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The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems
biology. This extended concentration of research effort brings with it new challenges, foremost among
which is that of choosing which of these models is most suitable for addressing a particular scientific
question. In a previous paper, we presented our initial work in developing an online resource for the
characterisation and comparison of electrophysiological cell models in a wide range of experimental
scenarios. In that work, we described how we had developed a novel protocol language that allowed us
to separate the details of the mathematical model (the majority of cardiac cell models take the form of
ordinary differential equations) from the experimental protocol being simulated. We developed a fully-
open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to
store and compare the results of applying the same experimental protocol to competing models. In the
current paper we describe the most recent and planned extensions of this work, focused on supporting
the process of model building from experimental data. We outline the necessary work to develop a
machine-readable language to describe the process of inferring parameters from wet lab datasets, and
illustrate our approach through a detailed example of fitting a model of the hERG channel using
experimental data. We conclude by discussing the future challenges in making further progress in this
domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell
models.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The problem of reproducibility in science is becoming well
known and of great concern to researchers, funders and publishers.
Computational studies are immune from many of the statistical
traps (Ioannidis, 2005) that traditionally lead to problems in
reproducing studies. Yet, when asked “what factors contribute to
irreproducible research?” 45% of scientists replied that “methods
and code being unavailable” always/often contributed, and 40%
replied that “raw data availability” always/often contributed. These
figures rose to 80% for each “sometimes” contributing to
.J. Gavaghan), gary.mirams@

r Ltd. This is an open access article
irreproducible research (Baker, 2016). Our field of cardiac electro-
physiology modelling is not immune to these factors.

We define reproduction as “independent re-implementation of
the essential aspects of a carefully described experiment,” which
we contrast with replication, defined as “re-running a simulation in
exactly the same way” (Howe, 2012; Cooper et al., 2015b). Aiming
for replication to get precisely the same answer, in exactly the same
way, by providing the code and library versions used in a study is a
worthy goal in itself; it serves an important purpose in guaran-
teeing a minimum level of methods reporting, and may be an
important stepping stone to allowing people to adapt your code for
their studies. However, enabling reproduction of the process that
was followed for the same and similar settings (without the need
for code adaptation, or even making the process possible using
many different codes) is a far more useful aim than replication of a
single computational study (Drummond, 2009).

This paper will discuss the issue of reproducible model
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development, which is distinct from reproducing a computational
study undertaken with a given model. Reproducing a study with a
given model may assume that the model is a fixed entity (with its
parameters and equations pre-defined). Reproducible model devel-
opment means being able to recreate the process of building a
model from data d fitting parameter values within equations, or
even selecting the set of equations. Reproducible model develop-
ment is a requirement for new science. All of the following uses of a
previously published model will be performed better if we know
how a model was developed: (i) using an existing model within a
new simulation study/conditions, (ii) fitting an existing model to
new datasets for new experimental situations (e.g. cell types, spe-
cies, temperatures); and (iii) extending an existing model to
explore new experimental phenomena. We will elaborate on why
these applications require a well-documented and reproducible
model development process below.

We focus this article on development of mathematical cardiac
electrophysiology models. The first model of the cardiac action
potential was created by Denis Noble (Noble, 1960, 1962) for Pur-
kinje fibres, based on the Hodgkin and Huxley (1952) paradigm.
The field of cardiac cell modelling has blossomed into one of the
most popular and mature areas of systems biology research. In the
ensuing decades, the scope and number of these models has
increased dramatically, spurred on by a desire to recreate and un-
derstand electrophysiological phenomena across a range of species,
cell types, and experimental conditions (Noble and Rudy, 2001;
Noble et al., 2012). This research has been undertaken by a diverse
global research community, with members of disparate institutions
seeking to make improvements to existing model formulations
through iterative studies in modelling and experimentation.
Despite the availability of community-focused tools, we believe
there remain problems with the ways modelling studies are re-
ported that limit the usefulness, reproducibility and re-usability of
our models. These problems certainly exist in many other domains,
and many of the ideas in this manuscript should be directly
transferable to other differential equation-based biological models.
Cardiac modelling is a good area to focus on first because of its
maturity, its standardisation in terms of a modular Hodgkin &
Huxley-derived approach, and its importance in scientific and
clinical applications.

There are at least three aspects to replicability and reproduc-
ibility in computational models that we would like to distinguish
between. We have outlined these aspects in Table 1, and we discuss
the entries in each row below:

1. Models d in order to facilitate cooperation among this physi-
cally dispersed research community, a number of tools have
been developed to aid in the representation and exchange of
models. Provision of software code that states equations and
parameter values in an unambiguous format is an excellent and
welcome step in model reporting. While providing code is a
prerequisite for basic replication, as a reporting practice on its
own it limits our ability to apply models to new systemswithout
Table 1
Replicability versus reproducibility in cardiac electrophysiology modelling studies.
trophysiology modelling studies, and also estimate how often they feature in published st
making model development reproducible.

Replication enabled

by providing:

Models Equations and parameters in code form
Protocols Code to run simulations and plot results
Model development Code & data to fit parameters and evaluate model
substantial alterations. So more generically and usefully,
reproducibility is provided by model markup languages such as
CellML/SBML (Lloyd et al., 2004; Garny et al., 2008; Hucka et al.,
2003) and model repositories such as the Physiome Model Re-
pository or BioModels Database (Yu et al., 2011; Chelliah et al.,
2015) that provide public and curated reference versions of
models. These repository versions of models can be used to
auto-generate code in many different programming languages
that can provide reproduction. Open-source software libraries
such as Chaste (Mirams et al., 2013; Cooper et al., 2015a),
OpenCOR (Garny and Hunter, 2015), Myokit (Clerx et al., 2016),
and COPASI (Hoops et al., 2006) have been developed to perform
simulations on models specified in these formats.

2. Protocols d it is helpful to maintain a separation between the
notions of a ‘model’, the underlying mathematical equations
thought to represent the system, and a ‘protocol’, the manner in
which the system is interrogated/stimulated and the results of
that interrogation are recorded. An unambiguous protocol de-
scribes how models are used to run certain simulated experi-
ments, for instance to generate figures or lead to conclusions in
scientific papers. This information can be provided by sharing
simulation codes; or, again, more reproducibly by providing
detailed machine-readable instructions on how to run simula-
tions (such as those provided by SED-ML (Waltemath et al.,
2011) or via our existing Web Lab and its protocol de-
scriptions; more on these later).

3. Model development d reporting on models at present gener-
ally takes the form of their final parameterised equations.
Documentation on howmodels were built (in terms of choosing
equations to use, fitting their parameters to experimental data,
and validation against other experimental data) is usually
insufficient to recreate models accurately, or even missing
entirely. Only with this information can you decide whether a
model is going to be useful for your setting, or whether you are
breaking any assumptions involved in creating it. In this paper
we propose that we need a reproducible definition of model
development.

The academic cardiac modelling community's current standard
is that replicable models should generally always be provided, at
least for action potential models: nearly all studies now provide
model code for replication, and most also provide CellML for
reproducibility. These efforts are certainly to be applauded and it
has taken a large amount of effort, primarily from the CellML team,
to get to this point.

Some authors provide their simulation codes to enable repli-
cation of protocols and simulated experiments (e.g. Chang et al.,
2017), and some journals insist on this; although it remains far
from universal in reporting at present. Very few authors provide
reproducible definitions of protocols to repeat simulated experi-
ments using their models such as those provided by SED-ML or the
Web Lab: this is understandable, as these ‘protocol definitions’ are
only just beginning to support all the features that are needed, and
tools which support/implement them easily are still being
Here we list what provisions enable replication and reproduction of cardiac elec-
udies. Our plan is for the next version of the Web Lab to become the missing tool for

Reproduction enabled

How often? by providing: How often?

Very frequently CellML/SBML Frequently
Occasionally SED-ML/Web Lab protocol Very rarely
Very rarely Web Lab fitting specification? Never
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developed.
The development of a full model itself d which involves

parameter inference from data, potentially model selection, and
then evaluation of model performance d is very rarely even
replicable, as this requires complete implementation details for all
forward simulations and inverse problem algorithms in addition to
providing digitised experimental data linked to particular pro-
tocols. The only replicable instance of a full model's development
we could find was Beattie et al. (2018) (used as our case study for
reproducible model development below). We hope that readers of
this article can point us to more examples. Model development has
never been reproducible, partly because it depends on both models
and protocols also being reproducible. So the focus of this paper
revolves around the steps involved in making model development
reproducible, our plans to facilitate this with the Cardiac Electro-
physiology Web Lab, and a pilot implementation.

Reproducible reporting standards for model development are
especially important for understanding amodel's provenance. Many
questions are raised when attempting to reproduce the develop-
ment of a model: what assumptions were made in its construction?
Which experiments must be performed to parameterise the model
(or re-parameterise for new conditions, e.g. cell types/species/
temperatures)? How should experimental data be post-processed
before being used to fit parameter values? How much informa-
tion for constraining the parameter set do the model builders
consider each experiment to contain (Fink and Noble, 2009) d

relatedly, what fitting/inference algorithms or heuristic approaches
usedwhich datasets to generatewhich parameter values? Howwas
the parameterised model tested/validated, using which experi-
mental protocol and datasets? At present these aspects can be re-
ported very poorly, if at all.

This lack of reproducible documentation onmodel development
makes models increasingly static, as they are difficult to update in
response to newly available data, or more advanced understanding
of sub-cellular processes, and one may introduce errors or lose
desirable behaviour as one attempts to adjust them. Ill-defined
model provenance can also make it difficult for modellers or ex-
perimentalists to choose which model to adopt from the myriad
formulations that have been proposed to explain similar cardiac
phenomena.

Knowing the provenance of models is especially important in
the field of cardiac models, which are often chimeric, employing
data from multiple sources due to the difficulty of gathering data
sufficient to constrain today's complexmodels from a single source.
Cardiac modellers often borrow parameters or entire subunits from
other models that may have been constructed for different systems
or under differing experimental conditions (Cannon and
D'Alessandro, 2006; Niederer et al., 2009). While efforts are taken
to adjust model components for differences in species and/or
experimental conditions, as well as to maintain certain macro-
scopic properties, manual tuning practices are unlikely to locate
truly optimal parameters (Krogh-Madsen et al., 2016).

When there exist a large number of parameterisations that
describe the data equally well, the model is deemed to be uniden-
tifiable, and themodeller maywish to consider either an alternative
simpler model formulation, alterations to experiments to provide
more information on parameters, or both (Raue et al., 2011).
Considering overly-simplistic objective functions in parameter
tuning, such as matching just biomarkers from a single action po-
tential, may lead to unidentified parameters that can cause models
to yield unexpected and erroneous behaviour when tested under
new contexts of use. While model identifiability is a recognised
problem in cardiac cell models, its assessment has yet to be adopted
as a standard practice duringmodelling studies, perhaps due in part
to the competing methodologies for doing so (Milescu et al., 2005;
Fink and Noble, 2009; Csercsik et al., 2012; Sher et al., 2013; Daly
et al., 2015). Unidentifiability of parameters may explain some
cases of ostensibly similar models yielding qualitatively differing
predictions under certain protocols (Cherry and Fenton, 2007; ten
Tusscher et al., 2006; Niederer et al., 2009; Fink et al., 2011;
Cooper et al., 2016).

Finally, reproducible reporting standards are important for un-
derstanding the effects of uncertainty and variability in biological
models. Biological data is invariably affected by many sources of
variation, such as measurement error, intrinsic variation (e.g. “beat-
to-beat” variability between recordings on a single cardiomyocyte),
and extrinsic variation (variation between individuals in a sample,
e.g. inter-cell variability in a sample of cells, or inter-individual
variability in a population). This leads to uncertainty about (or
variation in) the optimal model parameters to describe the exper-
imental data, and characterisation and interpretation of this un-
certainty can give us insights into biological variation or even the
suitability of a given model to explain data (Mirams et al., 2016).
Cases of extreme variation in optimal model parameters may
indicate the unsuitability of the model to represent the system, as it
reduces faith in a direct biological interpretation of each parameter.

In previous work, we sought to address the first two kinds of
reproducibility listed above in cardiac modelling studies through
the development of the Cardiac Electrophysiology Web Lab. The
Web Lab is an online resource for the specification, execution,
comparison, and sharing of simulation experiments and their re-
sults (Cooper et al., 2016). This Web Lab was built using the func-
tional curation paradigm (Cooper et al., 2011): models are specified
using a standard format such as CellML, protocols are specified in a
custom language capable of expressing a vast range of experimental
procedures, and interactions between the two are mediated by a
domain-specific ontology. This allows for modular interactions
between models and protocols, allowing for multiple models to be
compared under a common protocol or vice-versa, extending the
capabilities of contemporary online tools for analysing/comparing
cellular model predictions such as WholeCellSimDB (Karr et al.,
2012, 2014). The Web Lab additionally provides visualisation tools
to aid in these comparative studies, as well as visibility settings that
allowmodels and protocols to be developed in private before being
shared with the community.

In this paper, we will discuss our plans for, and initial progress
towards, integrating experimental data and reproducible model
development into the Cardiac Electrophysiology Web Lab. We will
show how the addition of experimental data, annotated and linked
to an experimental protocol, can facilitate model/data comparison,
model selection, rigorous documentation of model provenance and
development, and even automated model reparameterisation and
identifiability analysis. In section 2 we describe the steps needed to
create such a tool (which we will refer to as WL2) from our original
implementation (which we call WL1). Section 3 showcases a pro-
totype implementation of WL2, with which we reproduce the re-
sults of a Bayesian modelling study of the hERG-encoded ion
channel conducted by Beattie et al. (2018), shown in section 4. This
study of a contemporary cardiac model serves as a proof-of-concept
of our WL2 design, and demonstrates its ability to facilitate the
fitting of models to data and to provide information about the
uncertainty in the obtained parameter values. Finally, we discuss
the remaining challenges for a full implementation of the WL2
design as well as the opportunities it creates.

2. Road map

We now outline the steps required to establish an improved
Web Lab, WL2. An overview of each step and the new capabilities it
facilitates is shown in Table 2.



Table 2
An overview of the steps needed to go from WL1 to WL2, and the capabilities added at each step.

Step 1 Adding annotated data Comparing arbitrary data sets
Structured queries

Step 2 Linking data to protocols Comparing experimental protocol results
Documenting data provenance

Step 3 Comparing data to predictions Checking model applicability
Documenting model provenance
Continuous testing of models

Step 4 Fitting models to data Driving model development
Documenting model development
Quantifying experimental variability
Identifiability checking
Protocol design
Validation
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2.1. Step 1: adding experimental data

WL2 will introduce the capability to upload, store, and display
experimental data. This will open up a new range of uses for the
Web Lab such as comparing published data sets or checking new
experimental data against gold standard reference data. A crucial
step here is that data should be annotated with information about
its origins, e.g. species, cell-type, experimental conditions. In part,
these annotations should be free-form, allowing experimenters to
detail the specifics of their data. However, including structured
annotations, for example following the MICEE standard proposed
by Quinn et al. (2011), will allow Web Lab users to perform struc-
tured queries on the data set. Such awell annotated, searchable data
set, would make it easy to compare all data from a specific species,
to compare experiments at different temperatures, or to investigate
biological variability between data sets with identical experimental
conditions. It is our aim that inclusion of these features will make
the Web Lab an invaluable “first-stop” community-wide resource
enabling, for example, experimenters to check their results against
the literature, analysts to compare drug-block data in different cell-
types, or for researchers to find data on the effects of genetic
mutations.

Electrophysiological measurements are typically contaminated
by sources of error such as leak, drift, noise, or capacitance artefacts.
The precise nature of these errors d and therefore the best way to
compensate for themd is dependent on the measurement method
used, rather than the underlying physiology. Therefore, we do not
at this time propose to automate pre-processing operations such as
filtering or leak subtraction at this time. Instead, our ideal data
source would allow storage of data in three parts: (1) a raw un-
processed file, representing the quantity of interest plus various
sources of error, (2) a pre-processed file, in which any experiment-
specific pre-processing has been performed, and (3) code to
reproduce the pre-processing process, to be run off-line. This set-up
would allow pre-processing code to be inspected, reviewed, and re-
used. It is also worth noting that some types of filtering (e.g. fitting
a straight line through noisy data) presuppose a certain structure in
the data, and so mix modelling with pre-processing. By having the
raw data available online such work could be accommodated.
2.2. Step 2: linking data to experimental protocols

A crucial step in using data sets onWL2will be to link them to an
experimental protocol. For example, for ion current experiments this
would include data such as the temperature and chemical
composition of the pipette and bath solutions, and also the com-
plete voltage-step protocol. Similarly, for cell-level data such as an
action potential duration (APD) restitution curve, this would
consist of a series of cycle-lengths to test and a description of the
post-processing steps required to measure the APD.
In Cooper et al. (2011), we presented a formalism to encode the

experimental conditions, procedure, and post-processing opera-
tions d the sum of which we termed the protocol d in a machine-
readable format that can be used to run simulations. This language
defines six foundational operations on n-dimensional arrays (such
as time-series measurements of e.g. voltage, current, or ionic con-
centrations) from which more complex operations (e.g. peak cur-
rent detection, APD measurement) can be formed. For examples,
please see the current WL1 implementation at https://chaste.cs.ox.
ac.uk/WebLab.

An important feature of the WL1 protocol language is that it is
model independent; protocols it describes can be used to run
simulated experiments with any suitably annotated model. We
demonstrated the use of this language for functional model com-
parison and debugging in Cooper et al. (2016). By linking these
protocols to experimental data sets, WL2 can become a platform for
rigorous documentation of experimental data, with a full descrip-
tion of the protocol and post-processing steps required to re-obtain
that data. This will also facilitate a more careful comparison of
different data sets describing the outcomes of similar protocols.
2.3. Step 3: comparing model predictions to experiments

Once annotated experiments are available, along with machine-
runnable descriptions of the experimental protocol and a database
of annotated models, it becomes possible to compare experiments
to model predictions (Cooper et al., 2015b). This has several
important applications.

Checking model applicability: Many investigations into cardiac
cellular electrophysiology start with the selection of a suitable
computational model. Yet until the publication of WL1 there has
been no easy way to look up and compare basic model properties
(i.e. what outputs the different models predict given a certain
protocol). WL1 introduced this ability to compare model pre-
dictions systematically, and with WL2 it will become possible to
validate model outputs against a variety of data sets. Users wishing
to investigate a specific aspect of cellular electrophysiology, for
example calcium handling, could start by selecting a series of vir-
tual experiments relating to the phenomena of interest, and then
compare models specifically on how well their predictions match
the data in these respects.

Documenting model provenance: With this new set-up, it be-
comes possible to describe a model's provenance in a systematic
way, bymaking formal statements such as ‘parameters a, b, and c in
model m derive from data set d’. If, in addition, model sub-
components (e.g. ion-current models or calcium buffering equa-
tions) are linked with statements such as ‘model m1 relates to
modelm2 via inheritance of sub-model INa’, it will become possible

https://chaste.cs.ox.ac.uk/WebLab
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to trace the origins of model equations and parameters. Because
this provenance can be extremely complicated (Niederer et al.,
2009; Bueno-Orovio et al., 2014), having a shared community re-
cord of such relations will be extremely useful for the electro-
physiology community.

Continuous testing during model development: A consequence of
electrophysiology (EP) models’ complicated history is that mod-
ellers adapting a specific aspect of a model (say the sodium channel
formulation) may not be familiar with details of other parts of the
model. In addition, the code and data used to run all experiments
that were originally used to validate the model are not usually
available. With WL2, it becomes possible to encode all these ex-
periments (or better, to re-use ones already available) and link
them to the relevant experimental data set. This creates a large
body of test-cases that a model developer can use to test any
updated model formulations against, to ensure novel additions do
not undo the efforts of previous modellers.

2.4. Step 4: fitting models to experimental data

At this point, the Web Lab will allow users to compare experi-
mental outcomes and model predictions not just qualitatively (i.e.
visual inspection), but also quantitatively. A next step then, is to let
the user define somemeasures that quantify themodel/experiment
mismatch (or alternatively the goodness-of-fit), and to introduce
algorithms that fit models to data by systematically adjusting
selected model parameters until the predictions match the
observed results.

We distinguish two main types of fitting. In optimisation, the
mismatch between model prediction and experimental outcome is
quantified by somemeasure of error, and an optimisation algorithm
is used to reduce this error to a minimum. The outcome of this
process is a single set of ‘best’ parameter values. In statistical
inference, the difference between the model prediction and the
observed data is treated as a random variable (e.g. due to mea-
surement noise), and an inference algorithm is used to quantify the
likelihood that different parameter sets gave rise to the observed
data. This results in a distribution of parameter values, each with an
associated likelihood.

Further distinctions can be made depending on how the
experimental outcome is defined. First, many analyses start from
summary statistics of the data, for example a current-voltage rela-
tion (IV-curve) when measuring ion currents, or a steady-state APD
dose-response curve when measuring the cellular AP under drug
action. In this method, a certain amount of data is discarded to
simplify the (historically manual) analysis process on the
assumption that the remaining data will fully characterise the
phenomenon of interest. By contrast, whole-trace fitting uses all
available data and does not require this assumption. Several pub-
lications have pointed out the benefit of the whole-trace method
for the analysis of ion-currents (Hafner et al., 1981; Willms et al.,
1999; Lee et al., 2006; Fink and Noble, 2009; Buhry et al., 2011;
Beattie et al., 2018). Secondly, data from different experiments (e.g.
in different cells) can either be averaged before processing, or can
be processed on an individual basis. Averaging before processing
can lead to distorted results, as shown by e.g. Pathmanathan et al.
(2015).

In WL2, an outline of which is shown schematically in Fig. 1. We
plan to support all of the modes of fitting listed above. An example
using our prototype implementation is given in sections 3 and 4.
Supporting model fitting will have several important applications.

Driving model development: EP models are based on experi-
mental data from a variety of sources, including measurements in
different species and under different experimental conditions
(Niederer et al., 2009). Once the infrastructure to refit models
automatically is in place, it should become a straightforward task to
update model parameters whenever new and/or more appropriate
data sets are available (see also Box 4 in Cooper et al., 2015b).
Similarly, if nomodel can be reparameterised to fit the data, this is a
strong indication that changes to the model equations are required.
In this manner, WL2 could be a driving force behind electrophysi-
ological model development.

Rigorously documenting model development:With the addition of
fitting algorithms, WL2 will allow a large part of model develop-
ment to be rigorously d and reproducibly d documented. This
would dramatically increase the reproducibility of electrophysi-
ology modelling work, and allow the kind of close scrutiny of
model-building work that is required if EP models are to be used in
safety-critical applications such as drug testing (Mirams et al.,
2012) and clinical risk assessment (Hoefen et al., 2012).

Quantifying experimental variability: Using statistical inference
methods, we can find distributions of model parameter values that
provide good fits to experimental data, and quantify the likelihood
of each (Daly et al., 2015). This allows us to quantify variability and
uncertainty in single parameters, but also to investigate correla-
tions between parameters (Johnstone et al., 2016b). The application
of these techniques is a first step towards untangling experimental
error from biological variability (Mirams et al., 2016; Marder and
Goaillard, 2006).

Identifiability checking and protocol design: In addition to ana-
lysing experimental data, statistical inference methods can be used
as a tool to design experimental protocols. If a broad range or
ranges of parameter values are found to be equally likely candidates
to fit a data set, this can be a strong indication that the protocol
does not provide all the information needed to identify the model's
parameters. Such a result may highlight that the model is funda-
mentally unidentifiable, but it can also highlight the shortcomings
of a particular protocol (i.e. it does not trigger all the phenomena
themodel was intended to capture). By using inference to check if a
protocol provides enough information, it becomes possible to test
and optimise a protocol, e.g. by removing steps that are found not to
add new information (Fink and Noble, 2009; Clerx et al., 2015;
Beattie et al., 2018). By making these features widely available, WL2
can aid experimenters in both protocol selection and design.

Validation: An important step in developing a biophysical model
is validation, that is assessing howwell your fittedmodel represents
reality (Pathmanathan and Gray, 2013). In our domain this is most
easily done by running extra experiments that were not used to fit
the model, i.e. a different protocol. It is vitally important that pro-
tocols and recorded experimental data for validation are associated
with the model development process, and available for display and
comparison within WL2. We did not denote this step in Fig. 1 to
keep the figure simple, but in full it should feature additional line(s)
from the Inferred Parameters back to simulations and experiments
with a new protocol. Validation is especially important when
extending an existing model. Without a complete description of
experimental results that were predicted/recreated with an exist-
ing model, it is impossible to know whether a new version of a
model retains all the capabilities of the original one.

3. Prototype implementation

We now discuss the implementation of a prototype WL2,
focused on performing statistical inference over parameters of
single-cell EP models and sub-models (e.g. ionic currents), and
demonstrate its use by reproducing a result from a hERGmodelling
study conducted by Beattie et al. (2018). In this study, a novel
voltage-step protocol was applied to cells expressing the hERG ion
channel, and the recorded current was fitted with a 9-parameter
Hodgkin-Huxley model, summarised below in its equivalent



Fig. 1. A schematic overview of WL2. Experimental protocols, applied to biological models (e.g. myocytes, expression systems) give rise to experimental results. The associationwith
a protocol, in combination with additional metadata, provides users with a thorough overview of how the data was obtained. Applied to computational models, the same protocols
provide predictions. As in WL1, protocols are written in such a manner that they can be applied to several models on the Web Lab, and their predictions can be compared. A new
feature will be the ability to compare predictions to predictions, experimental results to results, and results to predictions. By comparing experimental results and predictions from
the same protocol, a fitting process can be initiated, leading to a set of parameter values represented either as singular points (optimisation) or distributions (inference).
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Markov-model formulation (for an explanation of the relation be-
tween these see Keener and Sneyd, 2009, vol. 1, p150).

IKr ¼ GKr,OðVm; tÞ,ðVm � EKÞ; (1)

with the conductance parameter GKr, and the open probability
OðVm; tÞ given by the system of equations

d½O�
dt

¼ kOðVmÞ,½C� þ kAðVmÞ,½IO� � ðkCðVmÞ þ kIðVmÞÞ,½O�; (2)

d½C�
dt

¼ kCðVmÞ,½O� þ kAðVmÞ,½IC� � ðkOðVmÞ þ kIðVmÞÞ,½C�; (3)

d½IO�
dt

¼ kIðVmÞ,½O� þ kOðVmÞ,½IC� � ðkAðVmÞ þ kCðVmÞÞ,½IO�;
(4)

½IC� ¼ 1� ð½O� þ ½C� þ ½IO�Þ: (5)

The rates are voltage-dependent functions, each parameterised
by two scalar values as follows:

kOðVmÞ ¼ kO1,expðkO2,VmÞ; (6)

kCðVmÞ ¼ kC1,expð � kC2,VmÞ; (7)

kIðVmÞ ¼ kI1,expðkI2,VmÞ; (8)

kAðVmÞ ¼ kA1,expð � kA2,VmÞ: (9)

A Bayesian inference method was then applied to find the
parameter values that provided the best fit. As discussed in section
2.4, this inference method finds not just a single set of parameter
values, but the distribution of all likely parameter values, known as
the posterior distribution.

3.1. Simulation specification

Finding the best parameters, either using optimisation or
inference, involves repeated simulations, and so WL2 must provide
the user with an interface in which to specify how model simula-
tions should be performed. Our prototypeWL2 builds on the design
of WL1 (Cooper et al., 2016), and thus adheres to the functional
curation paradigm separating the notion of amodel (the underlying
mathematics representing the system) from the protocol (the
manner in which the system is stimulated and observed). As in
WL1, this modular design allows for the re-application of experi-
mental protocols to new model formulations, or the comparison of
competing model formulations under a given experimental set-up.
Users of the WL2 prototype upload separate model and protocol
files, represented respectively in CellML and functional curation
protocol syntax, in order to specify and share the results of simu-
lations. We have chosen to use the custom protocol language rather
than SED-ML due to the latter's adherence to a “one model, one
experiment” paradigm (simulations are explicitly linked to models
rather than mediating interactions through a domain-specific
ontology), which lacks the modularity of functional curation.
Additionally, the functional curation protocol language supports
more complex nested simulations and provides greater post-
processing power than SED-ML, allowing it greater expressive
capability. As SED-ML evolves we hope to use it to specify protocols
and simulation algorithms in future versions of the Web Lab, and
anticipate our protocol language serving as a test-bed for new
features for the community standard.

Model parameters in the CellML files should be tagged with
metadata annotations that allow them to be externally read and
adjusted by simulation protocols, and thus there exists a notion of
compatibility between model and protocol, which requires that all
variables referenced in the protocol exist as tagged entities in the
model. The exact structure and interpretation of these files are
given in Cooper et al. (2011).

In addition to the simulation specification, the WL2 prototype
requires two files to complete the specification of a fitting problem:
a file containing experimental data, and a fitting specification that
shows how this data is employed to constrain the model. The
content of these files will be discussed in the subsequent sections.
3.2. Data specification

In our prototypeWL2, data for fitting experiments is provided in
a separate file. Each entry should directly correspond to an output
of the simulation protocol, and consist of a series of data arrays with
unique names, as the functional curation protocol language pos-
sesses a post-processing library to enable such one-to-one
matching (Cooper et al., 2011). Much like the functional curation
paradigm, the use of unique names to mediate interactions



Table 4
Prior distribution specified within the fitting specification for the 9-
parameter hERG model. This prior is adapted from Beattie et al. (2018),
who employ a wider prior in their MCMC inference but define this region
as most likely to contain the optimal parameters. Parameters respect the
shortened naming conventions of Equations (1)e(9) for clarity. An
additional parameter, “obj:std”, controls the observation noise standard
deviation, part of the Gaussian likelihood function, and is set to a fixed
value in this example (although in general it could be learned too).

Parameter Name Prior Range

kO1 Uniform(1e-7, 0.1)
kO2 Uniform(1e-7, 0.1)
kC1 Uniform(1e-7, 0.1)
kC2 Uniform(1e-7, 0.1)
kI1 Uniform(1e-7, 0.1)
kI2 Uniform(1e-7, 0.1)
kA1 Uniform(1e-7, 0.1)
kA2 Uniform(1e-7, 0.1)
GKr Uniform(0.0612, 0.612)
obj:std 0.00463
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between the data and the other components of a modelling study
allows for experiments to be easily updated when new data
become available.

In our prototype implementation, data are supplied in a comma-
separated values (CSV) file, where the first row specifies names for
each variable, and associated columns specify the corresponding
data. We note that this structure currently expects zero- or one-
dimensional data for each named variable (although higher-
dimensional arrays may be specified in flattened form), as this
was sufficient for our test case, but that the exact data represen-
tation can easily be changed at a later stage. In the hERG current
fitting experiment, the data file contains two columns of equal
length representing a series of (time, current) pairs. Our current
implementation requires that the units of the data provided match
those of the corresponding entities in the simulation protocol,
though future iterations of WL2 will allow for the specification of
units and handle necessary translations in a manner similar to
functional curation.
3.3. Fitting specification

The final component of a parameter fitting experiment is the
fitting specification, which makes use of a custom language that we
will introduce in this section by means of a working example.

The fitting specification takes the form of a JSON-formatted text
file (http://www.json.org). These types of files contain a series of
named values, where each value may be either a string of charac-
ters, a numerical value, a list of values, or a nested JSON object. We
represent the contents of a fitting specification for the hERG model
based on the fitting experiment described by Beattie et al. (2018)
(with the number of CMA-ES optimisations and number of MCMC
iterations reduced for the sake of improving runtime) in Table 3,
and will discuss the interpretation of each required entry below.

The first entry in the fitting specification is the “algorithm” to be
used for parameter fitting, which is specified by a unique identifier.
In the case of the hERG experiment, this value is “AdaptiveMCMC”,
which corresponds to the adaptive-covariance MCMC algorithm
described by Haario et al. (2001). While we are interested in
moving towards more sophisticated means of uniquely specifying
algorithms, such as KiSAO IDs (http://co.mbine.org/standards/
kisao) in future iterations of the Web Lab, such ontologies do not
yet support the full range of Bayesian and approximate Bayesian
inference algorithms that we are considering for inclusion in WL2.
Once we refine the list of algorithms we support, we will lobby for
their inclusion in KiSAO (or another accepted ontology) and adapt
to this new form of algorithmic specification in future iterations of
the Web Lab.

In our prototype implementation, the adaptiveMCMC algorithm
uses a Gaussian likelihood function, which is commonly assumed
for time-series data. However, the prototype could easily be
extended to allow users to specify different likelihood functions, by
adding an “objective” entry to the fitting specification language.

The next entry we consider is a dictionary of “arguments”,
Table 3
Entries in the fitting specification for the hERG ion channel model. The v
and is represented as is, while all other value entries are nested JSON o
also true for the prior specification, which is represented separately in

Fitting specification entity Value

algorithm AdaptiveMCM

arguments cmaOpt¼ 5, c

output exp_IKr¼ IK

input exp_times¼
prior (see Table 4)
specific to the chosen fitting algorithm. In the example shown in
Table 3, these include the standard arguments for MCMC d the
total number of iterations “numIters” and the number of iterations
discarded as burn-in “burn” d as well as two new arguments
“cmaOpt” and “cmaMaxFevals” which deal with the selection of a
starting point for MCMC. These arguments tell the back end to first
run a series of 5 random restarts of a global optimiser, the
“Covariance Matrix Adaptation Evolution Strategy” (Hansen and
Ostermeier, 2001) to choose a starting point for the MCMC chain.
In the final version of WL2, a full list of available named algorithms,
along with details of their operation and adjustable parameters,
will be made available on the web site.

The next two sections, “input” and “output”, deal with matching
experimental and simulated data. The “input” section details a list
of named inputs to the simulation protocol (“exp_times”, in this
instance) which are matched to named entries in the data file (“t”,
in this instance). Here this tells the simulator to generate outputs at
the times specified in the data file, and removes the need to alter
the functional curation protocol when new data are collected. The
“output” section tells the objective function which named outputs
from the simulation protocol are to be considered (“IKr” in this
instance), and which named entries in the data file (“exp_IKr”) they
are to be compared against using the objective function. This allows
data files to be used that do not adhere to the same naming con-
ventions as the associated simulation protocol, again avoiding the
need to alter simulation protocols when new data are acquired.

Finally, we consider the prior distribution; this represents our
ideas about the likely values of the parameters before we start the
fitting experiment, and is commonly given as a uniform distribu-
tion with some lower and upper bound (which typically maps onto
the expected maximum physiological range of the parameter). In
the WL2 prototype, the prior is specified as a nested JSON object
identified by “prior” (and represented separately in Table 4). Our
alue associated with the “algorithm” entry is a string of characters,
bjects, and are presented in “key¼ value” format for clarity. This is
Table 4 due to its size.

C

maMaxFevals¼ 20000, burn¼ 50000, numIters¼ 100000

r

t

http://www.json.org
http://co.mbine.org/standards/kisao
http://co.mbine.org/standards/kisao
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implementation currently supports only uniform priors (specified
by a two-membered list containing a lower and upper bound) or
point distributions (a single fixed value), but more can easily be
added. Additional constraints on themodel may be implemented as
assertions within the simulation protocol itself. This methodology
was used to eliminate parameterisations leading to non-
physiological values for rate constants (kO, kA, kI , and kC), assign-
ing them zero probability in a similar manner to the 2D prior
employed by Beattie et al. (2018).
4. Prototype results

We now present the results of our test-case fitting experiment,
implemented in a WL2 prototype. As with the WL1 implementa-
tion, an experiment may be carried out, and its results viewed, by
matching a model to a protocol in the ‘Experiments’ matrix view.
Within the prototype WL2, the only change to this set-up is that a
‘protocol’ entry now encompasses a simulation protocol, fitting
specification, and data file (as described in Section 3). The files used
to represent this fitting experiment are described in Section 3
(particularly Tables 3 and 4). Further details, including links to
the relevant online resources, can be found in Daly (2018).

After the execution of a fitting experiment, the first thing that
theWL2 prototype allows us to do is to compare the data simulated
using our inferred maximum likelihood parameters to the experi-
mental datawe employed during fitting. In Fig. 2, we see the results
of overlaying data simulated using the maximum posterior density
parameters returned by our MCMC inference onto the experi-
mental data used to obtain these fitted parameter values. As the
MCMC algorithm returns a sample of parameter sets approximating
the true distribution over parameters given data, this visual shows
us how well the most likely parameter set captures the observed
behaviour. The close agreement between these traces suggests that
the inference strategy has produced a distribution over para-
meterised models that captures observed behaviour well, which
mirrors the findings of Beattie et al. (2018). Had we employed an
optimisation strategy instead of a Bayesian inference strategy we
Fig. 2. A screenshot of the WL2 prototype: data simulated under maximum posterior densi
Indices on the x-axis correspond to time in seconds with sampling every 0.1ms. The comp
could also use the maximum likelihood values, which (in this case)
would be the same as the least squares optimum, and simply
compared the data simulated under these optimal parameters with
experimental observations.

The prototype WL2 additionally provides tools for visualising
uncertainty about optimal model parameters in inference studies,
as characterised by themarginal distribution over each parameter in
the posterior estimate. In Fig. 3. We see a histogram produced by
the prototype WL2 in order to represent variation of the kA1
parameter of the hERG model over the posterior returned by
MCMC. We see that this distribution is very well-constrained about
a single modal value, which indicates the presence of a unique
optimal value for this parameter about which the model is very
sensitive to variation (with even small changes in the value of the
parameter leading to a large drop-off in likelihood). The posteriors
for the remaining model parameters (see both Beattie et al. (2018)
and Daly (2018)) show similar constraints. While this could
potentially indicate a well-defined and narrow local optimum, the
fact that we employed multiple starts to our initial CMA-ES opti-
misation strengthens our belief that this is indeed a global opti-
mum, and supports our belief that the model is uniquely
identifiable under the current experimental set-up. Had one or
more parameters shown multi-modality or flatness in their mar-
ginal posterior distribution, we would conclude that the data did
not provide enough information to uniquely constrain all model
parameters (Siekmann et al., 2012). In this manner, examination of
the model using the WL2 prototype may reveal unidentifiabilities
in the model, which may require an alternate model formulation or
experimental protocol to address depending on the character of the
variation.
5. Discussion

We have laid out the steps required to extend the Cardiac
Electrophysiology Web Lab with experimental data, and discussed
the advantages this will bring. With a prototype implementation of
this WL2 we have shown the feasibility of using the Web Lab to
ty parameters of the hERG model produced by MCMC overlaid with experimental data.
arable plot in the original model publication is Fig. 4 in Beattie et al. (2018).



Fig. 3. A screenshot of the WL2 prototype: visualisation of marginal variation over kinetic rate parameter kA1 of the hERG model in the posterior distribution returned by MCMC.
Comparable histograms in the original model publication are shown in Fig. 4 of Beattie et al. (2018).
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perform statistical inference, the most technically challenging of
the features discussed in our road map. We now discuss remaining
challenges for a full implementation ofWL2 and its adoption by the
electrophysiological community, as well as the opportunities some
of these challenges present.

Providing incentives for model annotation. The option to annotate
models, sub-models, and variables has long been present in model-
sharing languages such as CellML (Hedley et al., 2001), but is not
widely used (see e.g. https://models.cellml.org/electrophysiology).
Similarly, initiatives such as the MICEE Portal (https://www.micee.
org/), which is intended to store annotations for published exper-
imental data, have so far failed to garner widespread adoption.
Clearly, there has not been sufficient incentive for scientists to
provide annotated models and/or data sets. However, very few
tools make use of model or data annotations, so that the updated
Web Lab's annotation use could serve as a prime example of the
benefits of annotation. As soon as a link is established between
experimental data and the models that use it (section 2.2), and
refitting (parts of) models becomes a routine task, questions of
model-data provenance will arise more naturally, and the need for
well-annotated data will be felt by a wider audience.

Creating a community repository for electrophysiological data. A
second challenge related to the addition of experimental data to the
Web Lab is dealing with the administrative and financial burdens of
storing and providing access to valuable data for an indefinite
period. Conflicts of interest might best be avoided if this re-
sponsibility was placed in the hands of some independent multi-
centre organisation, and so it is clear that this task should be un-
dertaken separately from establishing WL2. One of the many op-
portunities the establishment of such a repository would bring, is
that it would make it easier for multiple groups to tackle the same
problem, using the same data set. For example, the PhysioNet
challenge is an annual competitive event where computational
biology groups around the world are challenged to provide the best
analysis of a particular biophysical signal (usually an ECG) from the
PhysioNet/PhysioBank repository (Goldberger et al., 2000). If a re-
pository for cell electrophysiological data were to be established,
similar events could be run to tackle questions in the cell electro-
physiology domain. One possibility is that such a repository might
be linked to a community-based journal, and responsibility would
be assumed by the journal publisher. It would also allow the cardiac
modelling community to share their wealth of already acquired
data for future model development and model verification or
validation steps. Preliminary discussions have suggested that
leading academic publishers would be open to such an idea, as it is
in line with their move towards becoming information platform
providers.

Comparing complex data sets. Biological systems are irreducibly
complex; even when only a single ionic current is measured, the
‘background’ is a living cell in which thousands of dynamical
mechanisms interact to create and maintain homoeostasis. As a
result, any two independent investigations into the same phe-
nomenon will almost invariably differ in some details, some of
which may later turn out to be important. For annotation, this
means that even when using a standard such as the MICEE draft d
which specifies around 100 properties to be recorded as ‘minimum
information’ d some details will go unrecorded. It also means that
the question of whether two data sets describe ‘the same’ experi-
ment is not always easy to decide. Conversely, many experiments to
measure a certain property, for example inactivation of the hERG
current, use different voltage protocols (and so are demonstrably
not identical) but provide essentially the same information. By
enabling data-to-data, data-to-model, and model-to-model com-
parison, all with excellent support for annotation, WL2 can help
bring these issues into much sharper focus.

Establishing community ontologies. Structured annotation of
models, protocols, and data, requires ontologies: formal naming
systems that allow model variables, protocol properties, and
experimental conditions to be uniquely defined. For WL1, we
created a custom ontology that defined several model variables, e.g.
membrane-rapid-delayed-rectifier-potassium-current denotes the
current known as IKr, carried by the channel encoded by hERG. In
the long-term, this should be replaced by a community agreed-
upon ontology, and kept up to date with new scientific discov-
eries. As with annotation, widespread use of WL2 could be a
powerful driving force behind such efforts.

Integrating with other community tools.Ultimately, wewantWL2
to be part of a wider web of community tools and data resources,

https://models.cellml.org/electrophysiology
https://www.micee.org/
https://www.micee.org/
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sharing information via agreed-upon ontologies as discussed
above. For this purpose, WL2 will provide not only a user-friendly
human interface, but also an application programming interface
(API). Such an interface (based on the Representational State
Transfer, or REST architecture) was already used internally for WL1,
but will need to be documented and made publicly available in
WL2. We look forward to working with the community to establish
the best interface for WL2 (and other tools) to present. A second
difficulty relating to interaction, is that not all formats used in WL2
were created with annotation in mind. For example, there is no
widely agreed upon method of annotating parts of CSV or pro-
prietary binary data files, and similarly the text-file formats the
WL2 prototype uses to specify fitting experiments cannot easily be
annotated. However, we believe that, starting from an imperfect
implementation, WL2 can help bring clarity and urgency to efforts
to establish consensus on such topics. Finally, all entities used in
WL2 should have a unique identifier, e.g. a digital object identifier
(DOI). As we envision most WL entities (models, data sets) being
hosted primarily outside the WL, this not something we can our-
selves directly address. However, if simulation protocols and fitting
specifications are to be shared with other tools, a solution to obtain
such unique identifiers will need to be found.

Model-agnostic fitting. In WL1, we defined an ontology for well-
known variables such as named ionic currents (e.g. the fast sodium
current), maximum current densities (e.g. the maximum conduc-
tance for the fast sodium current), and reversal potentials (e.g. the
reversal potential relevant for the fast sodium current). This allows
experimental protocols to be written in a model-agnostic manner,
that work regardless of the variable names used in the model code.

For fitting specifications to work in a similarly model-agnostic
manner, we need to indicate which parameter values should be
modified to perform the fit. Whilst some parameters, such as ion
current densities, may exist and represent the same quantity in
different models, this is not always the case. Model-specific pa-
rameters can arise in a number of circumstances, for examplewhen
a new biophysical mechanism is postulated, or when a model in-
troduces a deliberate simplification (e.g. Hodgkin-Huxley rather
than full Markov models for channel gating). So instead of defining
unique names for such parameters, we propose to identify themvia
their relationship to named ontology variables. For example, pa-
rameters for the fast sodium current d which is a variable named
in our ontology d could be tagged with the property “is a param-
eter for the fast sodium current”. Further properties could provide a
more detailed description, e.g. “influence fast sodium current
activation”, or “appears in a reaction rate of the form aebV”. A fitting
algorithm for current “x” could then gather all variables tagged as
“parameter for x” and vary them in an optimisation, perhaps guided
by further properties to add boundaries, parameter trans-
formations, or other “tweaks”.

Optimisation and statistical inference. A huge number of algo-
rithms exist for optimisation and statistical inference. However,
simulators for cell and ion current models usually do not provide
information about derivatives with respect to model parameters,
which limits the number of applicable methods. Despite recent
work by e.g. Syed et al. (2005); Loewe et al. (2016); Moreno et al.
(2016); Johnstone et al. (2016a), the best methods to use remain
unclear. In addition, setting up a fitting experiment requires
detailed knowledge of cellular electrophysiology, so at present
developers of statistical methods are unlikely to test their methods
on such cases. WL2 provides an excellent opportunity to address
both issues. Firstly, by defining a shared interface for optimisation/
inference problems we can set up a system where model de-
velopers can test out different methods without making changes to
their code (for an early version of such a shared interface, see
https://github.com/pints-team/pints). Secondly, by working more
closely with the statistical community, and using WL2 to make
fitting experiments using a standard interface available online, it
becomes possible to use published electrophysiology experiments
as a test-bed for new algorithmic work. This will result in a
mutually beneficial situation for electrophysiology modellers and
statistical algorithm designers.

5.1. Conclusion

At present developing cardiac electrophysiology models is
“something of an art” (anonymous senior cardiac modeller). We
would like to see it become a science, defined by an unambiguous
algorithmic procedure. Our hope is that in the future a resource
such as the Web Lab will provide researchers with everything they
need to know to reproduce a model's development. The Web Lab
will list what experimental protocols need to be performed in awet
lab in order to parameterise a model, and then receive data from
these experiments and use them to produce parameterised math-
ematical models. Further in the future we aim to automate the
process of developing new models. By including protocol design,
optimised experiments could be generated to optimally constrain
each parameter, and these could be suggested by the Web Lab in
response to the results of previous experiments. Design of protocols
for the process of model selection (choosing the most appropriate
set of equations and number of parameters to fit) could also be
automated, something that is certainly possible for relatively well-
defined model structures such as ion channel models. In the future
we envisage this protocol optimisation occurring in real time in
response to experimental results being recorded, so that multiple
rounds of model refinement and new experiments can be per-
formed in one sitting.

In this article we have described our work to date in developing
a community-based resource to support the cardiac electrophysi-
ology research community. Our goal is that this resource should
become a repository for all aspects of the research of this com-
munity: experimental data and protocols, the computational
models that are derived from that data and aid in its physiological
interpretation, and the instantiations in software of statistical
inference techniques that are used to derive those computational
models from the experimental data and protocols. Whilst our work
as described here focuses on cardiac electrophysiology, the need
that we address and the approach that we have used are applicable
across a large swathe of scientific research endeavour. In order to
make our work as widely accessible as possible, and in the hope
that this approach might be adopted more widely in other research
domains, all of our work is freely available as open source code at
https://github.com/ModellingWebLab under a BSD 3-clause li-
cense. Code for the WL2 prototype can be found there in the fcweb
repository, under the cardiac-fitting branch.
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