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Abstract

To reduce the genome sequence representation, restriction site-associated DNA sequenc-

ing (RAD-seq) protocols is being widely used either with single-digest or double-digest

methods. In this study, we genotyped the sesame population (48 sample size) in a pilot

scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We

analysed the resulting short-read data generated from both protocols and assessed their

performance impacting the downstream analysis using various parameters. The distinct k-

mer count and gene presence absence variation (PAV) showed a significant difference

between the sesame samples studied. Additionally, the variant calling from both datasets

(sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined

variants from both datasets helped in identifying the most diverse samples and possible

sub-groups in the sesame population. The most diverse samples identified from each analy-

sis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be represen-

tative samples holding major diversity of the small sesame population used in this study.

The best possible strategies with suggested inputs for modifications to utilize the RAD-seq

strategy efficiently on a large dataset containing thousands of samples to be subjected to

molecular analysis like diversity, population structure and core development studies were

discussed.

Introduction

Sesame (Sesamum indicum L., 2n = 2x = 26), is a member of the Pedaliaceae family, and an

oilseed crop that is mainly grown in tropical and subtropical regions. Cultivated sesame is
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known to be domesticated in the Indian subcontinent [1], although cultivated worldwide in

tropical regions. The major producers of sesame were Africa and Asia, with India being the

largest producer, although not for the highest productivity (FAOSTAT 2019) [2].

The productivity of sesame in India is low compared to other sesame-producing coun-

tries and crop productivity can be improved with genetic improvement by utilizing existing

genetic resources [2]. The affordability of next-generation sequencing (NGS) and computa-

tional tools have boosted the availability of the sesame reference genome [3–5] and pan-

genome assembly [6], and had led the development of the genetic markers that were crucial

for various research activities in sesame. Compared to gel-based experiments to discover

genetic markers, the high-throughput sequencing-based method had accelerated genome-

wide genetic marker development and increased the accuracy of allele calling. One such

approach is RAD-seq, which is often applied for genome-wide SNP identification in large

genomes through the generation of a reduced representation of the genome and direct

sequencing of that representation [7]. This method is relatively low-cost and high-through-

put [8]. This technique uses one or two restriction enzymes to digest the whole genome into

shorter fragments. Then adaptor primers were ligated and used to amplify a subset of the

genome (containing the recognition sequences of the restriction enzymes at their 5’ and 3’

ends), which is subject to DNA sequencing using the NGS platform. RADseq has been

widely used in plants [9–11]. RADseq was further modified to use two restriction enzymes

and called ddRAD-seq to have a higher density of sequence representation [12].

It is critical to evaluate the genetic diversity of the available sesame population using

molecular tools, preferably DNA-based markers to overcome the environmental influence

in phenotype-based diversity assessment. This is especially required when the genotypes are

in tens of thousands wherein the phenotyping for all the accessions in a homogeneous envi-

ronment is nearly impossible. Sequence-based markers have the additional advantage that

the genic region variability can be used to associate with the functional variability assess-

ment. Evaluating the genetic diversity of sesame accessions will provide information about

how best to use sesame germplasm in a breeding program to accelerate crop improvement.

Single nucleotide polymorphism (SNPs) as a molecular marker analysis is one of the most

useful methods of investigating the genetic diversity of crop plants [13]. An effective core

collection that can capture the maximum genetic diversity of germplasm using the SNP

markers would efficiently reduce the number of accessions for phenotypic assessment with

only the core collection [14]. Therefore, the assessment of genetic information in different

dimensions should be considered when constructing a core collection [15].

A genomic sequence of each sesame sample has equivalent importance for assessing

diversity patterns. A reduced representation of the sequence (sdRAD or ddRAD), molecular

markers such as SNPs, k-mer signatures are the most helpful genetic resources to estimate

the genetic diversity of the sesame population. In this study, we assess the genetic diversity

in the 48 sampled collections and aim to identify the representative genotypes that capture

the maximum diversity. The sesame diverse samples facilitate the efficient exploration of

genetic diversity in germplasm resources. The pilot project with 48 sampled populations

would be a useful approach for testing the effectiveness of the large sample collection. In

this study, we applied both sdRAD-seq and ddRAD-seq to explore the genetic diversity in

sesame sample collection and to identify the suitable approach, by comparing these two.
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Results

K-mer analysis

Define the core content of the genome.. The ddRAD-seq and sdRAD-seq tags for 48 ses-

ame samples were sequenced with the Illumina sequencing platform. These 48 samples were

selected based on the preliminary phenotypic diversity information for various desired traits

as mentioned in the S1 Table in S2 File. The RAD sequencing generated 191.8 million paired-

end reads, with a mean of 1.9 million reads per sample (S1 Table in S2 File). The ddRAD-seq

data of 48 samples were used for k-mer analysis by splitting the sequence reads into k-mers

with the count of the resulting k-mer sequence for each sample ranging from 1.3 million (sam-

ple B46) to 5.5 million (sample Z37) k-mers with an average production of 2.8 million k-mers

(Fig 1A). On the k-mer comparison between the samples, the majority 64.8% (27.6 million) of

the k-mers are unique to the sesame samples and the remaining 35.2% of k-mers are shared k-

mers between the samples, indicating the level of commonness between the samples. This

underscores the representative diversity of the genotypes chosen for the study. For example,

71,455 k-mers are common among the 20 samples, and 35,638 common k-mers were reported

between 40 samples. This indicates the shared k-mers decrease as the sample number

increases. The cumulative curve of k-mers count reaches the plateau at sample 44 and then

gains a higher number of k-mers due to the more unique k-mers present in the remaining four

wild samples (N74, I58, Z65, and Z28) (Fig 1B).

K-mers common to all 48 samples were considered as the core k-mers (50,884) (of these

48.6% are genic and 51.4% are intergenic) and k-mers absent in any of the sesame samples

were considered as variable k-mers (42.6 million) (of these 3.5% are genic). Based on the abun-

dance of the k-mer in the 48 samples, variable k-mers were categorized into groups with five

samples each, of which 90% of variable k-mers contribute from 1–5 samples, which decline till

the 36–40 samples with 0.3% and inclines to 0.5% and 0.6% for 41–45 and 46–47 groups of

samples, respectively (S2 Table in S2 File). This indicates the possibility of these k-mers being

softcore k-mers (as these k-mers are absent in one of the samples) due to the reduced (RAD)

sequence representations.

A single sketch of k-mers was constructed from the collection of k-mers in the reads and

compared to the sketch database. The k-mer based genetic distance between each pair of sam-

ples shows that Z28 was the most distinct sample followed by the four more samples (J10, N74,

Z37 and Z65) having high genetic distance (Fig 1C). Of these five samples, three samples were

wild types (N74, Z28, and Z65) which also have the most distinct k-mers compared to the

other sesame samples.

Gene level k-mer sequence validation

The ddRAD-seq data for 48 samples were mapped to the reference and the gene variability was

assessed based on the read mapping. A total of 290 genic RADs (cRADs) were commonly pres-

ent in all 48 samples and 26,668 genic RADs (vRAD) show variability with genic RADs absent

in the number of samples ranging from one to 47 samples. Among the vRAD, 4.1% (1,118)

and 0.9% (251) respectively, were uniquely present (genic RAD present in only a single sam-

ple) and uniquely absent (genic RADs absent in only one sample). Based on the number of

overall vRAD and uniquely present vRAD, eight samples were found to be highly variable

from the rest 40 samples. Of these four are wild samples (Z28, Z65, I58 and N74) (S3 Table in

S2 File). The major vRADs were reported from Z65 (1,395) and Z28 (maximum of uniquely

present vRAD 636) (Fig 2A), indicating their diverse nature among the samples (representa-

tion) studied.
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As a possible representative sample subset, these samples capture maximum genetic diver-

sity with a minimal number of genotypically redundant accessions from the sesame popula-

tion. The k-mers of these samples from the above analysis will assist as a digital signature for

the representative samples of the sesame population. In addition to the conserved k-mers

(common to all samples), each highly variable sample (X89, I58, V67, Y18, Z28, Z65, N49 and

Fig 1. K-mer analysis in sesame ddRAD-seq data A. distinct k-mer count in each sesame sample B. cumulative k-mer

count in the sesame 48 sample population C. k-mer based mash genetic distance distinct between the sesame samples

(colour scale: minimum as green, mean as yellow and maximum as red).

https://doi.org/10.1371/journal.pone.0286599.g001
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N74) from the sesame population set has an average of 3.2 million variable k-mers that hold

the maximum diversity compared to the remaining 40 samples (2.7 million k-mers on average

from 40 samples) (S4 Table in S2 File).

Fig 2. A. The ddRAD-seq data-based gene variations B. a common gene present in all the sesame samples showing the ddRAD-seq read coverage in five samples C. a

variable gene showing the ddRAD-seq read from four samples and missing sequence representation in Z28 sample.

https://doi.org/10.1371/journal.pone.0286599.g002
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The 99.6% and 89.8% of k-mer defined representativeness and variable sequence support-

ing the ddRAD-seq mappings to genes, indicates the level of consistency of the sequence reads

mapped to the reference genome.

RAD data analysis and variant calling

The RAD sequence data (sdRAD-seq and ddRADseq) were quality filtered (Q20) and the qual-

ity passed reads of each accession were mapped to the sesame reference genome assembly [5].

The filtered reads were aligned with more than 99% of the mapping rate for both sdRAD-seq

and ddRAD-seq sequence data (S5 Table in S2 File).

A total of 57.3 million ddRAD tag reads (with mean 1.1 million reads per accession) and 6.1

million sdRAD-seq (with a mean of 128,779 per accession) sequence reads were mapped to the

reference genome assembly (S5 Table in S2 File). On average, the ddRAD-seq data spans 1.3

Mb of the reference genome, whereas sdRAD-seq data spans 1.5 Mb of the reference genome

(S6 Table in S2 File) (Fig 3). The higher the genome representation, the more possible variants

are expected. The sdRAD-seq data had less sequence read representation compared to the

ddRAD-seq data. From the sdRAD-seq and ddRAD-seq mapped reads, the SNPs were called

and filtered with minor allele frequency > = 0.01 and SNPs were present in 70% of 48 samples,

which retained the 13,136 and 27,604 SNPs from sdRAD-seq and ddRAD-seq datasets (S7

Table in S2 File), respectively.

We compared the sesame sample allele frequencies between sdRAD-seq and ddRAD-seq in

two ways, first individual RAD datasets were analysed separately, and later the combined data

was analysed.

The overall distribution of allele frequencies between both data sets, ddRAD-seq and

sdRAD-seq, was similar (Fig 4A and 4B). When the ddRAD-seq and sdRAD-seq SNPs were

analysed separately, the mean major allele frequency was marginally higher in sdRAD (0.94)

than in ddRAD (0.93). For the sample, the mean depth of 18.5 and 149.8 respectively, was

reported for sdRAD-seq (maximum of 52.3 and minimum of 3.3) and ddRAD-seq (maximum

of 438.3 and minimum of 21.7) (Fig 4C and 4D). The mean depth per loci varies as 19.1 and

144.6 for sdRAD-seq (minimum of 1.9) and ddRAD-seq (minimum of 2.6), respectively. In

addition to the higher mean depth per loci and per individual, more SNPs with alternative

alleles were reported from ddRAD-seq (average 3,255 SNP/sample) compared to the sdRAD-

seq (average 1,019 SNPs) data set. Among the 48 sesame sdRAD-seq samples, I58, Z28, and Z65

have more (than 2000) SNPs with alternative (non-reference) alleles. Whereas in ddRAD-seq

dataset, Z28 and Z65 have (more than 5000) SNPs with non-reference alleles (Fig 4E and 4F).

Thus the ddRAD-seq dataset provided more genetic information than the sdRAD-seq dataset.

The sdRAD-seq and ddRAD-seq datasets shared 34 common SNPs which indicates the

restriction site ApeKI is close enough with either SphI or MlucI restriction site on the reference

assembly. These common SNPs were distributed on Chr1 (4), Chr2 (1), Chr6 (1), Chr7 (5),

Chr10 (9), Chr13 (3) and 11 SNPs on Scaffold00491 alone (S8 Table in S2 File). The common

SNP from both datasets may also be due to the presence of adjacent multiple restriction sites

in the sesame reference genome assembly. For example, on chr1 at position 1,177,675 has the

Sphl followed by the ApeKl restriction sites allowing to map sdRAD-seq and ddRAD-seq data-

sets and able to call the common SNPs between both the datasets (S1 Fig in S1 File).

Characterization and annotation of SNPs

The SNP call from both sdRAD-seq and ddRAD-seq datasets were combined for a total of

40,706 SNPs reporting from the 48 sesame samples (Fig 5). The SNPs were annotated to evalu-

ate the impact and measure the effect of identified SNP on the genes. The distribution of SNPs
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across the genome shows a low density in the telomere regions of each chromosome compared

to the centromere regions (Fig 3). The SNPs abundance in decreasing order were intergenic,

exon and intronic genic regions with their proportions of 44.9%, 25% and 14.3%, respectively.

A moderate number of SNPs were reported from upstream (7%) and downstream (5.1%)

regions compared to the SNPs from 3’UTR (1.7%) and 5’UTR (1.7%). More SNPs were

detected in the exon than introns.

Based on the nucleotide substitutions, the combined SNPs identified in the sesame genome

were classified into transitions (Ts) (A/G and C/T) and transversions (Tv) (A/C, A/T, G/C, G/

T). A total of 24,876 transitions and 14,208 transversions were detected, with a transitions/

Fig 3. The RAD-seq reads mapping spanning the reference genome assembly coverage for A. sdRAD-seq B. ddRAD-seq and vertical coverage (read depth) for C.

sdRAD-seq and D. ddRAD-seq data.

https://doi.org/10.1371/journal.pone.0286599.g003
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transversions (Ts/Tv) ratio of 1.75. The transition frequency of C/T was found to be higher than

G/A, as the usual pattern reported earlier in Coffea arabica L [16]. The transversion frequency

of G/T was greatest followed by C/A and the least frequency detected is the T/A type of trans-

version (Fig 5C). The maximum of Ts and Tv were identified in intergenic regions with 11,727

Fig 4. The sdRAD-seq and ddRAD-seq data comparison A and B allele frequency, C and D mean depth of sequence

reads per sample, E and F plot the SNP count per sample with reference allele and alternative allele for sdRAD and

ddRAD, respectively.

https://doi.org/10.1371/journal.pone.0286599.g004
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and 5,824 respectively. Within the genic regions, the exons have the most Ts (6,074) and Tv

(3,712) and UTR regions have the least Ts (789) and Tv (599) nucleotide substitutions. The

other regions include the downstream (1,240; 783), intron (3,358; 2,232) and upstream (1,688;

1,058) have identified the moderate level of Ts and Tv’s. An average of 23,784 and 13,469 Ts

Fig 5. A. The genome wide combined (sdRAD-seq and ddRAD-seq) SNP calls density B. annotations and C. Ts

(purple) and Tv (yellow) count in the sesame samples.

https://doi.org/10.1371/journal.pone.0286599.g005
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and Tv were reported in the 48 samples respectively. F14 and Z28 samples recorded the most

(25,697 and 14,691) and least (10,801 and 6,763) Ts and Tv SNPs (S9 Table in S2 File).

The heterozygosity analysis showed that the observed heterozygosity (Ho) for N75, L47,

Z37, Z28 and Z65 samples exhibit a higher value than the expected heterozygosity (He), indi-

cating that these samples are interbreeding. While for other samples the Ho is lower than He

(in the range of 0.01 to 0.09), indicating that inbreeding (isolation) is occurring among those

populations. Additionally, the inbreeding coefficient (F-value) for N75, L47, Z37, Z28 and Z65

samples has negative values indicating the low level of inbreeding compared to the higher

inbreed value for the remaining samples indicates the higher gene flow between those popula-

tions, supporting the heterozygosity analysis (S10 Table in S2 File).

Sesame genetic diversity

The diverse sesame accessions were inferred for the genetic relationships by constructing a

neighbor-joining phylogenetic tree using the combined RAD-SNPs. The analysis revealed

three major clusters, and each cluster was further divided into sub-groups (Fig 6). Cluster I has

the sesame accessions mostly originating from India (mainly southern states of India), with

the exception of I82 samples originating from Nepal. Cluster II has samples originating from

Singapore, Japan, USA and the Philippines, and finally, cluster III samples originated from

multi nations, such as Singapore, India, and Bangladesh. The four wild samples were distrib-

uted between cluster I (N74) and cluster III (I58, Z65 and Z28). The wild samples from cluster

III, were genetically more distinct than the N74 wild sample from cluster I. The order of

genetic distance (branch length) within the wild accessions was Z28(184) > Z65(100) > I58

(59)> N74(48), indicating these samples were more distinct from the elite samples. The PCA

analysis further supports the above genetic relationship between the wild and elite sesame sam-

ples collected at different geographical origins. The elite sesame samples were grouped as a sin-

gle cluster, with a wild sample (N74) close enough and the other three wild samples dispersed

away from the elite samples group.

Overlapping the diversity variables

The eight samples with high diverse k-mers also carried gene level variations (gene presence

and absence). In comparison with the other parameters, such as heterozygosity, genetic dis-

tance and k-mer based mash distance; our study shows that the four samples are in overlap

with the diverse samples predicted from the kmer analysis. Among the four, two samples (Z65,

and Z28) are highly heterozygous and relatively distinct to the other samples (Table 1).

Discussion

The different marker systems are available to reveal the population structure and diversity for

the crop improvement program. The sesame markers developed in the earlier studies include

the random amplified polymorphic DNA [17], amplified fragment length polymorphism

(AFLP) [18], simple sequence repeat (SSR) [19, 20], single nucleotide polymorphisms (SNPs)

[20, 21], specific locus amplified fragment sequencing (SLAF-seq) [22]. In this study we used

the SNP calling to investigate the diversity in sesame germplasm, a pilot project to assess the

diversity in the 48 sub-sampled accessions. The number of SNP markers reported in earlier

studies varies with the marker system used and the number of accessions used. For example,

Wei et al and Cui et al reported more markers generated with SLAF-seq and whole genome

sequence data in large population sizes [21, 22]. RAD sequencing is a reduced representation

used for a wide range of applications such as for the construction of genetic maps [23], assess-

ing diversity [24], developing indel [25] and SNP markers [24]. In this study, the sdRAD and
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ddRAD data were generated to call the SNP markers and combined markers used for diversity

analysis. In addition to the SNPs, the novel method k-mer sequence based genetic relatedness,

distinct k-mer count, k-mer based genetic distance, genic PAV’s, heterozygosity, SNPs, Euclid-

ean distance and SNP annotations for representative sample selection.

Fig 6. A. The combined SNPs set is based on genetic relatedness (NJ tree) between the sesame samples and B. PCA

analysis.

https://doi.org/10.1371/journal.pone.0286599.g006
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K-mer analysis

The reduced representations of the ddRAD-seq data were generated with an average of 149

read depth, which indicated each restriction site was sequenced at multiple folds, causing

redundancy. Comparing the genetic sequence between the samples helps in understanding the

genetic relationship and the proportion of conserved sequences between the samples. The

sequence coverage and the repetitive sequence cause bias in estimating genetic relatedness. To

overcome this, the ddRAD-seq sequence reads were split into short k-mers (27 bases length)

and called the distinct k-mer for comparison. The distinct k-mers for each sample range from

1.5 million to 5 million k-mers, which indicates the genetic variability with a minimum 1.3

million (B43) to maximum k-mers of 5.5 million (Z37) reported. However, after categorizing

the k-mers into the common k-mers and variable k-mers, the Z37, J10, Z28, N74, and F14

samples exhibited the top five highest k-mer variabilities. Additionally, a locality-sensitive

hashing technique was used for measuring the k-mer-based genetic distance, which resulted in

calculating the pairwise genetic distance between the sesame samples studied. The mash dis-

tance reports Z28, I58, J10, N74, Z37 and Z65 are distinct samples that are consistent with ear-

lier k-mer results.

Data comparison (sdRAD and ddRAD)

We sampled a set of 48 sesame accessions to compare both sdRAD-seq and ddRAD-seq. This

analysis provides an opportunity to investigate the source of bias, ease of application and effi-

ciency in terms of SNPs called among both datasets. The approach to analyse the data played

an important role in the outcome of the data analysis from each step (from data coverage to

SNP count). Assessing both RAD sequence reads coverage on the reference genome showed a

significant difference between the sdRAD-seq and ddRAD-seq datasets. A sdRAD-seq

sequence data generated with the single digest restriction site enzyme has spanned nearly 3.5%

(average of 10.5 Mbp) of the reference genome (Fig 3), whereas the ddRAD-seq has captured

only less than one percent (average of 1.4 Mbp). This indicates either the restriction site vari-

ability in the genome, i.e; restriction sites used for sdRAD-seq are in high frequency than the

restriction sites used for the ddRAD-seq or due to the size selection for library preparation, ie;

sdRAD tags have twice more probability than ddRAD tags to have the genome coverage. Such

bias in the sd-RAD-seq and ddRAD-seq datasets was also seen in the earlier study [26]. The

sequencing read depth for sdRAD-seq on average is 18x, which is much less than the sequence

read depth of ddRAD-seq (149 depth) (Fig 3). The read sequencing at higher depth increases

the base calling confidence, for example with ddRADseq, on chr1 at 336,353 bp, the I68 sample

has 561 reads supporting the A variant genotype (with G as the reference genotype). Similarly,

for the same sample, on chr1 chromosome at 318,676 bp has only five reads supporting C

Table 1. Sesame distinct samples based on the different criteria.

Samples K-mer GenePAV Mash distance Heterozygosity Genetic distance Variant alleles (>3,500)

X89 Y Y

Y67 Y Y

Z65 Y Y Y Y Y Y

N49 Y Y

Y18 Y Y

I58 Y Y Y Y Y

N74 Y Y Y

Z28 Y Y Y Y Y Y

https://doi.org/10.1371/journal.pone.0286599.t001
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genotypes (with G as the reference genotype), which is of minimum or the required coverage

to report a genotype and define it as a variant call. This indicates that the extremely higher

sequence depth is not necessary to call the variants. On the other hand, the RADseq technology

generates the sequence reads for only the genome-wide restriction sites and such genetic

resources enhance understanding of the level of genetic diversity in the sesame population.

Even though the higher genome assembly spanning rate was reported for sdRAD-seq data, the

ddRAD-seq has predicted more SNPs (27,604) compared to fewer SNPs (13,136) from

sdRAD-seq data. This is expected as the ddRAD-seq dataset includes more restriction sites

and is expected to be more polymorphic restriction sites than sdRAD-seq [27, 28]. Proportion-

ally, both datasets have a 95% of reference allele as the major allele among the sesame popula-

tion. Among the sesame samples (sdRAD-seq), Z28 has the most SNP loci with alternative

alleles followed by I58 and Z65. Whereas the ddRAD-seq has reported the Z65 sample with

most alternative alleles followed by Z28. This indicates that these samples are highly diverse

among the sesame population. The SNPs called from both data sets also differ in the density of

the SNPs called, as chr4 has the most number of SNPs (1,403) from sdRAD-seq and ddRAD-

seq has 2,887 SNPs. SNP comparison between the datasets shows that the sdRAD-seq dataset

has a very less number of restriction sites in the intergenic region on the chromosome (low fre-

quency of ApeKI restriction sites) than the two restriction sites (SphI or MlucI) used for

ddRAD datasets (Fig 7) (S2 Fig in S1 File).

SNP analysis and heterozygosity

To further understand the nature of genetic variation in the sesame samples, the overall SNPs

(combined datasets of sdRAD-seq and ddRAD-seq) demonstrate that 6 samples were having

the majority (more than 38,000) of SNPs. The 35,788 average number of locus identified in ses-

ame samples, and diverse samples F14, N30, X89, F15, A36 and N42 have 38,802, 38,383,

38,239, 38,163, 38,079 and 38,034. In addition to the SNPs, the heterozygosity analysis reports

6 samples (Z37, Z28, L47, N75, M41, and Z65) have higher heterozygosity (more than 3,500),

of which, except M41, five samples exhibit lower inbreeding coefficient (less than 0), indicating

the samples were outcrossed and have more heterozygosity (samples including the wild and

elite samples). The variant alleles (more than 3,500) and heterozygosity in I58, Z28 and Z65

sample exhibit higher genetic variations and low inbreeding coefficient in wild samples (Z28

and Z65) compared to the other samples (S11 Table in S2 File).

Evaluation of genetic diversity in sesame samples

We subjected k-mer, heterozygosity and SNP data to genetic diversity analysis and established

representative samples from the 48 sesame samples. We detected high levels of genetic diver-

sity in the wild sesame accessions originating from India. For example, Z65 and Z28 samples

exhibit a higher level of genetic diversity in the form of the distinct k-mer count, mash k-mer

distance, genic variations, and heterozygosity analysis. I58 sample shows the second most

diverse sample detected from k-mer count, k-mer distance and euclidean genetic distance.

Overall, eight samples (X89, V67, Z65, N49, Y18, I58, N74, Z28) were identified as the most

diverse India-origin sample with the distance k-mer count and genic PAV analysis. Of these,

four samples (Z65, I58, N74, and Z28) were consistently commonly identified as diverse sam-

ples with the mash k-mer diversity analysis. The mash k-mer genetic distance commonly mea-

sured for small genomes such as viral [29], microbial [30], whole genome sequence data [31],

and also the plant pathogens interactions as studied in Arabidopsis thaliana [32]. The level of

genetic diversity varies between the different data sets used, the k-mer analysis has identified

the 8 samples had the maximum genetic diversity, whereas the polymorphic alleles show that

PLOS ONE sd- and dd-RAD based genotyping-by-sequencing in sesame

PLOS ONE | https://doi.org/10.1371/journal.pone.0286599 June 2, 2023 13 / 19

https://doi.org/10.1371/journal.pone.0286599


the 3 samples (subset of k-mer based diverse samples) have the most number of variants (indi-

cating the most genetic variant samples of the sesame population) (Table 1). The overall

genetic diversity from this study varies compared to the whole genome sequence based SNP

genetic diversity [21]. Such difference due to the difference in the marker density between

ddRAD and whole genome sequence data was earlier reported and comparable [24]. It is

advisable to select a representative sample from different origins having higher diversity, how-

ever, in this study, only a few samples from non-Indian countries were included which do not

exhibit a higher diversity than the sample of Indian origin.

A combination of sdRAD and ddRAD genotype data was used in this study, assessing the

data at various levels as k-mer, RAD sequence, gene PAVs and genome-wide genetic distance

(mash k-mer distance and NJ). This strategy assessed the genetic diversity of the entire popula-

tion at different levels. The combination of strategies was earlier used with phenotypic and

genotypic analyses to assess the genetic diversity among the wild rice germplasm [33], the oil-

seed crop, Safflower (Carthamus tinctorius L.) core collection was developed with molecular,

phenotypic, and geographical diversity [34]. Whereas in olive (Olea europaea L.) different

molecular markers (DArTs, SSRs, SNPs) and agronomic traits were used [35]. The diverse rep-

resentative sesame samples was earlier identified with a combination of different parameters,

such as a combination of qualitative and quantitative trait descriptors on 2,751 accessions [36],

a combination of phenotype and molecular markers on 453 accessions [37], and through com-

bining genetic diversity, traits and agro-ecological type grouping on 4251 accessions [38].

In conclusion, we have generated the sdRAD-seq and ddRAD-seq data and compared the

tag sequence mapping rate to assess the data coverage individually. The SNP calls were com-

pared, and the genetic diversity was assessed by combining the variant calling from both data-

sets. We also identified the diverse sesame samples that hold the genetic variability from SNP

level (including the variant allele, heterozygosity, and inbreeding coefficient), to the K-mer

sequence and genetic distance analysis. The most diverse sample identified in this study could

Fig 7. The sdRAD-seq and ddRAD-seq sequence reads and SNP density comparison.

https://doi.org/10.1371/journal.pone.0286599.g007
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be part of the core collection of the sesame germplasm. A similar strategy of defining the core

collection can be adapted to a large germplasm collection to assess the diversity in a detailed

manner. The combined k-mer and genetic variation used in this study can be adapted to other

crop populations. The core collection not only indicates the statistical mean and variances but

the range of variability within the population.

Materials and methods

Plant material

This study included 48 sesame samples that were genotyped with RAD protocol (sd and dd),

of which 26 samples were collected from various locations in India and the remaining 22 sam-

ples originated from different countries (S1 Table in S2 File). Before the genotyping experi-

ment, all these sesame accessions were self-crossed for one generation at the Regional

Research Station of the Tamil Nadu Agricultural University (TNAU) situated at Virudachalam

and the purified seeds were subjected for the genotyping experiment. The seeds were germi-

nated using germination paper towels. Seedlings that were 7–14 days old are used for DNA

extraction from fresh tissues (whole seedlings) using DNeasy Plant Kit (Qiagen, USA). The

quality and quantity of the extracted DNA were assessed using Qubit fluorometer and

electrophoresis.

RAD-seq data generation

The RAD data generation (both sdRAD-seq and ddRAD-seq) for the DNA of the sesame

genotypes was outsourced to AgriGenomics Pvt. Ltd (Hyderabad, India).

The sdRAD-seq data workflow includes the adapters prepared based on the earlier reported

protocol [39]. The 1 μg of genomic DNA was digested with ApeKI restriction enzyme and P1

P2 adaptors ligated using T4 DNA ligase. Thermo fisher scientific pure link quick gel extrac-

tion and PCR purification kit used for pooling and clean-up of the ligated products. The size

selection (250–400 bp) was done after 2% agarose gel electrophoresis. PCR amplification was

performed to enrich and add the Illumina-specific adapters. QC was checked on the bioanaly-

zer and final pooling and sequencing were performed on HiSeqX.

The ddRAD data workflow follows a similar protocol as sdRAD-seq workflow applied

above but the double digestion of (1 μg) genomic DNA was done with Sph1 and MluC1 restric-

tion enzymes [12], and the digested product was cleaned with Ampure beads. The ligation,

pooling, size selection, PCR amplification and QC check were done similarly to sdRAD proce-

dure. The final pooling and sequencing were performed on HiSeqX and NovaSeq6000. The

pre-processed raw data were subjected to the sd- and dd-RADseq analysis and compared for

various parameters.

RAD-seq analysis

The sdRAD-seq and ddRAD-seq reads were quality trimmed with trimmomatic [40] with

low-quality bases (below quality score of 20) and adapters if any were removed, a sliding 4bp

window was applied to trim the bases when the average quality score drops below 15, and the

remaining clean reads were mapped to the sesame reference genome assembly [5] with Bow-

tie2 [41]. The basic fastq sequence reads for both the datasets were generated with the in-house

developed script (https://github.com/CEG-ICRISAT/Raspberry) and the quality check was

performed with fastqc [42] and the results were compiled with multiQC [43]. For each sample,

the mapping rate for both RAD-seq was assessed with qualimap [44], Samtools [45] and the

variants were called with Stacks pipeline using default parameters [46].
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For the k-mer analysis, the cleaned reads subjected to k-mer counting and distinct k-mers

were identified with Jellyfish [47]. The k-mer size is 27 nt. The common and unique k-mers

were identified based on the presence and absence of a k-mers in 48 sesame samples. The k-

mers that appear only once in samples were filtered out as they were likely from the sequencing

errors. The k-mer based genetic distance between the 48 samples was measured with Mash [48].

With the above RAD-seq alignments, the gene presence and absence variations between the

sesame 48 samples were assessed based on sequence reads coverage mapped to respective

genes using a similar method as described earlier [49]. The common (conserved) genes were

defined as the genes present in all the accessions, whereas the gene variability identified if a

gene missing in one or more accessions. The in-house developed script was used to define the

variability from the PAV matrix.

Genetic diversity analysis

The combined variant calls from both sdRAD-seq and ddRAD-seq datasets were used for the

downstream analysis. The SNPs were filtered and plotted to have biallelic SNPs, 0.7 call rate

with a minimum maf of 0.1 using the vcftools [50] and CMplot [51]. A 1,000 bootstrap resam-

pling was used to estimate the genetic relationship among the accessions with R “ape” package

[52] to construct an NJ tree and visualized in iTOL tree viewer [53].

Conclusion

In conclusion, we have shown that using different protocols (sdRAD or ddRAD) methods can

result in producing different data quantities, coverage and also SNP calls. The variant calls

between both protocols were significantly different. The low proportion of common variants

between the sdRAD and ddRAD indicates that both protocols are independent and can be

used together to have a high density of variants across the genome. Such bias is expected as the

source of polymorphic restriction sites, sampling schemes and PCR duplications. The methods

to minimize such bias are under development [54] and possibly considered to incorporate into

genotyping methods using Bayesian statistics. With the reduced representation, this study

shows the possibility to find representative samples with different parameters (SNP, PAV, k-

mer, NJ) from the population that act as a source of material to address future challenges in

future sesame cultivation.
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