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We describe a method to dispersively detect all three vector components of an external magnetic
field using alkali atoms based on the Voigt effect. Our method relies on measuring the linear
birefringence of the radio frequency dressed atomic medium via polarization homodyning. This gives
rise to modulated polarization signals at the first and second harmonic of the dressing frequency.
The vector components of the external magnetic field are mapped onto the quadratures of these
harmonics. We find that our scheme can be utilised in both cold and hot atomic gases to detect such
external fields in shielded and unshielded environments. In the shielded hot vapour case we achieve
field sensitivities in the pT/

√

Hz range for all 3 vector components, using pump-probe cycles with
125 Hz repetition rate, and limited by the short coherence time of the cell. Finally, our scheme has
a simple single axis beam geometry making it advantageous for miniature magnetic field sensors.

I. INTRODUCTION

Optically pumped magnetometers, (OPMs), have in-
creasingly been in the spotlight for their broad span of ap-
plications ranging from fundamental physics experiments
to medical physics. Examples include measurements of
the electric dipole moment (EDM) [1, 2] and searches
for exotic physics [3] as well as magneto-encephalography
(MEG) [4, 5] and magneto-cardiography [6–8] where de-
tection of the small magnetic fields of the brain and
the heart is required. A review can be found in [9].
In recent years OPMs have become the state-of-the-art
magnetic field sensors achieving sub fT/

√
Hz sensitivity

and surpassing the well established SQUID based sen-
sors [10–12]. In its simplest operation, an OPM uses
a pump-probe laser to measure the atomic Larmor fre-
quency, i.e. the frequency of spin precession, by interact-
ing with optically pumped atoms, which in effect mea-
sures the strength of the external magnetic field. How-
ever, in a larger range of applications, a complete de-
termination of the magnetic field is required. Some
schemes employ a scalar magnetometer to run as a vec-
tor magnetometer by applying a rotating low frequency
bias magnetic field [13, 14]. Another possible approach
uses multiple radio-frequency modulations to map the
three vector components onto the harmonics of the sig-
nal [15, 16]. The effects of the field orientation on the
resulting signal phase have been studied for different
configurations of a modulating field and may be used
for full vector magnetometry [18]. Also an all-optical
scheme with crossed beams was demonstrated to extract
the three field components [17]. To date, most of the
OPM schemes are based on pump-probe configurations
that rely on the Faraday rotation, i.e. circular birefrin-
gence of the medium. As a result, the majority of such
schemes require an orthogonal pump-probe geometry for
high efficiency of detection [10]. However, this geometry
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is not convenient for developing miniature sensors, whilst
a parallel configuration is compatible with chip-scale and
compact atomic magnetometers. The issue can be over-
come by introducing modulation fields, but several fields
are required to extract the full information.

In this paper we demonstrate an alternative 3D vector
magnetometer based on the measurement of the Voigt
effect, i.e. linear birefringence arising from aligned rather
than oriented spin states. It is measured with a probe
beam detuned from an optical resonance, in the presence
of a single radio-frequency field [19]. Previous work on
double resonance detection of aligned states measured
linear dichroism on a resonant optical transition [20, 21].
The method presented here, maps the three vector com-
ponents of the external field, detected via demodulation
of the probe beam’s ellipticity, onto orthogonal quadra-
tures of the first and second harmonic of the dressing fre-
quency. State preparation and detection are performed
in a parallel pump-probe geometry. We demonstrated
vector capability of our magnetometer over a range of
±0.3 nT longitudinal and ±180 nT transverse fields and
analyzed its sensitivity in a shielded environment in open
loop operation. Active feedback on the external field
should enable an extension of dynamic range as well as
operation in unshielded scenarios.

The paper is organized as follows. In Section II, we
briefly describe the linear birefringence induced by radio-
frequency dressed states. This provides predictions for
the mapping of field components onto orthogonal quadra-
tures of the first and second harmonics of the rf oscillation
in the signal’s response. In the following part of the pa-
per, we report on the experimental realization using two
different types of atomic ensemble. Section III demon-
strates the detection principle with laser cooled atoms,
prepared in a pure quantum state. Section IV describes
the extension to a magnetically shielded vapour cell by
combining the Voigt effect with synchronous pumping.
Experimental results on vector sensitivity are shown to-
gether with an analysis of noise performance. Section V
presents our conclusions.
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II. MAGNETOMETRY WITH
RADIO-FREQUENCY DRESSED STATES

Optically pumped magnetometers utilise dispersive
coupling of light to an atomic ensemble in the pres-
ence of an external magnetic field. The Larmor preces-
sion of spin-polarized atoms causes a modulation of the
medium’s birefringence, which can be observed polari-
metrically. In our scheme, we actively drive such preces-
sion with an additional radio-frequency field. Here, we
present a brief description of the driven medium and its
interaction with the light field in terms of dressed states,
as discussed in our previous work [19]. Our model in-
cludes the dependence on field orientation, which allows
for the extraction of full vector information from mea-
surements of either linear or circular birefringence.

We consider atoms interacting with a static field Bdc =

Bdcez and a field oscillating at a radio-frequency ω in a
transverse direction Brf(t) = Brf cos(ωt)ex. For weak
fields, the time-dependent interaction Hamiltonian of an
atom with spin F of constant magnitude can be approx-
imated by Ĥ = (µBgF /h̵)F̂ ⋅ (Brf(ωt) +Bdc), where µB
is the Bohr magneton, gF is the Landé factor, and h̵
is the reduced Planck constant. Depending on the sign
of the gF factor, using positive ω, we transform the
Hamiltonian to a frame rotating about the z-axis, ac-
cording to Ĥrot = ÛĤÛ

−1 + ih̵−1 (∂tÛ) Û−1 with a time-

dependent rotation operator Û = esgn(gF )iωtF̂z/h̵. Ne-
glecting counter-rotating terms, the transformed, effec-
tive Hamiltonian takes the form

Ĥeff =
µBgF
h̵

F̂ ⋅Beff . (1)

The effective magnetic field in this frame is given by
Beff = Bρex + (Bdc − Bres)ez, where Bρ = Brf/2, and
Bres = ±h̵ω/µBgF corresponds to a fictitious magnetic
field that defines a resonance condition for the Larmor
precession [19]. As depicted in Fig. 1(a), the angle en-
closed by the effective field and the z-axis is

θ =
π

2
− tan−1Bdc −Bres

Bρ
. (2)

E.g., at resonance, i.e. for θ = π/2, the effective field is
orthogonal to the static field Bdc, pointing in the rotating
frame’s x-direction.

The eigenstates of the effective, rotating-frame Hamil-
tonian, i.e. the dressed states, can be written as ∣Ψrot⟩ =

eiθF̂y/h̵ ∣F,Fz⟩. But in the laboratory frame the same

states are time-dependent, given by ∣Ψ(t)⟩ = Û−1 ∣Ψrot⟩.
The dressed states can be prepared directly by syn-
chronous optical pumping [22], or by adiabatic dressing of
bare states ∣F,Fz⟩, which acquire only a time-dependent
phase under transformation to the rotating frame, lead-
ing to a different (quasi-) energy. In our scheme, magne-
tometer operation does not rely on a purely dynamical
spin evolution, which would be observed as a change in

a) b)

FIG. 1. Geometrical depiction of the effective field in the
rotating frame. (a) The effective field encloses an angle θ
with the z-axis. An external field variation δBz changes the
angle θ → θ′. (b) The presence of transverse external fields
By and Bx also changes the orientation of the effective field,
rotating it by angles α and β, respectively.

precession frequency. Instead, we assume adiabatic fol-
lowing of dressed states that remain aligned with the ef-
fective field. Magnetometry is then enabled by the orien-
tational dependence of the effective field on an additional
external field.

An external field in the z-direction enters the spin evo-
lution through the dependence of θ on the static field
strength, see Eq. (2) and Fig. 1(a), where we can con-
trol the sensitivity ∂θ/∂Bz by applying an offset field,
such that Bz = Boffs + δBz. The presence of trans-
verse static fields can also be represented by rotations,
as shown in Fig. 1(b). Field components By,x rotate the
static field about the x, y-axes by angles α and β, re-
spectively. Hence, using a sequential rotation M(α,β) =
Rx(α)Ry(β) [23], the atomic spin operator in the labo-

ratory frame is given by F̂′ =M(α,β)F̂, where unprimed
coordinates are aligned with the actual field. Figure 1
shows that the angles α and β are given by

α = arctan(
−By

Bz
cos(β)) , (3)

β = arctan(
Bx
Bz

) , (4)

with the small angle approximation

α ≈
−By

Bz
, β ≈

Bx
Bz

. (5)

For a complete description at larger angles, we need to in-
clude that the transverse fields increase the actual static
field strength to Bdc =

√
B2
z +B

2
x +B

2
y , and that the ap-

plied rf field is not co-rotated, leading to a reduction of
its effective amplitude in the rotating frame, given by
Bρ = (Brf/2)cosβ.

For the detection of the spin evolution we employ
45○-linearly polarized probe light propagating in the z-
direction with a corresponding Stokes parameter Sy =

(c/2)⟨â†
xây + â†

yâx⟩, which is equal to half the pho-
ton flux [19]. The dispersive interaction of the atomic
medium with off-resonant light may lead to both cir-
cular and linear birefringence, depending on the atomic
spin-dependent polarizability tensor. After propagation
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through the medium, neglecting absorption and assum-
ing sufficiently small phase angles, the resulting Faraday
and Voigt rotation can be described by Stokes operators

⟨Ŝ′x(t)⟩ = −G
(1)
F SynF ⟨F̂z(t)⟩ , (6)

⟨Ŝ′z(t)⟩ = G
(2)
F SynF ⟨F̂ 2

x (t) − F̂
2
y (t)⟩ , (7)

where Ŝ′z and Ŝ′x represent the polarization’s rotation
and ellipticity as photon flux imbalances of the output
light, measured in either a circular or linear basis. The

coupling strengths G
(k)
F depend on light detuning, inter-

action cross section, and the rank-k components of the
polarizability tensor. In these equations, we assume in-
teraction with nF atoms in the same spin state within one
hyperfine F -manifold and neglect dispersive back-action
on the atoms (Stark shifts) [19].

For eigenstates of the effective Hamiltonian, using the
geometrical rotations by angles α, β, and θ, we can de-
termine the temporal atomic response in the laboratory
frame, measured via Faraday or Voigt effect, in the pres-
ence of external magnetic fields. An adiabatic eigenstate
∣Ψrot⟩, transformed to the laboratory frame and rotated
by M(α,β), leads to spectral decompositions of the mea-
sured signals.

For Faraday rotation, this is given by

⟨Ŝ′x(t)⟩ = −
1

2
G
(1)
F SynF h̵Fz

1

∑
n=0

h̃n(θ)e
inωt

+ c.c., (8)

using ⟨F,Fz ∣ F̂z ∣F,Fz⟩ = h̵Fz. From Eqs. (A10) and
(A11), we find the spectral components in the small angle
approximation

(h̃0, h̃1)
T
(θ) ≈ (

cos θ
(β ± iα) sin θ

) , (9)

for α,β ≪ 1, i.e. for Bx,y ≪ Bz. The principal be-
haviour of these functions across rf resonance is de-
picted in Fig. 2(a). This spectral decomposition shows
rf-resonant behaviour. The transverse field components
are mapped onto the quadratures of the first harmonic
according to β ± iα ≈ (Bx ∓ iBy)/Bz and with an os-
cillation amplitude proportional to sin θ. The latter is
maximal for θ = π/2, i.e. exactly on rf resonance. At
the same time, the zeroth harmonic, i.e. the dc signal,
exhibits dispersive behaviour that maps the total static
field strength, which is proportional to Bz in the first
order approximation near resonance. This configuration
represents a vector magnetometer, but the dc component
of the signal is quite vulnerable to electronic and tech-
nical noise, which will limit this strategy in practice to
sensitive measurements of only the two transverse field
components.

When measuring the Voigt effect, the spectral decom-
position of the signal leads up to the second harmonic
and is given by

⟨Ŝ′z(t)⟩ =
1

2
G
(2)
F SynF h̵

2ξF (Fz)
2

∑
n=0

hn(θ)e
inωt

+ c.c.,

(10)

a)
Faraday

n=0

n=1

b)
Voigt

n=0

n=1

n=2

FIG. 2. Spectral decomposition of (a) Faraday rotation pro-
portional to ⟨Fz⟩ and (b) Voigt rotation proportional to
⟨F 2

x − F
2
y ⟩, with harmonics n = 0 (solid black lines), n = 1

(dashed red lines) and n = 2 (dashed-dotted blue lines).

using ⟨F,Fz ∣ F̂
2
y − F̂

2
z ∣F,Fz⟩ = h̵2(F (F + 1) − 3F 2

z )/2 =

h̵2ξF (Fz).
According to Eqs. (A13)-(A15), the spectral compo-

nents in the small angle approximation are in this case

(h0, h1, h2)
T
(θ) ≈

⎛
⎜
⎝

0
(β ∓ iα) sin 2θ
− sin2 θ

⎞
⎟
⎠
. (11)

The principal behaviour of these functions is shown
in Fig. 2(b). Again, the transverse field components
are mapped onto the quadratures of the first harmonic,
but now with a dispersive shape given by an oscilla-
tion amplitude proportional to sin 2θ. Maximal ampli-
tude is reached at θ = π/4 and θ = 3π/4, i.e. when the
static field is Bdc = B±

sense = Bres ± Bρ. In contrast to
the Faraday decomposition, the zeroth harmonic van-
ishes while the second harmonic depends on the static
field amplitude. Conveniently, the maximum sensitivity
and approximately linear response to Bz is also met at
Bdc = B

±

sense. Hence, the Voigt rotation enables low-noise
detection of all three magnetic components by evaluat-
ing the first and second signal harmonics. For the Voigt
effect measurements presented in the following, we work
on the high field side of the rf resonance, by applying a
field in the z-direction of strength Boffs = B

+

sense(α = β =

0) = Bres +Brf/2. At this setting, the explicit second or-
der expansion of the three relevant signal quadratures is
given by

Re(h1) = hx = + (
1

Boffs
−
δBz
B2

offs

)Bx, (12)

Im(h1) = hy = − (
1

Boffs
−
δBz
B2

offs

)By, (13)

Re(h2) = hz = −
1

2
+
δBz
Brf

− (
δBz
Brf

)

2

+
2Boffs +Brf

4B2
offsBrf

B2
x +

Boffs +Brf

2B2
offsBrf

B2
y . (14)
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III. EXPERIMENTAL REALIZATION: LASER
COOLED ATOMS

A. Laser cooled atoms setup

Our experimental cold atom setup was described
in [19], and here we will present only a brief description.
We prepare an ensemble of approximately 2 × 107 laser
cooled 87Rb atoms with a temperature of (80 ± 10) µK
in the ∣F = 2,mF = 0⟩ state, using a sequence of optical
pumping and state cleaning steps. Here, optical pump
light propagating along a second optical axis was used to
simplify the state preparation. Atoms are then adiabat-
ically dressed with a magnetic rf field in the x-direction
with frequency ω = 2π × 180 kHz, generated by an exter-
nal resonant coil. The rf field amplitude is ramped up
to ≈ 15 mG over 4 ms while the static magnetic field is
ramped to a magnitude of Boffs ≈ 260 mG along the z-
direction, which tunes the atomic Larmor frequency near
resonance.

We measure the Voigt effect with a laser beam (P ≈

100 µW,∅ ≈ 2.5 mm) detuned by −400 MHz from the
F = 2 → F ′ = 2 transition of the 87Rb-D1-line. A half-
waveplate sets the polarization at 45° with respect to the
x, y-axes. After interaction of a 1 ms long probe pulse
with the ensemble, a quarter-wave plate and a Wollaston
prism allow us to measure the linear birefringence of the
medium. The light is detected on a balanced photodetec-
tor pair (Thorlabs PDB210A) with a high-pass filtering
rf amplifier (Minicircuits Model ZFL-1000+). The out-
put voltage u is proportional to the observed ellipticity,
i.e. u(t) = gelS

′

z(t) with electronic gain gel, on the order
of 10−12 V/Hz. The output signal is acquired by a field
programmable gate array (FPGA) and is demodulated
digitally with reference to the phase of the rf field.

FIG. 3. Experimental setup. A laser cooled 87Rb sample is
prepared in a pure ∣F = 2, Fy = 0⟩ state. After rotation of the
static field into the z-direction and adiabatic dressing with a
magnetic rf field along x, linear birefringence of the sample is
probed polarimetrically by a laser pulse propagating along z.

a)

b)

FIG. 4. Voigt effect measurement across RF resonance. Typ-
ical, experimental amplitudes of the signal harmonics. Here,
in-phase components of ac voltage amplitudes oscillating at
ω (a), and at 2ω (b) vary when the field component Bz is
scanned across the rf resonance in the presence of a constant,
non-zero transverse field.

B. Field mapping with laser cooled atoms

The atomic ensemble should operate as a vector mag-
netometer near B = B+

senseez, where the two frequency
modes of the atomic response map the three components
of the magnetic field. Detuned to one HWHM above the
rf resonance, the signal amplitude at 2ω will be sensitive
to the longitudinal field, while the two quadratures of the
signal amplitude at ω map the transverse fields.

Figure 4 shows experimental signals demodulated at
frequencies ω and 2ω as a function of the static field
Bzez (see more details in Section IV E). The detected
oscillation amplitude at frequency 2ω shows resonant be-
haviour. The dispersive responses at frequency ω are
observed due to the presence of a transverse field with
non-zero x and y components. On the high field side,
these signals show maximal amplitude near Bz= B

+

sense ≈

0.258 G, where the 2ω amplitude shows an approximately
linear response with respect to Bz. To show vector mag-
netometer operation, we scan the transverse fields in a
grid like pattern at constant Bz near the sensitive point.
The results are shown in Fig. 5, together with the match-
ing theoretical response.

The results confirm the principle of operation for the
magnetometer based on the Voigt effect in cold atoms,
with well controlled preparation of pure quantum states
and temporal separation of state-preparation and expo-
sure to an external field. For practical purposes, this
setup is of limited use, given the complexity of the ap-
paratus and limitations on achievable sample proximity
and bandwidth or cycle rate. Therefore, we explored
Voigt effect magnetometry in a vapour cell with room
temperature atoms towards practical devices with higher
bandwidth and sensitivity.
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a) c)

b) d)

FIG. 5. Atomic response, mapping the external magnetic field
vector onto harmonic signal components. (a) Theoretical re-
sponse of the signal quadratures at frequency ω, as a function
of the transverse field components Bx and By for constant Bz.
(b) Full 3-dimensional response (see Appendix), including the
real part of the signal amplitude at frequency 2ω, which al-
lows for the measurement of the longitudinal field Bz. (c)
Experimental realization, showing real and imaginary parts
of the complex signal amplitude m1 (detailed description in
Sec. IV E) at ω as a function of scanned transverse fields.
The separation between two vertical lines is ∆Bx ≈ 9 mG.
(d) Full experimental response of both amplitudes m1 and
m2 as a function of the scanned field.

IV. EXPERIMENTAL REALISATION: ROOM
TEMPERATURE VAPOUR

A. Room temperature vapour setup

Our setup is based on a paraffin coated 87Rb enriched
vapour cell of diameter d = 26 mm and length l = 106 mm
at room temperature, with a density of approximately
1010 atoms per cubic cm. The cell is placed inside a com-
mercial 4-layer µ-metal shield (Twinleaf MS-2), mounted
on a non-magnetic vibration isolation table with non-
magnetic optomechanics, see Fig. 6(a). The static mag-
netic fields and the radio frequency field inside the cham-
ber are generated by a combination of a solenoid for the
longitudinal field and cosine-theta coils for the transver-
sal fields. The coils are driven by a lead-acid battery
powered, ultra low-noise current sources, based on the
modified Hall-Librecht design [24, 25]. The laser system
to address the atomic transitions for state preparation
and probing consists of a combination of commercial and
in-house external cavity diode lasers. The laser system
is housed on a separate vibration isolation table, and the
light is coupled via single mode, polarization maintaining
fibers.

The atomic vapour is optically pumped with a linearly
polarized pair of laser beams, counterpropagating to a
linearly polarized probe beam. A small angle is used for

optical access. The Voigt rotation is measured by sep-
arating the two circular polarization components with
a quarter wave-plate and polarizer cube and detecting
the light with a balanced photodetector pair (Thorlabs
PDB210A), with electronic gain gel ≈ 10−13 V/Hz. The
magnetometer is operated in pump-probe mode, where
each cycle contains an initial period of synchronous op-
tical pumping before probing the atomic state. The ex-
perimental sequence generation and data acquisition are
performed using a National Instruments FPGA (PCIe-
7852).

B. State preparation

In each cycle, we perform the state preparation by op-
tical pumping, which reaches a steady state over the first
5 ms, before probing the state for another 3 ms, see
Fig. 6(b). But different from the cold atom test case,
the magnetic fields are not adiabatically ramped to dif-
ferent values between pump and probe stages. Here, we
prepare dressed states directly by synchronous pumping
[26], i.e. using a pulse train of pump light, in phase with
a uniform, 5 kHz rf field of ⪅ 0.1 mG, near resonant with
the static field Bz. We use linear polarization along the
x-axis, parallel to the rf field. During a short 9% duty cy-
cle, this direction is nearly aligned with our quantization
axis in the rotating frame. This enables the preparation

a)

b)

FIG. 6. Experimental realization with a shielded vapour cell.
(a) Layout of the experimental setup. A pair of pump beams
is used to prepare the atomic state before a polarimetric mea-
surement is performed on a counterpropagating probe beam.
The pump light is incident under a small angle with respect
to the probe and the static offset field. (b) Single shot exper-
imental pulse sequence with a typical 8 ms duration. During
each cycle, the static fields are held at constant, scanned val-
ues after switching within ≤ 50 µs at the start of the state
preparation process.
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a)

b)

FIG. 7. Typical experimental signals. a) Raw balanced
signal of the Voigt rotation. The state preparation occurs
within the first 5ms of the cycle followed by a 3ms prob-
ing pulse. b) Single-sided, power spectral density (psd) of
the amplified signal during the probe pulse. Atomic signals
arise at ω and 2ω. Weak harmonics at 3ω and 4ω can also
be observed, which may arise due to non-linear magneto-
optical effects [27] and non-linearities in the electronic de-
tection path. For comparison, photon shot noise is at a level
of g2elSy ≈ 0.6 × 10−10 V2

/kHz.

of either the dressed state ∣F = 2,mF = 0⟩ for pumping
near the F = 2 → F ′ = 2 transition on the D1 line, or an
incoherent mixture of ∣F = 2,mF = ±2⟩ for pumping near
F = 2 → F ′ = 1. Our signal amplitude depends quadrati-
cally on the magnetic quantum number m, and all three
of these states give rise to the same maximally possi-
ble signal with ξF (2) = ξF (−2) = −ξF (0). The choice
of states and required pump polarization allows for the
pump beam to propagate parallel to the probe beam,
along the z-axis.

To maximise atomic population in the F = 2-hyperfine
manifold, a co-propagating CW repump beam address-
ing ∣F = 1⟩ → ∣F ′ = 2⟩ of the D2 line of the same po-
larization is spatially overlapped with the pump, which
repopulates atoms from the ∣F = 1⟩ to the ∣F = 2⟩ ground
state. The pump and repump beams share the same
Gaussian intensity profile with 7.3 mm diameter (1/e2)
and 2.2 mW/cm2 and 1.6 mW/cm2 peak intensity, re-
spectively. The pumping efficiency is limited by atom ex-
change, spin exchange collisions, other decoherence pro-
cesses, non-parallel effective field and pump polarisation
at the sensitive field offset B+

sense where θ = π/4, and the
synchronized pump duty cycle, which is a compromise
between effective power and achieving momentary align-
ment between effective field and polarisation. The result-

a)

b)

c)

d)

FIG. 8. Experimental magnetometer response. Panels a) to
b) show the three relevant quadratures of the mode ampli-
tudes m1 and m2, i.e. responses at frequencies ω and 2ω, for
a scan of the longitudinal field Bz across the rf resonance.
Here, non-zero transverse fields Bx and By are kept constant.
The mode amplitudes, extracted according to Eq. (15), follow
the predicted behaviour, see Eq. (7). Panels c) and d) show
experimental estimates for the three signal scale factors as a
function of probe detuning. For the longitudinal field, this is
the slope of the 2ω resonance profile, estimated as 2A/Γ. Near
the chosen probe detuning of -550MHz, all scale factors are
close to maximal, and the first order responses to orthogonal
external fields are orthogonal.

ing spin state can be characterized spectroscopically [28],
and here we used a stroboscopic version of microwave
spectrocopy to probe the dressed atomic states [29]. The
experimental lower estimate confirmed that more than
75% of the atomic population is pumped into a mixture of
the dressed states ∣F = 2,m = ±2⟩. Details of this method
will be published elsewhere. The imperfect pumping ef-
ficiency reduces the overall signal strength due to a re-
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duction of the atomic alignment but may also influence
collisional dynamics at sufficiently high atomic densities.

C. Signal detection

Immediately after the state preparation process we
couple a counter-propagating probe pulse along z to mea-
sure the resultant Voigt rotation. The probe is detuned
by -550 MHz from the ∣F = 2⟩ → ∣F ′ = 1⟩ transition of
the D1 line. It has a Gaussian profile of 3.4 mm diam-
eter (1/e2) and 2.6 mW/cm2 peak intensity and linear
polarization set to 45°with respect to the rf field.

The interaction with the dressed atomic medium re-
sults in modulated, elliptical polarization of the probe.
Figure 7 shows the typical temporal trace of the bal-
anced detector signal during one cycle together with its
spectrum. The main contributions to the rf signal are
found at frequency 2ω = 10 kHz and a weaker signal at
the dressing frequency ω = 5 kHz due to the presence of
transverse fields. As can be seen in Fig. 7(a), the atomic
signal decays due to finite state lifetime. Generally, this
is limited by the atom-wall and atom-atom collision rates.
In our case, the exchange of the atoms between the main
cell body and the stem with the Rb reservoir is the ma-
jor contributing factor to the relaxation rate. In princi-
ple, high quality anti-relaxation coatings together with a
lockable stem system can be used to achieve coherence
lifetimes in excess of 60 s [30].

Absorption of the probe beam introduces additional
decay and additional optical pumping, which broadens
the 2ω resonance profile and alters the response at ω to
transverse fields. We choose the combination of probe
power and detuning by optimizing the slope of the 2ω-
signal with respect to the external field strength. We
evaluate this scale factor as the ratio of height Az and
width Γ/2 of the resonance peak, both indicated in
Fig. 8(b). The dependence on probe detuning is shown in
Fig. 8(d). The maximal response to longitudinal fields is
found away from the Doppler broadened absorption lines,
where also the signal responses to small changes of the
two orthogonal transverse field components are close to
maximal, shown in Fig. 8(s), and show the predicted π/2
relative phase shift. Closer to the resonances, we observe
different and non-orthogonal responses.

The detected raw signals are digitally demodulated to
extract the three-dimensional field vector information.
We calculate complex temporal mode amplitudes mk for
the first and second harmonic (k = 1,2) by taking the
scalar product of the signal u(t) = gelS

′

z(t) with expo-
nentially decaying, normalised mode functions leading to
the definition

mk = ∫

t2

t1
e(−ikω−γ)tu(t)dt/

√

∫

t2

t1
e−2γtdt, (15)

which covers the interval of the probe pulse between
times t1 and t2 and matches the atomic response. To first

order and for appropriately adjusted phase, the quadra-
tures, i.e. the real and imaginary part of m1 reflect the
external field components Bx and By while the real m2

is sensitive to Bz. The signals are phase-locked to the
rf driving field, but they acquire additional electronic
phase-shifts. Therefore, we first adjust the demodula-
tion phase for the second harmonic signal by scanning
the longitudinal Bz field whilst the transverse fields are
set to zero. We adjust the phase such that the real and
imaginary quadratures of the mode amplitude m2 pro-
duce a symmetric and a dispersive profile, respectively.
Any additional phase entering the first harmonic is equiv-
alent to a rotation of the field coordinate system about
the longitudinal axis. Here, we scan the transverse fields
over a small range, with the longitudinal field adjusted
to the sensitive field point Bz ≈ B

+

sense to identify two or-
thogonal quadratures with the x, y-transverse field coils
by minimizing their crosstalk. As it is shown in Fig. 8(a)
both quadratures of the signal amplitude m1 follow a
dispersive profile. Fig. 8(b) shows the resonant response
of the amplitude Re(m2). This is consistent with the
theoretical model described in section II and with the
experimental results for cold atoms in section III B. In
contrast to the double resonance magnetometer described
in Ref. [20], where the quadratures of the first harmonic
present a resonant and a dispersive profile with respect
to the applied static field, the quadratures in Fig.8(a) are
both dispersive while one quadrature of the second har-
monic shows a resonant profile. All three signals become
most sensitive to orthogonal external field components at
the same offset field.

The conversion of measured signals into magnetic field
values relies on a two-step calibration procedure. First,
the static field coils are characterised with two indepen-
dent methods, before the signal scale factor for each field
direction is determined by applying a range of known
fields to the magnetometer. The static field coils to-
gether with their electronic drivers are calibrated using
the known field dependence of the Larmor resonance for
87rubidium. For a set of fixed radio-frequencies ω, the
longitudinal field Bz is scanned with no transverse fields
present to find the maximal response of the 2ω signal.
Under this condition, the field is determined by known
parameters according to Bz = Bres = h̵ω/µB ∣gF ∣. The res-
onant field can be easily calculated and plotted against
the applied voltage/current of the coils giving the field
conversion. The presence of transverse fields changes
the resonance condition to Bres = h̵ω/µB ∣gF ∣

√
B2
z +B

2
x,y.

Thus, to obtain the calibration for the transverse fields,
we change one of the transverse fields whilst keeping the
other one at zero and sweep the Bz field to obtain a new
location of the 2ω resonance. As before, the new reso-
nance location is evaluated as a function of the control
voltage/current of the coils. In addition to this proce-
dure, we confirm the coil calibrations using a commer-
cial fluxgate magnetometer (Stefan Mayer Instruments,
FLC3-70). Finally, the signal scale factors are measured
by applying a linear field ramp of a well known range
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FIG. 9. Mapping of the OPM response to external fields at 5 kHz radio frequency dressing. (a) Quadratures of the first
harmonic signal as a function of raster scanned transverse fields Bx,y ranging over ≈ ±180 nT for constant Bz. Each colour
represents a different Bz field ranging over ≈ ±0.3 nT. The top inset shows the location of the Bz field with respect to the
resonant signal at 2ω. (b) Inclusion of the second harmonic signal produces oviforms in the three-dimensional representation
and demonstrates the full vector mapping. The behaviour in the linear regime for small field perturbations is shown in the
insets, with visible photon shot noise gel

√

Sy ≈ 2.5 × 10−4 mV
√

s. We attribute deviations from the ideal profiles to geometric
misalignment between the pump/probe beams and static and rf fields. The asymmetric distortion increases for lower bias fields,
consistent with imperfect orthogonality between static field coils and their alignment with the direction of the probe beam.

to each of the fields independently. For small fields, the
corresponding demodulated signal responses show linear
relationships, see Eqs (12)-(14), which we use to calibrate
the signal-to-field conversion.

D. 3D vector mapping

Following the same procedure as in the cold atom case
in Section III B, we measured the three components of
the field by setting the static field Bz = Bsense, which
maximizes the mode amplitudes at ω. By linearly scan-
ning the external transverse fields and demodulating the
ω and 2ω quadratures, we are able to map the magne-
tometer response. The vector magnetometer operation
can be visualized on a 3D plot shown in Fig. 9. The
full mathematical description of the oviform plot can be
found in the Appendix A. But it must be noted that
the theoretical results are based on the assumption of a
pure atomic state. The model does not account for deco-
herence due to atomic collisions and various broadening
effects (e.g. gradient fields, light power). Nevertheless,
the experimental results are in reasonable agreement with
the expected 3-dimensional response, see Eqs. (12)-(14).
As can be seen in Fig. 9 the 2D and 3D oviform profiles
arising from magnetic field scans show some asymmet-
ric distortion and an offset, which arise from geometrical
misalignment of the probe/pump beams relative to the
static fields and/or the rf dressing field as confirmed for

larger misalignment. The insets show the magnetometer
response in the linear regime for small external fields.

Despite the theoretical simplifications, our model ef-
fectively describes the vector magnetometer response to
the external magnetic fields. We assume that effects
of distortion can be reduced by accurate alignment be-
tween the probe/pump beams, the dressing field, and the
small static offset fields. Operation at higher dressing fre-
quency and thus larger offset field leads to more accurate
alignment of the field across the atomic ensemble, how-
ever, this method reduces the sensitivity to the transverse
fields as described in the following section. The sensing
range for longitudinal field is determined by the width
of the resonance, whilst the response to transverse fields
and its non-linearity is determined by their ratio to the
offset field. In principle, the range of operation can be
extended and maximal sensitivity maintained by placing
the magnetometer into a closed loop system.

E. Noise performance

To perform the noise measurements we detune the
static Bz field to Bz = B

+

sense, which optimizes the mag-
netometer sensitivity for all three components. We then
adjust the transverse fields such that the first harmonic
signal vanishes, i.e. the noise measurements are done near
the apex of the middle (blue) ovoid in Fig. 9.(b).

Based on the field calibrations described above, we
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a)

b)

c)

FIG. 10. OPM noise at 36○C vapour cell temperature in a
shielded environment at 5 kHz radio frequency dressing. Noise
floor values are estimated for the range 10 Hz - 62.5 Hz. Pan-
els (a) and (b) show noise performance for the two orthogonal
transverse fields. The light noise in one of the signal quadra-
tures shows phase-locked, low-frequency fluctuations of cross
talk between the rf generation and detection paths. Panel (c)
shows the noise performance for the longitudinal field compo-
nent. The light noise levels (photon shot noise) are obtained
with a far-detuned probe laser and disabled pump/repump
lasers. The electronic noise is recorded without probe light
and no rf field present. The calibration of field equivalent
noise amplitudes includes an ≈ 5%-drop of the low-pass fre-
quency response function, which is predominantly determined
by the mode function entering Eq. (15).

record field equivalent signal noise for the three field
components over ≈ 16 s (2048 cycles at 125 Hz). Fig-
ure 10 shows the spectral noise performance for the two

a)

b)

FIG. 11. Dependencies of the noise performance. (a) OPM
noise as a function of the vapour cell temperature. (b) OPM
noise as a function of radio frequency of the dressing field.

quadratures at ω and the in-phase quadrature at 2ω. At 5
kHz rf dressing frequency and a temperature of 36○C, the
magnetometer operates with an average noise level of ≈
2.2 pT/

√
Hz for the transverse fields over the range of 10-

62.5 Hz, dominated by photon shot noise. Longitudinal
fields can be measured with a sensitivity of 0.4 pT/

√
Hz.

The dominant constraint on the noise level is the short
coherence time of the cell (τ ≈ 2 ms) which is limited by
the quality of the paraffin coating and the exchange of the
atoms between the main cell body and the stem with the
Rb reservoir. Typically, paraffin or OTS coated cells have
coherence times ranging from 30 ms to 300 ms [31, 32].
Longer coherence time would improve the field sensitivity
of the OPM due to a larger fraction of atoms remaining in
the field sensitive state. In addition, higher quality paraf-
fin coating would also shorten the pump/repump pulse
time needed to (re-)prepare the stretched states, allow-
ing for increased cycle rate and thus higher bandwidth
as well as higher duty cycle and thus reduced aliasing of
magnetic field noise.

We have investigated the effects of heating the cell to
increase the atomic density, which should in principle im-
prove the sensitivity by increasing signal strength. How-
ever, as it is shown in Fig. 11(a), the signal-to-noise-ratio
saturates already at temperatures of approximately 32○C
for the transverse fields and at even lower temperatures
for the longitudinal fields. Initially, increasing signal am-
plitudes lead to better sensitivity, especially for the trans-
verse fields where the signals are closer to photon shot
noise. But additional atomic processes such as resonance
broadening limit the performance at higher temperature
where the figure of merit saturates. A similar saturation
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effect was previously observed in ref. [33], where higher
atomic concentrations lead to an increase of the colli-
sional and surface relaxation rates, depolarizing the pre-
pared state.

The sensitivity of the OPM to transverse fields does
not only depend on the shape of the resonance, but
also on the chosen dressing frequency, because the cor-
responding signals arise from the geometric rotation of
the static field. The rotation angle and consequently
the signal strength increases for smaller offset fields, see
Eqs. (12) and (13). The resulting linear dependence of
sensitivity on dressing frequency is shown in Fig. 11(b).
Over the range of 40 kHz to 2.5 kHz the transverse field
noise performance varies by a factor of four. This strat-
egy is limited by the linewidth of the rf resonance and
other factors such as the required precision of alignment
increased susceptibility to magnetic field gradients dis-
torting the oviform mapping.

V. CONCLUSIONS

We have presented and successfully demonstrated a
full vector magnetometer based on the Voigt effect both
in cold atom and hot vapour setups. As shown, our
scheme has the advantage of requiring only a single op-
tical axis for state preparation and detection making
it ideal for compact magnetic field sensors. We have
achieved pT/

√
Hz sensitivity with a 62.5 Hz bandwidth.

Our current limitations in the sensitivity of the OPM
stem from the coherence time of the cell and the low atom
number. Future improvements will include a heated and
buffer gas filled cell in order to increase the atom numbers
and reduce the rate of atomic collisions that induce deco-
herence effects, respectively. These improvements should
shorten the state preparation lifetime thus increasing the
bandwidth and the field sensitivity of the OPM. In prin-
ciple, placing the cell in an optical resonator may be used
to increase the interaction path between the light and the
atoms thus further improving the sensitivity.

The datasets generated for this paper are accessible at
[34] Nottingham Research Data Management Repository.
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Appendix A: Faraday and Voigt rotation for dressed
states

In what follows we present a brief description of the
atom dynamics and the resulting behaviour of Faraday
and Voigt rotation, following ref. [19].

Starting from our effective, rotating frame Hamiltonian
in Eq. (1), the dressed states are of the form

∣Ψrot⟩ = e
iθF̂y/h̵ ∣F,Fz⟩ , (A1)

where θ is the angle of the effective magnetic field direc-
tion, given in Eq. (2). In the laboratory frame, the same
states are given by

∣Ψ(t)⟩ = Û−1
±

(t) ∣Ψrot⟩ , (A2)

where Û±(t) = e±iωtF̂z/h̵. Combining the two rotation
operators, the expectation value of any laboratory frame,
atomic observable can be expressed as

⟨Ψ(t)∣ Ô ∣Ψ(t)⟩ = ⟨F,Fz ∣ R̂±ÔR̂
−1
±

∣F,Fz⟩ , (A3)

R̂±(t) = e
−iθF̂y/h̵Û±(t). (A4)

Using the Baker–Hausdorff Lemma

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + ..., (A5)

it can be shown that for a Cartesian vector operator, the
corresponding Heisenberg operator is given by a geomet-
ric rotation, i.e.

Ô′
(t) = R̂±(t)ÔR̂

−1
±

(t) =R±(t)Ô, (A6)

where R±(t) = Rz(±ωt)Ry(−θ) [23]. Including the ro-
tations of the static field as shown in Fig. 1, such that
F̂′(t) = M(α,β)R̂±(t)F̂, we find an expression for the
longitudinal spin component

⟨F̂ ′

z(t)⟩ = ⟨F̂x⟩ (cαcβsθ − cθ(cωtsβ + cβsαsωt))

+ ⟨F̂y⟩ (cβcωtsα − sβsωt)

+ ⟨F̂z⟩ (cαcβcθ + sθ(cωtsβ + cβsαsωt)) , (A7)

where sν (cν) stands for sin(ν) (cos(ν)) with
ν ∈ {α,β,ωt}. For the dressed states, i.e. for eigen-
states of the rotating frame Hamiltonian, the relevant
expectation values ⟨F̂x,y,z⟩ = ⟨F,Fz ∣F̂x,y,z ∣F,Fz⟩ are con-

stant, with ⟨F̂z⟩ = h̵Fz and ⟨F̂x,y⟩ = 0. The longitudinal
spin polarization determines the Faraday rotation, see
Eq. (6), and we obtain

⟨Ŝ′x(t)⟩ = −G
(1)
F SynF h̵Fz (cαcβcθ + sθ(cωtsβ + cβsαsωt)) .

(A8)
The result can be expanded in terms of spectral compo-
nents as

⟨Ŝ′x(t)⟩ = −
1

2
G
(1)
F SynF h̵Fz

1

∑
n=0

h̃n(θ)e
inωt

+ c.c., (A9)
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where the spectral amplitudes vary as

h̃0 = cosα cosβ cos θ, (A10)

h̃1 = (sinβ ± i sinα cosβ) sin θ. (A11)

Equivalently, for the Voigt Rotation, in which the ellip-
tical light polarization is given by Eq. (7), the spectral
decomposition of the mean value in Eq. (A3) for the bi-

linear operator Ô†Ô = F̂ 2
x − F̂

2
y is

⟨Ŝ′z(t)⟩ =
1

2
G
(2)
F SynF h̵

2ξF (Fz)
2

∑
n=0

hn(θ)e
inωt

+ c.c.,

(A12)

where the spectral amplitudes vary as

h0 =
1 + 3 cos 2θ

4
(

cos2β

2
−

(3 − cos 2β)

4
cos 2α) , (A13)

h1 = (
1

2
cosα sin 2β ∓ i

(3 − cos 2β)

4
sin 2α) sin 2θ, (A14)

h2 = −(
(3 − cos 2β)

4
cos2 α +

1

2
cos 2β

∓
i

2
sinα sin 2β) sin2 θ. (A15)

In order to measure an external magnetic field, we ex-
tract three quadratures from the first and second har-
monic signals. We separate the first harmonic into real
and imaginary parts, and evaluate the real part of the
second harmonic. The result is given by

hx =Re{h1} =
1

4
(3 − cos 2β) sin 2α sin 2θ, (A16)

hy = Im{h1} =
1

2
cosα sin 2β sin 2θ, (A17)

hz =Re{h2} = −
1

4
((3 − cos 2β) cos2 α + 2 cos 2β) sin2 θ.

(A18)
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