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Abstract. Bayesian methods for inverse problems offer higher robustness to noise and uncer-
tainty than deterministic, yet accurate, inference methods. Both types of techniques typically
focus on finding optimal model parameters that minimize an objective function, which com-
pares model output with some acquired data. However, uncertainties coming from different
sources, such as: (1) the material manufacturing process, (2) material’s mechanical proper-
ties, (3) measurement errors, or (4) the model and its parameters, may cause inference errors
and loss of information should they are not properly taken into account. These uncertainties
might have important safety and economic consequences in damage-related applications, such
as in structural health monitoring of aerospace structures. This paper aims at illustrating the
benefits of using probability based methods instead of deterministic approaches. A case study
is presented, which illustrates the use of a hyper-robust Bayesian damage localization method
when compared to a deterministic one. The results show that Bayesian inverse problem is more
robust to data noise and uncertainties stemming from the model parameters than deterministic
methods.
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1 INTRODUCTION

Damage localization and reconstruction in plate-like structures using guided-wave based
structural health monitoring (SHM) have been mainly addressed using post-processing tech-
niques applied to ultrasonic signals [1]. The exploration of large areas with a small atten-
uation [2] is one of the most remarkable characteristics that has led industries, such as the
aerospace industry, to focus on guided-waves. Sparse or phased-array sensors’ layouts are typ-
ically placed so that the structure is actively interrogated on demand, which confers higher
accuracy and reliability [3]. Potential safety and economical implications in condition-based
maintenance are extra-motivations for the use of this SHM technique. The required damage-
related information is extracted from the data by using inverse problems (IPs) that minimize the
distance between model predictions and observations [4].

IPs can be solved using different methods such as the deterministic or the Bayesian ones.
Deterministic approaches seek the best value of the model parameters that provides the closest
prediction to the available observation. Alternatively, Bayesian inverse problems (BIPs) provide
a set of parameters values associated to their posterior plausibilities, namely the posterior proba-
bility density function (PDF). To this end, the prior degree of belief of the parameters is updated
by using observations (data) and the Bayes’ Theorem [5, 6]. In the particular case of ultrasound-
based damage detection, two general approaches are typically adopted: (1) model-based IPs,
whereby detailed damage information (e.g. the severity of damage as residual strength) [7] can
be obtained from the measured signal at a considerable computational cost; and (2) efficient IPs
based on signal features, whereby other relevant information, e.g. the damage position or sever-
ity, can be obtained [2, 8–10]. Among them, the time-of-flight (ToF) has been extensively used
as a signal feature for its efficiency in obtaining information about material properties along
with damage localization using post-processing scattered signals. It is worth mentioning that
ultrasound-based damage localization conveys sources of uncertainty that are mostly related to
the measurement system and physical properties of the material.

To partially address this modeling issue, a number of researchers have proposed the use of
BIP applied to ultrasound based damage localization [11, 12]. More recently, a Bayesian frame-
work, which combines the information coming from different post-processing techniques, i.e.,
time-frequency models [13–16], using their posterior plausibilities to obtain a more robust dam-
age localization, has been proposed in [17]. In this paper, a comparison between BIPs and de-
terministic IPs in the context of ultrasonic guided-wave based damage localization is provided.
In the context of BIP, probability is interpreted as a multi-valued logic that expresses the degree
of belief of a proposition conditioned on the given information [5, 18]. Both deterministic and
Bayesian approaches are applied to an aluminum plate with one and two damaged areas. The
asymptotic independent Markov sampling (AIMS) [19, 20] algorithm is adopted to solve the
resulting BIP, while genetic algorithms (GA) are used to solve the deterministic IP. In general,
the results show that BIP is superior in terms of robustness of the damage reconstruction while
the deterministic problem provide very efficient solutions but at risk of obtaining incomplete
and biased information.

The remainder of the paper is organized as follows: Section 2 comprises the probabilis-
tic methodology used to obtain the robust estimate of the ToF for each sensor. In Section 3,
the proposed framework is applied in two case studies and the results are discussed. Finally,
Section 4 provides concluding remarks.
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2 METHODOLOGY

2.1 Bayesian damage localization

In this section, the ultrasonic guided-wave based damage localization is addressed by using a
model-based BIP using an ellipse-based ToF model [21]. To this end, Np actuator-sensor paths
are considered in a plate-like structure to excite and receive guided-waves for damage detection
by screening changes of their ToF. To this end, the ToF information of the scattered signals can
be theoretically obtained as follows [22]:

ToF(a−s) =

√
(Xd −Xa)

2 + (Yd − Ya)2

Va−d
+

√
(Xd −Xs)

2 + (Yd − Ys)2

Vd−s
(1)

where (Xd, Yd) are the coordinates of the damage, (Xa, Ya) are the actuator transducer coor-
dinates, (Xs, Ys) are the coordinates of one arbitrary sensor transducer, and Va−d and Vd−s are
the wave propagation velocities of the actuator-damage and damage-sensor paths respectively.
These velocities are the same under the assumption of isotropic materials and a concentrated
damage within a bounded region, i.e. V = Va−d = Vd−s.

To probabilistically describe the ToF model given by Equation (1), a set of uncertain model
parameters m = {Xd, Yd, V } are considered in this problem to describe the uncertainty about
the damage coordinates as well as the wave propagation velocity. The set m of model parame-
ters is augmented with a model error term e ∈ R, resulting in a set of model parameters defined
as θ = {m, σe} = {Xd, Yd, V, σe} ∈ Θ, where σe is the standard deviation of the error term
e and Θ is the model parameter space. The referred model error term e ∈ R is considered
to account for the non-existence of a theoretical ToF model that fully represent the reality, so
that [17]:

ToF(a−s)
D = ToF(a−s)

M (m) + e = ToF(a−s)
M (θ) (2)

where subscripts M and D from ToF(a−s)
M and ToF(a−s)

D refer to modeled and measured ToF, re-
spectively. Note in Equation (2) that e provides the discrepancy between ToF(a−s)

M and ToF(a−s)
D

values. By the PMIE, this error term can be conservatively described as a zero-mean Gaussian
distribution with covariance σe as N (0, σe).

Next, the posterior PDF of the model parameters given the ToF data D = {D(1), . . . , D(N)},
where N is the total number of active sensors, by applying the well-known Bayes’ Theorem as:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(3)

where p(θ) is the prior PDF of the model parameters, and p(D|θ) is the likelihood function
for the set of data D. Given the stochastic independence of the measurements, the likelihood
can be expressed as p(D|θ) =

∏N
k=1 p(D

(k)|θ). Finally, p(D) is the evidence of the data under
the model specified by θ. This term, which acts as a normalizing factor within the Bayes’
theorem, can be bypassed through sampling, e.g. using Markov Chain Monte Carlo (MCMC)
methods [23]. In this paper, the AIMS algorithm [19, 20] is used as MCMC method due to its
efficiency in addressing multimodality of the posterior PDF. Thus, Equation (3) can be rewritten
as:

p(θ|D) ∝
{

N∏
k=1

p
(
D(k)|θ

)}
p(θ) (4)
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2.2 Deterministic damage localization

Similarly, the deterministic approach pursues the minimization of the discrepancy between
predictions and observations. In this case, however, the error term that measures the aforemen-
tioned distance r is considered as a deterministic variable as follows:

ToF(a−s)
D = ToF(a−s)

M (m) + r (5)

where m denotes the unknown parameters. The minimization problem can be formulated using
the L2-norm between prediction and observation, as follows:

mopt = arg min
m
‖ToF(a−s)

D − ToF(a−s)
M ‖22 (6)

where mopt is the set of optimal parameters that minimize the discrepancy between model and
data. In addition, the logarithm of the objective function is considered to boost the convergence
of the minimization problem, as follows:

mopt = arg min
m

log
(
‖ToF(a−s)

D − ToF(a−s)
M ‖22 + ∆

)
(7)

where ∆ is a small value that avoids the trivial solution when the objective functions tends to
zero [24]. Equation (6) is then addressed by using GA [25], given that the objective function is
non-convex, and hence more than one local minimum may be found. The GA are configured so
that the convergence of the objective function is achieved.

Stochastic forward
model

Model parameters θθθ

Likelihood function
p(D|θθθ)

Prior PDF
p(θθθ)

Posterior PDF
p(θθθ |D)

Objective function

Model parameters m

Mutation
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Crossover

Generation

Best individual

Bayesian inverse problem

GA-based deterministic inverse problem

(D)

(Bayes’ Th.)

(Stop criteria)

Figure 1: General framework used to compare deterministic and Bayesian IPs.

Figure 1 depicts the workflow for the comparison of both the BIP and the deterministic IP
using a GA-based approach. Note that both IPs use the same ToF data to address the damage
localization so that the outputs are comparable. Note also that the BIP provides the values
of the model parameters associated to their posterior probabilities by the posterior PDF, while
the deterministic approach only provides the best individual that minimizes the corresponding
objective function (recall Eq. (7)). Thus, the BIP is able to quantify the uncertainty associated
to the model parameters stemming from different sources.

4



Sergio Cantero-Chinchilla et al.

3 CASE STUDIES

3.1 Synthetic signal generation

For the purpose of signal generation, a 300mm× 300mm aluminium plate of 2mm thickness
has been modeled in Abaqus. The material is considered to be an aluminum alloy 2024-T351
with Young’s modulus E = 73.1GPa, density ρ = 2780kg/m3, and a Poisson’s ratio of 0.33.
Here, the damage is modeled as a rectangular hole of dimensions 2mm × 4mm. S4R (4-node,
quadrilateral, stress-displacement elements with reduced integration and large-strain formula-
tion) shell elements [26] are used with 1mm mesh size to avoid spatial aliasing. The excitation
is modeled as a perpendicular action with a 5 cycle sine tone-burst centered at f = 100kHz. In
addition, the sensors are arbitrarily placed as can be observed in Figure 2.

500

25
0

13
0

60
60

70 60 60 60 60 60 60 70

11

18

11

32.5

61

18

Figure 2: Layout of the aluminum plate with both one and two damaged areas. The red area
correspond to a single damage location in case study 1, while the two blue damaged areas
correspond to the case study 2.

The acquired signals are then post-processed by applying different time-frequency models,
which are then ranked based on their posterior plausibilities. Consequently, a robust time-
frequency model is built by using such probabilities [17]. The robust ToF values are then used
as data to reconstruct the damage location by using the ToF model-based approaches, i.e., the
deterministic and the Bayesian ones.

3.2 One damaged area

Figure 3a depicts the damage reconstruction when one damaged area is simulated. In this
case study, both the BIP, whose posterior PDF is respresented by iso-probability lines, and the
deterministic IP, whose best individual is depicted by a gray point, provide similar damage
localization. Here, the deterministic IP stands out computationally due to its efficiency in pro-
viding the minimum. However, the superior robustness of the posterior PDF provided by the
Bayesian approach, which accounts for uncertainties from several sources, is manifested in its
dispersion, while the deterministic solution provides one unique value. As can be observed in
Figure 3a, the deterministic solution is located at the tail of the postetrior PDF, which is the
result of a different wave propagation velocity inference. In particular, the velocity obtained by
the deterministic approach is 1962 m/s, while the mean of the marginal posterior PDF obtained
by the BIP is 2000.4 m/s. This small variation is the cause of the misplacement of the damage
position in the deterministic IP with respect to the BIP. These results emphasize the strengths
of BIP when dealing with uncertain data, models and parameters.
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(a) One damaged area. (b) Two damaged areas.

Figure 3: Comparison between the deterministic IP and BIP considering both one and two
damaged areas in panels (a) and (b), respectively.

3.3 Two damaged areas

In case of two or more damaged areas, the BIP shows its clear superiority in comparison
with the deterministic IP. As can be observed in Figure 3b, the deterministic solution of the
damage location, depicted by the gray point, is relatively accurate with respect to one damaged
area. This result points out one of the limitation of the GA, which is only able to provide with
one minimum that corresponds to the damage location of one hole. In contrast, the Bayesian
approach is able to provide with a relatively accurate damage location of both holes due to the
ability of the AIMS algorithm to address multimodality. Note that the posterior PDF is depicted
by iso-probability lines in Figure 3b. It is also worth mentioning that both the high probability
areas coincide with the closer corner holes to the actuator located at the center of the plate. This
behavior agrees with the wave scattering phenomenon when the guided-waves reach the square
holes.

4 CONCLUSIONS

A comprehensive comparison between deterministic and Bayesian approaches to address
ultrasonic guided-wave based damage localization has been illustrated in this paper. To this
end, a state-of-the-art robust Bayesian damage localization approach that uses the AIMS as
MCMC algorithm to draw samples from the posterior PDF has been compared with the classical
approach of GA-based IP. Two case studies have been selected to illustrate the strengths of each
approach, using one structure with one and two damaged areas, respectively. The results show
the superiority of the BIP in comparison with the deterministic IP in more complex cases such
as in the presence of multiple damage areas, while the GA-based approach stands out due to its
efficiency in providing local minimum.
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