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Abstract

We study diagrammatic reducibility for the relative group presentations Rn(k, l, ε) = 〈H,x |
t3xkt2xε(k+l)〉 where H = 〈t | tn〉, n ≥ 7, k ≥ 1, l ≥ 0 and ε = ±1. We apply our results
to classify finiteness for the group Gn(k, l, ε) defined by Rn(k, l, ε) apart from the two
exceptional cases (n, k, l, ε) = (7, 2, 1,−1) and (9, 1, 1,−1).
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1 Introduction

In this paper we consider the group presentations

Pn(k, l, ε) = 〈x, t | tn, t3xkt2xε(k+l)〉

where n ≥ 4, k ≥ 1, l ≥ 0 and ε = ±1. Our motivation for studying Pn(k, l, ε) and the groups
Gn(k, l, ε) they define is based principally on the work of Bogley and Williams in [8] where they
consider n = 4 and n = 6; and also to some extent on the work of Pride in [20] that applies to
n = 5. Indeed, if we consider finiteness then necessary and sufficient conditions for Gn(k, l, ε)
being finite are given for n = 4 and n = 6 in [8] and for n = 5 in [20] so it is natural to consider
what occurs when n ≥ 7 and it is this we do here. Combining our results with those from [8]
and [20] yields Theorems 1.2 and 1.3 below which show that finiteness has been decided in all
but two outstanding cases.

A further property we study is the following. The presentation Pn(k, l, ε) can be considered as
a relative group presentation

Rn(ε) = Rn(k, l, ε) = 〈H,x | t3xkt2xε(k+l)〉

where H = 〈t | tn〉. Relative presentations have been the subject of much study and the reader
is referred to [5]; in particular, when the relator, as in this case, has free product length four the
question of asphericity has been considered [1-4,6-9,11,13,14,17,21].

Following [5] we define a relative presentationR to be (weakly) diagrammatically reducible if every
connected (strictly) spherical picture over R contains a dipole. See Section 2 for a discussion
of these terms, although we note here that (weakly) diagrammatically reducible for R coincides
with (weakly) aspherical as defined in [7] and, since the relator is not a proper power, implies
(weakly) aspherical as defined in [5] ( see [5, Theorem 3.4] ).

Necessary and sufficient conditions for diagrammatic reducibility of R4(k, l, ε) and R6(k, l, ε) are
given in [8, Theorem A]; and it can be deduced from [7] and [20] (or see [5, Theorem 4.5]) that
R5(k, l, ε) is never diagrammatically reducible. This again motivates us to consider n ≥ 7. Our
main result is the following, the proof of which forms the bulk of this paper.

Theorem 1.1 If any of the following conditions holds then Rn(k, l, ε) is weakly diagrammatically
reducible:
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(i) ε = 1, l ≥ 1 and n ≥ 7;

(ii) ε = −1, l ≥ 1 and either n = 11 or n ≥ 13;

(iii) ε = −1, l ≥ 1, l 6= k and n ∈ {9, 10, 12};
(iv) ε = −1, l ≥ 1, l 6= k, l 6= 2k, k 6= 2l and n ∈ {7, 8}.

Assume that one of the conditions of Theorem 1.1 holds. Then since the natural map from H to
Gn(k, l, ε) is injective for n ≥ 7 [16,18], it follows that Rn(k, l, ε) is diagrammatically reducible
and then that every finite subgroup of Gn(k, l, ε) is conjugate to a subgroup of H [7]. This fact
together with some preliminary results from Section 2 is used to prove the next two theorems.
We restate here that for the two theorems below, the cases n = 4 and n = 6 are dealt with in
[8] and n = 5 in [20] so this paper focuses on n ≥ 7. We mention further that Theorem 1.3(iv)
relies on Theorem 3.6 in [5].

Theorem 1.2 The group Gn(1) = Gn(k, l, 1) is finite if and only if one of the following conditions
holds:

(i) n = 4 and l = 0, in which case Gn(1) has order 8k;

(ii) n = 4, l 6= 0 and (k, l) = 1, in which case Gn(1) has order

4(2k + l)(2k+l + 1− 2k+1(
√
2)l cos(lπ/4));

(iii) n = 5 and (k, l) = 1, in which case Gn(1) has order 5(k5 + (k + l)5);

(iv) n = 6 and l = 0, in which case Gn(1) has order 12k;

(v) n = 6, l 6= 0 and (k, l) = 1, in which case Gn(1) has order

6(2k + l)(32k+l + 42k+l − 22k+l+1(
√
3)2k+l cos(lπ/6));

(vi) n ≥ 7, l = 0 and either k = 1 or (n, 5) = 1, in which case Gn(1) is cyclic of order 2kn.

When ε = −1 there are the exceptional cases G7(2, 1,−1) and G9(1, 1,−1) (also an exceptional
case in [13]) whose orders remains an open problem.

Theorem 1.3 Let Gn(−1) = Gn(k, l,−1) and assume that (n, k, l) 6= (7, 2, 1) or (9, 1, 1). Then
Gn(−1) is finite if and only if one of the following conditions holds:

(i) n = 4; l 6= 0 and (k, l) = 1, in which case Gn(−1) has order

4l(2l + 1− 2(
√
2)l cos((2k + 1)π/4));

(ii) n = 5, l 6= 0 and (k, l) = 1, in which case Gn(−1) has order 5((k + l)5 − k5);

(iii) n = 6, l 6= 0 and (k, l) = 1, in which case Gn(−1) has order

6l(3l + 4l − 2(2
√
3)l cos((2k + 1)π/6));

(iv) n = 7 and k = l = 1, in which case Gn(−1) has order 203.

The proof of Theorem 1.1 is given in Section 3; and the proofs of Theorems 1.2 and 1.3 are in
Section 4.

2 Diagrams and preliminary results

The reader is referred to [5] and [7] for definitions of many of the basic terms used in this section.
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2.1 Diagrams

The proof of Theorem 1.1(i) follows from [3, Theorem 1.1] so we consider only Rn(−1). Suppose
by way of contradiction that one of the conditions in Theorem 1.1(ii)-(iv) holds and that the
relative presentation

Rn(−1) = 〈H,x | t3xkt2x−(k+l)〉
where H = 〈t | tn〉, n ≥ 7, k ≥ 1 and l ≥ 1 is not weakly diagrammatically reducible, that is,
there exists a reduced connected strictly spherical picture P , say, over Rn(−1).

Recall that such a spherical picture is a finite collection of pairwise disjoint discs (called vertices)
in the interior of a disc together with a collection of pairwise disjoint simple arcs that meet the
vertices transversely in their end points; and, since it is spherical, the arcs do not meet the
boundary of the ambient disc. There is a well-defined labelling for pictures. In our case each
arc of P is equipped with a normal orientation and labelled by x; each oriented corner of P is
labelled ti where i ∈ {0, 2, 3}; reading the labels clockwise on the corners and arcs at any given
vertex yields t3xkt2x−(k+l) (up to cyclic permutation and inversion); and, given that P is strictly
spherical, the product of the sequence of corner labels read in an anti-clockwise traversal of any
given region of P yields the identity in the group H = 〈t|tn〉.
Now delete the boundary of P and let K denote the dual of P with the labelling of K inherited
from that of P . Then K is a strictly spherical diagram over Rn(−1) and observe that K forms
a tessellation of the sphere. Each oriented corner of K has label ti where i ∈ {0, 2, 3}; each
oriented edge has label x; the sum of the powers of t read around any vertex of K is congruent
to 0 modulo n; and the product of the sequence of corner labels and edge labels read in a
clockwise direction of any given region of K yields t3xkt2x−(k+l). The degree of a vertex v of K,
denoted d(v), is the number of edges of K incident at v. The degree of a region ∆ of K, denoted
d(∆), is the number of vertices of ∆ of degree > 2. If v is a vertex of K then l(v), the label of
v, is the cyclic word obtained from reading the corner labels at v in a clockwise direction and is
considered up to cyclic permutation and inversion. Moreover, l(v) = 1 in H for each vertex v.

We adopt the notation

axλ−1
1 x . . . xλ−1

k−1xbx
−1λkx

−1 . . . x−1λ2k+l−2x
−1

for t3xkt2x−(k+l). Therefore a = t3, b = t2 and λi = t0 = 1 (1 ≤ i ≤ 2k + l − 2). An example of
a vertex in P when k = 2, l = 1 is given in Figure 2.1(i); and the corresponding dual

region in K in Figure 2.1(ii). More generally, each oriented region ∆ of K is given (up to cyclic
permutation and inversion) by Figure 2.1(iii). For ease of presentation, when drawing regions
of K we omit the arrows and edge labels, the vertices of degree 2, use ā, b̄ to denote a−1, b−1

and use λ, λ̄ to denote λi, λ
−1
i where 1 ≤ i ≤ 2k + l − 2. For example there is (up to cyclic

permutation and inversion) one region of K of degree 3, and two regions of degree 4 and these
are shown in Figure 2.1(iv)-(vi). We will for example use the notation (u1, u2)-edge to denote
the edge between vertices u1 and u2 in Figure 2.1(v); using the corner labels we will also refer
to the same edge as an (a, b)-edge of the region.

The following assumptions can be made without any loss of generality.

(A1) K is minimal with respect to number of regions.

(A2) Subject to (A1), K is maximal with respect to number of vertices of degree 2.

Note that (A1) implies that there are no vertex sublabels of the form awa−1, a−1wa, bwb−1,
b−1wb, λiwλ

−1
i , λ−1

i wλi where w = 1 in H . For otherwise a bridge move [10] followed by
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Figure 2.1: vertices of P ; regions of K; bridge moves; and the star graph Γ

cancellation of inverse regions would yield a diagram over Rn(−1) with fewer regions. Note
however we allow λλ−1 or λ−1λ to be a vertex sublabel with the understanding that λ = λi and
λ−1 = λ−1

j (i 6= j).

Lemma 2.1 (i) If v is a vertex of K and l(v) = (λλ−1)k or (λ−1λ)k then k = 1; (ii) it can be
assumed without any loss of generality that aλλ−1a is not a vertex sublabel.

Proof (i) This is Lemma 3.1 in [14]. (ii)Suppose that such a label does occur, as shown in Figure
2.1(vii). Let li denote the number of edges between the vertex ui and u (i = 1, 2). Then by
making min(l1, l2) bridge moves starting at the vertex u, we can obtain a new diagram with the
same number of regions and vertices of degree 2 but, since θi 6= a±1 (i = 1, 2) in Figure 2.1(vii),
with one fewer sublabel of the form aλλ−1a. �

2.2 The star graph

The star graph Γ of Rn(−1) is given by Figure 2.1(viii) with the understanding that the edge
labelled λ represents the 2k + l − 2 edges labelled λi. Each vertex label in K yields a closed
path Γ. Using this fact, Lemma 2.1 and previous comments a routine check yields the following
result.

Lemma 2.2 (i) If d(v) ≤ 5 then l(v) is one of the following (up to cyclic permutation and
inversion).

d(v) = 2: λλ−1 d(v) = 5: a5 (n = 15)
d(v) = 3: a3 (n = 9) d(v) = 5: b5 (n = 10)
d(v) = 4: a4 (n = 12) d(v) = 5: a2λbλ−1 (n = 8)
d(v) = 4: b4 (n = 8) d(v) = 5: aλb2λ−1 (n = 7)
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(ii) If d(v) = 6 and n ∈ {7, 8, 9, 10, 12, 15} then l(v) is one of the following.

a3λb−1λ−1 (n = 7) a2λb2λ−1 (n = 10)
b4λ−1λ (n = 8) b6 (n = 12)
aλb3λ−1 (n = 9)

(iii) If d(v) = 7 and n ∈ {7, 8, 9, 10, 12, 15} then l(v) is one of the following.

a2λb−3λ−1 a2λbλ−1λλ−1 (n = 8)
aλλ−1λb2λ−1 (n = 7) a3λλ−1λλ−1 (n = 9)
aλbλ−1λbλ−1 (n = 7) a4λb−1λ−1 (n = 10)
aλb2λ−1λλ−1 (n = 7) b5λ−1λ (n = 10)
a2λλ−1λbλ−1 (n = 8) a2λb3λ−1 (n = 10)

2.3 Curvature

An angle function for a given diagram is a real-valued function on the set of the corners. If
d(v) = d then 2π

d
is assigned to each corner at v. This way the curvature of a vertex will be 0;

and the curvature c(∆) of a region ∆ of degree m whose vertices have degree di > 2 (1 ≤ i ≤ m)
is given by

c(∆) = c(d1, . . . , dm) = (2−m)π + 2π

m
∑

i=1

1

di
. (2.1)

Using, for example, Euler’s formula, it follows that for a connected spherical diagram the total
curvature of is

∑

c(∆) = 4π. We aim to achieve a contradiction by showing that for the diagram
K, any positive curvature that exists in K can be sufficiently compensated by the negative
curvature thereby showing that 4π cannot be attained. To this end we define a distribution
scheme (see, for example, [12]), that is, we locate each ∆ satisfying c(∆) > 0 and distribute
c(∆) to near regions ∆̂ of ∆ in a way that will be made precise. Once the distribution scheme
has been defined, for such regions ∆̂ define c∗(∆̂) to equal c(∆̂) plus all the positive curvature
∆̂ receives minus all the curvature ∆̂ distributes.

Lemma 2.3 Rn(−1) is weakly diagrammatically reducible if one of the following holds: (i)
c(∆) ≤ 0 (∀∆ ∈ K); (ii) c∗(∆̂) ≤ 0 for each ∆̂ that receives positive curvature.

Proof If (i) holds then c(K) =
∑

c(∆) ≤ 0; or if (ii) holds then c(K) ≤
∑

c∗(∆̂) ≤ 0 and each
case yields the desired contradiction. �

2.4 Preliminary results

Recall that Gn(ε) = Gn(k, l, ε) is the group defined by Pn(ε) and that n ≥ 7.

Lemma 2.4 The group Gn(1, 1,−1) is infinite for n ∈ {8, 10, 12}, is finite of order 203 for
n=7 and has order > 9 for n=9; G7(2, 1,−1) has order > 7 and G8(2, 1,−1) is infinite;and
Gn(1, 2,−1) is infinite for n ∈ {7, 8}. In particular, none of these groups are cyclic.

Proof The result follows from calculations made in GAP[15]. In detail, G8(1, 1,−1) has a
subgroup of index 10 with infinite Abelianisation; applying the Newman infinity criterion[19] at
prime p=2,2,3 (respectively) to the second derived subgroup shows thatG10(1, 1,−1),G12(1, 1,−1),
G8(2, 1,−1) (respectively) is infinite; the second derived subgroup of G7(1, 2,−1) has infinite
Abelianisation; G = G8(1, 2,−1) has a subgroup of index 9 whose core has derived subgroup D
of index 36864 in G and applying the Newman infinity criterion at prime p=2 to D shows that

5



>7 >7

(iii)

b

a

∆

λ

aa

π/14

π/14π/14

a

>7 >7

b

a

∆

λ

aa
aa

>6

>6
>>7 a

b

λ

>6

b

a

∆

8

aa

a

b

λ
λ

λ

b

π/28
>7

a

b

λ

>8

b

a

∆

λ

π/15 π/15

π/15

b
b

bb
b

a

∆

λ
b

b
b

b
b

a

a

λ

λ

(iv) (vi)

(v)

∆ ∆

∆

b

a

∆

λ

v1

v2v3

1

2

3

(i) (ii)

Figure 3.1: the region ∆ and it’s neighbours for n ∈ {10, 12, 15}

G is infinite; the second derived subgroup of G9(1, 1,−1) has index 333; and the second derived
subgroup of G7(2, 1,−1) has index 56. �

Lemma 2.5 If l = k > 1 Gn(−1) is infinite for n ∈ {7, 8, 9, 10, 12}; and if k = 2l > 2 or
l = 2k > 2 then Gn(−1) is infinite for n ∈ {7, 8}.
Proof If l = k > 1 then Gn(−1) is the amalgamated free product Gn(−1) = (〈y, t|tn, t3yt2y−2〉
∗ 〈x|xuk〉; y = xk); if k = 2l > 2 then Gn(−1) = (〈y, t|tn, t3y2t2y−3〉 ∗ 〈x|xul〉; y = xl); or if
l = 2k > 2 then Gn(−1) = (〈y, t|tn, t3yt2y−3〉 ∗ 〈x|xuk〉; y = xk). Either |y| = ∞ in which case
put u = 0; otherwise put u = |y|. Since k > 1 and l > 1 it follows from Lemma 2.4 that Gn(−1)
is infinite. �

Lemma 2.6 If n ≥ 7 then Gn(k, 0, 1) is finite if and only if either k = 1 or (n, 5) = 1. Moreover,
if Gn(k, 0, 1) is finite then it is cyclic of order 2kn.

Proof

Gn(k, 0, 1) = 〈x, t|tn, t3xkt2xk〉
= 〈x, t, y|tn, t3xkt2xk, y−1t2xk〉
= 〈x, t, y|tn, ty2, y−1t2xk〉
= 〈x, y|y2n, y−5xk〉

If k = 1 the Gn(1, 0, 1) = 〈y|y2n〉 is cyclic of order 2n; if k > 1 and if (n, 5) > 1 then Gn(k, 0, 1)
maps onto C5 ∗Ck and is infinite; or if k > 1 and (n, 5) = 1 then Gn(k, 0, 1) = 〈x|x2kn〉 is cyclic
of order 2kn. �

3 Proof of Theorem 1.1

The proof of Theorem 1.1(i) follows from the main theorem in [3] so we need only consider
Theorem 1.1(ii)-(iv). Thus as discussed in Section 2 we assume K to be a reduced connected
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strictly spherical diagram over Rn(−1). It suffices to show that condition (i) or (ii) of Lemma
2.3 holds. Recall that n ≥ 7, k ≥ 1 and l ≥ 1. We proceed according to the value of n. In what
follows much use will be made of Lemma 2.2, often without explicit mention.

3.1 n ≥ 10

If n /∈ {10, 12, 15} then d(v) ≥ 6 for each vertex v of degree > 2 by Lemma 2.2(i) and it follows
from equation (2.1) that c(∆) ≤ 0 for each region ∆ of K; or if n ∈ {10, 12, 15} and d(∆) ≥ 4
then c(∆) ≤ 0 by Lemma 2.2(i) and equation (2.1). So if c(∆) > 0 then d(∆) = 3 and ∆, the
vertices of ∆ and neighbouring regions are given by Figure 3.1(i).

Let n = 15. Given that c(∆) > 0, we must have d(v1) = 5 and ∆ is given by Figure 3.1(ii). But
now d(v2) ≥ 7 and d(v3) ≥ 7 by Lemma 2.2 and c(∆) ≤ c(5, 7, 7) < 0.

Let n = 12 and assume that l 6= k. If c(∆) > 0 then ∆ is given by Figure 3.1(iii) and c(∆) ≤
c(4, 7, 7) = π

14 . If d(∆̂i) = 3 (1 ≤ i ≤ 3) then (since l 6= k) ∆ is given by Figure 3.1(iv), in

which case add c(∆) ≤ c(4, 7, 8) = π
28 to c(∆̂2) as shown; otherwise add c(∆) ≤ π

14 to c(∆̂i)

where ∆̂i is the first of ∆̂1, ∆̂2, ∆̂3 such that d(∆̂i) > 3 as indicated in Figure 3.1(iii). This
completes the distribution scheme for n = 12. Suppose that ∆̂ receives positive curvature. If
d(∆̂) = 3 then ∆̂ = ∆̂2 of Figure 3.1(iv) and c∗(∆̂) ≤ c(6, 7, 8) + π

28 < 0; or if d(∆̂) = q > 3

then c∗(∆̂) ≤ c(4, 6, . . . , 6) + q
(

π
14

)

< 0. Let n = 10 and assume that l 6= k. If c(∆) > 0 then ∆

is given by Figure 3.1(v). If d(∆̂i) = 3 (1 ≤ i ≤ 3) then ∆ is given by Figure 3.1(vi) but then
c(∆) ≤ c(5, 7, 8) < 0; otherwise add c(∆) ≤ c(5, 6, 6) = π

15 to c(∆̂i) for some i as in the case

n = 12 (see Figure 3.1(v)). This completes the distribution scheme for n = 10. Let ∆̂ receive
positive curvature. Then d(∆̂) = q > 3 and c∗(∆̂) ≤ c(5, 6, . . . , 6) + q

(

π
15

)

< 0.

3.2 n = 9 (l 6= k)

If d(v) ≤ 7 then l(v) ∈ {λλ−1, a3, aλb3λ−1, a3λλ−1λλ−1, a2λb−3λ−1} by Lemma 2.2 so if c(∆) >
0 then d(∆) = 3 and ∆ is given by Figure 3.1(i) in which d(v2) ≥ 6 and d(v3) ≥ 6. The
distribution scheme for n = 9 is given by Figures 3.2-3.3. Proceeding according to d(∆̂i) (1 ≤
i ≤ 3), we give a brief explanation for each case below. Note that it can always be assumed
without any loss that c(∆) takes the maximum possible value. Note also that use will be made
of the assumption l 6= k, often without explicit mention.

d(∆̂i) > 3 (1 ≤ i ≤ 3): Figure 3.2(i)-(iii). Distribute c(∆) to c(∆̂1) and c(∆̂3) according to
d(v2) and d(v3) as shown. Note that c(3, 7, 7) = 5π

21 , c(3, 6, 7) =
2π
7 and c(3, 6, 8) = π

4 ; and that
d(v3) = 6 forces d(v2) ≥ 8.

d(∆̂i) = 3, d(∆̂j) > 3, j 6= i: Figure 3.2(iv)-(xvi). Observe that l 6= k is used, for example, to
force the corner label λ−1 in (vi). Distribute c(∆) according to d(v2) and d(v3) as shown. Note
that c(3, 7, 8) = 17π

84 and c(3, 8, 8) = π
6 . There will be three exceptions to these rules and they

occur in Figure 3.3(v), (vii) and (viii) and will be explained below.

d(∆̂1) > 3, d(∆̂2) = d(∆̂3) = 3: Figure 3.2(xvii) and (xviii). Distribute c(∆) according to
d(v3) ≥ 8 or = 7 as shown.

d(∆̂1) = d(∆̂2) = 3, d(∆̂3) > 3: Figure 3.3(i)-(viii). Here d(v2) ≥ 6 and d(v3) ≥ 7. Distribute
c(∆) according to d(v2) and d(v3). Observe that in Figure 3.3(v), (vii) and (viii) curvature is
distributed from ∆ to ∆̂3 across the (λ, a)-edge of ∆̂3 via ∆̂1; and that c(∆̂1) is distributed
differently from the rule given in Figure 3.2(xi), (xiii), (xiii) respectively.

d(∆̂1) = d(∆̂3) = 3, d(∆̂2) > 3: Figure 3.3(ix)-(xiii). Distribute c(∆) to c(∆̂2) according to
d(v2) and d(v3) as shown.
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Figure 3.4: maximum curvature across a given edge and d(∆̂) = 4 for n = 9

d(∆̂i) = 3 (1 ≤ i ≤ 3): Figure 3.3(xiv)-(xvii). Distribute c(∆) according to d(v3) and d(∆̂6).
Note that in Figure 3.3(xv) c(∆) ≤ 17π

84 is added to c(∆̂2) ≤ − 11π
84 and the difference π

14 is

distributed further to ∆̂6 under the assumption d(∆̂6) > 3; in (xvi) c(∆) ≤ 17π
84 is added to

c(∆̂2) ≤ − 5π
28 and the difference π

42 is distributed further to ∆̂6; and in (xvii) c(∆) ≤ 17π
84 is

added to c(∆̂2) ≤ − 11π
84 , the difference π

84 is added to c(∆̂6) ≤ − π
21 and then that difference π

42

is distributed further to ∆̂. Note that l 6= k forces the corner label λ in ∆̂ and so d(∆̂) > 3.

Given the above distribution scheme, in Figure 3.4(i) the maximum amount that is distributed
across an edge according to the degree of its endpoints is shown in multiples of π

84 . In particular,
the maximum amount of curvature sent across an edge is π

4 . Indeed the values 12, 14, 10, 14, 2, 21, 17
are given by Figure 3.2(xv), 3.2(vii), 3.2(ix), 3.3(ix), 3.3(xvii), 3.3(vii), (viii), (xii) and (xiii),
3.3(x) and (xi) respectively.

Let ∆̂ receive positive curvature. If d(∆̂) = q ≥ 6 then c∗(∆̂) ≤ c(3, 6, 6, . . . , 6) + q
(

π
4

)

< 0;

if d(∆̂) = 5 then either c∗(∆̂) ≤ c(3, 6, 6, 6, 6) + 2
(

π
7

)

+ 3
(

π
42

)

< 0 (see Figure 3.4(i)), or

c∗(∆̂) ≤ c(3, 6, 6, 6, 7) + 2
(

π
7

)

+ 3
(

π
4

)

< 0, or c∗(∆̂) ≤ c(6, 6, 6, 6, 6) + 5
(

π
4

)

< 0.

Let d(∆̂) = 4. Then ∆̂ is given by Figure 2.1(v) or (vi). Checking Figures 3.2 and 3.3 shows
that curvature is never transferred across a (b, λ)-edge, in particular, ∆̂ does not receive across
the (u2, u3)-edge in Figure 2.1(v) or the (u3, u4)-edge in Figure 2.1(vi). Suppose that d(u1) 6= 3
in ∆̂. Then, using Figure 3.4(i), either c∗(∆̂) ≤ c(6, 6, 6, 6)+3

(

π
42

)

< 0; or c∗(∆̂) ≤ c(6, 6, 6, 7)+

2
(

π
4

)

+ π
42 < 0; or c∗(∆̂) ≤ c(6, 6, 7, 7) + 3

(

π
4

)

< 0. Suppose now that d(u1) = 3. Then

checking Figures 3.2 and 3.3 shows that the maximum total combined curvature ∆̂ of Figure
2.1(v), (vi) can receive across its (u1, u2) and (u4, u1) edges is 2

(

5π
42

)

, 11π
84 + 10π

84 respectively and

so c∗(∆̂) ≤ c(∆̂) + π
4 + π

4 . Let ∆̂ receive across at most two edges. Then it is clear from Figure

3.4(i) that either there are no vertices of degree ≥ 8 and so c∗(∆̂) ≤ c(3, 6, 6, 6)+2
(

14π
84

)

= 0; or

c∗(∆̂) ≤ c(3, 6, 6, 8) + 14π
84 + π

4 = 0 since, given l(u1) = a3, the only way 14π
84 can be exceeded is

shown in Figure 3.3(xi) or (xiii). Now assume that ∆̂ receives across three edges. If ∆̂ is given by
Figure 2.1(v) then, since no curvature is distributed from an (a, b)-edge of ∆ across a (λ, λ)-edge
of ∆̂, the only possibility is shown in Figure 3.4(ii) and c∗(∆̂) ≤ c(3, 6, 8, 8) + 2

(

5π
42

)

+ π
6 < 0.

Let ∆̂ be given by Figure 2.1(vi). Then ∆̂ is shown in Figure 3.4(iii) in which d(u2) ≥ 7 and
(d(u3), d(u4)) ∈ {(6,≥ 8), (7,≥ 8), (≥ 8, 6), (≥ 8, 7), (≥ 8,≥ 8)}. Since c(3, 7, 7, 8) = − 43π

84 and
c(3, 6, 8, 8) = −π

2 it remains to consider d(u2) = 7, d(u3) = 6 and d(u4) ≥ 8 or d(u2) = 7,

d(u3) ≥ 8 and d(u4) = 6. But then ∆̂ is not ∆̂2 of Figure 3.3(xi) or (xiii) therefore c∗(∆̂) ≤
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c(3, 6, 7, 8) + 11π
84 + 5π

42 + 14π
84 < 0.

Finally let d(∆̂) = 3. Using the fact that c(6, 6, 7) = − π
21 , c(6, 7, 7) = − 2π

21 , c(6, 7, 8) = − 11π
84 ,

c(6, 8, 8) = −π
6 , c(7, 7, 7) = −π

7 and c(7, 7, 8) = − 5π
28 we see from Figures 3.2 and 3.3 that if ∆̂

receives curvature across exactly one edge then c∗(∆̂) ≤ 0. Again an inspection of Figures 3.2
and 3.3 shows that ∆̂ does not receive across a (b, λ)-edge and that ∆̂ does not receive from ∆1

in Figure 3.2(xviii), 3.3(ii), 3.3(iv), 3.3(vi) or 3.3(viii); and that ∆̂6 does not receive from ∆̂7

in Figure 3.3(xvi) or (xvii). It follows that if ∆̂ receives curvature across two edges then the
(λ, a)-edge is given by Figure 3.2(xvii) or 3.3(i) or 3.3(xiv) and the (a, b)-edge is given by Figure
3.3(iii) or (v). But then c∗(∆̂) ≤ c(8, 8, 8) + π

6 + π
12 = 0; or c∗(∆̂) ≤ c(7, 8, 8) + π

6 + π
21 = 0.

3.3 n = 8 (l 6= k, l 6= 2k, k 6= 2l)

If d(v) ≤ 7 then l(v) ∈ {b4, a2λbλ−1, b4λ−1λ, a2λλ−1λbλ−1, a2λbλ−1λλ−1, a2λb−3λ−1} by
Lemma 2.2. Therefore if l(v) involves a then either d(v) = 5 or d(v) ≥ 7; and if l(v) involves
b then either d(v) = 4 or d(v) ≥ 6. Much use will be made of the assumptions l 6= k, l 6= 2k,
k 6= 2l often without explicit mention.

If c(∆) > 0 then ∆ is given by Figure 3.1(i). Assume first that d(v2) 6= 4 in ∆. If d(∆̂i) > 3
(1 ≤ i ≤ 3) then distribute 1

3c(∆) to each c(∆̂i); or if exactly one of the ∆̂i has degree 3 then

distribute 1
2c(∆) to each of the other two regions; or if exactly two of the ∆̂i have degree 3

then distribute c(∆) to the third region. Given this, in Figure 3.5(i) the maximum amount
of curvature in multiples of π

420 crossing an edge according to the degree of its endpoints is
indicated.

Convention. In this subsection and in subsection 3.4, for ease of presentation and understand-
ing, we will say that the curvature equals α to mean that the curvature is απ/420. For the
benefit of the reader we give the following examples: c(5, 5, 5) = 84 (= π/5); c(5, 5, 6) = 56;
c(5, 5, 7) = 36; c(5, 5, 8) = 21; c(5, 6, 6) = 28; c(5, 6, 7) = 8; c(5, 6, 8) = −7; c(5, 7, 7) = −12;
c(5, 7, 8) = −27; c(4, 5, 6) = 98; c(4, 5, 7) = 78; c(4, 5, 8) = 63; c(4, 6, 6) = 70; c(4, 6, 7) = 50;
c(4, 6, 8) = 35; c(4, 7, 7) = 30; and c(4, 7, 8) = 15.

Now let d(∆̂i) = 3 (1 ≤ i ≤ 3). If ∆ and the ∆̂i are given by Figure 3.6 (i),(ii) or (iv) then
c(∆) < 0; if by (iii) then l 6= k forces d(v) ≥ 6 and so, as shown, add c(∆) = 8(= 2π

105 )

to c(∆̂2) ≤ c(6, 6, 7) = −20; if by (v) in which we assume d(v) ≥ 6 then add c(∆) = 8 to
c(∆̂2) ≤ −20; or if by (vi) in which d(v) = 5 then add c(∆) + c(∆̂2) = 16 to c(∆̂6).

This leaves the case when ∆ and the ∆̂i are given by Figure 3.6 (vii) in which we fix the vertices
vi (4 ≤ v ≤ 6) and which requires more detailed analysis. We proceed according to d(vi)
(1 ≤ i ≤ 3).

Let d(v1) = d(v2) = 5 and d(v3) ≥ 7 so that c(∆) ≤ 36. If ∆ and the ∆̂i (1 ≤ i ≤ 3) are given by
Figure 3.6(viii) in which d(v4) = 5 then add 1

2 (c(∆) + c(∆̂1)) ≤ 60 to each of c(∆̂4) and c(∆̂5);

if by (ix) or (x) in which it is assumed that d(∆̂4) > 3 then add 1
2 (c(∆) + c(∆̂1)) ≤ 46, 36, 57/2

according to d(v4) = 6,= 7,≥ 8 to c(∆̂4) and to c(∆̂5); or if by (xi) then add c(∆) + c(∆̂3) ≤
72, 24, 9 according to d(v6) = 5,= 7,≥ 8 to c(∆̂B).

Let d(v1) = d(v3) = 5 and d(v2) ≥ 7. Assume firstly that d(v4) = 5. If ∆ and the ∆̂i are given
by Figure 3.7(i) in which d(v2) = 7 then add 1

2 (c(∆) + c(∆̂1)) = 36 to c(∆̂4) and c(∆̂5); or if

by (ii) in which d(v2) ≥ 8 then add 1
2 (c(∆) + c(∆̂1)) ≤ 21 to c(∆̂4) and c(∆̂5) if d(∆̂5) > 3

otherwise add c(∆) + c(∆̂1) ≤ 42 to c(∆̂4). Now assume that d(v4) ≥ 6. If d(∆̂4) > 3 as
in Figure 3.7(iii) then add c(∆) + c(∆̂1) = 44,= 24,≤ 9 according to d(v4) = 6,= 7,≥ 8 to
c(∆̂4); or if d(∆̂4) = 3 and d(∆̂8) > 3 as in (iv) then add 1

2 (c(∆) + c(∆̂3)) = 60,= 36,≤ 57/2
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Figure 3.5: maximum curvature across a given edge for n = 8

according to d(v6) = 5,= 7,≥ 8 to c(∆̂8) and c(∆̂9); or if d(∆̂4) = d(∆̂8) = 3 as in (v) then add
c(∆) + c(∆̂2) = 72,= 44,= 24,≤ 9 according to d(v5) = 5,= 6,= 7,≥ 8 to ∆̂A.

Let d(v1) ≥ 7 and d(v2) = d(v3) = 5. Suppose that d(v1) = 7. If ∆ and the ∆̂i are given by
Figure 3.7(vi) in which d(v4) = 5 then add 1

2 (c(∆) + c(∆̂1)) = 36 to ∆̂4 and ∆̂5; if by

(vii) in which d(v4) = 6 then either add 1
2 (c(∆) + c(∆̂1)) = 22 to each of ∆̂4 and ∆̂5 when

d(∆̂4) > 3 or add c(∆)+c(∆̂1) = 44 to ∆̂5; if by (viii) then either add 1
2 (c(∆)+c(∆̂1)) = 12,≤ 9/2

to ∆̂4 and ∆̂5 when d(∆̂4) > 3 or add c(∆) + c(∆̂1) = 24,≤ 9 to ∆̂5 when d(∆̂4) = 3 according
to d(v4) = 7,≥ 8.

Now suppose that d(v1) ≥ 8. If ∆ and the ∆̂i are given by Figure 3.7(ix) in which d(v4) = 5
or 6 then either add 1

2 (c(∆) + c(∆̂1)) = 21 or 7 to ∆̂4 and ∆̂5 when d(∆̂4) = 3 otherwise

add c(∆) + c(∆̂1) = 42 or 14 to ∆̂5; or if by (x) in which d(v4) ≥ 7 then add c(∆) ≤ 21 to
c(∆̂1) ≤ −27.

Let d(vi) = 5 (1 ≤ i ≤ 3). If ∆ and the ∆̂i are given by Figure 3.7(xi) in which d(v4) = 5 then
add 1

2 (c(∆) + c(∆̂1)) = 84 to ∆̂4 and ∆̂5; or if by Fgure 3.7(xii) or Figure 3.8(i) in which we

assume d(∆̂4) > 3 then add 1
2 (c(∆) + c(∆̂1)) = 70,= 60,≤ 105/2 to ∆̂4 and ∆̂5 according to

d(v4) = 6,= 7,≥ 8. Now let d(∆̂4) = 3. Then add 1
3c(∆) + c(∆̂2)) = 84,= 64,≤ 49 as shown

in Figure 3.8(ii). There remains 2
3c(∆) = 56 to be distributed. If ∆ and the ∆̂i are given by

Figures 3.8(iii),(iv) in which d(∆̂8) > 3 then add 1
2 (

2
3c(∆) + c(∆̂3)) = 70,= 46,≤ 77/2 to c(∆̂8)

and to c(∆̂B) according to d(v6) = 5,= 7,≥ 8; or if by (v) or (vi) in which d(∆̂8) = 3 then
add 1

3c(∆) + c(∆̂3) = 112,= 64,≤ 49 to c(∆̂B) according to d(v6) = 5,= 7,≥ 8 and either add
1
2 (

1
3c(∆)+ c(∆̂2)) = 56,= 32,≤ 49/2 to each of c(∆̂6) and c(∆̂A) when d(∆̂6) > 3 otherwise add

1
3c(∆) + c(∆̂2) = 112,= 64,≤ 49 to c(∆̂A) according to d(v2) = 5,= 7,≥ 8.
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This completes the distribution scheme for when d(v2) 6= 4 in ∆ and, given this, listed in Figure
3.5(ii) are the 13 edges across which more curvature is transferred to ∆̂ /∈ {∆̂A, ∆̂B} than the
corresponding edge in Figure 3.5(i) whose endpoints have the same valency. Indeed the values
(in multiples of π

420 ) 84, 64, 105/2, 46, 77/2, 70, 22, 7, 60, 12, 105/2, 9/2, 57/2 are obtained in Figure
3.8(ii),(ii),(i), (iii),(iv), 3.7(xii), (vii), (ix), 3.8(i), 3.7(viii), 3.8(i), 3.7(viii), 3.7(iv) respectively.

Now let d(v2) = 4 and so ∆ is given by Figure 3.9(i) in which note that we cannot have
d(v1) = d(v3) = 5 so c(∆) ≤ c(4, 5, 6) = 98. If d(∆̂i) > 3 (1 ≤ i ≤ 3) then distribute
1
3c(∆) ≤ 98/3 to each of c(∆̂i) as shown; or if exactly one of the ∆̂i has degree 3 then 1

2 (c(∆) is
added to the other two as shown in Figures 3.9(ii)-(vi) apart from the one exception shown in
Figure 3.9(iii) in which 42 of c(∆) is added to c(∆̂2) and the remaining 56 to c(∆̂3). Suppose
that exactly two of the ∆̂i have degree 3. If d(∆̂2) = d(∆̂3) = 3 then add c(∆) ≤ c(4, 7, 8) = 15
to c(∆̂1) as shown in Figure 3.9(vii). If d(∆̂1) = d(∆̂2) = 3 then ∆ is given by Figure 3.9(viii)
in which we note that if d(v1) = 5 or 7 then l(v3) = aλλ−1w which forces d(v3) ≥ 9. Add
c(∆) ≤ 78, 154/3, 30, 70/21, 15, 63 according to (d(v1), d(v3)) = (5, 7), (5,≥ 9), (7, 7), (7,≥ 9), (≥
8, 7), (≥ 8, 5) respectively. If d(∆̂1) = d(∆̂3) = 3 and ∆ is given by Figure 3.9(ix) then add
c(∆) ≤ 35, 15 to c(∆̂2) according to d(v3) = 6,≥ 7 as shown; or if ∆ is given by (x) in which
d(v1) ≥ 7 then add c(∆) ≤ 50, 30 to c(∆̂2) according to d(v3) = 6,≥ 7; or if ∆ is given by
(xi) in which it is assumed that d(v1) = 5 and d(∆5) > 3 then add 1

2c(∆) = 42 or 39 to c(∆̂2)

and add 1
2 (

1
2c(∆) + c(∆̂1)) = 56 or 51 to each of c(∆̂4) and c(∆̂5) according to d(v3) = 6 or

7, whereas if d(v3) ≥ 8 then add 2
3c(∆) ≤ 42 to c(∆̂2) and add 1

2 (
1
3c(∆) + c(∆̂1)) = 42 to

c(∆̂4) and to c(∆̂5); or by (xii) in which d(v1) = 5 and d(∆̂5) = 3, if d(v3) = 6 then 161/2 of
c(∆) = 98 is added to c(∆̂2) and the remainder of c(∆) plus c(∆̂1) ≤ 35/2+63 = 161/2 to c(∆̂4)
as shown, or if d(v3) = 7 then 57 of c(∆) = 78 is added to c(∆̂2) and the remainder of c(∆)
plus c(∆̂1) ≤ 21 + 63 = 84 is added to c(∆̂4); or if d(v3) ≥ 8 then add c(∆) ≤ 63 to c(∆̂2) and
c(∆̂1) ≤ 63 to c(∆̂4). If d(∆̂i) = 3 (1 ≤ i ≤ 3) then add c(∆) ≤ 15 to c(∆̂3) ≤ c(5, 7, 8) = −27
as shown in Figure 3.9(xiii).

This completes the distribution scheme for n = 8. Checking Figures 3.6 - 3.9 shows that if
d(∆̂) = 3 then ∆̂ receives positive curvature across at most one edge apart from the one case
when ∆̂ is ∆̂1 of Figure 3.7(iii) and is the inverse of ∆̂3 of Figure 3.9(xiii). Then ∆̂ is shown in
Figure 3.9(xiv) and in this case add c(∆1)+ c(∆2)+ c(∆̂) ≤ 21+ 15− 27 = 9 to c(∆′) as shown.
Note that d(∆′) > 3 since ∆′ corresponds to ∆̂4 in Figure 3.7(iii). Also observe from checking
Figures 3.6 - 3.9 that if d(∆̂) = 3 and ∆̂ receives curvature across it’s (a, b)-edge then ∆̂ = ∆̂2

of Figure 3.6(iii) in which d(v3) = 7 and d(v) ≥ 6. This will be used throughout what follows
without explicit mention however it implies for example that ∆̂4 receives no curvature across it’s
(a, b)-edge in Figures 3.6(xi), 3.8(iii)-(v); and the same holds for ∆̂8 in Figure 3.8(v) and (vi).

Given the above distribution scheme, we record (in multiples of π
420 ) in Figure 3.10(i) the max-

ima obtained when the values of Figure 3.5(i) are exceeded; and in Figure 3.10(ii)-(x) the max-
ima when an endpoint has degree 4. In Figure 3.10(i) the ten uncircled values are equal to
1
2c(4, d(v1), d(v3)). The only way this can be exceeded is to use Figure 3.9 (viii) or (xii) and
this results in the eight circled 78, 1543 , 30, 15, 15, 15, 15 and 84. The first seven of which equal

c(4, d(v1), d(v3)) in Figure 3.9(viii) and the 84 corresponds to the 84 added to c(∆̂4) in Fig-
ure 3.9(xii). In Figure 3.10(ii),(iii),(iv) respectively d(v3) ≥ 6,≥ 6,≥ 5. It is clear from Figure
3.9(vii) that the only way 1

2c(4, d(v1), d(v3)) can be exceeded is in Figure 3.9(xi) and this gives the

circled value 56 which corresponds to the 56 added to c(∆̂5). In Figure 3.10(v),(vi),(vii) respec-
tively, d(v1) ≥ 8,≥ 5,≥ 5 and the three maximum values 63/2, 39, 63/2 are 1

2c(4, d(v1), d(v3))
since these cannot be exceeded using Figure 3.9(ix). The three values 161/2,57,63 of Figure
3.10(viii)-(x) corresponds to the 161/2, 57, 63 added to c(∆̂2) in Figure 3.9(xi) and these cannot
be exceeded using 1

2 c(4, d(v1), d(v3)) or Figure 3.9(ix).

Let ∆̂ receive positive curvature. Then 84 across an edge of ∆̂ is exceeded only by the 112 in
Figure 3.8(v) and (vi). But checking Figures 3.6-3.9 shows that ∆̂4 contributes at most 21 to
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Figure 3.11: curvature into regions of degree 4 for n = 8

∆̂B in Figure 3.8(v) and that ∆̂8 contributes at most 56 to ∆̂A in Figure 3.8(v) and (vi). It
follows that c∗(∆̂) ≤ c(∆̂) + d(∆̂)(84) and so if d(∆̂) ≥ 6 then c∗(∆̂) ≤ 0. Let d(∆̂) = 5. Since
c(5, 5, 5, 5, 5) + 5(84) = 0, c(4, 5, 5, 6, 6) + 5(84) = −434 + 420 < 0, and c(4, 5, 5, 5, 7) + 5(84) =
−426 + 420 < 0 it remains to consider c(4, 5, 5, 5, 5) = −378 and c(4, 5, 5, 5, 6) = −406. From
Figure 3.5(iv) we see that the maximum curvature across a (4,5)- edge, (4,6)- edge is 49, 161/2
respectively so it follows that c∗(∆̂) ≤ c(4, 5, 5, 5, 5) + 2(49) + 3(84) < 0 or c(4, 5, 5, 5, 6) +
49 + 161/2 + 3(84) < 0. Let d(∆̂) = 4. If ∆̂ receive curvature across exactly one edge then
c∗(∆̂) ≤ c(4, 5, 5, 5) + 112 = −126 + 112 < 0.

Now assume that ∆̂ receives across more than one edge and ∆̂ /∈ {∆̂A, ∆̂B}. Recall that ∆̂ is
given by Figure 2.1(v) or (vi).

Suppose across exactly two edges. Since c(5, 5, 5, 5) + 2(84) = 0, c(4, 5, 6, 6) + 2(84) = −182 +
168 < 0 and c(4, 5, 5, 7) + 2(84) = −174 + 168 < 0 it remains to consider c(4, 5, 5, 5) and
c(4, 5, 5, 6) = −156. But, given l 6= 2k and l 6= k, any attempt at labelling implies that the only
two possibilities are given by Figure 3.11(i) and (ii) in which the maximum ∆̂ can receive across
an edge is indicated and so c∗(∆̂) ≤ c(4, 5, 5, 6) + 56 + 84 < 0.

We introduce the following notation: di = d(ui), (1 ≤ i ≤ 4) and mi.(
π
420 ) denotes an upper

bound for the amount of curvature ∆̂ can receive across the (ui, ui+1)−edge (1 ≤ i ≤ 4, subscripts
mod 4), in particular, mi ≤ 84. We write (d1, d2, d3, d4) = (a1, a2, a3, a4) to mean di ≥ ai and
put Σ = m1 +m2 +m3 +m4. Also define c̃ by c(d1, d2, d3, d4) = −c̃( π

420 ), in particular if Σ ≤ c̃

then c∗(∆̂) ≤ 0.

First let ∆̂ be given by Figure 2.1(v) and suppose that the four neighbouring regions of ∆̂ have
degree 3. We see from Figure 3.12 that there are 24 possibilities. For 19 of these the value of
(Σ, c̃) is straightforwardly obtained using: (i) the values in Figure 3.6; (ii) mi = 84 if this suffices
to show Σ ≤ c̃; (iii) ∆̂ receives at most 42 from ∆ in Figure 3.11(iii) since d(∆̂1) > 3 and ∆
receives no curvature from ∆̂2; (iv) d(u1) ≥ 7 in Figure 3.11(iv) since l > k implies x 6= b.

The details are as follows: (1, 3, 5, 9), (5, 6, 5, 7), (56, 70, 77/2, 36), (401/2, 244) by which is
meant that four neighbouring regions are ∆1,∆3,∆5 and ∆9 which forces (d1, d2, d3, d4) =
(5, 6, 5, 7), (m1,m2,m3,m4) = (56, 70, 77/2, 36) and (Σ, c̃) = (401/2, 244); (1, 3, 6, 8), (8, 6, 7, 7),
(84, 84, 84, 84), (336, 355); (1, 3, 6, 9), (5, 6, 7, 5), (56, 22, 36, 84), (198, 244);(1, 3, 7, 8), (8, 6, 7, 6),
(84, 22, 84, 84), (274, 335); (1, 3, 7, 9), (5, 6, 7, 6), (56, 22, 8, 84), (170, 272); (1, 4, 5, 8), (8, 5, 7, 5),
(21, 84, 84, 84), (273, 279); (1, 4, 5, 9), (5, 5, 7, 7), (84, 36, 48, 36), (240, 264); (1, 4, 6, 8), (8, 5, 7, 7),
(21, 84, 84, 84), (273, 327); (1, 4, 7, 8), (8, 5, 5, 6), (21, 84, 56, 84), (245, 259); (2, 3, 5, 9), (8, 4, 5, 7),
(84, 84, 77/2, 0), (412/2, 237); (2, 3, 6, 8), (5, 4, 7, 7), (84, 84, 15, 36), (219, 222); (2, 3, 6, 9), (8, 4, 7, 5),
(84, 84, 36, 21), (225, 237); (2, 3, 7, 9), (8, 4, 7, 6), (84, 84, 8, 0), (176, 265); (2, 4, 5, 8), (5, 6, 7, 5),
(56, 15, 60, 84), (215, 244); (2, 4, 5, 9), (8, 6, 7, 7), (84, 84, 84, 0), (252, 355); (2, 4, 6, 8), (5, 6, 7, 7),
(56, 84, 15, 84), (239, 292); (2, 4, 6, 9), (8, 6, 7, 5), (84, 84, 84, 21), (273, 307); (2, 4, 7, 8), (5, 6, 5, 6),

19



a

b

λ∆

a

bλ

b

λ
a ∆9

a

λ
b

a b

λλ

∆
a b

λ

∆

5

6

7

a

a

b

bλ

λ

∆

∆

∆
a

b

λ 8
a

b

λ3∆ ∆4

2

1

Figure 3.12: degree 3 neighbours of a degree 4 region

(56, 56, 56, 56), (244, 244); (2, 4, 7, 9), (8, 6, 5, 6), (84, 84, 84, 0), (252, 287). The remaining five
cases are dealt with in turn. If (1, 3, 5, 8) or (2, 3, 5, 8) then l = 2k, a contradiction. For (1, 4, 6, 9)
we have (d1, d2, d3, d4) = (5, 5, 7, 5) and if d1 ≥ 7 then (m1,m2,m3,m4) = (36, 84, 36, 84) and
(Σ, c̃) = (240, 264); or if d1 = 5 but d2 ≥ 7 then (m1,m2,m3,m4) = (39, 84, 36, 84) and
(Σ, c̃) = (243, 264); or if d1 = d2 = 5 then (see Figure 3.11(iii)) (m1,m2,m3,m4) = (42, 36, 36, 84)
and (Σ, c̃) = (198, 216). For (1, 4, 7, 9) we have (d1, d2, d3, d4) = (5, 5, 5, 6) and if d1 ≥ 7
then (m1,m2,m3,m4) = (36, 84, 84, 8) and (Σ, c̃) = (214, 244); or if d1 = 5 and d2 ≥ 7 then
(m1,m2,m3,m4) = (39, 36, 84, 56) and (Σ, c̃) = (215, 244); or if d1 = d2 = 5 and d3 ≥ 7
then (see Figure 3.11(iii)) (m1,m2,m3,m4) = (42, 84, 8, 56) and (Σ, c̃) = (190, 244); or if
d1 = d2 = d3 = 5 and d4 ≥ 7 then (m1,m2,m3,m4) = (42, 84, 36, 36) and (Σ, c̃) = (198, 216);
or if d1 = d2 = d3 = 5 and d4 = 6 then this forces the third vertex of ∆̂9 to have de-
gree ≥ 8 and so (m1,m2,m3,m4) = (42, 84, 56, 0) and (Σ, c̃) = (182, 196). For (2, 3, 7, 8)
we have (d1, d2, d3, d4) = (5, 4, 7, 6) and if d2 ≥ 6 then (m1,m2,m3,m4) = (84, 84, 8, 56) and
(Σ, c̃) = (232, 272); or if d2 = 4 then (m1,m2,m3,m4) = (39, 56, 8, 56) and (Σ, c̃) = (159, 202).

Now suppose that exactly three of the neighbouring regions of ∆̂ are 3-gons. Then (see Figure
3.12) there are 44 possibilities. For 35 cases the values of (Σ, c̃) again are straightforward and
are as follows: (1, 3, 6), (5, 6, 7, 5), (84, 22, 84,−), (190, 244); (1, 3, 7), (5, 6, 7, 6), (84, 22, 84,−),
(190, 244); (1, 4, 5), (5, 5, 7, 5), (84, 36, 60,−), (180, 216); (1, 4, 6), (5, 5, 7, 5), (84, 84, 36,−), (204, 216);
(2, 3, 6), (5, 4, 7, 5), (56, 56, 36,−), (148, 174); (2, 3, 7), (5, 4, 7, 6), (84, 84, 8,−), (176, 202); (2, 4, 5),
(5, 6, 7, 5), (84, 84, 60,−), (228, 244); (2, 4, 6), (5, 6, 7, 5), (84, 15, 84,−), (183, 244); (2, 4, 7), (5, 6, 5, 6),
(84, 84, 56,−), (224, 224); (1, 3, 8), (8, 6, 5, 5), (84, 84,−, 84), (252, 259); (1, 3, 9), (5, 6, 5/7, 6/5)
(since labelling prevents d3 = d4 = 5), (56, 84,−, 84), (224, 224); (1, 4, 8), (8, 5, 5, 5), (21, 84,−84),
(185, 231); (2, 3, 9), (8, 4, 5, 5), (84, 84,−21), (189, 189); (2, 4, 8), (5, 6, 5/7, 6/5) (since labelling
prevents d3 = d4 = 5), (56, 84,−84), (224, 224); (2, 4, 9), (8, 6, 5, 5), (84, 84,−, 84), (252, 259);
(1, 5, 8), (8, 5, 5, 5), (84,−, 84, 77/2), (413/2, 231); (1, 5, 9), (5, 5, 5, 7), (84,−, 77/2, 36), (317/2, 216);
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Figure 3.13: degree 3 neighbours of a degree 4 region

(1, 6, 8), (8, 5, 6, 7), (84,−, 84, 84), (252, 307); (1, 7, 8), (8, 5, 5, 6), (84,−, 84, 84), (252, 259); (1, 7, 9),
(5, 5, 5, 6), (84,−, 56, 56), (196, 196); (2, 5, 8), (7, 4, 5, 5) (see Figure 3.11(iv)), (39,−, 84, 46),
(169, 174); (2, 5, 9), (8, 4, 5, 7), (84,−, 84, 0), (168, 237); (2, 6, 8), (5, 4, 6, 7), (84,−, 15, 36), (135, 202);
(2, 6, 9), (8, 4, 6, 5), (84,−, 84, 21), (189, 217); (2, 7, 9), (8, 4, 5, 6), (84,−, 84, 0), (168, 217); (3, 5, 9),
(5, 4, 5, 7), (−, 84, 84, 36), (164, 174); (3, 6, 8), (5, 4, 7, 7), (−, 84, 15, 84), (183, 222); (3, 7, 8), (5, 4, 7, 6),
(−, 84, 8, 84), (176, 202); (3, 7, 9), (5, 4, 7, 6), (−, 84, 8, 84), (176, 202); (4, 5, 8), (5, 5, 7, 5), (−, 36, 60, 84),
(180, 216); (4, 5, 9), (5, 5, 7, 7), (−84, 84, 84), (252, 264); (4, 6, 8), (5, 5, 7, 7), (−, 84, 84, 84), (252, 264);
(4, 6, 9), (5, 5, 7, 5), (−, 84, 36, 84), (204, 216); (4, 7, 8), (5, 5, 5, 6), (−, 84, 56, 56), (196, 196); (4, 7, 9),
(5, 5, 5, 6), (−, 84, 56, 56), (196, 196).

There are nine cases remaining. For (1, 3, 5) we have (d1, d2, d3, d4) = (5, 6, 5, 5) so if d2 = 6 then
(m1,m2,m3) = (56, 56, 84) and (Σ, c̃) = (196, 196); or if d2 ≥ 7 then (m1,m2,m3) = (56, 60, 84)
and (Σ, c̃) = (200, 216). For (1, 4, 7) we have (d1, d2, d3, d4) = (5, 5, 5, 6) so if d2 ≥ 7 then
(m1,m2,m3) = (39, 84, 56) and (Σ, c̃) = (179, 244); or if d2 = 5 then (see Figure 3.11(iii))
(m1,m2,m3) = (42, 84, 56) and (Σ, c̃) = (182, 196). For (2, 3, 5), l 6= 2k prevents d1 = d2 = 5
so (d1, d2, d3, d4) = (5/7, 4, 5, 7/5) and if d1 ≥ 7 and d2 ≥ 6 then (m1,m2,m3) = (8, 84, 84) and
(Σ, c̃) = (176, 244); or if d1 = 5 and d2 ≥ 6 then (m1,m2,m3) = (84, 84, 77/2) and (Σ, c̃) =
(413/2, 244); or if d2 = 4 and (d1, d3, d4) = (5, 7, 7) or (7, 7, 5) or (7, 5, 7) then (m1,m2,m3) =
(39, 84, 84) and (Σ, c̃) = (207, 222); or if d2 = 4 and d3 = d4 = 5 then (m1,m2,m3) = (39, 49, 84)
and (Σ, c̃) = (172, 174); or if d2 = 4 and d1 = d3 = 5 then (m1,m2,m3) = (63/2, 49, 84)
and (Σ, c̃) = (329/2, 174). For (1, 4, 9) labelling prevents d3 = d4 = 5 so (d1, d2, d3, d4) =
(5, 5, 5/7, 6/5) and if d3 ≥ 7 then (m1,m2,m4) = (84, 36, 84) and (Σ, c̃) = (204, 216); or if d3 = 5
and d2 ≥ 7 then (m1,m2,m4) = (39, 84, 84) and (Σ, c̃) = (207, 244); or if d2 = d3 = 5 then
(m1,m2,m4) = (42, 84, 56) (see Figure 3.11(iii)) and (Σ, c̃) = (182, 196). For (2, 3, 8), l 6= 2k
prevents d3 = d4 = 5 so (d1, d2, d3, d4) = (5, 4, 5/7, 6/5) and if d2 ≥ 6 then (m1,m2,m4) =
(56, 84, 84) and (Σ, c̃) = (224, 224); or if d2 = 4 and d1 ≥ 7 then (m1,m2,m4) = (39, 84, 46)
and (Σ, c̃) = (169, 202); or if d1 = 5, d2 = 4 and d3 ≥ 7 then (m1,m2,m4) = (63/2, 56, 84)
and (Σ, c̃) = (343/2, 234); or if d1 = d3 = 5 and d2 = 4 then (m1,m2,m4) = (63/2, 49, 56)
and (Σ, c̃) = (273/2, 154). For (1, 6, 9) we have (d1, d2, d3, d4) = (5, 5, 6, 5) and if d2 ≥ 7 then
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Figure 3.14: degree 3 neighbours of a degree 4 region for n=8

(m1,m3,m4) = (39, 84, 84) and (Σ, c̃) = (207, 244); or if d2 = 6 then (m1,m3,m4) = (56, 56, 84)
and (Σ, c̃) = (196, 224); or if d2 = 5 ( see Figure 3.11(iii)) then (m1,m3,m4) = (42, 56, 84)
and (Σ, c̃) = (182, 196). For (2, 7, 8) we have (d1, d2, d3, d4) = (5, 4, 5, 6) and if d2 ≥ 6 then
(m1,m3,m4) = (84, 56, 56) and (Σ, c̃) = (196, 244); or if d2 = 4 then (m1,m3,m4) = (39, 56, 56)
and (Σ, c̃) = (151, 154). For (3, 5, 8) we obtain l = 2k a contradiction. Finally for (3, 6, 9) we have
(d1, d2, d3, d4) = (5, 4, 7, 5) and if d2 ≥ 6 then (m2,m3,m4) = (84, 36, 84) and (Σ, c̃) = (204, 244);
or if d2 = 4 and d3 = 7 then (m2,m3,m4) = (25, 36, 84) and (Σ, c̃) = (145, 174); or if d2 = 4 and
d3 ≥ 8 then (m2,m3,m4) = (56, 21, 84) and (Σ, c̃) = (161, 189).

Now suppose that ∆̂ is given by Figure 2.1(vi). Suppose that the four neighbouring regions of ∆̂
are 3-gons. We see from Figure 3.13 that there are 16 possibilities. For 9 cases the values of (Σ, c̃)
are straightforward and are as follows: (1, 3, 6, 7), (5, 7, 6, 5), (78, 8, 56, 84), (226, 244); (1, 3, 6, 8),
(8, 7, 6, 7), (84, 84, 84, 84), (336, 355); (1, 4, 5, 7), (5, 7, 6, 7), (84, 84, 22, 84), (274, 292); (1, 4, 6, 8),
(8, 7, 5, 7), (84, 84, 84, 0), (252, 327); (2, 3, 5, 7), (8, 6, 4, 7), (0, 84, 84, 0), (168, 212); (2, 3, 6, 7),
(8, 6, 6, 5), (84, 28, 84, 84), (280, 287); (2, 3, 6, 8), (5, 6, 6, 7), (84, 28, 15, 36), (163, 272); (2, 4, 5, 7),
(8, 5, 6, 7), (84, 84, 84, 0), (252, 307); and (2, 4, 6, 7), (8, 5, 5, 5), (21, 84, 84, 21), (210, 231). If
(1, 3, 5, 8), (1, 4, 5, 8), (2, 3, 5, 8) or (2, 4, 5, 8) then l = k, a contradiction. For (1, 3, 5, 7) we
have (d1, d2, d3, d4) = (5, 7, 4, 7) and if d3 ≥ 6 then (m1,m2,m3,m4) = (78, 8, 84, 84) and
(Σ, c̃) = (254, 292); or if d3 = 4 and d4 = 7 then (m1,m2,m3,m4) = (78, 63, 25, 36) and
(Σ, c̃) = (202, 222); or if d3 = 4 and d4 ≥ 8 then (m1,m2,m3,m4) = (78, 63, 56, 21) and
(Σ, c̃) = (218, 237). For (2, 4, 6, 8) we have (d1, d2, d3, d4) = (5, 5, 5, 7) and if either d1 ≥ 7
or d2 ≥ 7 or d3 ≥ 7 then (m1,m2,m3,m4) = (84, 84, 36, 36) and (Σ, c̃) = (240, 264); or if
d1 = d2 = d3 = 5 and if either d(∆12) > 3 or d(∆13) > 3 in Figure 3.14(i) then since ∆4

does not receive any curvature from ∆12 or ∆13 we have (m1,m2,m3,m4) = (84, 42, 36, 36)
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and (Σ, c̃) = (198, 216), otherwise d(∆12) = d(∆13) = 3 forces the third vertex of ∆4 to have
degree ≥ 6 so (m1,m2,m3,m4) = (84, 56, 36, 36) and (Σ, c̃) = (216, 216). Finally, for (1, 4, 6, 7)
we have (d1, d2, d3, d4) = (5, 7, 5, 5) and if d1 ≥ 7 then (m1,m2,m3,m4) = (30, 84, 84, 36) and
(Σ, c̃) = (234, 264); or if d3 ≥ 7 then (m1,m2,m3,m4) = (84, 15, 36, 84) and (Σ, c̃) = (219, 264);
or if d4 ≥ 7 then (m1,m2,m3,m4) = (84, 84, 30, 36) and (Σ, c̃) = (240, 264); or if d1 = d3 =
d4 = 5 then ∆ is shown in Figure 3.14(ii) in which the corner label λ−1 of ∆11 is forced
by Lemma 2.1(ii) and so d(∆11) > 3. In particular, Figure 3.9 (viii) does not apply to ∆1

and so m1 = 78/2 = 39. (This observation for ∆1 and ∆4 will be used throughout what
follows often without further explanation.) If k > l then d(∆15) > 3 and d(∆17) > 3 so
m3 = 60 and this is the 60 sent to ∆̂9 in Figure 3.7(iv), and m4 = 42 since the only way
this can be exceeded is if ∆̂ = ∆̂6 of Figure 3.8(v), but this contradicts d(∆1) = 3 in Figure
3.14(ii). Therefore if d2 = 7 then (m1,m2,m3,m4) = (39, 36, 60, 42) and (Σ, c̃) = (177, 216);
or if d2 ≥ 8 then (m1,m2,m3,m4) = (39, 84, 60, 42) and (Σ, c̃) = (225, 231). If k < l then
x = λ−1 in Figure 3.14(ii) so d(∆13) > 3 and, moreover, either d(∆15) > 3 or d(∆16) > 3 so
(m1,m2,m3,m4) = (39, 18, 84/42, 42/84) and (Σ, c̃) = (183, 216).

Now suppose that exactly three of the neighbouring regions of ∆̂ are 3-gons. There (see Figure
3.13) are 32 possibilities. For 20 cases the values (Σ, c̃) are straightforward and are as follows:
(1, 3, 6), (5, 7, 6, 5), (84, 8, 84,−), (176, 244); (1, 4, 5), (5, 7, 6, 5), (84, 35/2, 84,−), (371/2, 244);
(1, 4, 6), (5, 7, 5, 5), (39, 84, 84,−), (207, 216) (see Figure 3.14 (ii)); (2, 3, 6), (5, 6, 6, 5), (84, 28, 84,−),
(196, 244); (2, 4, 5), (5/7, 5, 6, 7/5) (since l 6= k prevents d1 = d4 = 5) , (84, 56, 84,−), (224, 224);
(1, 3, 8), (8, 7, 4, 5), (15, 84,−, 84), (183, 237); (1, 4, 7), (5, 7, 5, 5), (39, 84,−, 84), (207, 216) (see
Figure 3.14(ii)); (1, 4, 8), (8, 7, 5, 5), (84, 84,−, 84), (252, 279); (2, 3, 7), (8, 6, 4, 5), (0, 84,−, 84),
(168, 237); (2, 4, 7), (8, 5, 5, 5), (21, 84,−, 84), (189, 231); (1, 5, 7), (5, 6, 4, 7), (78,−, 84, 36), (198, 202);
(1, 6, 8), (8, 6, 5, 7), (84,−, 84, 84), (252, 307); (2, 5, 7), (8, 5, 4, 7), (84,−, 84, 0), (168, 237); (2, 6, 7),
(8, 5, 5, 5), (21,−, 84, 84), (189, 231); (2, 8, 6), (5, 5, 5, 7), (84,−, 84, 36), (204, 216); (3, 5, 7), (5, 6, 4, 7),
(−, 84, 56, 36), (176, 202); (3, 6, 7), (5, 6, 6, 5), (−, 28, 84, 84), (196, 224); (3, 6, 8), (5, 6, 6, 7), (−, 84, 84, 84),
(252, 272); (4, 5, 7), (5, 5, 6, 7), (−, 84, 22, 84), (190, 244); and (4, 6, 8), (5, 5, 5, 7), (−, 84, 84, 36),
(204, 216).

If (1, 5, 8), (2, 5, 8), (3, 5, 8) or (4, 5, 8) occurs then l = k, a contradiction. The remaining eight
cases are dealt with in turn. For (1, 3, 5) we have (d1, d2, d3, d4) = (5, 7, 4, 5) and if d3 ≥ 6 then
(m1,m2,m3) = (84, 8, 84) and (Σ, c̃) = (176, 244); if d3 = 4 and d4 ≥ 7 then (m1,m2,m3) =
(78, 63, 56) and (Σ, c̃) = (197, 222); if d3 = 4 and d1 ≥ 7 then (m1,m2,m3) = (30, 63, 49) and
(Σ, c̃) = (142, 222); if d3 = 4 and d1 = d4 = 5 and d2 ≥ 8 then (m1,m2,m3) = (154/3, 63, 49)
and (Σ, c̃) = (490/3, 189); or if d3 = 4 and d1 = d4 = 5 and d2 = 7 and the third vertex, v
say, of ∆1 does not have label b4 then (m1,m2,m3) = (36, 57, 49) and (Σ, c̃) = (142, 174); or
if d3 = 4, d1 = d4 = 5, d2 = 7 and l(v) = b4 then this forces the third vertex of ∆3 to have
degree ≥ 8 (see Figure 3.14(iii)) and so (m1,m2,m3) = (78, 15, 49) and (Σ, c̃) = (142, 174). For
(2, 3, 5) we cannot have d1 = d4 = 5 so (d1, d2, d3, d4) = (5/7, 6, 4, 7/5) and if d3 ≥ 6 then
(m1,m2,m3) = (84, 28, 84) and (Σ, c̃) = (196, 272); if d3 = 4 and d1 ≥ 7 then (m1,m2,m3) =
(8, 84, 84) and (Σ, c̃) = (176, 202); if d3 = 4, d1 = 5 and d2 ≥ 7 then (m1,m2,m3) = (64, 84, 56)
and (Σ, c̃) = (204, 222); or if d4 = 4, d1 = 5 and d2 = 6 and the third vertex of ∆3 has degree
≥ 8 then (m1,m2,m3) = (84, 35, 56) and (Σ, c̃) = (175, 202), while if the third vertex of ∆3 has
degree 5 or 7 then k 6= 2l forces ∆1 to be given by Figure 3.14 (iv) in which the corner label λ−1

of ∆10 is forced so (m1,m2,m3) = (0, 84, 56) and (Σ, c̃) = (140, 202). For (2, 4, 6) we cannot have
d1 = d4 = 5 so (d1, d2, d3, d4) = (5/7, 5, 5, 7/5) and if d1 ≥ 7 then (m1,m2,m3) = (36, 84, 84)
and (Σ, c̃) = (204, 216); or if d1 = 5 then (m1,m2,m3) = (84, 84, 36) and (Σ, c̃) = (204, 216).
For (1, 3, 7) we have (d1, d2, d3, d4) = (5, 7, 4, 5) and if d3 ≥ 6 then (m1,m2,m4) = (84, 8, 84)
and (Σ, c̃) = (176, 244); or if d3 = 4 then this forces d4 ≥ 6 so (m1,m2,m4) = (78, 63, 56)
and (Σ, c̃) = (197, 202). For (2, 3, 8) we have (d1, d2, d3, d4) = (5, 6, 4, 5) and if d3 ≥ 6 then
(m1,m2,m4) = (84, 28, 84) and (Σ, c̃) = (196, 224); or if d3 = 4 then this forces d4 ≥ 6 and if
also d1 ≥ 7 then (m1,m2,m4) = (8, 84, 84) and (Σ, c̃) = (176, 230); if d3 = 4, d1 = 5 and d4 ≥ 7
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then (m1,m2,m4) = (84, 161/2, 30) and (Σ, c̃) = (401/2, 202); if d3 = 4, d1 = 5 and d2 ≥ 7 then
(m1,m2,m4) = (64, 63, 56) and (Σ, c̃) = (183, 202); if d3 = 4, d1 = 5 and d2 = 6 and the third
vertex, v say, of ∆3 has degree ≥ 8 then (m1,m2,m4) = (84, 35, 56) and (Σ, c̃) = (175, 182), or if
d3 = 4, d1 = 5 and d2 = 6 and d(v) = 5 or 7 then (see Figure 3.14(iv)) (m1,m2,m4) = (0, 84, 56)
and (Σ, c̃) = (140, 182). For (1, 6, 7) we have (d1, d2, d3, d4) = (5, 6, 5, 5) and if d1 ≥ 7 or d4 ≥ 7
then (m1,m3,m4) = (84, 84, 36) and (Σ, c̃) = (204, 244); if d1 = d4 = 5 and d3 ≥ 6 then
(m1,m3,m4) = (84, 56, 84) and (Σ, c̃) = (224, 224); if d1 = d3 = d4 = 5 then as for (1, 4, 6, 7) we
do not have d(∆15) = d(∆16) = 3 in Figure 3.14(ii) so either d(∆15) > 3 and m3 = 42 since ∆̂ 6=
∆̂9 of Figure 3.7(iv) due to d(∆̂4) = 3 in Figure 3.7(iv), or d(∆16) > 3 and m4 = 42 since ∆̂ 6= ∆̂6

of Figure 3.8(v) due to d(∆1) = 3; therefore if d2 = 6 then (m1,m3,m4) = (56, 84/42, 42/84)
and (Σ, c̃) = (182, 196) or d2 ≥ 7, (m1,m3,m4) = (78, 84/42, 42/84) and (Σ, c̃) = (204, 216). For
(4, 6, 7) labellings prevents we d1 = d2 = 5 so (d1, d2, d3, d4) = (5/7, 7/5, 5, 5) and if d3 ≥ 7 or
d4 ≥ 7 then (m2,m3,m4) = (84, 84, 84) and (Σ, c̃) = (252, 264); or if d3 = d4 = 5 and d1 ≥ 7
then (m2,m3,m4) = (84, 84, 36) and (Σ, c̃) = (204, 216); so let d1 = d3 = d4 = 5. As in Figure
3.14(ii) for (1,4,6,7) we cannot have d(∆15) = d(∆

16
) = 3 and if d(∆15) > 3 thenm3 = 60 (Figure

3.7(iv)) so if d2 = 7 then (m2,m3,m4) = (36, 60, 84) and (Σ, c̃) = (180, 216); or if d(∆15) > 3
and d2 ≥ 8 then (m2,m3,m4) = (84, 60, 84) and (Σ, c̃) = (228, 231); or if d(∆16) > 3 then
m4 = 56 (Figure 3.8(v)) so if d2 = 7 then (m2,m3,m4) = (36, 84, 56) and (Σ, c̃) = (176, 216); or
if d(∆16) > 3 and d2 ≥ 8 then (m2,m3,m4) = (84, 84, 56) and (Σ, c̃) = (224, 231). Finally for
(2, 4, 8) we have (d1, d2, d3, d4) = (5, 5, 5, 5) and if d2 = 7 then (m1,m2,m4) = (84, 36, 84) and
(Σ, c̃) = (204, 216); or if d2 ≥ 8 then (m1,m2,m4) = (105/2, 84, 84) and (Σ, c̃) = (441/2, 231); if
d2 = 5 and d1 ≥ 7 then (m1,m2,m4) = (84, 84, 46) and (Σ, c̃) = (214, 216); if d1 = d2 = 5 and
d3 ≥ 7 then (m1,m2,m4) = (84, 36, 84) and (Σ, c̃) = (204, 216); if d1 = d2 = 5 and d3 = 6 then
l 6= k forces d4 ≥ 6 so (m1,m2,m4) = (84, 56, 84) and (Σ, c̃) = (224, 224); if d1 = d2 = d3 = 5 and
d4 ≥ 7 then (m1,m2,m4) = (84, 84, 36) and (Σ, c̃) = (204, 216). This leaves di = 5 (1 ≤ i ≤ 3),
d4 = 5 or 6 and ∆ is given by Figure 3.14 (v) where if x = b then l < k and this together with
k 6= 2l forces y1 = y2 = λ−1 so (m1,m2,m4) = (42, 42, 84) and (Σ, c̃) = (168, 168), so assume that
x = λ−1. Then m2 = 42 and so if d4 = 6 then (m1,m2,m4) = (84, 42, 56) and (Σ, c̃) = (182, 198),
therefore let d4 = 5. If either m1 = 42 or m4 = 42 then (m1,m2,m4) = (42, 42, 84) or (84, 42, 42)
and (Σ, c̃) = (168, 168). The only way m1 > 42 and m4 > 42 can be achieved is shown in Figure
3.14 (vi) for which (m1,m2,m4) = (84, 42, 84) and (Σ, c̃) = (210, 168). In this case we introduce
a new distribution rule, namely add c∗(∆̂) ≤ 42 to c(∆̂1) as shown. We will consider the region
∆̂1 later in this subsection.

Now let ∆̂ = ∆̂A of Figure 3.8(v) or (vi) and so ∆̂ is given by Figure 3.15(i) in which d(∆18) > 3
and as already noted, m1 = 56. Therefore if exactly two of the neighbouring regions of ∆̂
have degree 3 and if d3 ≥ 5 then (Σ, c̃) = (168, 168); or if d3 = 4 then x = λ−1 and y = λ
in Figure 3.15(i) and (Σ, c̃) = (120, 182). Suppose that all four neighbouring regions have de-
gree 3. For (2, 3, 6, 8) we have (d1, d2, d3, d4) = (5, 6, 6, 7), (m1,m2,m3,m4) = (56, 28, 15, 64)
and (Σ, c̃) = (163, 272). For (2, 4, 6, 8) we have (d1, d2, d3, d4) = (5, 5, 5, 7) and if d3 ≥ 7 then
(m1,m2,m3,m4) = (56, 84, 15, 64) and (Σ, c̃) = (219, 264); or if d3 = 5 then the corner la-
bel λ−1 of ∆13 in Figure 3.15(ii) is forced, otherwise k = 2l, therefore (m1,m2,m3,m4) =
(56, 42, 36, 64) and (Σ, c̃) = (198, 216). If (2, 3, 5, 8) or (2, 4, 5, 8) then k = l. Now suppose
that exactly three neighbours have degree 3. If (2, 5, 8) then k = l. For (2, 6, 8) we have
(d1, d2, d3, d4) = (5, 5, 5, 7), (m1,m3,m4) = (56, 84, 64) and (Σ, c̃) = (204, 216). For (2, 3, 8) if
we have (d1, d2, d3, d4) = (5, 6, 6, 5) then (m1,m3,m4) = (56, 28, 112) and (Σ, c̃) = (196, 224);
or if (d1, d2, d3, d4) = (5, 6, 4, 6) then (m1,m3,m4) = (56, 161/2, 44) (see Figure 3.7(vi)) and
(Σ, c̃) = (361/2, 182); or if (d1, d2, d3, d4) = (5, 6, 4, 7) then (m1,m3,m4) = (56, 161/2, 64)
(see Figure 3.8(vi)) and (Σ, c̃) = (401/2, 202); For (2, 4, 8) we have (d1, d2, d3, d4) = (5, 5, 5, 5)
and if d4 = 6 then (m1,m2,m4) = (56, 84, 44) (see Figure 3.7(vi)) and (Σ, c̃) = (184, 196);
if d4 ≥ 7 then (m1,m2,m4) = (56, 84, 64) and (Σ, c̃) = (204, 216); if d4 = 5, d2 ≥ 7 and
d3 ≥ 7 then (m1,m2,m4) = (56, 84, 112) and (Σ, c̃) = (252, 266); if d4 = d2 = 5 and d3 ≥ 7
then (m1,m2,m4) = (56, 36, 112) and (Σ, c̃) = (204, 216); or if d4 = d3 = 5 and d2 ≥ 7 then

24



λ

a

b

λ

∆A
λ

a

λ b λ

a

b

a
a

∆13

l

λ

∆

λλ
a

λ b λ

a
aa

λb b λ

λ

b
λ

a

a a
b

bλ
λ

b
λ

∆A

λ
λ

a

b

∆1

λ

λ

a

b

λ

∆

λ

b
λ

a

a a
b

bλ
λ

b
λ

∆A

λ

λ

(ii) (iii)

(v)

(iv)

(i)

a

λ b

bλ

a

a

b

λ ∆8

b

a
λ

λ

l

v

a

b

λ

a
a

a a
∆

∆

∆

∆a
λ

λ

28

16 13

12

11
x

y

a

λ b λ

a

b

a
a

b

b
λ

λ

B
v

l

a

λ b

bλ

a

a

b

λ ∆8

b

a
λ

∆18
λ

x

v

l

∆2
0 0

y

0

a
a

0

Figure 3.15: curvature at regions d(∆̂A) and d(∆̂B)

d(∆13) > 3 as in Figure 3.15(ii) so (m1,m2,m4) = (56, 18, 112) and (Σ, c̃) = (186, 216). Since
d4 = 5 and l 6= k prevents d3 = 6 this leaves the case di = 5 (1 ≤ i ≤ 4) and ∆̂A is shown in
Figure 3.15(iii) in which if x = a then d(v) ≥ 8 and , moreover, the fact that l < k then forces
y = λ−1 so (m1,m2,m4) = (21, 28, 112) and (Σ, c̃) = (161, 168); if x = λ and d(∆16) > 3 then
(m1,m2,m4) = (42, 42, 84) and (Σ, c̃) = (168, 168); or if x = λ and d(∆16) = 3 as shown then
(m1,m2,m4) = (42, 42, 112) and (Σ, c̃) = (196, 168). Therefore we define the new distribution
rule: add c∗(∆) ≤ 28 to c(∆̂1) as shown in Figure 3.15(iii).

Let ∆̂ = ∆̂B and so ∆̂ is given by Figure 3.15(iv) and k > l. Note that if d(u2) ≥ 7 then m2 = 8
or if d(u2) = 5 then d(v) ≥ 8 and m2 = 21. Therefore if exactly two of the neighbouring regions
of ∆̂ have degree 3 then (Σ, c̃) = (133, 168). Suppose that exactly three neighbouring of ∆̂B

have degree 3 and the third is ∆ say. If ∆ = ∆1 (of Figure 3.13) then d2 ≥ 7, (m1,m2,m3) =
(84, 8, 112) and (Σ, c̃) = (204, 216); if ∆ = ∆2 and d4 = 5 then d1 ≥ 8, (m1,m2,m3) =
(21, 21, 112) and (Σ, c̃) = (154, 231), or if d4 ≥ 7, (m1,m2,m3) = (84, 21, 64) and (Σ, c̃) =
(169, 216); if ∆ = ∆7 and d2 = 5 then d1 ≥ 8, (m2,m3,m4) = (84, 112, 21) and (Σ, c̃) =
(217, 231), or if d2 ≥ 7 then (m2,m3,m4) = (8, 112, 84) and (Σ, c̃) = (204, 216); or if ∆ =
∆8 then d4 ≥ 7, (m2,m3,m4) = (21, 64, 84) and (Σ, c̃) = (196, 216). Now suppose that all
four neighbouring regions have degree 3. For (1, 4, 6, 7) we have d2 ≥ 7 so if d1 ≥ 7 then
(m1,m2,m3,m4) = (30, 8, 112, 36) and (Σ, c̃) = (186, 264), or if d1 = 5 then this forces m1 = 39
and m4 = 42 (see the previous analysis for (1, 4, 6, 7) and Figure 3.14(ii)) so (m1,m2,m3,m4) =
(39, 8, 112, 42) and (Σ, c̃) = (201, 216). For (1, 4, 6, 8) we have (d1, d2, d3, d4) = (8, 7, 5, 7) so
(m1,m2,m3,m4) = (84, 84, 64, 84) and (Σ, c̃) = (240, 327). For (2, 4, 6, 7) we have d1 ≥ 8,
(m1,m2,m3,m4) = (21, 21, 112, 21) and (Σ, c̃) = (175, 231). Finally for (2, 4, 6, 8) we have
d4 ≥ 7, (m1,m2,m3,m4) = (84, 21, 64, 36) and (Σ, c̃) = (205, 216).

To complete the case n = 8 observe that if d(∆̂) = 3 then either c∗(∆̂) ≤ 0 or positive curvature
is distributed from ∆̂ to a region of degree greater than 3 and so it remains to consider ∆̂ = ∆̂1 of
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Figure 3.16: curvature distribution for n = 7

Figure 3.14(v) or 3.15(iii) in which case if d(∆̂) ≥ 5 then c∗(∆̂) ≤ c(4, 5, 5, 5, 5)+4(84)+42 = 0,
so assume that d(∆̂) = 4 as shown in Figure 3.15(v). If at most one of the neighbouring
regions of ∆̂ has degree 3 then c∗(∆̂) ≤ c(5, 5, 5, 5) + 42 + 84 < 0. Suppose exactly two have
degree 3. For (4, 5),(4, 6) (∆̂ 6= ∆̂B), (4, 8), since ∆̂ receives at most 42 from ∆4 we have
c∗(∆̂) ≤ c(5, 5, 5, 5) + 2(42) + 84 = 0; for (4, 6) with ∆̂ = ∆̂B, d4 ≥ 7 so we see from the above
analysis for ∆̂B thatm2 = 21 andm3 = 64 so c∗(∆̂) ≤ c(5, 5, 5, 7)+42+21+64 = −216+127 < 0;
and for (6, 8), d4 ≥ 7 so ∆̂ receives at most 36 from ∆8 and c∗(∆̂) ≤ c(5, 5, 5, 7)+42+84+36< 0.
If (5, 8) then k = l. Finally if there are exactly three 3-gons then it must be (4, 6, 8) so d3 ≥ 7
and c∗(∆̂) ≤ c(5, 5, 5, 7) + 42 + 42 + 84 + 36 < 0 when ∆̂ 6= ∆̂B; and c∗(∆̂) ≤ c(5, 5, 5, 7) + 42 +
21 + 64 + 36 < 0 when ∆̂ = ∆̂B.

3.4 n = 7 (l 6= k, l 6= 2k, k 6= 2l)

If d(v) ≤ 7 then l(v) ∈ {aλb2λ−1, a3λb−1λ−1, aλb2λ−1λλ−1, aλbλ−1λbλ−1, aλλ−1λb2λ−1, a2λb−3λ−1}
by Lemma 2.2. Again use will be made of the assumptions l 6= k, l 6= 2k and k 6= 2l often without
explicit mention.

If c(∆) > 0 then ∆ is given by Figure 3.1(i). If d(∆̂i) > 3 (1 ≤ i ≤ 3) then distribute 1
3c(∆) to

each c(∆̂i); if exactly one of the ∆̂i has degree 3 then distribute 1
2c(∆) to each of the other two

neighbouring regions; or if exactly two of the ∆̂i have degree 3 then distribute c(∆) to the third
region. Given this, the maximum amount of curvature (in multiples of π/420) crossing an edge
according to the degrees of its endpoints is shown in Figure 3.5(i); and the three cases when 56
is exceeded are shown in Figure 3.16(i)-(iii).

Now let d(∆̂i) = 3 (1 ≤ i ≤ 3) in Figure 3.1(i). Then l 6= k implies that there are six possible
configurations and these are shown in Figure 3.16(iv) and 3.17(i)-(v). If ∆ is given by Figure
3.16(iv) then c(∆) ≤ 0; or if by Figure 3.17(i) then d(∆̂4) > 3, so if d(∆̂5) > 3 then add
1
2 (c(∆) + c(∆̂1)) ≤ 22 to each of c(∆̂4) and c(∆̂5) as shown in Figure 3.17(vi), or if d(∆̂5) = 3

then d(v4) ≥ 6 and add c(∆) + c(∆̂1) ≤ 16 to c(∆̂4) as in Figure 3.17(vii).

Let ∆ be given by Figure 3.17(ii) in which case d(v2) = 5 otherwise c(∆) ≤ 0. If d(∆̂8) > 3
and d(∆̂9) > 3 then add 1

2 (c(∆) + c(∆̂3)) ≤ 28 to each of c(∆̂8) and c(∆̂9) as in Figure 3.18(i).

Suppose otherwise and assume until otherwise stated that d(v1) = 6. If d(∆̂8) > 3, d(∆̂9) = 3
and d(v6) ≥ 6 then add c(∆) + c(∆̂3) ≤ 28 to c(∆̂8) as in Figure 3.18(ii); or if d(∆̂8) > 3,
d(∆̂9) = 3 and d(v6) = 5 then add c(∆) + c(∆̂3) ≤ 56 to c(∆̂8) as in (iii). If d(∆̂8) = 3,
d(∆̂9) > 3 and ∆̂8 is given by Figure 3.18(iv) then d(v3) = 7 and d(v6) ≥ 7 so add c(∆) = 8
to c(∆̂3) ≤ −40 as shown; or if ∆̂8 is given by (v) then d(v6) ≥ 6 so add c(∆) + c(∆̂3) ≤ 28 to
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Figure 3.17: three neighbouring regions of degree 3

c(∆̂9) as shown. Let d(∆̂8) = d(∆̂9) = 3, in which case d(v3) 6= 7 so c(∆) > 0 forces d(v3) = 6
and d(v5) ≥ 6. If d(∆̂6) > 3 and d(∆̂7) > 3 then add 1

2 (c(∆) + c(∆̂2)) ≤ 28 to each of c(∆̂6)

and c(∆̂7) as in Figure 3.18(vi); if d(∆̂6) = 3 and d(∆̂7) > 3 then add c(∆) + c(∆̂2) ≤ 56 to
c(∆̂7) as in (vii); if d(∆̂6) > 3 and d(∆̂7) = 3 then add c(∆) + c(∆̂2) ≤ 56 to c(∆̂6) as in
(viii). Let d(∆̂6) = d(∆̂7) = 3, in which case d(∆̂5) > 3. If d(∆̂4) > 3 and d(v4) = 5 then
add 1

3 (c(∆) + c(∆̂1)) = 28 to c(∆̂4) and 2
3 (c(∆) + c(∆̂1)) = 56 to c(∆̂5) as in Figure 3.18(ix);

or if d(v4) ≥ 6 then add 1
2 (c(∆) + c(∆̂1)) ≤ 28 to each of c(∆̂4) and c(∆̂5) as shown in (ix).

If d(∆̂4) = 3 and d(v4) = 5,≥ 6 then add c(∆) + c(∆̂1) = 84,≤ 56 to c(∆̂5) as in Figure
3.18(x). Now assume that d(v1) = 7 and d(v3) = 6. If d(∆̂8) > 3 and d(∆̂9) = 3 then add
c(∆) + c(∆̂3) ≤ 16 to c(∆̂8) as in Figure 3.18(xi);

or if d(∆̂8) = 3 and d(∆̂9) > 3 then add c(∆) + c(∆̂3) ≤ 16 to c(∆̂9) as in (xii). Let d(∆̂8) =
d(∆̂9) = 3. If d(∆̂6) > 3 and d(∆̂7) > 3 then add 1

2 (c(∆)+c(∆̂2)) ≤ 18 to each of c(∆̂6) and c(∆̂7)

as in Figure 3.19(i); if d(∆̂6) > 3, d(∆̂7) = 3 and d(v5) = 6, ≥ 7 then add c(∆) + c(∆̂2) = 36,
≤ 16 (respectively) to c(∆̂6) as in (ii); if d(∆̂6) = 3 then d(∆̂5) > 3 and if d(∆̂4) > 3 and
d(v5) = 5 then add 1

3 (c(∆)+ c(∆̂1)) = 16 to c(∆̂4) and
2
3 (c(∆)+ c(∆̂1)) = 28 to c(∆̂5) as in (iii);

if d(∆̂6), d(∆̂4) > 3 and d(v5) ≥ 6 then add 1
2 (c(∆) + c(∆̂1)) ≤ 8 to each of c(∆̂4) and c(∆̂5)

again as in (iii); or if d(∆̂6) = d(∆̂4) = 3 and d(v4) = 5, ≥ 6 then add c(∆) + c(∆̂1) = 44, ≤ 16
(respectively) to c(∆̂5) as in (iv).

Let ∆ be given by Figure 3.17(iii) in which case c(∆) > 0 forces d(v3) = 5. If d(∆̂4) > 3 and
d(∆̂5) > 3 then add 1

2 (c(∆)+c(∆̂1)) ≤ 28 to each of c(∆̂4) and c(∆̂5) as shown in Figure 3.19(v);

if d(∆̂5) > 3 and ∆̂4 is given by Figure 3.19(vi) then add c(∆) + c(∆̂1) ≤ 16 to c(∆̂5) as shown;
if d(∆̂5) > 3, d(v2) = 7 and ∆̂4 is given by Figure 3.19(vii) then add c(∆)+ c(∆̂1) ≤ 16 to c(∆̂5)
as shown; or if d(∆̂5) > 3, d(v2) = 6 and ∆̂4 is given by Figure 3.19(viii) then d(v4) ≥ 6, and add
c(∆)+ c(∆̂1) ≤ 28 to c(∆̂5) as shown. Now assume that d(∆̂5) = 3 in which case ∆̂5 is given by
Figure 3.19(ix) and this forces d(v2) = 6. If d(∆̂8) > 3 and d(∆̂9) > 3 and d(v1) = 7, d(v6) ≥ 5
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Figure 3.19: curvature distribution for n = 7

29



or d(v1) = 6, d(v6) ≥ 6 then add 1
2 (c(∆) + c(∆̂3)) ≤ 22 or ≤ 28 to each of c(∆̂8) and c(∆̂9),

whereas if d(v1) = 6, d(v6) = 5 then add 1
3 (c(∆)+c(∆̂3)) = 28 to c(∆̂9) and

2
3 (c(∆)+c(∆̂3)) = 56

to c(∆̂8) as shown in Figure 3.19(ix). Suppose that at least one of ∆̂8 or ∆̂9 has degree 3. If
d(∆̂6) > 3 and d(∆̂7) > 3 and d(v5) = 5, ≥ 6 then add 1

2 (c(∆)+c(∆̂2)) ≤ 42, ≤ 28 (respectively)

to each of c(∆̂6) and c(∆̂7) as shown in Figure 3.19(x). If d(∆̂7) = 3 then this forces d(∆̂8) > 3
and ∆̂9 must be given by Figure 3.19(xi) in which case add c(∆)+c(∆̂3) ≤ 56 to c(∆̂8) as shown.
Finally if d(∆̂7) > 3 and d(∆̂6) = 3 then d(v1) < 8 and l 6= k forces d(∆̂9) > 3 and so d(∆̂8) = 3
by assumption. If d(v5) = 5, ≥ 7 then add c(∆) + c(∆̂2) ≤ 84, ≤ 36 (respectively) to c(∆̂7) as
shown in Figure 3.19(xii).

Let ∆ be given by Figure 3.17(iv) in which case c(∆) > 0 forces d(v2) = 5 and d(∆̂5) > 3.
Note also that k > l. If d(∆̂4) > 3 then add 1

2 (c(∆) + c(∆̂1)) ≤ 22, 28 to each of c(∆̂4) and

c(∆̂5) as shown in Figure 3.20(i) according to d(v4) = 5,d(v1) = 7 or d(v4) ≥ 6,d(v1) ≥ 6. Let
d(∆̂4) = 3. If ∆̂4 is given by Figure 3.20(ii) and d(v4) = 5, ≥ 6 then add c(∆)+c(∆̂1) = 44, ≤ 16
(respectively) to c(∆̂5) as shown. Suppose from now on that ∆̂4 is given by Figure 3.20(iii). Then
c(∆) > 0 forces d(v1) = 6. If d(∆̂8) > 3 and d(∆̂9) > 3 then add 1

2 (c(∆)+c(∆̂3)) ≤ 28 to each of

c(∆̂8) and c(∆̂9) as in Figure 3.20(iii); if d(∆̂8) > 3 and d(∆̂9) = 3 then add c(∆) + c(∆̂3) ≤ 28
to c(∆̂8) as in (iv); or if d(∆̂8) = 3 and d(∆̂9) > 3 then add c(∆)+ c(∆̂3) ≤ 28, ≤ 16 to c(∆̂9) as
in (v), (vi) (respectively) . Let d(∆̂8) = d(∆̂9) = 3 and suppose first that ∆̂8 is given by Figure
3.20(vii). If d(∆̂6) > 3 then add c(∆) + c(∆̂2) = 84, = 56, ≤ 36 according to d(v5) = 5, = 6,
≥ 7 as shown in Figure 3.20(vii) and (viii); or if d(∆̂6) = 3 then add c(∆)+ c(∆̂1) = 56, ≤ 36 to
c(∆̂5) according to d(v4) = 6, ≥ 7 as in (ix). Now suppose that ∆̂8 is given by Figure 3.20(x).
If d(∆̂6) > 3 then add c(∆)+ c(∆̂2) = 44, ≤ 16 according to d(v5) = 5, ≥ 6 as in Figure 3.20(x)
and (xi); or if d(∆̂6) = 3 then add c(∆) + c(∆̂1) ≤ 36 to c(∆̂5) as in (xii).

Let ∆ be given by Figure 3.17(v) and assume that d(vi) = 3 (1 ≤ i ≤ 3), in which case k > l and
d(∆̂4) > 3. If ∆̂5 is given by Figure 3.21(i) or (ii) then when d(v4) = 5, add 1

3 (c(∆)+c(∆̂1)) = 56

to c(∆̂4) and 2
3 (c(∆) + c(∆̂1)) = 112 to c(∆̂5) as shown in (i), or when d(v4) ≥ 7 then add

8
15 (c(∆) + c(∆̂1)) ≤ 64 to c(∆̂4) and 7

15 (c(∆) + c(∆̂1)) ≤ 56 to c(∆̂5) as shown in (ii); if ∆̂5

is given by Figure 3.21(iii) in which it is assumed that d(∆̂5) > 3 and d(v4) = 6 then add
3
5 (c(∆) + c(∆1)) = 84 to c(∆̂4) and add 2

5 (c(∆) + c(∆̂1)) = 56 to c(∆̂5), or when d(v4) ≥ 7 add
8
15 ,

7
15 (c(∆) + c(∆̂1) ≤ 64, 56 (respectively) to each of c(∆̂4) and c(∆̂5) as shown. Note that in

Figure 3.21(i), k > l forces d(∆̂6) > 3 and d(∆̂10) > 3. Assume now that d(∆̂5) = 3, in which
case d(∆̂6) > 3. If d(∆̂7) > 3 then add 1

3c(∆)+c(∆̂1) = 84, ≤ 64 to c(∆̂4) according to d(v4) = 6,

≥ 7 as shown in Figure 3.21(iv) and (v), and when d(v5) = 5 add 2
5 (

2
3c(∆) + c(∆̂2)) = 56 to

c(∆̂6) and add 3
5 (

2
3c(∆) + c(∆̂2)) = 84 to c(∆̂7) as shown in (iv), or when d(v5) ≥ 6 then add

1
2 (

2
3c(∆) + c(∆̂2)) ≤ 56 to each of c(∆̂6) and c(∆̂7) as in (v). Let d(∆̂7) = 3, in which case

d(∆̂8) > 3. If d(∆̂9) > 3 then add 1
3 (c(∆) + c(∆̂1)) = 84, ≤ 64 to c(∆̂4) according to d(v4) = 6,

≥ 7 as shown in Figure 3.21(vi), and when d(v6) = 5 add 3
5 (

2
3c(∆) + c(∆̂3)) = 84 to c(∆̂8) and

2
5 (

2
3c(∆) + c(∆̂3)) = 56 to c(∆̂9) as in (vi), or when d(v6) ≥ 7 add 1

2 (
2
3c(∆) + c(∆̂3)) ≤ 46 to

each of c(∆̂8) and c(∆̂9) again as in (vi); or if d(∆̂9) = 3 then add 2
3 c(∆) + c(∆̂1) = 112, = 92,

≤ 77 to c(∆̂4) according to d(v4) = 6, = 7, ≥ 8 and add 1
3 c(∆) + c(∆̂2) = 112, ≤ 64 to c(∆̂6)

according to d(v5) = 5, ≥ 7 as shown in (vii) and (viii). Note that d(∆̂11) > 3 in Figure 3.21(vii).

Let ∆ be given by Figure 3.17(v) and assume that d(v1) ≥ 7. If d(∆̂4) > 3 and d(∆̂5) > 3 then
add 1

2 (c(∆) + c(∆̂1)) ≤ 36 to each of c(∆̂4) and c(∆̂5) as shown in Figure 3.21(ix); if d(∆̂4) > 3

and d(∆̂5) = 3 then add c(∆) + c(∆̂1) ≤ 44 to c(∆̂4) as in (x). Let d(∆̂4) = 3 in which case
d(v1) ≥ 8. If d(∆̂8) > 3 and d(∆̂9) > 3 add 1

2 (c(∆) + c(∆̂3)) ≤ 21 to each of c(∆̂8) and c(∆̂9)

as in Figure 3.21(xi); if d(∆̂8) = 3 and d(∆̂9) > 3 then add c(∆) + c(∆̂3) ≤ 42, ≤ 14 to c(∆̂9)
according to d(v6) = 5, ≥ 6 as in (xii); if d(∆̂8) > 3, d(∆̂9) = 3 and ∆̂9 is given by Figure 3.22(i)
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Figure 3.20: curvature distribution for n = 7
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then add c(∆) + c(∆̂3) ≤ 14 to c(∆̂8) as shown; if d(∆̂8) > 3, d(∆̂9) = 3 and ∆̂9 is given by (ii)
then add c(∆) + c(∆̂3) ≤ 42 to c(∆̂8) as shown; if d(∆̂8) = d(∆̂9) = 3 then d(∆̂7) > 3 so add
1
2 (c(∆) + c(∆̂2)) ≤ 105/2, ≤ 77/2 to each of c(∆̂8) and c(∆̂7) according to d(v5) = 5, ≥ 6 when

d(∆̂6) > 3 as in (iii); or if d(∆̂8) = d(∆̂9) = d(∆̂6) = 3 then d(∆̂5) > 3 so add c(∆)+ c(∆̂1) ≤ 42
to c(∆̂5) as in (iv).

Let ∆ be given by Figure 3.17(v) and assume that d(v2) ≥ 7, in which case d(∆̂4) > 3 and k > l.
If d(∆̂5) > 3 then add 1

2 (c(∆) + c(∆̂1)) ≤ 36 to each of c(∆̂4) and c(∆̂5) as shown in Figure

3.22(v); or if ∆̂5 is given by Figure 3.22(vi) then add c(∆) + c(∆̂1) ≤ 36 to c(∆̂4). Asume then
that ∆̂5 is given by Figure 3.22(vii). If d(∆̂6) > 3 and d(∆̂7) > 3 then add 1

2 (c(∆)+ c(∆̂2)) ≤ 36

to each of c(∆̂6) and c(∆̂7) as in Figure 3.22(vii); if d(∆̂6) > 3, d(∆̂7) = 3 and d(v2) = 7 then add
1
2c(∆)+ c(∆̂1) ≤ 54, ≤ 6 to c(∆̂4) according to d(v4) = 5, ≥ 7 and add 1

2c(∆)+ c(∆̂2) ≤ 54, ≤ 6

to c(∆̂7) according to d(v5) = 5, ≥ 7 as in (viii); if d(∆̂6) > 3, d(∆̂7) = 3 and d(v2) ≥ 8 then add
1
2c(∆) + c(∆̂1) ≤ 63/2 to c(∆̂4) and add 1

2c(∆)+ c(∆̂2) ≤ 63/2 to c(∆̂6) as in (ix); if d(∆̂7) > 3

and ∆̂6 is given by (x) then add 1
2c(∆) + c(∆̂1) ≤ 54, ≤ 6 to c(∆̂4) according to d(v4) = 5, ≥ 7

and add 1
2c(∆) + c(∆̂2) ≤ 54, ≤ 6 to c(∆̂7) according to d(v5) = 5, ≥ 7 as shown; if d(∆̂7) > 3

and ∆̂6 is given by (xi) then add 1
2c(∆)+ c(∆̂1) ≤ 63/2 to c(∆̂4) and add 1

2c(∆)+ c(∆̂2) ≤ 63/2

to c(∆̂7) as shown; if d(∆̂6) = d(∆̂7) = 3 then add c(∆) + c(∆̂1) ≤ 72, ≤ 24, ≤ 42 to c(∆̂4)
according to d(v4) = 5,d(v2) = 7 or d(v4) ≥ 7,d(v2) = 7 or d(v4) ≥ 5,d(v2) ≥ 8 as shown in (xii).

Let ∆ be given by Figure 3.17(v) and assume that d(v3) ≥ 7, in which case k > l, d(∆̂4) > 3
and d(∆̂6) > 3. If d(∆̂7) > 3 then add 1

2 (c(∆) + c(∆̂2)) ≤ 36, ≤ 21 to each of c(∆̂6) and c(∆̂7)

according to d(v6) = 7, ≥ 8 as in Figure 3.23(i); if d(∆̂7) = 3 and ∆̂7 is given by (ii) then add
c(∆)+ c(∆̂2) ≤ 72, ≤ 24 to c(∆̂6) according to d(v5) = 5, ≥ 7 as shown; or if d(∆̂7) = 3 and ∆̂7

is given by (iii) then d(v5) ≥ 6 and d(v6) ≥ 8 so add c(∆) + c(∆̂2) ≤ 14 to c(∆̂6) as shown.

This completes the initial distribution of curvature for n = 7. Checking Figures 3.16–3.23(i)-(iii)
shows that if d(∆̂) = 3 then ∆̂ receives positive curvature across at most one edge apart from the
eight cases shown in Figure 3.23(iv)-(xi). In Figure 3.24(iv), ∆̂ is (up to inversion) ∆̂3 of Figure
3.18(ii) and ∆̂1 of Figure 3.19(vii) and add c(∆1)+ c(∆2)+ c(∆̂) ≤ 16 to c(∆̂8) as shown; in (v)
∆̂ is ∆̂3 of Figure 3.18(ii) and ∆̂1 of Figure 3.19(viii) and add c(∆1) + c(∆2) + c(∆̂) ≤ 56, 16 to
c(∆̂8) according to d(v3) = 6, = 7 in ∆1; in (vi) ∆̂ is ∆̂3 of Figure 3.18(iii) and ∆̂1 of Figure
3.20(ix) and add c(∆1) + c(∆2) + c(∆̂) ≤ 84, 64, 44 to c(∆̂8) according to d(v3) = 6, = 6, = 7 in
∆1 and d(v3) = 6, = 7, ≥ 6 in ∆2 (respectively) as shown; in (vii) ∆̂ is ∆̂3 of Figure 3.18(v) and
∆̂3 of Figure 3.20(v) and add c(∆1)+c(∆2)+c(∆̂) ≤ 56 to c(∆̂9) noting that d(∆̂9) > 3; in (viii)
∆̂ is ∆̂1 of Figure 3.18(x) and ∆̂2 of Figure 3.19(xii) and add c(∆1) + c(∆2) + c(∆̂) ≤ 112, 92 to
c(∆̂5) according to d(v1) = 6, = 7 in ∆2; in (ix) ∆̂ is ∆̂1 of Figure 3.19(vi) and ∆̂2 of 3.20(xi)
and add c(∆1) + c(∆2) + c(∆̂) ≤ 24 to c(∆̂5); in (x) ∆̂ is ∆̂1 of Figure 3.20(ii) and ∆̂2 of Figure
3.20(x) and add c(∆1)+ c(∆2)+ c(∆̂) ≤ 52 to c(∆̂5); and in (xi) ∆̂1 is ∆̂1 of Figure 3.22(xi) and
∆̂2 is ∆̂2 of Figure 3.22(xi) and ∆̂3 of Figure 3.22(ii) and in this case add c(∆1) + c(∆̂1) ≤ 42
to c(∆̂4) and add c(∆2) + c(∆̂2) ≤ 42 to c(∆̂8) as shown.

This completes the distribution of curvature scheme for n = 7. In what follows, unless otherwise
stated checking will mean checking Figures 16-23. Indeed checking those figures shows that 84
across an edge is exceeded only in Figures 3.21(i), (vi), (viii) and Figure 3.23(viii), in particular,
112 is the maximum amount to cross an edge. But in Figure 3.21(i) the fact that k > l forces
d(∆̂6) > 3 and d(∆̂10) > 3; in Figure 3.21(vii), k > l forces d(∆̂11) > 3; checking and using
in particular the fact that d(v4) > 5, that d(∆̂4) > 3 and l(v4) = λ−1aaw for some sublabel w
shows that ∆̂6 receives at most 56 from ∆̂5 in Figures 3.21(vii) and (viii); and again checking
and using k < l shows that ∆̂5 receives at most 56 from ∆̂6 in Figure 3.23(viii), indeed the
(b, λ)-edge of ∆̂6 has length l (as indicated) and this prevents ∆̂6 coinciding with ∆̂1 of Figure
3.18(x), ∆̂6 of Figure 3.19(xii) or ∆̂ of Figure 3.23(viii).
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Figure 3.21: curvature distribution for n = 7
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Let ∆̂ receive positive curvature. If d(∆̂) = 3 then it follows from the above that either c∗(∆̂) ≤ 0
or the positive curvature is transferred further to a region of degree > 3. Moreover, it follows
from the above paragraph that c∗(∆̂) ≤ c(∆̂) + d(∆̂)(84) and so if d(∆̂) ≥ 5 then c∗(∆̂) ≤ 0.

Now suppose that d(∆̂) = 4. If ∆̂ receives curvature across at most one edge then c∗(∆̂) ≤
c(5, 5, 5, 5) + 112 < 0. Suppose that ∆̂ receives curvature across exactly two edges. Since
c(5, 5, 5, 5) + 2.84 = 0 it can be assumed that ∆̂ receives more than 84 across an edge in which
case ∆̂ is ∆̂4 of Figure 3.21(i) and so ∆̂ is given by Figure 2.1(v); or ∆̂ is ∆̂3 of Figure 3.21(vii)
or ∆̂6 of Figure 3.21(vii) or (viii) and so ∆̂ is given by Figure 2.1(vi). (Note that l 6= 2k forces
d(∆̂5) > 4 in Figure 3.23(viii).) It follows that ∆̂ receives more than 84 across exactly one edge.
Now in Figure 3.21(vii), ∆̂3 has a vertex of degree > 5 and, given d(∆̂6) = 4, labelling shows
that the region ∆̂6 has a vertex of degree > 5 in Figures 3.21(vii) and (viii); so for these cases
c∗(∆̂) ≤ c(5, 5, 5, 6)+ 112 + 84 = 0. Moreover, if ∆̂ is ∆̂4 of Figure 3.21(i) and each vertex of ∆̂
has degree 5 then ∆̂ is given by Figure 3.24(i); but checking shows that ∆̂ receives at most 56
from the region ∆ and so c∗(∆̂) ≤ c(5, 5, 5, 5) + 112 + 56 = 0. Therefore if ∆̂ receives positive
curvature across exactly two edges then c∗(∆̂) ≤ 0.

Let ∆̂ be given by Figure 2.1(v) and assume that ∆̂ receives positive curvature across at least
three edges. Since d(∆̂6) > 3 and d(∆̂10) > 3 in Figure 3.21(i) it follows that the maximum
curvature ∆̂ receives across an edge is 56 or 84. Furthermore, checking shows that if e is an edge
of ∆̂ having at least one endpoint of degree > 5 then ∆̂ receives at most 56 across e.

Suppose that all four neighbouring regions of ∆̂ have degree 3 so by Figure 3.12 there are 24 possi-
bilities. Using the same notation as for n = 8 if (1, 3, 5, 8) or (2, 3, 5, 8) then l = 2k. It follows from
the above remarks that ∆̂ receives at most 4.56 in the following 18 cases: (1, 3, 5, 9), (6, 6, 5, 6)
(since l > k prevents d2 = 5), (224, 252); (1, 3, 6, 8), (6, 5, 7, 6), (224, 272); (1, 3, 6, 9), (6, 5, 7, 5),
(224, 244); (1, 3, 7, 8), (6, 5, 6, 7), (224, 272); (1, 3, 7, 9), (6, 5, 6, 7), (224, 272); (1, 4, 5, 8), (6, 6, 6, 5),
(224, 256); (1, 4, 5, 9), (6, 6, 6, 6), (224, 280); (1, 4, 6, 8), (6, 6, 7, 6), (224, 300); (1, 4, 6, 9), (6, 6, 7, 5),
(224, 272); (1, 4, 7, 8), (6, 6, 5, 7), (224, 272); (1, 4, 7, 9), (6, 6, 5, 7), (224, 272); (2, 3, 5, 9) (l > k),
(5, 7, 5, 6), (224, 244); (2, 3, 6, 8), (6, 7, 7, 6) (224, 320); (2, 3, 7, 8), (6, 7, 6, 7), (224, 320); (2, 3, 7, 9),
(5, 7, 6, 7), (224, 292); (2, 4, 5, 8), (6, 5, 6, 5), (224, 224); (2, 4, 5, 9), (5, 5, 6, 6), (224, 224); and
(2, 4, 6, 8), (6, 5, 7, 6), (224, 272).

For (2, 3, 6, 9) we have (5, 7, 7, 5), (56, 56, 56, 84), (252, 264). For (2, 4, 6, 9), (d1, d2, d3, d4) =
(5, 5, 7, 5) and (m1,m2,m3,m4) = (56, 56, 56, 84) so if di 6= 5 for any i ∈ {1, 2, 4} then (Σ, c̃) =
(252, 264). Assume otherwise, in which case ∆̂ is given by Figure 3.24(ii) in which d(∆10) > 3
and checking shows that m3 = 42 (see Figure 3.21(xii)). If d(∆)11) > 3 in Figure 3.24(ii) then
(m1,m2,m3,m4) = (28, 56, 42, 84) and (Σ, c̃) = (210, 216); or if d(∆11 = 3 then d(∆12 > 3 and
again checking shows that m2 = 28 therefore (m1,m2,m3,m4) = (56, 28, 42, 84) and (Σ, c̃) =
(210, 216). For (2, 4, 7, 8), (d1, d2, d3, d4) = (6, 5, 5, 7) and if dj 6= 5 for j = 2 or 3 then dj ≥ 7

and (Σ, c̃) = (224, 292). Assume otherwise, in which case ∆̂ is given by Figure 3.24(iii) in which
d(∆12) = 3 forces k ≤ l and d(∆13) = 3 forces k > l and it follows that m2 = 56 and (Σ, c̃) =
(224, 224). For (2, 4, 7, 9), (d1, d2, d3, d4) = (5, 5, 5, 7) and (m1,m2,m3,m4) = (56, 84, 56, 56) so
if di 6= 5 for any 1 ≤ i ≤ 3 then di ≥ 7 and (Σ, c̃) = (252, 265). Assume otherwise, so ∆̂ is given
by Figure 3.24(iv) in which d(∆10) > 3, moreover d(∆11) = d(∆12) = 3 contradicts l 6= k and
checking shows that m3 = 36, therefore if d(∆11) > 3 then (m1,m2,m3,m4) = (28, 84, 36, 56)
and (Σ, c̃) = (204, 216) or if d(∆11) > 3 then (m1,m2,m3,m4) = (56, 56, 36, 56) and (Σ, c̃) =
(204, 216).

Now suppose that exactly three of the neighbouring regions of ∆̂ are 3-gons. There are 44
possibilities as shown in Figure 3.12. For (1, 3, 5) the fact that k < l forces d2 ≥ 7 and
we have (6, 7, 5, 5), (56, 56, 84,−) and (Σ, c̃) = (196, 244). Observe that for (2, 4, 7), (2, 4, 9)
and (2, 6, 5) ∆2 of Figure 3.12 cannot be ∆ of Figure 3.16(i) and so for (2, 4, 7) we have
(5, 5, 5, 7), (56, 84, 56,−), (196, 216); for (2, 4, 9) labelling prevents d3 = d4 = 5 so either
(5, 5, 5, 7), (56, 84,−, 56) or (5, 5, 7, 5), (56, 56,−, 84) occurs and (Σ, c̃) = (196, 216); and for
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(2, 6, 9) we have (5, 5, 7, 5), (56,−, 56, 84), (196, 216). For (3, 5, 8) we have l = 2k, a contradic-
tion. In the remaining 39 cases two of the neighbouring 3-gons share a vertex of degree ≥ 6 with
∆̂ and it follows that c∗(∆̂) ≤ c(5, 5, 5, 6) + 2.56 + 84 = 0.

Let ∆̂ be given by Figure 2.1(vi) and suppose that ∆̂ receives positive curvature across four edges
and so there are 16 possibilities as can be seen in Figure 3.13. Let e be an edge of ∆̂. If both end-
points of e have degree greater than 5 then the maximum curvature across e is 56; or if exactly one
endpoint of e has degree 5 then the maximum is 56 or e occurs in Figure 3.21 or 3.23. Given this,
checking yields the following: (1, 3, 5, 7), (6, 7, 7, 6), (56, 56, 56, 56), (224, 320); (1, 3, 5, 8) forces
k = l, a contradiction; (1, 3, 6, 8), (6, 7, 5, 6), (56, 56, 56, 56), (224, 272); (1, 4, 5, 7), (6, 7, 5, 6),
(56, 92, 56, 56), (260, 272); (1, 4, 5, 8) forces k = l, a contradiction; (1, 4, 6, 7), (6, 7, 6, 5), (56, 56, 56, 56),
(224, 272); (1, 4, 6, 8), (6, 7, 6, 6), (56, 56, 56, 56), (224, 300); (2, 3, 5, 7), (5, 7, 7, 6), (56, 56, 56, 64),
(232, 292); (2, 3, 5, 8) forces k = l, a contradiction; (2, 3, 6, 8), (6, 7, 5, 6), (56, 56, 56, 56), (224, 272);
(2, 4, 5, 8) forces k = l, a contradiction; and (2, 4, 6, 8), (6, 5, 6, 6), (56, 56, 56, 56), (224, 252). This
leaves (1, 3, 6, 7), (2, 3, 6, 7), (2, 4, 5, 7) and (2, 4, 6, 7) to consider.

For (1, 3, 6, 7), (6, 7, 5, 5) and (56, 56, 84, 56) hold so if either d3 > 5 or d4 > 5 then (Σ, c̃) =
(252, 292); if d3 = d4 = 5 and m3 = 56 then (Σ, c̃) = (224, 244); or if d3 = d4 = 5 and m3 > 56
then (see Figure 3.16(iii)) ∆̂ is given by Figure 3.24(v), but, as shown, the labelling forces both
k > l and k < l, a contradiction.

For (2, 3, 6, 7) we have (5, 7, 5, 5) and (56, 56, 56, 84) noting that m3 = 56 by the argument for
(1, 3, 6, 7). If di > 5 for any i ∈ {1, 3, 4} then di ≥ 7 and (Σ, c̃) = (252, 264), so assume otherwise.
If m4 > 56 then ∆̂ is given by Figure 3.24(vi) but, as shown, the labelling forces both k > l and
l > k, a contradiction; so if d2 ≥ 8 then (Σ, c̃) = (224, 231). On the other hand if d2 = 7 then
checking shows that m2 = 36 and so (Σ, c̃) = (204, 216).

For (2, 4, 5, 7) we have (5, 5, 5, 6) and (56, 77, 56, 64) (see Figure 3.21(viii)). If at least two di > 5
for 1 ≤ i ≤ 3 then di ≥ 7 and (Σ, c̃) = (253, 292); if only d1 > 5 then we have (7, 5, 5, 6),
(56, 72, 56, 56) (see Figure 3.22(xii)) and (Σ, c̃) = (240, 244); if only d3 > 5 then (5, 5, 7, 6),
(56, 56, 56, 64) and (Σ, c̃) = (232, 244), if only d2 > 5 and d2 = 7 then (5, 7, 5, 6), (56, 64, 56, 64)
and (Σ, c̃) = (240, 244) or if d2 ≥ 8 then (5, 8, 5, 6), (56, 77, 56, 64) and (Σ, c̃) = (253, 259).
Assume then that di = 5 (1 ≤ i ≤ 3) in which case ∆̂ is given by Figure 3.24(vii) where k > l
and d(∆11) > 3. If d(∆10) = 3 then d(v) ≥ 6 and m1 = 28 so if d4 = 6 then (28, 56, 56, 56) and
(Σ, c̃) = (196, 196) or if d4 ≥ 7 then (28, 56, 56, 64) and (Σ, c̃) = (204, 216). So let d(∆)10 > 3 in
Figure 3.24(vii) in which case ∆̂ cannot be ∆̂6 of Figure 3.21(vii) or (viii) and so m4 = 56. It
follows that if d4 ≥ 7 then we have (28, 72, 56, 56) and (Σ, c̃) = (212, 216); or if d4 = 6 then in
fact either d(∆16) > 3 or d(∆16) = 3 but d(u) ≥ 6 and in both cases we have (28, 72, 56, 28) and
(Σ, c̃) = (184, 196).

For (2, 4, 6, 7) we have (5, 5, 6, 5) and (56, 56, 56, 64) since m4 = 64 by the argument for (2, 3, 6, 7).
If any of di > 5 for i ∈ {1, 2, 4} then di ≥ 7 and (Σ, c̃) = (232, 244), so assume otherwise in
which case ∆̂ is given by Figure 3.24(viii). If k > l then d(∆11) > 3 in Figure 3.24(viii), forcing
(28, 56, 56, 56) and (Σ, c̃) = (196, 196); or if k < l then d(∆10) > 3 and then either d(∆15) > 3
in which case we have (42, 56, 42, 56) or d(∆15) = 3 forcing d(∆16) > 3 and (42, 56, 56, 42) and
in both cases (Σ, c̃) = (196, 196).

Suppose now that exactly three of the neighbouring regions of ∆̂ are 3-gons, and so, by Figure
3.13 there are 32 possibilities. If (1, 5, 8), (2, 5, 8), (3, 5, 8) or (4, 5, 8) occurs then l = k, a
contradiction. For (1, 4, 5) we have (6, 7, 5, 5), (56, 84, 84,−) and (Σ, c̃) = (224, 224). For (2, 4, 5)
we have (5, 5, 5, 5) and (56, 77, 84,−) so if at least two vertices have degree ≥ 6 then (Σ, c̃) =
(217, 224); if d1 > 5 only this yields (7, 5, 5, 5), (56, 72, 84,−) and (Σ, c̃) = (212, 216); if d2 > 5
only and d2 = 7 then (56, 64, 84,−) and (Σ, c̃) = (204, 216) or d2 ≥ 8 then (56, 77, 84,−)
and (Σ, c̃) = (217, 231); if d3 > 5 only then d3 ≥ 7, (56, 77, 56,−) and (Σ, c̃) = (189, 216); if
d4 > 5 only then d4 ≥ 6, (56, 77, 56,−) and (Σ, c̃) = (189, 196); if di = 5 (1 ≤ i ≤ 4) then
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(see (2, 4, 5, 7)) k > l and m1 = 28 so if m2 = 56 then (Σ, c̃) = (168, 168) or if m3 = 56
then (Σ, c̃) = (156, 168). It can be assumed therefore that ∆̂ is given by ∆̂1 of Figure 3.24(ix)
in which d(∆10) > 3, d(∆11) > 3, d(∆̂2) > 3 and (Σ, c̃) = (184, 168). In this case we have
the extra distribution rule: add c∗(∆̂1) ≤ 16 to ∆̂2 as shown. For (1, 4, 8) we have (6, 7, 5, 5),
(56, 77,−, 60) and (Σ, c̃) = (193, 244). For (2, 3, 7) we have (5, 7, 5, 5) and (56, 56,−, 112) so if
at least two vertices have degree ≥ 6 then (Σ, c̃) = (224, 224); or if di = 5 for i ∈ {1, 3, 4} then
checking shows that m2 = 36 and (Σ, c̃) = (204, 216). For (2, 4, 7) labelling forces (5, 5, 5/6, 6/5)
and (56, 72,−, 112) so if d1 > 5 or d2 > 5 this yields (7/5, 5/7, 5/6, 6/5) and (Σ, c̃) = (240, 244);
if di = 5 (1 ≤ i ≤ 3) then d4 ≥ 6, m4 = 64 and (Σ, c̃) = (192, 196); if di = 5 for i ∈ {1, 2, 4} and
d3 ≥ 7 then checking shows that m2 = 42 (see Figure 3.22(ii)) and (Σ, c̃) = (210, 216); if di = 5
for i ∈ {1, 2, 4} and d3 = 6 then eitherm4 = 84 and (Σ, c̃) = (196, 196) orm4 = 112, k > l forcing
m1 = 28 (see (2, 4, 5, 7)) and again (Σ, c̃) = (196, 196); or if d1 = d2 = 5 only then (5, 5, 6, 6),
(56, 56,−, 64) and (Σ, c̃) = (176, 224). For (2, 4, 8) labelling forces (6, 5, 5/6, 6/5), (56, 84,−, 56)
and (Σ, c̃) = (196, 224). For (2, 5, 7) we have (5, 5, 5, 6) and (84,−, 56, 64) so if at least two vertices
have degree ≥ 6 then (Σ, c̃) = (204, 224); if d4 ≥ 7 then (Σ, c̃) = (204, 216); or if d4 = 6 then
m4 = 56 and (Σ, c̃) = (196, 196). For (2, 6, 7) labelling forces (5, 5/7, 6/5, 5) and (84,−, 84, 64)
(see (2, 4, 6, 7) for m4 = 64) so if d1 > 5 or d4 > 5 then (Σ, c̃) = (232, 244); if d1 = d4 = 5,
d2 ≥ 6 and d3 ≥ 6 this yields (84,−, 84, 56) and (Σ, c̃) = (224, 224); if di = 5 for i ∈ {1, 2, 4}
then (84,−, 56, 56) and (Σ, c̃) = (196, 196); or if di = 5 for i ∈ {1, 3, 4} then (56,−, 84, 56)
and (Σ, c̃) = (196, 216). For (3, 6, 7) we have (5, 7, 5, 5) and (−, 56, 84, 64) (see (2, 4, 6, 7) for
m4 = 64) and so (Σ, c̃) = (204, 216). For (4, 5, 7) we have (5, 5, 5, 6) and (−, 112, 56, 56) so if
at least two vertices have degree ≥ 6 then (Σ, c̃) = (224, 224); or if di = 5 (1 ≤ i ≤ 3) this
yields (−, 72, 56, 56) and (Σ, c̃) = (184, 196). For the 18 cases that remain, checking shows that
∆̂ receives at most 84 + 2.56 across three edges and contains at least one vertex of degree ≥ 6
and so (Σ, c̃) = (196, 196).

To complete the case n = 7 it remains to consider ∆̂ = ∆̂2 of Figure 3.24(ix). If d(∆̂) > 4 then
exactly as before, c∗(∆̂) ≤ 0 so assume d(∆̂) = 4 as shown. If ∆̂ receives curvature across at
most two edges then c∗(∆̂) ≤ c(5, 5, 5, 5)+16+112 < 0. If ∆̂ receives across more than two edges
then we see from Figure 3.13 that the possibilities are (2, ∆̂1, 5), (2, ∆̂1, 7), (2, ∆̂1, 8), (∆̂1, 5, 7),
(∆̂1, 5, 8), (2, ∆̂1, 5, 7) and (2, ∆̂1, 5, 8). If (∆̂1, 5, 8) or (2, ∆̂1, 5, 8) then l = k, a contradiction;
if (2, ∆̂1, 5) then we have (56, 18, 84,−) and (Σ, c̃) = (156, 168); if (2, ∆̂1, 7) then d4 ≥ 6 which
yields (56, 16,−, 64) and (Σ, c̃) = (136, 196); if (2, ∆̂1, 8) then d1 ≥ 6 which yields (56, 16,−, 56)
and (Σ, c̃) = (128, 196); if (∆̂1, 5, 7) then d4 ≥ 6, (−, 16, 56, 56) and (Σ, c̃) = (128, 196); or if
(2, ∆̂1, 5, 7) then d4 ≥ 6, (56, 16, 56, 64) and (Σ, c̃) = (192, 196). It follows that c∗(∆̂2) ≤ 0. This
completes the proof of Theorem 1.1.

4 Proof of Theorems 1.2 and 1.3

The proof of Theorems 1.2 and 1.3 for n = 4 and n = 6 is given in [8] and for n = 5 in [20] so
assume that n ≥ 7. Let Rn(k, l, ε) be weakly diagrammatically reducible and so, as mentioned
in the introduction, every finite subgroup of Gn(k, l, ε) is conjugate to a subgroup of H = 〈t|tn〉.
It follows that if the exponent sum of x in t3xkt2xε(k+l) is not equal to ±1 then x has infinite
order in Gn(k, l, ε). On the other hand, if ε = −1 and l = 1 then since the natural map from H
to Gn(k, 1,−1) has a left inverse and x occurs more than once in the relator, the conclusion of
Theorem 3.6 in [5] applies and so Gn(k, 1,−1) is infinite.

Let ε = 1. It follows from the above paragraph and Theorem 1.1(i) that the only case remaining
is l = 0 and n ≥ 7. But statement Theorem 1.2(vi) follows from Lemma 2.6.

Let ε = −1. If l = 0 then clearly Gn(k, 0,−1) is infinite so assume that l ≥ 1. Again
it follows from the above and Theorem 1.1(ii)-(iv) that the remaining cases are l = k and
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n ∈ {7, 8, 9, 10, 12}, l = 2k and n ∈ {7, 8} and k = 2l and n ∈ {7, 8}. If l = k > 1 or
l = 2k > 2 or k = 2l > 2 then Gn(k, l, ε) is infinite by Lemma 2.5. This leaves (n, k, l) ∈
{(7, 1, 1), (8, 1, 1), (9, 1, 1), (10, 1, 1), (12, 1, 1), (7, 1, 2), (8, 1, 2), (7, 2, 1), (8, 2, 1)}. But (7, 2, 1) and
(9, 1, 1) are the exceptional cases and Theorem 1.3(iv) then follows from Lemma 2.4. �
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