisbury, UK. Human embryonic 

kidney 293T cells were kindly donated by Dr Tim Ganderton and Dr Marek 

Brzozowski, York Structural Biology Laboratory, Department of Chemistry, 

University of York. All materials were purchased from Sigma, except culture media 

and FBS (Invitrogen/Gibco), Millex®-MP sterilizing filters (Merck Millipore), 96-

well sterile plates and sterile culture flasks (Fisher Scientific). All procedures were 

carried out in an Envair class II Laminar flow microbiological safety hood BIO 2+ 

under sterile conditions. Cells were counted using a Beckman Coulter Vi-Cell® 

Analyser and results of MTT assay visualised with a Hidex Plate Chameleon™V plate 

reader. Cells were centrifuged with a SciQuip Sigma 1-6 centrifuge. Plates were 

centrifuged with a Beckman Coulter Allegra™25R Centrifuge using a S5700 rotor. 

Plates were mixed with an Eppendorf Thermomixer
® 

compact. A549 cells were grown 

in Dulbecco Modified Eagle Medium (DMEM) in the presence of 10% FBS; A2780 

cells were maintained in RPMI 1640 medium enriched with 10% FBS and 1% L-

Glutamine; 293T cells were kept in DMEM - GlutaMAX™ medium in the presence of 

10% FBS. All cell lines were maintained in 25 cm
2 

cell culture flasks at 37°C in a 90% 

RH, 5% CO2 Thermo Scientific Forma Steri-Cult incubator. Cells were cultured with 

0.25% EDTA-trypsin when 70-80% confluent. 

 

MTT assays were carried out in a 96-well plate following the method reported by Torti 

et al.
133

 All non-sterile solutions were filtered using a Millex®-MP 0.22 μm filter in 

order to sterilise them. Positive and negative controls were added in each plate. For the 

assay, cells were cultured and centrifuged for 5 min at 1000 rpm, medium was 

removed and substituted with 10 mL of the appropriate fresh medium. Cells were 
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suspended and counted using a Vi-Cell® instrument. Cells were then plated at the 

seeding density of 1000 cells/well for A549 and 293T cells and 3500 cells/well for 

A2780 cells, adding 100 μL of dilute cell suspension to each well. The plate was then 

left in the incubator for 16-20 h to allow cells to adhere before adding the drug. The 

compound to test was dissolved in medium, filtered to sterilise and diluted to have a 

2x solution of the desired concentration, then 100 μL of compound solution were 

added to each well and cells were left incubating for 3 days. When the compounds 

were not freely soluble in medium, DMSO was used to dissolve the compound and the 

solution was then diluted with medium. The final concentration of DMSO was never 

higher than 1%, which was also added to the control. Viability was tested with MTT 

assay; 50 μL of a sterile solution of 3-(4,5-dimethyltriazol-2-yl)-2,5-

diphenyltetrazolium bromide (10.6 mg in 5.5 mL) were added to each well and the 

plate was left incubating for 2 h. The plate was then centrifuged at 500 rpm for 10 

min, 220 μL of medium were taken and substituted with 150 μL of DMSO in each 

well. Cell viability was evaluated spectrophotometrically reading the absorbance at 

540 nm using a Plate Reader. Growth inhibition was calculated as a percentage in 

relation to the positive and negative controls. Final IC50 values were calculated as the 

average of at least three plates from at least two independent experiments.   

 

6.5.1 MTT assay in the presence of Fe  

The general procedure for MTT assay was followed, but a sterile solution of 

FeSO4·7H2O in medium was added to the cell culture at different stages of the assay. 

Due to the dilution occurring in the well, the concentration of the stock Fe-solutions 

were either two or four times higher than the desired final concentration. The final 

concentration of iron with cells was 47, 94, 189 or 377 µM. When iron was added on 

day 1 of the assay, cells were suspended in Fe-enriched medium. Alternatively, when 

Fe was added on day 2 of the assay, 50 μL of a 4x solution of Fe in medium were 

either loaded on to the wells, followed by 50 μL of a 4x solution of tachpyr, or mixed 

with a 4x solution of tachpyr, incubated at 25° C for 15 min and 100 μL of the 

resulting solution added to the wells. When Fe was added 8 h after the addition of 
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tachpyr, 50 μL of 4x solution of tachpyr were placed into the wells, the plate was left 

incubating for 8 h and 50 μL of 4x Fe solution were added to the wells.  

In the repetition of the experiment reported by Zhao et al,
134

 the iron solution in the 

medium was sterilised and 100 µL of the stock solution were added to the cells to have 

a final concentration of iron with the cell of 200 µM. The plate was incubated for 24 h, 

after which time the medium was completely removed, cells were washed with 50 µL 

of PBS and 100 µL of medium added to the cells. Tachpyr was dissolved in medium 

and added following the standard protocol. The plate was then placed back in the 

incubator, proceeding with the test as usual.  

 

 

6.6 Evaluation of the mechanism of action of tachpyr – Materials 

and methods 

6.6.1 Circular dichroism 

Circular dichroism spectra were recorded using a Jasco J-810 spectropolarimeter 

operated with the following parameters: sensitivity: 100 mdeg, start WL: 350 or 400 

nm, end WL: 200 nm; data pitch: 0.5 nm; scanning mode: continuous; scanning speed: 

200 nm∙min
-1

; response: 0.1 sec; band width: 1.0; accumulation: 12. All materials were 

purchased from Sigma Aldrich. A solution containing 300 µM ct-DNA, 20 mM NaCl 

and 1 mM sodium cacodylate pH 6.8 (1 mL) was added to the spectrometer cell and 

the CD spectrum recorded. The titration was performed adding different aliquots of a 

500 µM stock solution of tachpyr in Milli-Q® water and an equal amount of a 600 µM 

stock solution of ct-DNA to keep the concentration of DNA in the cuvette constant. 

  

6.6.2 Linear dichroism 

Linear dichroism spectra were recorded using a Jasco J-810 spectropolarimeter 

modified for LD spectroscopic measurements. The instrument was operated with the 

following parameters: sensitivity: 0.1 dOD, start WL: 350 nm, end WL: 200 nm; data 

pitch: 0.5 nm; scanning mode: continuous; scanning speed: 500 nm∙min
-1

; response: 
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0.25 sec; band width: 2.0; accumulation: 8. A solution containing 300 µM ct-DNA, 20 

mM NaCl and 0.89 mM sodium cacodylate pH 6.8 (600 µL) was added to the 

spectrometer cell and the LD spectrum recorded. The titration was performed adding 

different aliquots of a 500 µM stock solution of tachpyr in Milli-Q® water and an 

equal amount of a 600 µM stock solution of ct-DNA to keep the concentration of 

DNA in the cuvette constant. 

 

6.6.3 Ethidium bromide displacement 

Ethidium bromide displacement was measured by recording the quenching of 

fluorescence using a Perking-Elmer LS 50b instrument with the following parameters: 

excitation WL: 480 nm; emission range: 500-700 nm; resolution: 0.4 nm; excitation 

split: 5; emission split: 1.5. After measuring the spectrum for ethidium bromide only 

(600 µL of a 15 µM solution), the solution in the cuvette was substituted with 600 µL 

of a solution  of 12 µM ct-DNA with 15 µM ethidium bromide, 50 mM NaCl and 1 

mM sodium cacodylate and the fluorescence recorded. The titration was performed 

adding aliquots of a 50 µM stock solution of compound in Milli-Q® water and an 

equal amount of a 60 µM ethidium bromide, 24 µM DNA stock solution with 100 mM 

NaCl and 2 mM sodium cacodylate to keep the concentration of DNA in the cuvette 

constant. 

 

6.6.4 Agarose gel electrophoresis 

Different aliquots of a 60 µM solution of compound in Milli-Q® water were added to 

a solution of pBR322 circular plasmid DNA in order to have a final concentration of 

DNA of 1.54 mM bp. The mixture was incubates for up to 3 h at 37 °C, after which 

time 4 µL of loading buffer (30% glycerol, 0.05% bromophenol blue, 250 mM EDTA, 

40% sucrose, 10% sodium dodecyl sulfate (SDS)) were added to each eppendorf. The 

solutions were centrifuged for a few seconds to ensure complete mixing and 16 µL of 

solution were added to 1% agarose gel in TRIS acetate / EDTA buffer pH 8.3 (40 mM 

TRIS, 1 mM EDTA). The gel was run using a HE99X Maxi (Amersham Biosciences, 

UK) submarine gel kit at 120 V, 200 A for 3 h. Ethidium bromide (400 µL of a 50 µM 
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solution) was added and left for 30 min with the gel, which was then washed with 

water and the results visualised using a UVIdoc Platinum System at the wavelength of 

312 nm.  

 

 

6.7 Crystal structure of DNA – Materials and methods 

DNA was obtained by Sigma Aldrich custom oligo service, Natrix screen was 

purchased by Hampton Research, all other materials were purchased from Sigma 

Aldrich. DNA (1792.2 g/mol, extinction coefficient = 57.6 OD/µmol, 455.4 µg) was 

dissolved in Milli-Q® water to have a concentration of 3 mM (single stranded). DNA 

was annealed using a PCR thermal cycler at 65 °C for 12 min and cooled down to 4 °C 

over a 1.5 h period. The crystal plate was set up using a TTP Labtech Mosquito 

instrument. Crystals suitable for X-ray structure determination were obtained with the 

sitting drop/vapour diffusion method over 9 months from well F8 of the Natrix HT 

screen, which contained 40 mM sodium cacodylate pH = 6.0, 80 mM NaCl, 20 mM 

BaCl2, 12 mM spermine and 45% MPD as precipitating solution. A 0.8 µL drop of 

solution containing 15 mM tachpyr and 1.5 mM DNA (concentration of single strand) 

was mixed with an equal volume of precipitating solution and the plate was stored at 

10 °C to allow for the growth of the crystals. The crystal appeared as a cluster of 

hexagonal crystals, which were mounted on a rayon loop and frozen in liquid N2 

without use of cryoprotectant. Diffraction data was collected at 1.5 Å resolution at the 

Diamond Light Source synchrotron. Data was integrated using XDS
303

 as 

implemented in xia2
304

, AIMLESS
305

 program was used to merge the data, 

MOLREP
287

 for solution and refinement, as well as REFMAC as part of the CCP4 

suite
288

 and Coot.
289
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Appendix I.  X-ray crystallography data 

Name Tachprl [4b]∙3CHCl3 

Identification code phw1114 

Empirical formula C45H63Cl9N12 

Formula weight 1091.12 

Temperature / K 109.9 

Crystal system triclinic 

Space group P-1 

a / Å, b / Å, c / Å 14.3898(12), 14.5637(14), 15.0840(10) 

α / °, β / °, γ / ° 88.276(7), 63.722(8), 71.729 

Volume / Å
3 

2669.5(4) 

Z 2 

ρcalc / mg mm
-3

 1.357 

μ / mm
-1 

0.516 

F(000) 1140.000 

Crystal size / mm
3 

0.2245 × 0.06 × 0.0362 

2θ range for data collection / ° 5.76 to 58.06° 

 

Index ranges 

 

-19 ≤ h ≤ 19,  

-18 ≤ k ≤ 19,  

-19 ≤ l ≤ 20 

Reflections collected 17691 

Independent reflections 11923 [Rint = 0.0254] 

Data / restraints / parameters 11923/0/647 

Goodness-of-fit on F
2 

1.019 

Final R indexes [I > 2σ (I)] R1 = 0.0565, wR2 = 0.1016 

Final R indexes [all data] R1 = 0.0895, wR2 = 0.1161 

Largest diff. peak/hole / e Å
-3 

0.642/ -0.481 
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Name Salimtach [6a] 

Identification code phw1101 

Empirical formula C27H27N3O3 

Formula weight 441.52 

Temperature / K 120.0 

Crystal system monoclinic 

Space group P21/c 

a / Å, b / Å, c / Å 5.9979(2), 24.6161(8), 15.3079(6) 

α / °, β / °, γ / ° 90.00, 91.843(2), 90.00 

Volume / Å
3 

2258.96(14) 

Z 4 

ρcalc / mg mm
-3

 1.298 

μ / mm
-1 

0.086 

F(000) 936 

Crystal size / mm
3 

0.32 × 0.05 × 0.04 

2θ range for data collection / ° 6.28 to 55.14° 

 

Index ranges 

 

-7 ≤ h ≤ 7,  

-29 ≤ k ≤ 31,  

-19 ≤ l ≤ 19 

Reflections collected 18092 

Independent reflections 5165 [Rint = 0.0524] 

Data / restraints / parameters 5165/0/311 

Goodness-of-fit on F
2 

1.114 

Final R indexes [I > 2σ (I)] R1 = 0.0679, wR2 = 0.1184 

Final R indexes [all data] R1 = 0.1034, wR2 = 0.1352 

Largest diff. peak/hole / e Å
-3 

0.265/ -0.239 
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Name 5-Me-salimtach [9a] 

Identification code phw1113 

Empirical formula C30H33N3O3 

Formula weight 483.59 

Temperature / K 110.0 

Crystal system orthorhombic 

Space group Pna21 

a / Å, b / Å, c / Å 18.3543(12), 16.464(11), 8.6727(9) 

α / °, β / °, γ / ° 90.00, 90.00, 90.00 

Volume / Å
3 

2620.8(19) 

Z 4 

ρcalc / mg mm
-3

 1.226 

μ / mm
-1 

0.080 

F(000) 1032 

Crystal size / mm
3 

0.1749 × 0.1688 × 0.0631 

2θ range for data collection / ° 5.76 to 57.98° 

 

Index ranges 

 

-14 ≤ h ≤ 24,  

-13 ≤ k ≤ 22,  

-11 ≤ l ≤ 11 

Reflections collected 10192 

Independent reflections 5801 [Rint = 0.0197] 

Data / restraints / parameters 5801/1/337 

Goodness-of-fit on F
2 

1.061 

Final R indexes [I > 2σ (I)] R1 = 0.0422, wR2 = 0.0983 

Final R indexes [all data] R1 = 0.0511, wR2 = 0.1034 

Largest diff. peak/hole / e Å
-3 

0.171/ -0.183 
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Name Saltach [6b] 

Identification code phw1117 

Empirical formula C27H33N3O3 

Formula weight 447.56 

Temperature / K 110.0 

Crystal system trigonal 

Space group P31c 

a / Å, b / Å, c / Å 13.4860(5), 13.4860(5), 7.7069(6) 

α / °, β / °, γ / ° 90.00, 90.00, 120.00 

Volume / Å
3 

1213.87(12) 

Z 2 

ρcalc / mg mm
-3

 1.225 

μ / mm
-1 

0.080 

F(000) 480 

Crystal size / mm
3 

0.2907 × 0.068 × 0.0524 

2θ range for data collection / ° 6.08 to 60.78° 

 

Index ranges 

 

-6 ≤ h ≤ 17,  

-19 ≤ k ≤ 15,  

-10 ≤ l ≤ 9 

Reflections collected 2916 

Independent reflections 1846 [Rint = 0.0235] 

Data / restraints / parameters 1846/1/108 

Goodness-of-fit on F
2 

1.194 

Final R indexes [I > 2σ (I)] R1 = 0.0510, wR2 = 0.1450 

Final R indexes [all data] R1 = 0.0697, wR2 = 0.1578 

Largest diff. peak/hole / e Å
-3 

0.217/ -0.284 
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Name 5-Cl-saltach [7b] 

Identification code phw1115 

Empirical formula C27H30Cl3N3O3 

Formula weight 550.89 

Temperature / K 110.0 

Crystal system trigonal 

Space group P31c 

a / Å, b / Å, c / Å 13.8281(3), 13.8281(3), 8.2311(2) 

α / °, β / °, γ / ° 90.00, 90.00, 120.00 

Volume / Å
3 

1363.07(6) 

Z 2 

ρcalc / mg mm
-3

 1.342 

μ / mm
-1 

0.370 

F(000) 576 

Crystal size / mm
3 

0.3051 × 0.1453 × 0.116 

2θ range for data collection / ° 5.9 to 64.54 

 

Index ranges 

 

-19 ≤ h ≤ 20,  

-20 ≤ k ≤ 20,  

-12 ≤ l ≤ 12 

Reflections collected 8234 

Independent reflections 2940 [Rint = 0.0270] 

Data / restraints / parameters 2940/1/117 

Goodness-of-fit on F
2 

1.111 

Final R indexes [I > 2σ (I)] R1 = 0.0404, wR2 = 0.1014 

Final R indexes [all data] R1 = 0.0463, wR2 = 0.1057 

Largest diff. peak/hole / e Å
-3 

0.324/ -0.241 
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Name 5-Me-saltach [9b] 

Identification code phw1118 

Empirical formula C30H39N3O3 

Formula weight 489.64 

Temperature / K 110.0 

Crystal system trigonal 

Space group P31c 

a / Å, b / Å, c / Å 14.2781(7), 14.2781(7), 7.8801(4) 

α / °, β / °, γ / ° 90.00, 90.00, 120.00 

Volume / Å
3 

1391.26(12) 

Z 2 

ρcalc / mg mm
-3

 1.169 

μ / mm
-1 

0.076 

F(000) 528 

Crystal size / mm
3 

0.3155 × 0.1659 × 0.1467 

2θ range for data collection / ° 5.7 to 64.32° 

 

Index ranges 

 

-18 ≤ h ≤ 8,  

-20 ≤ k ≤ 19,  

-11 ≤ l ≤ 9 

Reflections collected 4801 

Independent reflections 2325 [Rint = 0.0314] 

Data / restraints / parameters 2325/1/118 

Goodness-of-fit on F
2 

1.089 

Final R indexes [I > 2σ (I)] R1 = 0.0622, wR2 = 0.1793 

Final R indexes [all data] R1 = 0.0739, wR2 = 0.1929 

Largest diff. peak/hole / e Å
-3 

0.405/ -0.208 
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Name 4-NMe2-tachimben [11a]∙EtOH 

Identification code phw1301 

Empirical formula C35H48N6O 

Formula weight 568.79 

Temperature / K 110.00(10) 

Crystal system monoclinic 

Space group P21/n 

a / Å, b / Å, c / Å 11.6014(5), 9.7929(4), 29.2781(12) 

α / °, β / °, γ / ° 90.00, 90.850(4), 90.00  

Volume / Å
3 

3326.0(2) 

Z 4 

ρcalc / mg mm
-3

 1.136 

μ / mm
-1 

0.070 

F(000) 1232.0 

Crystal size / mm
3 

0.2369 × 0.1651 × 0.0437 

2θ range for data collection / ° 5.6 to 56° 

 

Index ranges 

 

-15 ≤ h ≤ 15 

-10 ≤ k ≤ 12 

-38 ≤ l ≤ 23 

Reflections collected 12634 

Independent reflections 6771 [Rint = 0.0346] 

Data / restraints / parameters 6771/4/410 

Goodness-of-fit on F
2 

1.049 

Final R indexes [I > 2σ (I)] R1 = 0.0598, wR2 = 0.1260 

Final R indexes [all data] R1 = 0.0888, wR2 = 0.1413 

Largest diff. peak/hole / e Å
-3 

0.21/-0.24 
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Name 4-CF3-tachimben [15a] 

Identification code phw1308 

Empirical formula C30H24F9N3  

Formula weight 597.52  

Temperature / K 110.05(10)  

Crystal system orthorhombic  

Space group Pbca  

a / Å, b / Å, c / Å 19.0875(3), 12.10177(17), 24.0122(3) 

α / °, β / °, γ / ° 90.00 , 90.00, 90.00 

Volume / Å
3 

5546.65(15)  

Z 8  

ρcalc / mg mm
-3

 1.431  

μ / mm
-1 

0.127  

F(000) 2448.0  

Crystal size / mm
3 

0.2777 × 0.1474 × 0.0697  

2θ range for data collection / ° 6.4 to 56.06°  

 

Index ranges 

 

-24 ≤ h ≤ 13 

-15 ≤ k ≤ 10 

-31 ≤ l ≤ 18  

Reflections collected 14716  

Independent reflections 5708 [Rint = 0.0213]  

Data / restraints / parameters 5708/37/406  

Goodness-of-fit on F
2 

1.059  

Final R indexes [I > 2σ (I)] R1 = 0.0445, wR2 = 0.0958  

Final R indexes [all data] R1 = 0.0601, wR2 = 0.1041  

Largest diff. peak/hole / e Å
-3 

0.23/-0.43  
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Name [Co(II)-tachimpyr]Cl2 [18]Cl2∙2.5EtOH 

Identification code phw1103 

Empirical formula C29H39N6Cl2CoO2.5 

Formula weight 641.49 

Temperature / K 110.0 

Crystal system monoclinic 

Space group P21/n 

a / Å, b / Å, c / Å 11.3868(9), 14.0237(11), 19.2597(15) 

α / °, β / °, γ / ° 90.00, 99.711(9), 90.00 

Volume / Å
3 

3031.4(4) 

Z 4 

ρcalc / mg mm
-3

 1.406 

μ / mm
-1 

0.782 

F(000) 1344 

Crystal size / mm
3 

0.3941 × 0.1767 × 0.0965 

2θ range for data collection / ° 5.82 to 55.9° 

 

Index ranges 

 

-14 ≤ h ≤ 14,  

-17 ≤ k ≤ 12,  

-24 ≤ l ≤ 21 

Reflections collected 12340 

Independent reflections 6108 [Rint = 0.0218] 

Data / restraints / parameters 6108/6/382 

Goodness-of-fit on F
2 

1.043 

Final R indexes [I > 2σ (I)] R1 = 0.0497, wR2 = 0.1215 

Final R indexes [all data] R1 = 0.0589, wR2 = 0.1284 

Largest diff. peak/hole / e Å
-3 

1.412/ -0.735 
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Name [Co(II)-tachpyr]CoCl4 [19]CoCl4 

Identification code phw1106_twin1_hklf4 

Empirical formula C24H30N6Cl4Co2 

Formula weight 662.20 

Temperature / K 110.0 

Crystal system monoclinic 

Space group P21 

a / Å, b / Å, c / Å 9.6223(3), 14.7571(3), 10.6813(3) 

α / °, β / °, γ / ° 90.00, 115.949(4), 90.00 

Volume / Å
3 

1363.82(7) 

Z 2 

ρcalc / mg mm
-3

 1.613 

μ / mm
-1 

1.634 

F(000) 676 

Crystal size / mm
3 

0.06 × 0.04 × 0.04 

2θ range for data collection / ° 6.96 to 58.22° 

 

Index ranges 

 

-12 ≤ h ≤ 12,  

-20 ≤ k ≤ 19,  

-14 ≤ l ≤ 14 

Reflections collected 13897 

Independent reflections 5903 [Rint = 0.0319] 

Data / restraints / parameters 5903/1/334 

Goodness-of-fit on F
2 

1.040 

Final R indexes [I > 2σ (I)] R1 = 0.0349, wR2 = 0.0835 

Final R indexes [all data] R1 = 0.0417, wR2 = 0.0854 

Largest diff. peak/hole / e Å
-3 

0.472/ -0.694 
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Name Ru(II)-dimers  

Identification code phw1120 

Empirical formula C13H44.5Cl1.5O10.5Ru2S6  

Formula weight 816.02  

Temperature / K 110.00 

Crystal system monoclinic  

Space group P21/n  

a / Å, b / Å, c / Å 15.5134(6), 10.8600(4), 18.0560(12) 

α / °, β / °, γ / ° 90.00, 106.470(6), 90.00 

Volume / Å
3 

2917.2(3)  

Z 4  

ρcalc / mg mm
-3

 1.858  

μ / mm
-1 

1.643  

F(000) 1663.0  

Crystal size / mm
3 

0.2844 × 0.1058 × 0.0886  

2θ range for data collection / ° 6.02 to 60.3°  

 

Index ranges 

 

-20 ≤ h ≤ 21 

-14 ≤ k ≤ 14 

-24 ≤ l ≤ 25  

Reflections collected 21935  

Independent reflections 7625 [Rint = 0.0379]  

Data / restraints / parameters 7625/1/355  

Goodness-of-fit on F
2 

1.181  

Final R indexes [I > 2σ (I)] R1 = 0.0420, wR2 = 0.0705  

Final R indexes [all data] R1 = 0.0593, wR2 = 0.0767  

Largest diff. peak/hole / e Å
-3 

0.83/-0.90  
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Name [Ru(II)-tachpyr]Cl2 [20]Cl2 

Identification code phw1202 

Empirical formula C24H26.5Cl2N6Ru 

Formula weight 570.98 

Temperature / K 110.00(10) 

Crystal system triclinic 

Space group P-1 

a / Å, b / Å, c / Å 10.5125(7), 12.8761(8), 13.0224(9) 

α / °, β / °, γ / ° 102.955(6), 110.920(6), 107.384(6) 

Volume / Å
3 

1459.07(16) 

Z 2 

ρcalc / mg mm
-3

 1.300 

μ / mm
-1 

0.741 

F(000) 581.0 

Crystal size / mm
3 

0.2465 × 0.1333 × 0.0709 

2θ range for data collection / ° 5.94 to 64.28° 

 

Index ranges 

 

-9 ≤ h ≤ 15 

-18 ≤ k ≤ 14 

-18 ≤ l ≤ 16 

Reflections collected 15679 

Independent reflections 9142 [Rint = 0.0248] 

Data / restraints / parameters 9142/0/308 

Goodness-of-fit on F
2 

1.032 

Final R indexes [I > 2σ (I)] R1 = 0.0491, wR2 = 0.1266 

Final R indexes [all data] R1 = 0.0592, wR2 = 0.1330 

Largest diff. peak/hole / e Å
-3 

1.43/-1.23 
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Appendix II.  Fe experiments – complete IC50 tables 

A549 human adenocarcinoma cells 

 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM 5.40 ± 0.10 µM 5.49 ± 0.10 µM 

189 µM 5.02 ± 0.09 µM 5.01 ± 0.11 µM 

94 µM 4.90 ± 0.17 µM 4.90 ± 0.17 µM 

47 µM 4.81 ± 0.06 µM 4.78 ± 0.06 µM 

Table II.1: Addition of Fe on day 1. Partial loss of viability due to the Fe was observed. 

 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM - - 

189 µM 6.03 ± 0.15 µM 6.11 ± 0.08 µM 

94 µM 5.70 ± 0.10 µM 5.78 ± 0.08 µM 

47 µM 5.64 ± 0.13 µM 5.75 ± 0.09 µM 

Table II.2: Addition of Fe on day 2, Fe first followed by tachpyr. 

 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM 7.27 ± 0.34 µM 7.88 ± 0.14 µM 

189 µM 6.46 ± 0.15 µM 6.58 ± 0.13 µM 

94 µM 5.28 ± 0.14 µM 5.44 ± 0.07 µM 

47 µM 5.59 ± 0.15 µM 5.72 ± 0.09 µM 

Table II.3: Addition of Fe on day 2, Fe and tachpyr mixed together. 
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 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM - - 

189 µM 5.27 ± 0.16 µM 5.39 ± 0.14 µM 

94 µM 4.97 ± 0.13 µM 5.03 ± 0.12 µM 

47 µM 4.89 ± 0.14 µM 4.94 ± 0.13 µM 

Table II.4: Addition of Fe on day 2, 8 h after addition of tachpyr.  

 [Fe] Ref to positive control Ref to positive control + Fe 

200 µM 5.39 ± 0.09 µM 5.49 ± 0.01 µM 

Table II.5: Fe removed after 24 h. 

 

A2780 human ovarian cancer cells 

 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM 3.60 ± 0.35 µM 3.69 ± 0.22 µM 

189 µM 2.98 ± 0.07 µM 2.98 ± 0.06 µM 

94 µM 2.91 ± 0.03 µM 2.91 ± 0.03 µM 

47 µM 3.03 ± 0.03 µM 3.03 ± 0.02 µM 

Table II.6: Addition of Fe on day 1. Partial loss of viability due to the Fe was observed. 

 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM - - 

189 µM 4.35 ± 0.08 µM 4.43 ± 0.02 µM 

94 µM 4.47 ± 0.06 µM 4.51 ± 0.03 µM 

47 µM 4.10 ± 0.11 µM 4.24 ± 0.05 µM 

Table II.7: Addition of Fe on day 2, Fe first followed by tachpyr. 
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 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM 5.26 ± 0.14 µM 5.51 ± 0.03 µM 

189 µM 4.50 ± 0.02 µM 4.49 ± 0.01 µM 

94 µM 4.18 ± 0.12 µM 4.37 ± 0.07 µM 

47 µM 4.40 ± 0.02 µM 4.46 ± 0.02 µM 

Table II.8: Addition of Fe on day 2, Fe and tachpyr mixed together. 

 [Fe] Ref to positive control Ref to positive control + Fe 

377 µM - - 

189 µM 2.03 ± 0.17 µM < 2 µM 

94 µM < 2 µM < 2 µM 

47 µM < 2 µM < 2 µM 

Table II. 9: Addition of Fe on day 2, 8 h after addition of tachpyr.  

 [Fe] Ref to positive control Ref to positive control + Fe 

200 µM 3.01 ± 0.07 µM 3.10 ± 0.07 µM 

Table II.10: Fe removed after 24 h. 

  



  Appendix  

222 

 

Abbreviations 

° degrees 

°C degrees Celsius 

13
C carbon 

1
H proton 

Å Angstroms 

A Amperes 

AAS atomic absorption spectroscopy 

ap apparent 

Ar aromatic 

b broad 

Boc t-butoxycarbonyl 

Bu butyl 

CD circular dichroism 

cm centimetres 

cm
-1

 wavenumber 

COSY correlation spectroscopy 

ct calf thymus  

d doublet 

DCM dichloromethane 

dd doublet of doublets 

DEPT distortionless enhancement by polarisation transfer 

DMEM Dulbecco modified Eagle medium 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

DPPA diphenylphosphorylazide 

EDTA ethylendiaminetetraacetic acid 

eq. or equiv. equivalents 

ER estrogen receptor 

ESI electrospray ionisation 

Et ethyl 

Et2O diethyl ether 
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EtOH ethanol 

FBS foetal bovine serum 

g grams 

h hour(s) 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HMBC heteronuclear multiple bond correlation 

HPLC high performance (pressure) liquid chromatography 

HSQC heteronuclear single quantum correlation 

Hz Hertz 

IC50 inhibiting concentration 50, concentration of drug able to inhibit 50% of 

cell growth 

J coupling constant 

K Kelvin 

LD linear dichroism 

M molar 

m multiplet 

m/z mass/charge 

mDa milliDalton 

Me methyl 

MeOH methanol 

mg milligrams 

MHz mega Hertz 

min minutes  

mL millilitres 

mmol millimoles 

MMP matrix metalloproteinase 

mol moles 

MPD 2-methyl-2,4-pentan-diol 

MS mass spectrometry 

MTT 3-(4,5-dimethyltriazol-2-yl)-2,5-diphenyltetrazolium bromide 

ng nanograms 

nm nanometres  
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NMR nuclear magnetic resonance 

ORTEP Oak Ridge thermal-ellipsoid plot 

p pseudo 

PEG polyethylene glycol 

PBS phosphate buffer saline 

Ph phenyl  

ppm parts per million 

RH relative humidity 

rpm rotations per minute 

RPMI Roswell Park memorial institute medium 

SARs structure-activity relationships 

SDS sodium dodecyl sulfate 

s singlet 

t triplet 

td triplet of doublets 

TFA trifluoroacetic acid 

THF tetrahydrofuran 

TOF time of flight 

TRIS 2-amino-2-(hydroxymethyl)-1,3-propanediol 

tt triplet of triplets 

UV ultraviolet 

V Volts 

Vis visible 

WL wavelength 

δ chemical shift  

λ wavelength 

µg micrograms  

μL microlitres 

μM micromolar 

µmol micromoles 
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