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Abstract

In recent years regression discontinuity (RD) designs have been used in-

creasingly for the estimation of treatment effects in observational medical

data where a rule-based decision to apply a treatment is taken using a con-

tinuous assignment variable. Most RD design applications have focused on

effect estimation where the outcome of interest is continuous, with scenarios

with binary outcomes receiving less attention, despite their ubiquity in med-

ical studies. In this work we develop an approach to estimation of the risk

ratio in a fuzzy RD design (where treatment is not always strictly applied ac-

cording to the decision rule), derived using common RD design assumptions.

This method compares favourably to other risk ratio estimation approaches:

the established Wald estimator and a risk ratio estimate from a multiplica-

tive structural mean model, with promising results from extensive simulation

studies. A demonstration and further comparison is made using a real exam-
∗E-mail address: aidan.o'keeffe@nottingham.ac.uk; Corresponding author
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ple to evaluate the effect of statins (where a statin prescription is made based

on a patient’s 10-year cardiovascular disease risk score) on LDL cholesterol

reduction in UK Primary Care.

1 Introduction

Regression discontinuity (RD) designs are an established approach to treatment

effect estimation using observational data where treatment allocation is made ac-

cording to a decision rule defined by an external variable [1, 2, 3]. Typically, given

a sample of subjects, an ‘assignment variable’ is observed for each subject and a de-

cision rule used to assign a treatment where a subject should receive the treatment

if their assignment variable lies above (or below) an externally defined threshold.

Consequently, an RD design may be defined using a local randomisation approach

where the treatment threshold separates the ‘treated’ and ‘untreated’ and, under

certain assumptions, this threshold may be viewed as a quasi-randomisation device

in that subjects whose assignment variable value lies ‘just below’ the threshold may

be viewed as similar to those whose assignment variable value lies ‘just above’ the

threshold [4]. In particular, we might view these groups as balanced with regard

to confounding variables in an analogous manner to the ‘treatment’ and ‘control’

groups in a two-group individually randomised controlled trial.

In recent years, the local randomisation approach to RD designs has been explored,

developed and applied in the literature [5, 6, 7] and the differences between this

approach to RD designs and the continuity-based RD design framework have been

noted (see, for example, [8]). In medical applications, the natural analogy between

the quasi-randomisation seen in the local randomisation approach to RD designs and

randomisation in an individually randomised controlled trial suggests that a local

randomisation RD design can be a practical and intuitive approach to treatment

effect estimation in situations where an external decision rule is used to determine
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treatment.

This approach to RD designs has been applied to medical studies in the literature,

although the usual focus has been on situations where the treatment effect of in-

terest is a difference in means for a continuously distributed outcome of interest

[9, 10, 11, 12]. Conversely, binary outcomes have received less attention in RD de-

signs applied to medical studies, with only a few recent examples in the literature

of local randomisation RD designs in medical contexts. Lesik [13] used a two-stage

least squares approach for odds ratio estimation in an RD design which is only

appropriate when the event of interest is rare [14]. Xu [15] and van Leeuwen et

al. [16] each considered inference for binary outcomes in sharp RD designs only

(where the threshold-treatment rule is applied strictly). Bor et al. [17] applied a

complier average causal effect estimate using local linear regression models. Using

similarities between local randomisation RD designs and treatment effect estimation

using instrumental variables, Geneletti et al. [18] argued that the risk ratio can be

estimated using an RD design via a Bayesian approach to a multiplicative struc-

tural mean model. Prior constraints were made to ensure that effect estimates and

associated uncertainty intervals remained positive but methods were not applicable

in a non-Bayesian setting.

In this paper an estimator for the risk ratio in a local randomisation RD design

is proposed and derived using design assumptions and compared to alternative ap-

proaches. The estimator exhibits favourable properties when evaluated through

extensive simulation studies, being suitable for estimating a range of risk ratio sizes

in the presence of confounding using only standard RD design assumptions and

without reliance on the event of interest being rare. A real example is presented to

demonstrate its use, applied to the prescription of statins for the reduction of LDL

cholesterol based on 10-year cardiovascular risk score in UK primary care.

This paper is organised as follows: Section 2 outlines the RD design and key assump-
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tions required for inference. Section 3 describes methods for risk ratio estimation

in an RD design, including the new approach presented in this work. Simulation

studies to compare this approach to alternatives are performed and evaluated in

Section 4. An example on the prescription of statins in UK primary care based on

cardiovascular disease risk score is presented in Section 5 and an overall discussion

is provided in Section 6.

2 RD Design - Background and Definitions

Suppose that data are observed for n subjects where, for the ith subject, Yi ∈ {0, 1}

is a binary outcome of interest and Xi is a continuously distributed ‘assignment

variable’. An externally-defined decision rule is set such that the ith subject should

receive a given treatment or intervention if Xi exceeds a pre-defined threshold x0.

The ‘threshold indicator’ Zi is defined to indicate this decision where Zi = 1 if

Xi ≥ x0 and Zi = 0 if Xi < x0.

In addition, a treatment indicator Ti is defined where Ti = 1 if the ith subject receives

the treatment and Ti = 0 otherwise. In an ideal situation, known as a sharp RD

design, the decision rule would be applied strictly so that Ti ≡ Zi for each subject.

However, in reality – and especially in medical contexts – the decision rule may not

be adhered to universally. This is known as a fuzzy RD design and, despite this

lack of adherence, treatment effects can be estimated in fuzzy RD designs subject to

some assumptions which will be outlined. In this work, we focus on treatment effect

estimation for binary outcomes in fuzzy RD designs because fuzziness is common

in medical applications, although methods discussed can be applied to sharp RD

designs. Potential subject-specific confounding variables are denoted by Ci and we

note that these may be observed or unobserved.

As a running example that will be explored in this paper, we consider the prescription

of statins – a class of cholesterol-lowering drugs – based on 10-year cardiovascular
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disease risk score (10-year CVD risk). In the UK, a 2008 guideline from the National

Institute for Health and Care Excellence (NICE) stipulated that statins should be

prescribed routinely to adults if their 10-year CVD risk score, calculated using the

Framingham method [19] or QRISK approach [20], exceeds 20%. Risk scores are

calculated by inputting patient variables such as sex, age, smoking status and blood

pressure measurements into a validated risk prediction model. It is widely known

that increased low density lipoprotein (LDL) cholesterol can contribute to cardio-

vascular disease and statins are prescribed with the aim of reducing LDL cholesterol

to prevent future CVD (e.g. a stroke or myocardial infarction). An LDL cholesterol

reduction of 1mmol/L or more has been described as clinically beneficial for those

who may be at risk of CVD [21]. Hence, we will present methods with reference to

an RD design to assess the effect of statins on obtaining a significant (1mmol/L or

greater) reduction in LDL cholesterol – a binary outcome of clinical interest.

In this example, the assignment variable is a patient’s 10-year CVD risk score, the

threshold is a score of 0.2 (20%), the binary outcome is a reduction of 1mmol/L or

more in LDL cholesterol (1 = ‘yes’, 0 = ‘no’) and the treatment is the prescription

of statins. Data are sourced for 1384 males who were non smokers and not diabetic

from The Health Improvement Network (THIN) - a large source of anonymised UK

primary care data from over 500 general practices (family doctors) and broadly

representative of the UK population at the time of extraction (2008–2014) [22, 23].

To place this example in the context of a local randomisation RD design, we might

assume that a group of patients whose 10-year CVD risk scores lie ‘just above’

the 20% threshold (and therefore who should receive statins) might be considered

similar to a group of patients whose 10-year CVD risk scores lie ‘just below’ the

20% threshold (and therefore who should not receive statins). In using the term

‘similar’ we mean that these groups may be balanced with respect to other vari-

ables – potentially confounding variables (e.g. age, body mass index, blood pressure
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level etc.) – in a similar manner to groups in a two-group individually randomised

controlled trial. The concept of ‘just above’ and ‘just below’ the threshold is quan-

tified by defining a window (x0 − h, x0 + h) for some positive constant h where a

subject is included in the RD analysis only if their observed assignment variable

value xi lies in the range (x0 − h, x0 + h). In a continuity-based RD design, h –

often known as the ‘bandwidth’ – may be selected according to desired optimality

criteria to provide an unbiased treatment effect estimate at the threshold, typically

using a local polynomial fit [24, 25]. In a local randomisation framework, which we

use in this work, the bandwidth h is typically chosen a priori to define a region in

which balance with respect to unobserved confounders is likely to hold. This may

be obtained by clinical input on discussion with experts who may advise on likely

patient characteristics. Alternatively, a number of bandwidths could be considered

and, for each bandwidth, distributions of potential confounding variables compared

for patients with scores above and below the threshold to obtain an appropriate

bandwidth prior to using the RD design [5]. More recently, a data-driven Bayesian

approach to optimal bandwidth selection has been proposed for use in the local

randomisation framework [26].

As mentioned previously, with medical scenarios it is usual that the treatment de-

cision rule will not be followed strictly for all subjects. In the statins example it

is possible that some general practitioners (GPs) may prescribe statins to those

with 10-year risk scores below 20% because - knowing a patient personally - they

feel that treatment would be beneficial. In contrast, other patients may choose to

decline treatment and instead reduce their risk of cardiovascular disease develop-

ment by other means (for example, by changing their lifestyle or diet). That the

threshold decision rule is not followed for some subjects does not imply that the RD

design cannot be used for reliable inference regarding a treatment effect, although

an acknowledgment of the ‘fuzziness’ in the design should be made and methods

developed and used for inference should account for this.
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2.1 RD Design Assumptions

A number of assumptions are required to estimate a treatment effect using an RD

design [2, 27]. We outline these using the language of conditional independence

[28] although we note that the assumptions can also be stated using a potential

outcomes framework [2, 29]. Assumptions are stated mathematically but Appendix

A provides further details and a description of each assumption in the context of the

statin prescription example to aid understanding of these assumptions in practice.

We use the following notation: if A, B and C are random variables then A⊥⊥B

implies that ‘A and B are independent’ whereas A 6⊥⊥B implies that ‘A and B are not

independent’. Similarly A⊥⊥B|C implies that ‘A and B are independent conditional

on C’ and A 6⊥⊥B|C implies that ‘A and B are not independent conditional on C’.

A1 The probability of receiving treatment, conditional on the assignment variable,

is discontinuous at the threshold:

lim
x→x−

0

P(Ti = 1 | Xi = x) 6= lim
x→x+

0

P(Ti = 1 | Xi = x).

A2 The threshold indicator and treatment indicator are not independent:

Ti 6⊥⊥Zi.

A3 The threshold indicator is independent from confounding variables, conditional

on the assignment variable:

Zi⊥⊥Ci|Xi.

A4 The expectation of the binary outcome Yi, conditional on the assignment vari-

able, is continuous at the threshold given treatment allocation:

E(Yi|Xi = x, Ti = t) is continuous at x = x0 for each of t ∈ {0, 1}.
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A5 The binary outcome is independent of the threshold indicator, given the other

variables. That is:

Yi⊥⊥Zi|(Ti, Xi, Ci).

A6 The population of interest (and sample of data used) does not contain ‘defiers’

– that is, subjects who would never take the treatment if it were offered or

systems where the opposite of the decision rule would be applied to some

subjects. This assumption implies that the treatment effect estimate is valid

only for populations where the treatment would be taken if offered, thereby

precluding the estimation of an overall, average, treatment effect using an RD

design.

With any modelling approach it is important to consider whether or not assumptions

are valid prior to working with a given dataset. Some of the above assumptions

can be explored/checked prior to fitting an RD design. For example, A1 is often

explored by producing a plot of the probability of treatment within small assignment

variable bins either side of the threshold and producing a scatterplot to see if there is

visual evidence of a discontinuity. A2 may be checked by calculating the correlation

between the treatment and threshold indicators or using an appropriate hypothesis

test of association. A3 cannot be tested formally as the treatment decision rule

is devised externally (rather than on individual subject characteristics). However,

it may be appropriate in many scenarios to assume that - in a region around the

threshold - a subject’s confounding variables cannot be manipulated to influence

where their assignment variable lies in relation to the threshold/external decision

rule. Assumption A4 can be explored by producing plots of the assignment variable

against the probability of treatment within small assignment variable bins for the

separate treated and untreated subject groups. Assumption A5 is also not testable
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but may hold subject to the user having chosen a bandwidth such that the groups

of subjects above and below the threshold are balanced with respect to confounding

variables. Often we may produce summary statistics for potential confounders for

these two groups prior to applying a design to check that there is balance between

groups in a similar manner to the checking of randomised groups at baseline in a

randomised controlled trial.

3 Estimating the Risk Ratio

Our focus in on the use of an RD design where the outcome of interest is binary and

our interest lies in estimating the risk ratio with regard to the binary outcome of

interest, comparing treated and untreated groups in a region close to the threshold.

We assume that a window around the threshold exists such that where Xi ∈ (x0 −

h, x0+h) subjects are exchangeable and groups of subjects with assignment variable

values above and below the threshold may be considered similar with regard to

potential confounding variables, Ci.

Our estimand of interest is the risk ratio at the threshold, defined

RR =
limx→x0 E(Y |T = 1, X = x)

limx→x0 E(Y |T = 0, X = x)
.

and, in words, this is simply the ratio of the probability of the event of interest

occurring for the treated and untreated groups.

We note that odds ratio estimation to describe a treatment effect is commonplace

in many settings. However, the odds ratio is a non-collapsible measure, which can

sometimes be problematic when estimating [30] and, in general, causal odds ratio

estimators may be more biased than causal risk ratio estimators [14].

We outline two common approaches to risk ratio estimation using observational

data: the Wald estimator and a multiplicative structural mean model. We then
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derive a new risk ratio estimator based on RD design assumptions within a local

randomisation framework that will be compared to the two aforementioned methods.

3.1 Wald Estimator

The Wald estimator is an adapted version of that for continuous outcomes [31]

and expresses the log of the risk ratio as a local average treatment effect estimator,

using a difference in natural logarithms of the expectation of the outcome of interest,

defined

log(WALD-RR) =
log[E(Yi|Zi = 1)]− log[E(Yi|Zi = 0)]

E(Ti|Zi = 1)− E(Ti|Zi = 0)
.

For this estimator to be valid and estimate a causal risk ratio at the threshold, we

require the two following assumptions to hold [14, 32]:

W1: log[E(Yi|Ti = t)] is linear in t;

W2: E(Ti|Zi = z) is linear in z.

Further explanation of these assumptions and their purpose for WALD-RR estima-

tion is provided in Appendix B.

This estimator has been used in the instrumental variables (IV) framework and has

been shown to be consistent for the risk ratio where the treatment effect is small and

the event of interest is rare [32]. Considering the RD design threshold as analogous

to an instrument in an IV framework and, subject to the RD design assumptions

holding, this estimator can be used for RD designs with rare outcomes and a small

treatment effect. However, in other situations we may wish to consider alternative

approaches.

3.2 Multiplicative Structural Mean Model

Structural models based on potential outcomes have been established as a method

for causal effect estimation [33, 34, 35]. For the binary outcome Yi we define Y (1)
i
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and Y
(0)
i to be the potential outcomes for the ith subject if treated or not treated,

respectively. Although each outcome is defined, only one may be observed in a given

dataset because the same subject cannot be both treated and not treated.

The multiplicative structural mean model (MSMM) aims to compare the log expec-

tations of the potential outcomes for the treated group [35], written

logE(Y (1)
i |Zi, Ti = 1)− logE(Y (0)

i |Zi, Ti = 1) = ψ0 + ψ1Zi.

Here exp(ψ0) and exp(ψ0+ψ1) are risk ratios for the treated (RRT) for subjects with

assignment variable values below and above the threshold, respectively. This model

can be used to produce a consistent estimate of the RRT subject to the following

additional assumptions [32, 34]:

M1: There is no interaction between the threshold indicator, Zi, and the treatment

variable, Ti (i.e. no effect modification).

M2: log[E(Y (1)
i |Ti = t, Zi = z)]− log[E(Y (0)

i |Ti = t, Zi = z)] is linear in t.

Under assumption M1, ψ1 = 0 and it follows that the treatment effect of interest is

exp(ψ0). Furthermore, a relationship between the overall risk ratio (known as the

‘causal risk ratio’ - CRR) and the RRT is shown below.

E(Y (1)
i |Ti = 1)

E(Y (0)
i |Ti = 1)

=
E(Y (1)

i |Ti = 1)

E(Y (0)
i |Ti = 0)

E(Y (0)
i |Ti = 0)

E(Y (0)
i |Ti = 1)

;

i.e. RRT = CRR × SB.

Here ‘SB’ denotes the ‘selection bias’ which measures the ratio of the expectation

of the observed outcome for untreated subjects and the expectation of the counter-

factual outcome for treated subjects. If treatment allocation is random and treated

and untreated groups are balanced with respect to confounding variables then this

ratio should be 1 and there would be no selection bias. In reality, and subject to
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the RD design assumptions holding, we should expect that for subjects ‘just above’

and ‘just below’ the threshold (i.e. where Xi ∈ (x0−h, x0+h)) groups are balanced

with respect to confounders and that selection bias will be minimal in the above

expression.

An analytic expression for the RRT, derived using a MSMM, was provided by Hernán

and Robins [34] and is shown below

RRT = 1− E(Yi|Zi = 1)− E(Yi|Zi = 0)

E(Yi(1− Ti)|Zi = 1)− E(Yi(1− Ti)|Zi = 0)
. (1)

In practice, because of assumption M2, generalised least squares models (with a log

link function) are typically used to estimate individual components of (1). However,

when Yi is a binary outcome a logit link function would be more natural as this

would ensure that probability estimates lie between 0 and 1. Geneletti et al. [18]

have shown that using logistic regression models in (1) yields a similar estimate to

that obtained when log-linear models are used but with the added advantage of

probability estimates that always remain in the correct range. Moreover it can be

shown that when Yi is a binary variable and logistic regression models are used to

estimate components of (1) then Assumption M2 is satisfied (see Appendix C).

3.3 RD Design Method

As noted previously, the Wald estimator (defined in Section 3.1) relies on additional

assumptions W1 and W2 and is valid only where the binary event of interest is

rare and the treatment effect is small. In addition, the MSMM estimator (defined in

Section 3.2) relies on additional assumptions M1 and M2. As as result, we propose

and derive an estimator for the risk ratio using only the RD design assumptions

stated in Section 2.1 that is applicable to non-rare binary events and a variety of

treatment effect magnitudes.

To define this estimator, we note that the treatment effect of interest is the risk
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ratio at the threshold, written

lim
x→x0

E(Yi|Ti = 1, Xi = x)

E(Yi|Ti = 0, Xi = x)
.

Owing to the effect of possible unobserved confounding, the numerator and denom-

inator of the above expression cannot be estimated directly (for example, using a

logistic regression model for Yi with Ti and Xi as explanatory variables). However,

in the RD design, the threshold is defined externally and, subject to the assumptions

outlined in Section 2.1, we can exploit the threshold as a quasi-randomising device

to derive the following estimator for the risk ratio at the threshold, which we term

RDD-RR.

RDD-RR = 1− lim
x→x0

E(Yi|Zi = 1, Xi = x)− E(Yi|Zi = 0, Xi = x)

E(Yi|Zi = 1, Xi = x)E(Ti|Zi = 0)− E(Yi|Zi = 0, Xi = x)E(Ti|Zi = 1)
.

A proof of this result is provided in Appendix D.

In practice, because Yi and Ti are binary, logistic regression models may be fitted to

estimate each component of the above expression. Standard error estimation is less

straightforward and, in this work, we use a bootstrap approach to obtain standard

error estimates for each of the three estimation methods. Specifically, bootstrapping

is used to estimate the standard error of the log risk-ratio using 2000 bootstrap

replications. A corresponding 95% confidence interval can then be calculated for

the log risk ratio using a normal approximation.

4 Simulation Studies

Having outlined three methods for risk ratio estimation in an RD design we perform

simulation studies to evaluate and compare these estimation approaches. This is

done for a variety of designs with differing levels of fuzziness and confounding.
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4.1 Data Extraction

In an effort to make the simulation studies realistic, we extracted a dataset from

The Health Improvement Network (THIN) - a large source of anonymised electronic

patient records collected from over 500 UK general practice (GP) surgeries in which

patients are generally representative of the UK population [23] - on the prescription

of statins based on 10-year CVD risk score. Data from 1384 male patients aged

between 50 and 70 years who were non-diabetic, non-smokers, had never experienced

a cardiovascular event (stroke or myocardial infarction) and for whom a 10-year

CVD risk score was calculated between January 2007 and December 2008 were

extracted. In this example, the 10-year CVD risk score is the assignment variable

with the treatment threshold set as a 10-year CVD risk score of 0.2 or greater, using

the NICE guidance that was in place at the time these data were collected. The

treatment is the prescription of statins and the outcome of interest is the binary

event Yi, which records whether or not subject i’s LDL cholesterol level decreases

by 1mmol/L or more, defined

Yi =


1 if subject i’s LDL cholesterol level decreases by 1mmol/L or more;

0 otherwise.

Considering the time scale for measuring the change in LDL cholesterol, in the

dataset each subject’s LDL cholesterol level is recorded at the same time as the risk

score is calculated. We then took the next LDL cholesterol measurement at least one

month after the risk score calculation and used this value to determine the change

in LDL cholesterol level and define Yi.

4.2 Simulation Study set-up

We use the 1384 10-year CVD risk scores from the extracted data as assignment

variables, Xi (i ∈ {1, . . . , 1384}), with the threshold set as x0 = 0.2. We simulated
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2000 datasets, each with 1384 patients, under a variety of design fuzziness levels

and confounding scenarios, which we will outline. First, we describe the general

simulation algorithm.

Step 1. For the ith subject, the assignment variable Xi is taken and a centred assign-

ment variable Xc
i and threshold indicator Zi are defined as

Xc
i = Xi − 0.2

Zi = I{Xc
i ≥ 0}.

Step 2. A confounding variable, Ui, is simulated from a continuous uniform distribu-

tion where

Ui ∼ Uniform(0, 1).

Step 3. The probability of receiving treatment (statins), pi, is defined

log

(
pi

1− pi

)
= β0 + β1Zi + β2Ui + β3X

c
i .

The parameters β1 and β3 govern the strength of the treatment guideline (the

effect of the threshold and assignment variable on the probability of treat-

ment). β2 allows the probability of receiving treatment to be affected by the

confounding variable.

Step 4. Using the probability calculated in Step 3, a treatment indicator, Ti, is simu-

lated where

Ti ∼ Bernoulli(pi).

Step 5. The expectation of the binary outcome of interest, pyi , is calculated as

log

(
pyi

1− pyi

)
= β4 + β5Ti + β6Ui.
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Here β5 governs the strength of the relationship between treatment and the

binary outcome and β6 allows an association between the binary outcome and

confounding variable.

Step 6. Using pyi from Step 5, the binary outcome Yi is simulated as follows

Yi ∼ Bernoulli(pyi ).

Step 7. Steps 1–6 are repeated for each i ∈ {1, . . . , 1384} to create a dataset containing

data from 1384 subjects.

Step 8. Steps 1–7 are repeated M times to create M simulated datasets.

The true causal risk ratio is calculated as

RR =

∫
U expit(β4 + β5 + β6u)du∫

U expit(β4 + β6u)du

where expit(x) = exp(x)
1+exp(x)

.

The pre-specified values of the parameters β0, . . . , β6 are chosen to reflect the real

THIN dataset and also adjusted to produce various levels of fuzziness and confound-

ing. Table 1 shows choices of β1, β2 and β6 used to create these scenarios, in which

we use the terms ‘weak’ and ‘strong’ fuzziness and ‘no’, ‘low’ and ‘high’ confound-

ing. Having outlined these parameters, the parameter β0 is selected such that the

probability of receiving treatment (across all subjects) is approximately 0.5. This

is in line with the equivalent probability in the THIN statins dataset described in

Section 4.1 and the value of β0 was obtained by solving

1

n

n∑
i=1

expit (β0 + β1Zi + β2Ui + β3X
c
i ) = 0.5.

Similarly, for each scenario, β4 was set such that the occurrence of the binary out-
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come of interest has probability 0.44 across all subjects, similar to that seen in the

THIN data example, with the value of β4 obtained by solving

1

n

n∑
i=1

expit (β4 + β5Ti + β6Ui) = 0.44.

We set β5 to be 1.5 which reflects the treatment effect (risk ratio). For each simula-

tion run, the probability of complying with the treatment guideline was calculated

as

P(Ti = 1 | Zi = 1)− P(Ti = 1 | Zi = 0)

and the mean of these probabilities is reported as the probability of compliance

(P.C.) in Table 1. In addition, Table 1 shows sample correlations between the

confounder Ui and each of the treatment indicator, Ti, and outcome Yi.

Table 1: Parameter values for the simulation scenarios with the corresponding prob-
ability of compliance (P.C.) and estimates of correlations between Yi and Ui (ρY,U)
and Ti and Ui (ρT,U)

.
Scenario Parameters P.C. ρY,U ρT,U

Weak Fuzziness, No Confounding β1 = 6 β2 = 0 β6 = 0 0.91 0.00 0.00
Weak Fuzziness, Low Confounding β1 = 8 β2 = 6.5 β6 = 1 0.90 0.16 0.12
Weak Fuzziness, High Confounding β1 = 8 β2 = −9 β6 = 2.5 0.81 0.29 -0.24
Strong Fuzziness, No Confounding β1 = 2 β2 = 0 β6 = 0 0.53 0.00 0.00
Strong Fuzziness, Low Confounding β1 = 2 β2 = 1.5 β6 = 1 0.52 0.16 0.15
Strong Fuzziness, High Confounding β1 = 2.5 β2 = −3.5 β6 = 2 0.53 0.21 -0.31

For each simulation scenario we estimated the risk ratio using the three approaches

outlined in Section 3: the Wald estimator (WALD-RR), the multiplicative structural

mean model estimator (MSMM-RR) and the proposed RD design method (RDD-

RR). A total of 2000 datasets were simulated for each simulation scenario and results

are reported for bandwidths of 0.05, 0.1, 0.15 and 0.2.
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4.3 Simulation Study: Results

For each simulation scenario, and where the true risk ratio is equal to 1.5, Table 2

shows numerical summaries of simulation study results with box plots of risk ratio

estimates shown in Figure 1 (weak fuzziness) and Figure 2 (strong fuzziness).

Examining Table 2 and Figures 1 and 2, where there is no confounding all meth-

ods produce unbiased estimates of the log risk ratio with similar standard error

estimates. Standard error estimates are generally larger where fuzziness is stronger

and the bandwidth decreases, which would be expected. For the low confounding

scenario the three approaches produce generally similar estimates with a similar

pattern regarding standard errors which increase as the bandwidth - and thus the

sample size - decreases. For the high confounding scenario the MSMM-RR approach

is more biased than either the WALD-RR or RDD-RR methods for all bandwidths.

The RDD-RR and WALD-RR approaches produce similar results and, as with the

low and no confounding scenarios, standard error estimates generally increase as the

fuzziness increases and as the bandwidth decreases.

That the WALD-RR and RDD-RR methods yield similar results is not surprising as

each of the assumptions required for the WALD-RR estimator to be valid, outlined

in Section 3.1, holds here. Conversely, the MSMM-RR method may be less desirable

in that the estimates can be biased where confounding is high and, in addition, the

time taken to produce estimates was slightly longer than either the WALD-RR or

RDD-RR approaches. One possible drawback of the WALD-RR method is that we

require the treatment effect to be reasonably small and the event of interest to be

rare. As a result we ran further simulations where the true risk ratio was increased

to 4.

Table 3 shows numerical summaries of simulation results where the true risk ratio

is 4, with box plots of risk ratio estimates shown in Figures 3 and 4. We see

that, across all bandwidths, confounding levels and fuzziness scenarios the WALD-
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Table 2: Estimates, Biases, empirical standard errors (ESE), average standard
errors (ASE) and 95% coverage (95% Cov.) of the log risk ratio. The true value of
the log of the risk ratio is log(1.5) = 0.405. The original sample size was 1384 in
each simulated dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness
Bandwidth Method Estimate Bias ESE ASE 95% Cov. Estimate Bias ESE ASE 95% Cov.

N
o

co
nf

ou
nd

in
g

0.2
RDD-RR 0.40 0.01 0.13 0.13 94.9 0.38 0.02 0.19 0.20 96.2
MSMM-RR 0.41 -0.01 0.15 0.15 95.6 0.42 -0.02 0.22 0.24 97.2
WALD-RR 0.41 -0.01 0.14 0.14 94.8 0.39 0.02 0.20 0.20 95.7

0.15
RDD-RR 0.40 0.01 0.14 0.14 95.0 0.38 0.02 0.20 0.20 95.8
MSMM-RR 0.41 -0.01 0.15 0.16 95.9 0.42 -0.01 0.23 0.25 97.1
WALD-RR 0.41 -0.01 0.15 0.15 95.2 0.39 0.02 0.20 0.20 95.4

0.1
RDD-RR 0.40 0.00 0.16 0.16 95.2 0.39 0.02 0.23 0.24 96.2
MSMM-RR 0.41 -0.01 0.18 0.18 96.3 0.42 -0.02 0.26 0.30 97.6
WALD-RR 0.42 -0.01 0.17 0.17 95.0 0.40 0.01 0.23 0.24 95.5

0.05
RDD-RR 0.41 0.00 0.22 0.22 95.5 0.40 0.01 0.31 0.34 98.2
MSMM-RR 0.43 -0.02 0.25 0.26 97.0 0.44 -0.03 0.38 0.44 98.1
WALD-RR 0.42 -0.02 0.23 0.23 95.4 0.40 0.00 0.32 0.33 96.7

Lo
w

co
nf

ou
nd

in
g

0.2
RDD-RR 0.40 0.00 0.13 0.13 95.5 0.38 0.03 0.20 0.20 95.2
MSMM-RR 0.40 0.01 0.14 0.14 95.3 0.41 -0.01 0.23 0.24 96.8
WALD-RR 0.41 -0.01 0.14 0.14 95.5 0.38 0.02 0.20 0.20 94.7

0.15
RDD-RR 0.40 0.00 0.14 0.14 95.6 0.38 0.02 0.21 0.21 95.3
MSMM-RR 0.40 0.01 0.14 0.15 95.7 0.41 -0.01 0.24 0.25 96.5
WALD-RR 0.41 -0.01 0.14 0.15 96.0 0.39 0.02 0.21 0.21 94.8

0.1
RDD-RR 0.40 0.00 0.15 0.16 95.9 0.39 0.02 0.24 0.24 95.7
MSMM-RR 0.40 0.00 0.16 0.17 96.1 0.42 -0.01 0.28 0.30 97.1
WALD-RR 0.42 -0.01 0.16 0.17 95.9 0.39 0.01 0.24 0.24 94.6

0.05
RDD-RR 0.40 0.00 0.22 0.22 95.0 0.40 0.01 0.33 0.35 98.2
MSMM-RR 0.41 0.00 0.23 0.24 96.3 0.44 -0.03 0.40 0.46 98.5
WALD-RR 0.42 -0.02 0.23 0.23 94.9 0.40 0.00 0.33 0.34 96.2

H
ig

h
co

nf
ou

nd
in

g

0.2
RDD-RR 0.40 0.01 0.14 0.14 94.3 0.39 0.02 0.21 0.21 95.3
MSMM-RR 0.45 -0.05 0.17 0.17 96.5 0.44 -0.04 0.27 0.29 97.5
WALD-RR 0.41 -0.01 0.14 0.14 94.5 0.39 0.02 0.21 0.21 94.7

0.15
RDD-RR 0.40 0.00 0.14 0.14 94.5 0.39 0.02 0.22 0.22 96.0
MSMM-RR 0.45 -0.05 0.18 0.18 96.7 0.44 -0.04 0.28 0.30 97.9
WALD-RR 0.41 -0.01 0.15 0.15 94.5 0.39 0.01 0.22 0.22 95.2

0.1
RDD-RR 0.40 0.00 0.16 0.16 95.7 0.39 0.01 0.25 0.26 97.0
MSMM-RR 0.46 -0.05 0.20 0.21 97.8 0.45 -0.04 0.31 0.36 98.3
WALD-RR 0.42 -0.01 0.17 0.17 95.8 0.40 0.01 0.25 0.26 96.0

0.05
RDD-RR 0.41 0.00 0.22 0.22 95.6 0.41 0.00 0.35 0.38 98.6
MSMM-RR 0.47 -0.07 0.28 0.31 97.9 0.47 -0.06 0.44 0.53 98.9
WALD-RR 0.42 -0.02 0.23 0.23 95.5 0.41 -0.01 0.35 0.36 96.2

RR estimates are biased. Conversely, the RDD-RR approach appears to produce

unbiased estimates when fuzziness is weak, even when confounding is high. For the
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strong fuzziness scenarios the RDD-RR approach performs reasonably well when the

bandwidth is small but becomes more biased as the bandwidth increases. This is not

uncommon in RD designs, where careful consideration should be given to a suitable

bandwidth choice and, generally - when using the local randomisation approach -

a smaller bandwidth with a reasonable sample size (i.e. that which would yield a

precise risk ratio estimate) would be desirable. Overall, we see that the RDD-RR

approach may be a more flexible estimation approach than the WALD-RR method

and is able to produce an unbiased risk ratio estimate in a wider variety of scenarios.
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Table 3: Estimates, Biases, empirical standard (ESE), average standard errors
(ASE) and 95% coverage (95% Cov.) of the log of the risk ratio. The true value
of the log of the risk ratio is log(4) = 1.387. The sample size was 1384 in each
simulated dataset and simulations were repeated 2000 times.

Weak fuzziness Strong fuzziness
Bandwidth Method Estimate Bias ESE ASE 95% Cov. Estimate Bias ESE ASE 95% Cov.

N
o

co
nf

ou
nd

in
g

0.2 RDD-RR 1.38 0.01 0.18 0.18 94.2 1.30 0.09 0.27 0.27 91.8
WALD-RR 1.50 -0.11 0.21 0.20 92.9 1.27 0.12 0.23 0.23 90.6

0.15 RDD-RR 1.38 0.00 0.18 0.18 94.3 1.30 0.09 0.27 0.28 92.7
WALD-RR 1.50 -0.11 0.21 0.21 92.2 1.27 0.11 0.24 0.24 91.4

0.1 RDD-RR 1.39 0.00 0.21 0.20 94.5 1.32 0.07 0.31 0.33 93.4
WALD-RR 1.51 -0.13 0.24 0.24 93.0 1.29 0.10 0.27 0.27 92.6

0.05 RDD-RR 1.41 -0.02 0.29 0.29 95.0 1.37 0.01 0.47 0.50 94.5
WALD-RR 1.54 -0.15 0.34 0.33 94.5 1.32 0.06 0.38 0.38 94.0

Lo
w

co
nf

ou
nd

in
g

0.2 RDD-RR 1.38 0.01 0.18 0.18 94.7 1.29 0.10 0.27 0.28 91.8
WALD-RR 1.50 -0.11 0.20 0.20 93.0 1.25 0.13 0.23 0.23 89.7

0.15 RDD-RR 1.38 0.00 0.18 0.18 94.9 1.29 0.10 0.27 0.29 92.6
WALD-RR 1.50 -0.11 0.21 0.21 93.6 1.26 0.13 0.23 0.24 90.5

0.1 RDD-RR 1.39 0.00 0.20 0.20 95.0 1.32 0.07 0.32 0.34 94.1
WALD-RR 1.51 -0.12 0.23 0.23 93.8 1.28 0.11 0.27 0.28 93.1

0.05 RDD-RR 1.40 -0.01 0.28 0.29 95.7 1.39 -0.01 0.51 0.52 94.2
WALD-RR 1.52 -0.14 0.32 0.33 96.0 1.32 0.06 0.39 0.39 94.0

H
ig

h
co

nf
ou

nd
in

g

0.2 RDD-RR 1.38 0.01 0.18 0.18 95.4 1.33 0.06 0.29 0.32 94.1
WALD-RR 1.49 -0.10 0.20 0.21 94.2 1.28 0.11 0.24 0.25 92.6

0.15 RDD-RR 1.38 0.01 0.18 0.18 95.8 1.33 0.05 0.30 0.32 94.3
WALD-RR 1.49 -0.11 0.20 0.21 94.3 1.28 0.11 0.25 0.25 92.6

0.1 RDD-RR 1.38 0.00 0.21 0.21 95.1 1.36 0.02 0.36 0.39 95.2
WALD-RR 1.50 -0.11 0.24 0.24 93.9 1.30 0.09 0.29 0.29 94.0

0.05 RDD-RR 1.39 -0.01 0.29 0.29 95.0 1.45 -0.06 0.56 0.57 94.9
WALD-RR 1.51 -0.12 0.33 0.33 95.2 1.35 0.04 0.41 0.42 95.3
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Figure 1: Boxplots showing log risk ratio estimates for the RDD-RR, MSMM-
RR and WALD-RR approaches for different bandwidths (h) and confounding levels
where the true risk ratio is 1.5. Simulations performed using a weak fuzziness
scenario.
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Figure 2: Boxplots showing risk ratio estimates for the RDD-RR, MSMM-RR and
WALD-RR approaches for different bandwidths (h) and confounding levels where the
true risk ratio is 1.5. Simulations were performed using a strong fuzziness scenario.
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Figure 3: Boxplots showing log risk ratio estimates for the RDD-RR, MSMM-
RR and WALD-RR approaches for different bandwidths (h) and confounding levels
where the true risk ratio is 4. Simulations performed using a weak fuzziness scenario.
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Figure 4: Boxplots showing log risk ratio estimates for the RDD-RR, MSMM-
RR and WALD-RR approaches for different bandwidths (h) and confounding levels
where the true risk ratio is 4. Simulations performed using a strong fuzziness sce-
nario.
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5 Example: Prescription of Statins in UK Pri-

mary Care

Having described the dataset on the prescription of statins in Section 4.1 we apply

the three risk ratio estimation methods to these data to estimate the risk ratio

for the prescription of stations on the event: a 1mmol/L or greater reduction in

LDL cholesterol, using an RD design. Here the assignment variable is the 10-year

CVD risk score and the treatment threshold is a 10-year CVD risk score of 0.2. Of

the 1384 patients in the dataset, 705 patients (51%) were prescribed statins. 830

patients (60%) have 10-year CVD risk scores ≥ 0.2 and the empirical probabilities

of receiving statins for patients with risk scores above and below the 0.2 threshold

are 0.73 and 0.18, respectively.

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

10−year CVD risk score

P
ro

ba
bi

lit
y 

of
 r

ec
ei

vi
ng

 tr
ea

tm
en

t

+

+
++

+
+

+

+
+

+ +
+

+

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

10−year CVD risk score

P
ro

ba
bi

lit
y 

of
 1

m
m

ol
/L

 r
ed

uc
tio

n 
in

 L
D

L

+
+

++
+

+
+

+
+

+
+

+

+

Figure 5: Plots of (a) the treatment indicator and (b) the indicator of 1 mmol/L
reduction in LDL cholesterol level against the risk of developing CVD in 10 years.
The black crosses and lines are the expected probabilities calculated in bins.

Figure 5 shows plots of the probability of receiving statins (a) and the probability

of a 1mmol/L reduction in LDL cholesterol (b) for groups of patients with similar

10-year CVD risk score values. Looking at these plots, we see that the probability

of receiving a statin prescription changes rapidly around the risk score threshold of
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0.2. There is also some visual evidence to suggest that the probability of a reduction

of at least 1mmol/L in LDL cholesterol also increases as the 10-year CVD risk score

exceeds 0.2 but whether or not this increase is a true discontinuity is less obvious.

The three estimation methods described in Section 3 were used to estimate the risk

ratio with regard to the effect of statins on attaining a reduction of 1mmol/L or more

in the LDL cholesterol level. As in the simulation studies, RD design bandwidths

of 0.2, 0.15, 0.1 and 0.05 were used. In practice, we might pre-select an appropriate

bandwidth before undertaking an RD design - perhaps using clinical or other expert

knowledge to elicit an acceptable region in which me might expect groups of patients

to be balanced with respect to confounding variables. In this analysis we compare

estimates obtained using different bandwidths for demonstrative purposes. Table

4 shows risk ratio estimates together with associated 95% confidence intervals for

each of the considered bandwidths.

Table 4: Risk ratio estimates and associated 95% confidence intervals for the effect
of statins on a reduction of 1mmol/L or more in LDL cholesterol.

Method Risk ratio estimate 95% CI
Bandwidth = 0.2

RDD-RR 1.43 (0.91, 2.23)
MSMM-RR 2.43 (0.92, 6.41)
WALD-RR 1.43 (0.91, 2.25)

Bandwidth = 0.15
RDD-RR 1.26 (0.79, 2.00)
MSMM-RR 1.81 (0.52, 6.31)
WALD-RR 1.26 (0.79, 2.01)

Bandwidth = 0.1
RDD-RR 1.17 (0.65, 2.11)
MSMM-RR 1.51 (0.32, 7.18)
WALD-RR 1.17 (0.65, 2.10)

Bandwidth = 0.05
RDD-RR 0.71 (0.24, 2.08)
MSMM-RR 0.38 (0.04, 3.78)
WALD-RR 0.72 (0.29, 1.80)

Examining these results we see that the RDD-RR and WALD-RR approaches pro-

duce similar estimates of the risk ratio for each bandwidth. In addition, the MSMM-
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RR estimate differs substantially from the RDD-RR and WALD-RR estimates. Con-

sidering differences in estimates between bandwidths, for bandwidths of 0.2, 0.15

and 0.1, risk ratio estimates are greater than 1 but differ since risk ratio estimates

decrease as the bandwidth decreases. For the bandwidth of 0.05, all risk ratio esti-

mates are less than 1, although the precision of these estimates is lower than those

for higher bandwidths because of a reduction in sample size. All 95% confidence

intervals include 1 and we conclude that there is insufficient evidence to suggest a

significant effect of statins on the occurrence of a reduction of 1mmol/L or more in

LDL cholesterol in these data. The differing results as the bandwidth changes imply

that the choice of bandwidth to reflect suitable, balanced groups above and below

the threshold would be of importance when applying the RD design here.

We note that, for this demonstrative example, the continuous outcome: LDL choles-

terol level has been dichotomised which is not necessarily the best way to assess the

effect of statins on LDL cholesterol level owing to a loss of information [36], although

this depends on the precise, clinically important reasons for a particular study or

estimand of interest.

6 Discussion

Our focus was on the estimation of the treatment effect as a risk ratio in an RD

design when the outcome of interest is binary and a local randomisation RD design

approach is taken. Specifically, we developed an approach to estimate the risk ratio

at the threshold with regard to binary event of interest using the standard RD

design assumptions (known as the RDD-RR estimator) and compared this to the

established Wald estimator from the IV literature (WALD-RR) and that from a

multiplicative structural mean model (MSMM-RR).

The Wald estimator is known to be consistent for the risk ratio when the treatment

effect is small and the event of interest is rare whereas the MSMM-RR approach
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requires additional assumptions and may produce negative estimates of the risk ratio

in some cases. In contrast, the RDD-RR approach taken in this work may be more

stable and can be used for a variety of treatment effects. It is based on the RD

design assumptions and, as such, fits naturally with other RD design approaches.

Simulation studies showed that this estimator performs well when the RD design

has weak fuzziness but less so when the fuzziness is stronger. In practice, if fuzziness

is fairly strong then all RD design methods should be used with caution because, in

the presence of strong fuzziness, the relationship between the threshold treatment

rule and actual treatment allocation is weakened which may violate assumptions A1

and A2 of the RD design, outlined in Section 2.1. The performance of the estimators

was investigated when the risk ratio is large (here, set to be equal to 4) and, in this

case, it was observed that the Wald estimator becomes biased even when there is

no confounding.

The three methods for estimating risk ratio were applied to a real dataset from UK

primary care to explore the effect of statins on a clinically important reduction in

LDL cholesterol. Estimates varied for different bandwidths which highlights the

importance of selecting and justifying an appropriate RD design bandwidth when

using an RD design with a local randomisation approach. None of the estimates was

statistically significant at the 5% level but we noted that the Wald and RDD-RR

approaches provided similar estimates across all bandwidths. This might suggest

that the RDD-RR approach outlined in this work may be a useful alternative to the

Wald method in general and that applying both methods to a given set of data may

be of interest as a sensitivity analysis.

Based on the results from the simulation studies, the proposed RDD-RR approach

appears to be a sound alternative to two existing methods in literature and is set

up to fit naturally with RD design assumptions. We recommend its use should be

considered when applying an RD design where the outcome of interest is binary.
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A Regression Discontinuity Design Assumptions

We provide interpretations of the RD design assumptions stated in Section 2.1.

A1 The probability of receiving treatment, conditional on the assignment variable,

is discontinuous at the threshold:

lim
x→x−

0

P(Ti = 1|Xi = x) 6= lim
x→x+

0

P(Ti = 1|Xi = x).

This assumption states that the probability that a patient whose 10-year CVD

risk score lies below the 20% threshold receives statins should differ from

the probability that a patient whose 10-year CVD risk score lies above the

threshold receives statins. This is a fundamental assumption for an RD design

to be valid - that the probability of receiving treatment changes abruptly at

the decision threshold. We should expect this assumption to hold in the statins

example because if GPs follow the NICE 20% 10-year CVD risk guideline then

there should be significantly more patients who are prescribed statins with 10-

year CVD risk scores above the threshold than amongst patients with 10-year

CVD risk scores below the threshold.

A2 The threshold indicator and treatment indicator are not independent:

Ti 6⊥⊥Zi.

This assumption expresses the relationship between the threshold rule and

treatment status. In the statins example it implies that the decision to treat a

patient (prescribe statins) is associated with the 20% 10-year CVD risk score

threshold. As discussed, typically there will be instances within a given dataset

where a GP does not necessarily follow the 20% threshold rule. However, this

does not imply that an RD is inappropriate - as long as there is a reasonably

strong association between the threshold and treatment allocation then a fuzzy
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RD design may be applied (subject to other assumptions being valid).

A3 The threshold indicator is independent from confounding variables, conditional

on the assignment variable:

Zi⊥⊥ Ci|Xi.

In the statins example, this assumption implies that the 20% threshold guide-

line (Zi) depends on the 10-year CVD risk score only (Xi). Although this

assumption is untestable, because the statins treatment guideline is set ex-

ternally by NICE it would be unlikely that the threshold indicator would be

influenced by any other patient-level variables. However, the assumption may

be weakened if desired whereby the threshold indicator is assumed not to de-

pend on unobserved confounders, given some relevant observed confounding

variables. The design would then require either stratification by observed con-

founding variables (if appropriate) or conditioning on such variables in the

modelling for treatment effect estimation to be valid.

A4 The expectation of the binary outcome Yi, conditional on the assignment vari-

able, is continuous at the threshold given treatment allocation:

E(Yi|Xi = x, Ti = t) is continuous at x = x0 for each of t ∈ {0, 1}.

In words, this assumption implies that - conditional on treatment being fixed

and not changing - the distribution of the outcome of interest does not exhibit

a discontinuity at the threshold. This ensures that only a change in treatment

would be responsible for any discontinuity in the distribution of Yi at the

threshold and not any other variables. In the statins example, this assumption

implies that any change in the LDL cholesterol level in a region close to the

threshold is because of the prescription of statins.

A5 The binary outcome is independent of threshold indicator, given the other
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variables. That is:

Yi⊥⊥ Zi|(Ti, Xi, Ci).

This assumption ensures that the treatment threshold decision rule is a valid

randomisation device - at least in a region close to the threshold - and that

groups of patients above and below the threshold will be balanced with respect

to confounding variables. In the statins example, it implies that a patient

cannot manipulate their outcome (LDL cholesterol level) in order for their 10-

year CVD risk score to lie above or below the treatment threshold and ensures

that there is randomness with regard to where a patient’s 10-year risk score

lies in relation to the threshold. Although this assumption is untestable, in

the local randomisation RD design framework, once the bandwidth (h) has

been selected and prior to estimating the treatment effect at the threshold, it

is usual to produce summary statistics for potentially important confounding

variables separately for groups of patients with assignment variable values in

[x0 − h, x0) and [x0, x0 + h]. These summary statistics are then compared to

ensure that there is balance between groups, in a similar way to the checking of

patient variables at baseline in a two-group individually randomised controlled

trial.

A6 No defiers/monotonicity assumption.

This assumes that there are no GPs (or patients) that will intentionally do the

opposite of the treatment guideline. For instance, that no GPs would prescribe

statins to all patients with risk scores below 20% and withhold statins from

patients with risk scores above 20%. This behaviour is unlikely to happen in

practice.
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B Assumptions and Derivation of the Wald Risk

Ratio Estimator

Assumption W1 states that log[E(Yi|Ti = t)] is linear in t and this implies that

log[E(Yi|Ti = t)] = α + φt

=⇒ E(Yi|Ti = t) = eαeφt (2)

for parameters α and φ.

We note that, under this assumption, the risk ratio can be written

E(Yi|Ti = 1)

E(Yi|Ti = 0)
= eφ

and, hence, we seek to estimate φ.

Using assumption W2 (E(Ti|Zi = z) is linear in z) we write

Ti = β + γZi + εi (3)

where εi is an error term such that E(εi) = 0 and εi and Zi are independent.

Now we consider

E(Yi|Zi = z) = ETi|Zi=z [E(Yi|Ti)]

= ETi|Zi=z

[
eαeφTi

]
(using (2))

= Eεi|Zi=z

[
eαeφ(β+γz+εi)

]
(using (3))

= eαeφ(β+γz)Eεi|Zi=z(e
φεi).

Since εi and Zi are independent it follows that Eεi|Zi=z(e
φεi) does not depend on z.
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Hence we write

E(Yi|Zi = z) = Ceφγz

where

C = eα+φβEεi|Zi=z(e
φεi).

Therefore

log [E(Yi|Zi = 1)]− log [E(Yi|Zi = 0)] = logC + φγ − logC

= φγ.

Finally, using assumption W2,

E(Ti|Zi = 1) = β + γ

E(Ti|Zi = 0) = β

and hence
log [E(Yi|Zi = 1)]− log [E(Yi|Zi = 0)]

E(Ti|Zi = 1)− E(Ti|Zi = 0)
=
φγ

γ
= φ.

C Proof: Logistic regression model satisfies As-

sumption M2

We prove the result that, for a binary treatment, a logistic regression model satisfies

Assumption M2.

Assumption M2 implies that

logE(Y (1)
i |Ti = t, Zi = z) and logE(Y (0)

i |Ti = t, Zi = z) are both linear in t.

When fitting a logistic regression model, we note that
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logE(Y (1)
i |Ti = t, Zi = z)− log(1− E(Y (1)

i |Ti = t, Zi = z)) and

logE(Y (0)
i |Ti = t, Zi = z)− log(1− E(Y (0)

i |Ti = t, Zi = z)) are linear in t.

Considering the above we may write

logE(Y (1)
i |Ti = t, Zi = z))− log(1− E(Y (1)

i |Ti = t, Zi = z)) = α + βt.

for some parameters α and β. We deduce that

E
(
Y

(1)
i | Ti = t, Zi = z

)
=

exp(α + βt)

1 + exp(α + βt)

=⇒ log
[
E
(
Y

(1)
i | Ti = t, Zi = z

)]
= α + βt− log[1 + exp(α + βt)]

In general, the expression above is not linear in t. However, because t ∈ {0, 1} the

expression can be re-written as

log
[
E
(
Y

(1)
i | Ti = t, Zi = z

)]
=


α− log(1 + eα) t = 0;

α + β − log(1 + eα+β) t = 1.

we see that

log
[
E
(
Y

(1)
i | Ti = t, Zi = z

)]
= α∗ + β∗t

where

α∗ = α− log(1 + eα);

β∗ = β − log

(
1 + eα+β

1 + eα

)

A similar expression can also be derived for E(Y (0)
i |Zi = z, Ti = t) and we see that,

for a binary treatment, the logistic regression model satisfies Assumption M2 with

respect to the MSMM.
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D Derivation of the RDD-RR Estimator

We assume that the bandwidth, h, is chosen such that the subjects included in the

data are balanced with regard to confounders.

Using Assumption A3 the threshold indicator Zi is independent of confounders con-

ditional on Xi, we can obtain unbiased estimates of

lim
x→x0

E(Yi|Zi = z,Xi = x) for z ∈ {0, 1}

by fitting logistic regression models for Yi separately for subjects with risk scores

above and below the threshold x0.

For simplicity, we drop limx→x0 and Xi, then

lim
x→x0

E(Yi|Zi = z,Xi = x) ≡ E(Yi|Zi = z) for z ∈ {0, 1}

at the threshold. Using the law of total probability:

E(Yi|Zi = z) = E(E(Yi|Zi = z)|Ti)

= E(Yi|Zi = z, Ti = 1)P(Ti = 1|Zi = z) + E(Yi|Zi = z, Ti = 0)P(Ti = 0|Zi = z)

Applying Assumption 5 (conditional independence of Yi and Zi) we have

E(Yi|Zi = 1) = E(Yi|Ti = 1)P(Ti = 1|Zi = 1) + E(Yi|Ti = 0)P(Ti = 0|Zi = 1) (4)

and

E(Yi|Zi = 0) = E(Yi|Ti = 1)P(Ti = 1|Zi = 0) + E(Yi|Ti = 0)P(Ti = 0|Zi = 0) (5)
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Solving Equations 4 and 5 simultaneously yields

E(Yi|Ti = 1) =
E(Yi|Zi = 1)P(Ti = 0|Zi = 0)− E(Yi|Zi = 0)P(Ti = 0|Zi = 1)

P(Ti = 1|Zi = 1)− P(Ti = 1|Zi = 0)
(6)

and

E(Yi|Ti = 0) =
E(Yi|Zi = 0)P(Ti = 1|Zi = 1)− E(Yi|Zi = 1)P(Ti = 1|Zi = 0)

P(Ti = 1|Zi = 1)− P(Ti = 1|Zi = 0)
(7)

As a result, using Equations 6 and 7, an estimator for the risk ratio is given by

RDD-RR =
E(Yi|Zi = 1)P(Ti = 0|Zi = 0)− E(Yi|Zi = 0)P(Ti = 0|Zi = 1)

E(Yi|Zi = 0)P(Ti = 1|Zi = 1)− E(Yi|Zi = 1)P(Ti = 1|Zi = 0)
.

By substituting P(Ti = 0|Zi = z) = 1 − P(Ti = 1|Zi = z) into the above and

re-introducing limx→x0 and Xi, we obtain

RDD-RR = 1− lim
x→x0

E(Yi|Zi = 1, Xi = x)− E(Yi|Zi = 0, Xi = x)

E(Yi|Zi = 1, Xi = x)E(Ti|Zi = 0)− E(Yi|Zi = 0, Xi = x)E(Ti|Zi = 1)
.
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