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Abstract

Optically pumped magnetometers (OPMs) have reached sensitivity levels that make

them viable portable alternatives to traditional superconducting technology for mag-

netoencephalography (MEG). OPMs do not require cryogenic cooling and can there-

fore be placed directly on the scalp surface. Unlike cryogenic systems, based on a

well-characterised fixed arrays essentially linear in applied flux, OPM devices, based

on different physical principles, present new modelling challenges. Here, we outline

an empirical Bayesian framework that can be used to compare between and optimise

sensor arrays. We perturb the sensor geometry (via simulation) and with analytic

model comparison methods estimate the true sensor geometry. The width of these

perturbation curves allows us to compare different MEG systems. We test this tech-

nique using simulated and real data from SQUID and OPM recordings using head-

casts and scanner-casts. Finally, we show that given knowledge of underlying brain

anatomy, it is possible to estimate the true sensor geometry from the OPM data

themselves using a model comparison framework. This implies that the requirement

for accurate knowledge of the sensor positions and orientations a priori may be

relaxed. As this procedure uses the cortical manifold as spatial support there is no co-

registration procedure or reliance on scalp landmarks.
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1 | INTRODUCTION

Optically pumped magnetometers (OPMs) provide a sensitive, flexible

and low-cost alternative to superconducting quantum interference

devices (SQUIDs) for measuring magnetoencephalography (MEG) data

(Boto et al., 2016). OPMs work by measuring the transmission of laser

light through a cell containing a vapour of spin-polarised alkali atoms,

providing a highly sensitive measure of the local magnetic field inside

the cell. Unlike the conventional SQUID sensors, OPMs do not require

cryogenic cooling and can be placed flexibly on the scalp surface with a

minimum separation of ~ 4–7 mm. This potentially offers an increased

sensitivity with respect to traditional MEG devices, and makes the MEG

system wearable with subjects able to move their head during the mea-

surement (Boto et al., 2018). In this way, OPMs have the potential to
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form the basis of high signal-to-noise-ratio (SNR) and flexible MEG

instrumentation. Unlike SQUID systems, in which intrinsic sensor linear-

ity, cross-talk and inhomogeneity issues have all been comprehensively

addressed; OPM devices, based on different physical principles, present

new modelling challenges. Additionally, the flexibility in array geometry

introduces technical challenges that must be overcome in order to cre-

ate a practical, robust and wearable system that can be used in both

basic and clinical neuroscience settings. In this article, we outline an

empirical Bayesian framework within which to address and build upon

these modelling challenges.

A central goal of analysing MEG data is to spatio-temporally

reconstruct the neural sources of the observed signals. However, the

spatial specificity of such source reconstruction is highly dependent

not only on the data's SNR, but also on having an accurate model of

the brain's anatomy and the spatial relationship between the brain

and the sensors. The dependence on accurate modelling is even more

pronounced with OPMs because increases in SNR (due to the proxim-

ity of the sensor to the scalp) also entail increases in sensitivity to

modelling errors. In other words, if there is some topographical blur-

ring in the data and large distance between the sensors and sources, a

small error in the model of the relationship between the brain and

sensors makes little difference, but if the data have very high SNR and

the sensors are very close to the brain, small errors in the model lead

to distorted estimates of the sources. In (Boto et al., 2016), simula-

tions showed that even small (5%) modelling errors could undermine

the four-fold SNR increase promised by OPM systems.

The use of OPMs in wearable arrays brings uncertainty to both the

absolute and relative sensor locations and orientations. This contrasts

with cryogenic systems, where although there is uncertainty on the loca-

tion of the head (which can be accounted for; López, Penny, Espinosa, &

Barnes, 2012), the relative channel locations and orientations are known

with a high degree of accuracy. To date, the co-registration of OPMs with

anatomy has been done using classical EEG electrode locations (Sander

et al., 2012); using optical scans of the subject's scalp/face matched with

known OPM geometry (Zetter, Iivanainen, & Parkkonen, 2019); and

recent studies propose the use of a small array of electromagnetic coils of

known orientation and location (Pfeiffer et al., 2018). Our local solution

has been to minimise the co-registration problems through the construc-

tion of subject-specific scanner-casts (Boto et al., 2017), Such casts are

three-dimensional (3D) printed with predefined sensor slots and fit the

subject specific head shape (Figure 1a). The scanner-cast solution is useful

for optimising the data quality, as it removes a number of unknowns (see

previous works with an MEG head-cast, Troebinger et al. [2014]), but it is

not a necessarily practical solution—as it requires a great deal of invest-

ment per-subject and is both physically cumbersome and intimidating.

Thus, in an ideal situation, one would like to be able to use OPMs in flexi-

ble wearable arrays like those used for EEG electrodes, but this flexibility

in the arrangement of sensors introduces uncertainty about both the

absolute and relative sensor locations and orientations.

The motivation of this article is to use the prior knowledge of cor-

tical and volume conductor geometry to estimate the positions and

orientations (and error bounds on these estimates) of an array of

OPM sensors used to record data. If this is possible, then this proce-

dure reduces the dependence on 3D printed scanner-casts, suggesting

that a more flexible and scalable design can be used to harness the

potential of OPMs in a more practical manner. Moreover, it removes

reliance on scalp landmarks for co-registration, and provides an objec-

tive test of the quality of our data and forward models (i.e., whether

they can be combined to recover the true OPM sensor locations).

To carry out our analysis, we make use of real and simulated data

from cryogenic multi-channel recordings using a head-cast; single

channel OPM measurements using a scanner-cast (Boto et al., 2017);

and simultaneous multi-channel measurements using the same

scanner-cast. We then perturb our assumptions about the sensor

positions and orientations obtaining a forward model for each hypo-

thetical (or true) sensor configuration, and estimate the source distri-

bution on the cortical surface by maximising the model evidence over

a range of sensor configurations. The model evidence is approximated

by the negative variational Free energy (Friston, Mattout, Trujillo-Bar-

reto, Ashburner, & Penny, 2007). Each solution gives a single (maxi-

mal) Free energy value for each possible sensor configuration. The

sensor configuration that can provide the simplest explanation of the

magnetic field produced by a current distribution on the individual's

cortical surface will have the higher model evidence (Friston et al.,

F IGURE 1 Head-cast and array perturbations. (a) Digital model of the scanner-cast. The cast is based on an individual MRI scan and designed
to house the OPM sensors around the outer scalp surface. (b) Sensors were independently perturbed from their true orientation (black) by a fixed
angle in random direction (red). (c) The rigid sensor array was displaced from its true position (black) to new positions (red) within an arc spanning
−20 to 20 mm (and subsequently within a cube of 40 × 40 × 40 mm3) [Color figure can be viewed at wileyonlinelibrary.com]
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2008). This simplest explanation of the data occurs when the theoreti-

cal and empirical sensor geometries are in accord (López et al., 2012).

Free energy has similarity to Akaike's and Bayesian Information

(Penny, 2012) criteria, which trade accuracy against model complexity.

It has been shown to accord with cross-validation metrics (Bonaiuto

et al., 2018), where complex models are penalised by their failure to

generalise. It can also be seen as analogous to classical statistical

methods (like Chi-square for dipole fitting [Supek & Aine, 1993]) for

determining when an increase in model complexity can be justified.

By using the scanner-cast (where relative sensor positions and ori-

entations are known, and absolute positions and orientations are

known to within ±3 mm and ± 5� respectively) with real measured

data, we can directly test this method empirically.

In what follows, we develop a principled method for comparing

forward models based on a priori unknown brain activity in which we

simply ask how far we could have displaced the sensors before our

models (explaining the impact of brain activity on the sensors) become

significantly worse.

The article is divided as follows. We first investigate the effect of

(independent) sensor orientation error. We show how sensor pertur-

bations away from the true geometry degrade model evidence. This

manipulation gives us a metric of how far the modelled sensors in a

system can be perturbed before we would notice (for a well-modelled

system with high SNR this should be a small amount). We then use

this metric on real data from OPM and SQUID systems where geome-

try is well known based on scanner-cast and head-casts respectively.

Finally, we show how it is possible to recover the location of a

scanner-cast sensor array with respect to the cortical surface based

purely on the recorded OPM data, and how uncertainty in this esti-

mate can be accounted for in the ensuing source estimate.

2 | METHODS

We derive a framework to compare measurement systems based on

their sensitivity to perturbations in sensor geometry. Based on previous

SQUID-based studies (López et al., 2012; Martínez-Vargas et al., 2016;

Meyer et al., 2017; Stevenson et al., 2014; Troebinger et al., 2014), we

would expect that a model of the OPM MEG data with the true geom-

etry will have a higher evidence as approximated by the negative varia-

tional Free energy. In this study, as we wish to compare between

sensor types (and the data are different precluding any direct compari-

son of Free energy values), we focus on the sensitivity of the Free

energy to perturbations in the geometry. The rationale is that poor

models will be less sensitive to this geometrical noise. We first intro-

duce the OPM sensors and the perturbation of the array geometry.

Then, we describe how it is possible to score the models with Free

energy. Finally, we describe the empirical data collection.

2.1 | OPM sensors

The QuSpin (http://quspin.com) OPM sensors used here (Shah &

Wakai, 2013) have a noise level comparable to SQUIDs (~15 fT/
ffiffiffiffiffiffi
Hz

p

above 10Hz), a bandwidth up to 130Hz (first order cut-off), an opera-

tional dynamic range of ±1.5 nT, a size of 14×21×80mm3, and can

be placed such that the sensitive volume is 6.5mm from the scalp sur-

face. We modelled the sensitive volume of gas as a single point mea-

surement of field normal to the sensor base. The interested reader on

the physical principles of OPMs is directed to other general overviews

(Benumof, 1965; Dupont-Roc, Haroche, & Cohen-Tannoudji, 1969;

Kastler, 1973; Ledbetter, Savukov, Acosta, Budker, & Romalis, 2008).

2.2 | Scanner-casts

As a basis for both the simulated and empirical experiments, we used

the array geometry as defined in (Boto et al., 2017). Briefly, this relies

on 3D printing to construct an individualised helmet containing a sen-

sor array positioned over the subject's sensory motor cortex (Figure 1,

for more details, see Boto et al., 2017). As the scanner-cast was built

directly from the subject's MRI, the location and orientation of the

cast with respect to the brain anatomy was known to within ±3 mm

and ± 5� (conservative estimates based on how far the cast could be

manipulated whilst on the subject).

2.3 | Variations in sensors orientations and locations

To assess whether we could derive the correct sensor geometry based

on the OPM data, we perturbed the sensor array in two ways. First, we

randomly perturbed the orientation of each sensor independently within

the OPM array. For each sensor, the axis of the perturbation (roll, pitch

or yaw in x, y or z) was selected randomly and these perturbations were

moved in 2.5� steps between −20 and +20� (Figure 1b). Second, we

perturbed the sensors either in a one-dimensional (1D arc around the

head from −20 to 20 mm (Figure 1c) or within a 3D volume of

40 × 40 × 40 mm3 (see Metropolis section). For each perturbation, we

then computed a forward model, estimated the most likely cortical cur-

rent distribution, and obtained a Free energy value (see next section).

2.4 | Source reconstruction

We used an empirical Bayesian framework to estimate the underlying

cortical current flow given each possible forward model. For a set of

MEG signals, the estimation of the current flow J involves the compu-

tation of an ill-posed inverse problem, in which the relation between

sources and MEG data can be expressed through the general linear

model (Dale & Sereno, 1993): Y = LJ + ϵ; where Y 2R Nc ×Ntð Þ are the

measured MEG data with Nc channels and Nt time samples affected

by zero mean Gaussian noise ϵ=N 0,Qϵð Þ,ϵ2R Nc ×Ntð Þ, and the noise

covariance Qϵ 2R Nc ×Ntð Þ. J2R Nd ×Ntð Þ is the current flow due to Nd

current dipoles distributed across the cortical surface, with prior

Gaussian assumptions J = N(0, Q). Q2R Nd ×Ndð Þ is the source level

covariance matrix. The gain matrix L2R Nc ×Ndð Þ (commonly known as

the lead-field matrix) contains a model of the magnetic fields that

would be measured at each sensor in response to a current source of

unit amplitude within the cortical surface.
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We adapted the framework presented in López et al. (2012) to

explore across the perturbed arrays. Briefly, with each perturbed array

a new gain matrix La (forward model) was computed using the SPM12

software package (http://www.fil.ion.ucl.ac.uk/spm/) using predomi-

nantly the single shell forward model (Nolte, 2003), although we also

made use of the single sphere model (Hämäläinen & Sarvas, 1987).

For uninformative priors, the Maximum-likelihood solution to the

inverse problem reduces to:

Ĵ=QLTa Qϵ + LaQL
T
a

� �−1
Y ð2Þ

where each lead field La can be computed based on the sensor and

volume conductor geometry. This means that the sensor- and source-

level covariance priors are critical to estimate the source amplitudes J.

As such, we assume the sensor noise to be homogenous across sen-

sors and independent (see Section 4), i.e., Qϵ = λ1I, with λ1 a

regularisation parameter. For the source level prior covariance, we use

a weighted covariance estimate based on an empirical Beamformer

prior (based on the sensor covariance). This Empirical Bayes

Beamformer (EBB; Belardinelli, Ortiz, Barnes, Noppeney, & Preissl,

2012) makes a direct estimate of the source level covariance based on

the assumption that there are no zero-lag correlated sources. Empiri-

cally, we used all the available MEG channels and the 0–300 ms

(2–80 Hz) post-stimulus period in each data set for the inversions: the

13 OPMs and the 275 sensors in the SQUID data.

2.5 | Free energy as objective function for model
selection

In this work, we use the Free energy to score competing source

reconstructions based on different sensor locations and orientations

(modelled through different La models). That is, reconstructions of the

same data but with different sensor configurations, each providing an

associated Free energy that can be compared across geometries

(Henson, Mattout, Phillips, & Friston, 2009). For a model La associated

with a given sensor location and orientation, Free energy Fa can be

expressed as a trade-off between accuracy and complexity:

Fa =Accuracy að Þ−Complexity að Þ ð5Þ

The accuracy is expressed as:

Accuracy að Þ= Nc

2
trace CYC

−1
a

� �
−
Nc

2
log Caj j−NcNt

2
log 2πð Þ ð6Þ

where CY = 1
Nc
YYT the data-based sample covariance matrix, Nt is the

number of samples, and j�j is the matrix determinant operator. When

searching for the optimal geometry, the MEG data do not change; so,

the accuracy of the model a mainly depends on the model-based sam-

ple covariance matrix computed as Ca =Qϵ + LaQL
T
aNt.

In the EBB algorithm, the complexity term depends on the hyper-

parameters λ that provide a trade-off between the sensor noise

Qϵ = λ1INc , and the Beamforming prior Qa = λ2Γ, with Γ being the

beamforming prior:

Complexity að Þ= 1
2

λ̂a−ν
� �T

Π λ̂a−ν
� �

+
1
2
log ΣλaΠj j ð7Þ

The prior and posterior distributions of the hyperparameters are

considered Gaussian: q(λa) = N(λ; ν, Π−1) and p λað Þ=N λ̂a,Σλa

� �
, respec-

tively (where λ̂a and Σλ are the posterior mean and covariance of the

hyperparameters for a model a).

We used the standard SPM implementation of this algorithm with

non-informative mean and precision (ν and Π) by casting these terms

as identity matrices scaled close to zero mean and with very low pre-

cision respectively, to provide a non-informative prior.

2.6 | Metropolis search and Bayesian model
averaging

Free energy provides a metric to judge between different sensor

geometries but a systematic search over the possible space of geome-

tries would be extremely time-consuming. We, therefore, chose the

Metropolis search (Gelman, Carlin, Stern, & Rubin, 2000) to deal with

the possibly high non-linear non-convex search space. The metropolis

search is an optimisation strategy that follows a Markov chain with

variable step given a probability distribution centred on the last step.

Following the adapted Metropolis search strategy proposed in López

et al. (2012), the parameters of the Markov chain are updated to fol-

low increasing Free energy values, but decreases are also allowed to

avoid local maxima. The detailed version used here is presented in

Appendix A.

Although the metropolis search provides a single global maximum,

the sensor geometry at this point may have very similar model evi-

dence to geometries nearby. The use of Bayesian model averaging

(BMA) allows us to combine the estimates from all geometries in a

principled way. This adds robustness to the solution (as it is no longer

based on a single geometry) and allows us to directly compute confi-

dence bounds. With this framework, we are thus able to make infer-

ences about the array location with the Metropolis search, and

inferences about functionality by using BMA across a range of array

locations. As such,

p JjYð Þ≈
X
k

p JjY,hkð Þp hkjYð Þ ð8Þ

where p(J| Y, hk) is the distribution of the sources obtained with model

hk. This is evaluated using

p JjYð Þ≈
X
s

p JjY,hsð Þ ð9Þ

where hs are the posterior samples produced with Metropolis search

algorithm. The BMA implementation used here is detailed in Appen-

dix B.
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2.7 | Task

We used empirical data from a somatosensory evoked response para-

digm, which involved electrical stimulation of the subject's left median

nerve. There are three data sets collected from the same subject and

using the same paradigm used in this article:(a) data collected with a

SQUID system using a head-cast, (b) using multiple repeats of the

same experiment with a single OPM channel at different locations,

and (c) using an array of 13 OPM channels operating simultaneously.

Briefly, we performed a median nerve electrical stimulation by

applying a series of 500 μs duration current pulses to two gold elec-

trodes placed on the subject's left wrist. The current was applied using

a Digitimer DS7A constant current stimulator, and the amplitude was

increased until a visible movement of the thumb was observed upon

stimulation. For the single channel OPM data, the ISI was 1.9 s. For

the multi-channel OPM data and the SQUID data, the ISI was 0.5 s. In

all cases, we used data sets based on the average of 100 trials. The

OPM data sets were based on left median nerve stimulation whereas

in the SQUID-head cast data the right median nerve was stimulated.

All recordings were carried out inside a magnetic shielded room

comprising two layers of mu-metal and one of aluminium. The single

OPM measurements made with a sequential sampling of scanner-cast

slots using a single OPM channel are explained in Boto et al. (2017).

The multi-channel recording with the 13 sensors located in the same

slots of the scanner-cast was performed with the subject sitting

upright. The same scanner-cast of Figure 1 was used for both sets of

OPM recordings. The single channel OPM data were acquired simulta-

neously with SQUID data (from a 275 channel CTF instrument), and

the magnetometer reference channels within SQUID system (remote

from the subject) and the time-derivatives of these channels were

used as an environmental noise reference set and regressed out of

the OPM data on a trial by trial basis (as described in Boto et al.,

2017). For the multi-channel OPM recording, we used a similar proce-

dure but used four OPM reference sensors displaced from the main

array as reference channels. In the multi-channel recordings, in which

the head was free to move, we used the set of bi-planar nulling coils

positioned either side of the subject in order to minimise the ambient

field around the subject's head (Holmes et al., 2018). Although we did

not explicitly measure head movement, we estimated it to be 2 cm

based on the field changes (0.1 nT, that could not be explained by the

fixed reference set) and the known field gradients (Holmes et al.,

2018) within the room.

SQUID recordings were performed using the 275 channel system

in third gradient configuration (i.e., with factory-set linear weighting

from the noise reference array).

2.8 | Simulated data

We used the SPM12 software package to simulate single trial OPM-

MEG data sets and to perturb the sensor geometries within the empir-

ical OPM and SQUID recordings. The OPM simulated trials had a 1 s

duration consisted of 13 channels (Nc = 13). We simulated a single

10 Hz sinusoidal source located in the somatosensory cortex (at 46,

−25, 60 mm in MNI space) with a dipole moment of 10 nAm. We then

added the Gaussian white background noise of standard deviation

100 fT RMS to the sensor level data.

3 | RESULTS

Figure 2 shows the averaged time courses from single channel OPM

data (Figure 2a), multi-channel data (Figure 2b), and SQUID data

(Figure 2c); time zero corresponds to the median nerve stimulation

impulse. The expected N20m evoked response is visible with the

three experiments (red-dotted line). Note the scale changes in the

axes with the OPM signals being 5–10 times larger in magnitude. As

expected, the magnetic fields measured with the OPMs have a stron-

ger response due to their proximity to the scalp; despite this signal

magnitude advantage, however, the relative SNRs (at sensor level) are

comparable across all three experiments (Figure 2d), this is partly due

to the greater intrinsic noise of the OPMs (a factor of 2) and possibly

also because much of the variability in the signal is of neural origin.

3.1 | Analysing the effect of the head model

In order to demonstrate the approach, we first used different volume

conductor models to explain the single channel OPM data as geomet-

rical distortion was added. Here the data remain constant allowing us

to directly compare models using Free energy; in the subsequent sec-

tions, we will be examining changes of relative free energy (with dif-

ferent sensors and data) and so we also show these here for

comparison. Figure 4 shows how Free energy varies as a function of

added geometrical noise under different volume conductors for the

single channel OPM data. We added orientation (a,b) and position c,d)

error to the array with a single spheres (Hämäläinen & Sarvas, 1987)

fit to the global inner-skull surface; or fit to the local inner-skull curva-

ture proximal to the right somatosensory cortex; and single shell

(Nolte, 2003) models. Left panels show absolute free energy. Right

panels show relative (normalised to maximum) free energy. Figure 3a

shows that the models with peak Free energy (or most likely models

given the data) have zero orientation error (although the algorithm

has no knowledge of true orientation) and that the most likely head

model (with the highest Free energy) is the single-shell. These results

are in accordance with Stenros, Hunold, and Haueisen (2014), in that

the single shell model outperforms the spherical ones. That said, we

were surprised to see such a clear distinction with a relatively small

number (13) of sensors. The same data is presented in Figure 3b in

terms of relative Free energy in order to provide an analogue to the

sections which follow (in which absolute Free energy values cannot

be compared). In this case we look at how much the sensor geometry

could be degraded before the evidence for the data degrades signifi-

cantly. The better model (in this case single shell) degrades more rap-

idly in the presence of geometrical error. Figure 3c,d show the same

(absolute and relative) effects for displacements of the sensor array.

The single shell model is consistently the most likely, but it is notable

that even the simpler volume conductor models could be used to
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estimate array geometry; although with marginally less accuracy

(e.g., note the local sphere model peaks 2 mm offset from zero in

Figure 3d).

3.2 | Adding sensor orientation error

In the first instance, we wanted to examine the sensitivity of our

models to sensor orientation error and gain error. The logic being that

sensitivity to error in the geometry is a prerequisite for any scheme

seeking to optimise geometry. We also considered gain error to

account for other un-modelled sensor imperfections due to calibration

or cross-talk issues. Individual sensor orientations were perturbed by

orientation errors between −20 and 20� in a random direction around

their true orientation in steps of 2.5�. A total of 30 models were

obtained for each orientation error (i.e., each model has all channels

perturbed in a different random direction about their true axis by this

amount). Additionally to orientation error, we perturbed the models

with gain errors of 5 and 20% (Figure 4a).

Figure 4a shows the change in Free energy as a function of chan-

nel orientation error for simulated data. The solid line shows simula-

tions with an idealised OPM sensor array. Note that the Free energy

peaks at zero error where the measured data can be most simply rec-

onciled with the single generating source. For Free energy values

(on a log scale), −3 corresponds to models that are 20 times less likely.

In the ideal sensor case, we are, therefore, able to reject sensor geom-

etries with more than ±4� of intrinsic error as unlikely. Also shown are

the effects of additional random gain error (5 and 20%; red triangles

and yellow circles, respectively) which serve to blunt the orientation

perturbation curves. Adding 20% gain error to the sensors means that

it is now only possible to confidently reject sensor geometries with

greater than ±12� orientation error, although the most likely sensor

geometry remains the true geometry. Figure 4b shows the same ori-

entation perturbation curves but based around real measured data

from the three MEG systems. All three data sets are also sensitive to

perturbations of the geometry of the measurement sensors and sug-

gest that the most likely orientation is the true one. The model used

to describe the SQUID data is sensitive to orientation error of less

than ±6�, the models used to describe the concatenated single chan-

nel OPM data being sensitive to orientation error of ±15� and the

model used to describe the multi-channel OPM data is sensitive to

orientation error of ±20�. We speculate (see also Section 4) that the

difference between the single and multi-channel system OPM curves

is that the concatenated single channel system is effectively a more

homogenous system than the multi-channel system. The multi-

channel system will suffer from sensor cross talk and other factors

(such as calibration, different intrinsic noise levels, etc.) of between-

sensor variability. However, the difference between the SQUID and

OPM curves ran counter to our expectation, which was that the OPM

models would have the higher sensitivity to perturbation because of

the marginally higher SNR (Boto et al., 2016; Hillebrand & Bar-

nes, 2003).

3.3 | Movement of sensor array

The other scenario we considered was a rigid array of sensors of

known relative geometry attached to the scalp. In this case, the goal is

to estimate the array location (as fixed whole) relative to the subject's

anatomy. This could be locating a small array of OPMs strapped to the

(a) (b)

(c) (d)

F IGURE 2 Empirical data. Sensor-
level evoked responses for median nerve
stimulation recorded with OPMs and
SQUIDs. The N20m evoked response is
highlighted (red dotted). (a) Single channel
OPM used to sequentially record
responses at the 13 different locations
across the scanner-cast, treated as a
simultaneous measurement. (b) Multi-
channel OPM data with 13 channels in
the same scanner-cast. The field maps
computed for the single and multichannel
arrays are embedded in (a) and (b).
(c) Conventional SQUID recordings using
head cast with the 13 most highly
correlated channels to OPM channels
highlighted in red. Note the scale changes
between sensor types. (d) SNR calculated
for the three experiments (using just the
13 SQUID channels). Where SNR = maxiP

preY
2
i

h i
=
P

postY
2
i

h i� �
: OPMs, optically

pumped magnetometers; SQUIDs,
superconducting quantum interference
devices [Color figure can be viewed at
wileyonlinelibrary.com]
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scalp surface or estimating the position and orientation of a generic

helmet (e.g., bicycle helmet) containing the sensors. We begin by dem-

onstrating the change in Free energy, as the sensor array is moved in

an arc about its true position. Figure 5a shows the effect of this

movement on simulated OPM data. Again, the most likely array loca-

tion is the true location, and the 95% confidence bounds on this loca-

tion are ±10 mm. As gain error is increased, these error bounds

become larger.

(a) (b)

(c) (d)

F IGURE 3 Estimating sensor optimal sensor geometry using different volume conductor models with global sphere (red circles), local sphere
(yellow triangles), single shell (blue solid), based on single channel optically pumped magnetometers (OPM) data. Top panels (a,b) show addition or
orientation error to individual sensors; lower panels (c,d) show addition of position error to the sensor array. The Free Energy peaks at zero
(corresponding to the true sensor geometry) for the single shell and global sphere. Left panels (a,c) show absolute free energy differences
between models. The most likely geometry is that of the scanner-cast (at 0) and the most likely volume conductor, given the data, is the single
shell. Right panels (b,d) show the same data normalized to maximal Free energy (the format used later in article when comparing models fit to
different datasets)—in this case the width of the peak (or the amount of geometrical noise that could be added to the sensor before a significant
degradation in the model) is used to quantify performance. In this case note that the poorer models (the sphere models) are less sensitive to
added geometrical noise [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 4 Orientation perturbation curves. Sensitivity of model fit (Free energy metric) to errors in sensor orientation: for perfect sensors
(blue solid), sensors with gain errors of 5% (orange triangles), and gain errors of 20% (yellow circles). Adding gain error to the data results in
broadening of posterior estimate on sensor orientation. Solid black line (F = −3) is the point at which the models become 20 times less likely than

the best model. (b) Sensitivity of model fit to orientation errors added to real sensor recordings: for SQUID data (blue solid); single channel OPM
data (orange triangles) and multi-channel OPM data (yellow circles) [Color figure can be viewed at wileyonlinelibrary.com]

DUQUE-MUÑOZ ET AL. 7

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Figure 5b shows the same (software) displacement of the sensor

array used to collect real OPM and SQUID data (i.e., error was added

to the sensor array locations from a real data recording, and a search

across a range of array locations was performed with the algorithm

being agnostic to the true array location). Again, we were encouraged

to find that all models to explain these real data exhibit maximal

model evidence at the true array location, although this location is

unknown to the algorithm. Here the single channel OPM data and

SQUID systems are broadly in accord. For these data sets, models

perturbed by more than 5 mm are significantly less likely. In contrast,

the OPM multi-channel recordings have a much broader tuning curve

and are relatively insensitive to models perturbed by as much as

10–15 mm.

3.4 | Model optimization

The practical problem is now to demonstrate how it is possible to

locate a rigid sensor array with only approximate positional informa-

tion based only on the field measurements, a volume conductor model

and the cortical geometry. We did this using the data from the single-

channel OPM array in two ways. First, using a simple 1D search pass-

ing over the known location of the sensor array. Second, by assuming

an initial uniform uncertainty over a 64 (4 × 4 × 4) cm3 volume a priori

knowledge of sensor array location in any dimension.

3.5 | Optimisation in one dimension

We used the Metropolis search algorithm detailed in the Appendix.

Four chains were simulated with single axis movement in which the

algorithm had no information of the true array position respect to the

brain, that is, flat priors on location within σ = 40 mm. The Metropolis

search was performed with 600 iterations per chain in four chains.

Figure 6a shows the change in the position of the array as it moved

through an arc of 18 mm. The initial value is represented with a green

point. Through each iteration of the Metropolis search (black points),

the position changes (via model comparison Figure 6b) until conver-

gence (blue point). The error drops with each iteration (Figure 6c) and

after 250 iterations, the algorithm oscillates near to the true position.

Figure 6d shows the prior and posterior estimate of the array location.

The figure shows that the model estimate of the array position was

~0.6 mm from our estimate of location based on the scanner-cast.

The uncertainty (95%) on this geometry estimate is also less than

±1 mm (panel d).

3.6 | Optimisation in three dimensions

Although the optimization in 1D provides a clear illustration of the

Metropolis process, it is not practically useful since positional uncer-

tainty will rarely be constrained to lie in one dimension. To show how

this method can be generalised to higher dimensional spaces we used

the same Metropolis procedure but based on the assumption that

sensor location was only known to within an approximate 3D volume

of 4 × 4 × 4 cm3. Figure 7 shows the prior cubic volume for the cen-

tral sensor in the array (blue); alongside the posterior confidence inter-

val (black ellipsoid) and the scanner-cast estimate of this sensor

location (red). The Metropolis search and BMA estimated the poste-

rior mean array position to be 4 mm displaced from that we expected

from the scanner cast. The posterior confidence volume on this loca-

tion was 0.1019 cm3, that is, a 600-fold reduction on the prior

volume.

It is also possible to view the consequence of the refinement of

sensor position at the source level. Estimating the source level activity

based on our prior knowledge of sensor position (4 × 4 × 4 cm3), gives

a distribution of (of peak locations) than can be described by the 95%

by the confidence ellipsoid (blue) in Figure 8. With the BMA step, we

are able to pool estimates from across a range of optimisation steps

and weight them by their model evidence. This gives a degree of

robustness to the process and importantly provides us useful poste-

rior estimates of the head location and an estimation of current distri-

bution with a confidence interval. Also shown in Figure 8 is the

(a) (b)

F IGURE 5 Effect of sensor array displacement on goodness-of-fit, simulated and real data. (a) Simulated data. Sensitivity of Free energy to
errors in sensor array position: for perfect sensors (blue solid), sensors with gain errors of 5% (orange triangles), and gain errors of 20% (yellow
circles). Adding gain error to the data results in subtle broadening of posterior estimate of the sensor array position. (b) Sensitivity of Free energy
to array position (ground truth based upon head and scanner-casts estimates) added to real sensor recordings: for SQUID data (blue solid); single
channel OPM data (orange triangles) and multi-channel OPM data (yellow circles) [Color figure can be viewed at wileyonlinelibrary.com]
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posterior confidence volume on the peak source location after the

BMA over sensor geometries (black). The model optimization reduces

the confidence volume on peak location from 34.90 cm3 to

0.05654 cm3. The centre of the optimised confidence volume is 5 mm

from the source estimate when using the scanner-cast location as gro-

und truth (red dot).

4 | DISCUSSION

OPM sensors are rapidly decreasing in size (Alem, Benison, Barth,

Kitching, & Knappe, 2014); and lightweight, multi-channel wearable

arrays will soon become of clinical use (Boto et al., 2018; Tierney

et al., 2018). To date, we have maximised the utility of OP-MEG data

for neural source reconstruction by minimising sensor position uncer-

tainty a priori using scanner casts (see Boto et al., 2017). Here we

have developed a framework, which will allow us to compare between

different OPM device and array models. The fundamental observation

is that better models will degrade more rapidly as simple geometrical

errors are introduced. We show how we can also exploit this frame-

work to recover the true sensor geometry based on the recorded

MEG data and a subject specific head model. This approach could

reduce the dependence on rigid, time-consuming and somewhat

intimidating 3D printed scanner casts, and potentially gives way to a

more EEG-like system that is flexible, comfortable, and easier to use.

Here, we again showed how model evidence is a useful metric to

judge not only the quality of the source reconstruction (Friston et al.,

2008; López, Litvak, Espinosa, Friston, & Barnes, 2014) but also the

quality of the forward model (Henson et al., 2009; López, Valencia,

Flandin, Penny, & Barnes, 2017). Model evidence is however data-

dependent and cannot be compared across data sets or MEG systems.

Here, we introduced the idea of quantifying how sensitive a given sys-

tem is to geometrical perturbation. We demonstrated how the width

of these perturbation curves could be used to compare different MEG

systems or MEG system architectures. Other strategies have been

proposed, Lau, Yam, & Burneo, 2008 compared optimization strate-

gies for sensor spacing using the condition number of the gain matrix

as a cost function; whereas Eichardt et al., 2012 proposed a modified

condition number to optimise the source grid for imaging magnetic

nano-particles. Other authors have focused on metrics of dipole local-

ization error (Vrba & Robinson, 2002), or point spread functions (Boto

et al., 2016; Livanainen, Stenroos, & Parkokonen, 2017).

(a) (b)

(c) (d)

F IGURE 6 Optimisation in one dimension. (a) Movement of the array through each iteration of the Metropolis search, the array moves
through an arc in a 2D plane; the initial value is in 18 mm of error (green point), and evolves through each iteration (grey/black points) until the
final estimate (blue point). (b) Evolution of the Free energy through each iteration. A first model is computed with the array centred at the initial
value (green point), then the inverse problem is solved and a Free energy value is computed. The position of the array is updated through each
iteration of the metropolis search until convergence (black points). The blue point represents the final position of the array while the red point
represents the true position (as estimated from the scanner-cast). (c) Evolution of the distance error from the scanner-cast location, this error is
unknown to the algorithm. (d) Prior and posterior distributions of the array location (based on MEG data and uniform priors); zero represents the
estimated array position based on the scanner-cast [Color figure can be viewed at wileyonlinelibrary.com]
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An important use of this method will be to refine the models of

the OPM sensors themselves. For example, the single channel OPM

measurements were considerably more sensitive to orientation error

(Figure 4b) and position (Figure 5b) than their multi-channel counter-

parts. We would expect that as our models of the multi-channel array

improve (by accounting for cross talk, gain inconsistencies, etc.) we

will observe a tightening of these perturbation curves. At the moment,

we can think of several possible reasons why the models of multi-

channel data are suboptimal (Figure 4b). First, the multi-channel sys-

tem will suffer from cross talk which we estimate to be around 3%

(Boto et al., 2018). Second, we made the assumption that the sensor

noise covariance matrix Qϵ is a scaled identity matrix (i.e., same noise

F IGURE 7 Optimisation in three
dimensions (sensor space). The dotted
cube shows the original 4 x 4 x 4 cm3

uncertainty on array location. The 95%
confidence ellipsoid (black) shows the
posterior location of the central sensor
(and hence the whole rigid array). The
location of the central sensor based on
the scanner-cast information is show as a
red dot. Lower right panel is a magnified
sagittal view [Color figure can be viewed
at wileyonlinelibrary.com]

F IGURE 8 Optimisation in three
dimensions (source space). Source
estimates with confidence volumes
shown in three orthogonal views. The red
sphere represents the peak of the
reconstructed neural activity when
reconstructed with sensors at the
scanner-cast locations. The initial sensor
uncertainty gives rise to a prior
distribution on the peak of the electrical
activity (blue ellipsoid; based on
reconstructions over 30 sensor locations
distributed randomly across the prior
volume). The black ellipsoid is the
posterior estimate of electrical activity
after BMA. The estimated source location
when the sensor array location is

unknown is 5 mm from the peak source
location as estimated using the scanner-
cast information [Color figure can be
viewed at wileyonlinelibrary.com]
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in all sensor). For the single (repeated) sensor measurements, it is rea-

sonable to assume so, but we estimate the white noise floor (RMS

fT/√Hz) across the multi-channel array varied by around 16%.Third,

the multi-channel OPM measurements took place with the subject sit-

ting and the head unconstrained. Although we used a bi-planar coil

set to minimise fields and field gradients around the head, there was

an average of 0.1 nT change in field across all sensors during the mea-

surement (which could not be explained by the static reference sen-

sors) this would give rise to changes in the calibration (applied field

vs. output voltage) of the order of 0.1%. Here we used the Empirically

Bayesian Beamformer (Belardinelli et al., 2012) for source reconstruc-

tion. This formulation uses a beamformer estimate of source power as

the prior for the subsequent empirical Bayes optimization. This

beamformer estimate (of the prior) depends on the inversion of a

data-covariance matrix, which we know can be optimised through

regularisation (Engemann & Gramfort, 2014; Woolrich, Hunt,

Groves, & Barnes, 2011). In this case, we used a fixed regularisation of

zero which could give rise to sub-optimal source covariance priors

(the condition numbers for the single and multi-channel OPM systems

were 40.31 and 4.62 × 104 respectively).

Although all of the data were collected from the same individual

wearing either scanner or head cast, there were however differences

in the recording paradigms. First, the SQUID data were collected

based on right rather than left median nerve stimulation. Secondly,

the ISI for the multi-channel OPM and SQUID measurements was

0.5 s, in contrast to 1.9 s for the single channel OPM data which we

know will influence the evoked response components profile

(Wikström et al., 1996). We, therefore, cannot rule out that there is

some disparity in how well the data are modelled at the source level,

which could in turn change the steepness of the geometrical tuning

curves. We also tested the possibility that the SQUID tuning curves

to position and orientation might benefit from the 5 cm baseline axial

gradiometer configuration, but found negligible theoretical difference.

The problem of uncertain sensor placement is not specific to OPM

MEG. Dalal, Rampp, Willomitzer, and Ettl (2014) have shown that

inaccuracies of EEG electrode coordinates form an error term in the

forward model and ultimately in the source reconstruction perfor-

mance. This error arises from the combination of both intrinsic mea-

surement noise of the digitization device and manual co-registration

error when selecting fiducials on anatomical MRI volumes. OPMs

pose additional challenges over EEG in that neither orientation nor

position will be known in a more flexible set-up. These problems will

be yet more acute for the OPMs because the sensitivity to modelling

errors is highly dependent on SNR (Boto et al., 2016; Dalal et al.,

2014; Hillebrand & Barnes, 2003).

In this study, we have approximated the OPM as a point measure-

ment system. In reality, the volume of the gas exposed to the laser

light has maximal dimension of 3 mm. This distance is relatively large

given that the OPM sensors may now sit <20 mm from the brain. The

addition of appropriate integration points within this volume would

be a useful avenue for further study.

In addition to more precise sensor characterisation, the increased

spatial sampling and sensitivity offered by OPMs will certainly

demand more complex head models. Boto et al. (2016) already

showed that small gain errors can forsake all potential advantages of

OPMs over SQUIDs. Here we have shown that the Nolte single shell

model consistently performed better than single and multi-sphere

counterparts. As the technology matures, with larger sensor arrays

and longer recording times, we will expect to move from realistically

shaped three shell models Stenros et al. (2014) to the inclusion of

more complex models with cerebrospinal fluid, skull spongiosa and

conductivity anisotropy (Vorwerk et al., 2014). We should note that

the method is not simply bounded by the forward model; we know

from previous work that the inversion assumptions will also constrain

the accuracy of the solution (Stevenson et al., 2014; López et al.,

2017; Little et al. 2018).

We have demonstrated how the spatial parameters (position and

orientation) of a sensor array can be physically characterised based on

magnetic fields derived from the human brain. In addition to removing

the dependence on a scanner-cast, we can also dispense with tradi-

tional co-registration procedures and the associated subjective identifi-

cation of scalp landmarks. The co-registration here is performed with

respect to inner skull anatomy (cortex and inner skull boundary) and

unlike typical co-registration procedures, the geometrical uncertainty is

directly factored into the source estimate giving realistic confidence

bounds (see also López et al., 2012). For example, the experimenter

needs only to specify that the array is approximately above the right

ear (with a 64 cm3 volume) and the algorithm is able to reduce this

uncertainty by 600-fold to 0.1019 cm3. One issue, which remains to be

tested is how well the estimate of array position will generalise across

the scalp surface. It may well be that the method is challenged in

regions where the forward model is poorly specified (e.g., frontal lobes)

or where the generative model is complicated (e.g., the cerebellum).

Here we used only a three parameter optimization of a fixed array

but the algorithm directly generalises to optimization over much larger

parameter spaces (for example when only the topology of the array is

known). The main consideration being the additional amount of data

required. Importantly, as OPM devices are becoming wearable, we

can expect subjects to tolerate the scanning environment for consid-

erably longer periods, we will likely have far more data available with

which to perform such optimizations. This would mean that the physi-

cal characterisation of the sensor array and optimization of forward

models could be performed on data orthogonal to that under-scrutiny.

For example, using stationary parcellations of resting-state data

(Martínez-Vargas et al., 2016). Additionally, we have measurements of

magnetic fields tangential (rather than radial) to the cortical surface

that we still have not used (Iivanainen et al., 2017).

We made use of the scanner-cast here in order to provide some

ground-truth on sensor position and orientation. However, some

skew in the position of the cast on the head is possible (we estimated

this to be around ±3 mm, ±5�). We do not know therefore whether to

attribute the final discrepancy (4 mm) between scanner-cast measure-

ments and algorithm estimates position to the cast or the algorithm.

However, we note that the algorithm gives us posterior confidence

bounds on the array location of better the 0.1019 cm3. We see one
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use of this algorithm is to further refine our geometrical estimates

from the scanner-cast.
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APPENDIX A: METROPOLIS SEARCH

Based on the Metropolis algorithm, we adapted the approach pres-

ented in (López et al., 2012) to estimate the true location of the sen-

sor array with respect to the brain:

1. Select a random sample from the prior over possible sensor geom-

etries h0~p(h) and solve the EBB reconstruction for that geometry.

This returns a Free energy value F(h0).

2. Use a Gaussian distribution to obtain the new array position near

to the position computed on the previous step hk − 1 : h
0
~N(h

0
;

hk − 1, σ
2I).

3. Perform EBB reconstruction on the new location of the array and

calculate the ratio r with the new Free energy values:

r =
p Yjh0� �

p h0
� �

p Yjhk−1ð Þpðhk−1Þ
= exp F h0

� �
−F hk−1ð Þ� � p h0

� �
p hk−1ð Þ

The ratio is given by the comparison of log evidence between the

previous reconstruction p(Y| hk − 1), and the proposed one p(Y| h
0
),

where each is also weighted by the prior. A ratio larger than one

means that the proposed geometry h
0
has more model evidence than

the previous one.

4. Take a decision: if r > 1 (the new step has higher Free energy),

then the new value is higher and accepted hk = h
0
; if r < 1,

then the new value is compared with a random sample

obtained from the uniform distribution: β~U(0, 1). If β < r the

parameters are accepted, or rejected otherwise: hk = hk − 1. All-

owing such transitions enables the algorithm to escape from

local maxima.

5. Return to the second step and repeat until convergence. After an

initial burn-in period (first half of data samples), the samples

together comprise an approximate posterior distribution over the

array locations.

APPENDIX B: BAYESIAN MODEL AVERAGING

The following BMA algorithm is used to provide an estimate of the

posterior mean Ĵ. It was set-up for k = 10,000 iterations.

a. For the current iteration k, pick a random array geometry from the

posterior distribution hk~p(h| Y)

b. For the selected array geometry hk (i.e., its corresponding gain

matrix), compute the estimated values of the neural activity Jt, and

its posterior covariance Σk with Equation (2).

c. Obtain a normal random variable with mean Ĵk and covariance

ΣJð Þk : ĴteN ĴtjĴk , ΣJð Þk
� �� �

and save.

d. Update k and go back to step a. until k = 10,000.

e. Obtain the mean of the random variables. Ĵ =
P

ĵk=k
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