
The Reputation Lag Attack

Sean Sirur1 and Tim Muller2

1 University of Oxford, UK
sean.sirur@stx.ox.ac.uk

2 University of Nottingham, UK
tim.muller@nottingham.ac.uk

Abstract. Reputation systems and distributed networks are increas-
ingly common. Examples are electronic marketplaces, IoT and ad-hoc
networks. The propagation of information through such networks may
suffer delays due to, e.g., network connectivity, slow reporting and rating-
update delays. It is known that these delays enable an attack called the
reputation lag attack. There is evidence of impact of reputation lag at-
tacks on existing trust system proposals. There has not been in-depth
formal analysis of the reputation lag attack. Here, we present a formal
model capturing the core properties of the attack: firstly, the reputation
of an actor failing to reflect their behaviour due to lag and, secondly,
a malicious actor exploiting this for their personal gain. This model is
then used to prove three key properties of the system and the attacker:
if there is no decay of reputation, then the worst-case attacker behaviour
is to cooperate initially, then wait, then behave badly; increasing com-
munication between users was found to always be of benefit to the users;
performing a specified number of negative interactions given any instance
of the system is an NP-hard problem.

Keywords: Reputation Lag · Reputation · Trust System · Attack · Ma-
licious Peer

1 Introduction

Ratings can be found as a basis for trust in various networks including e-
commerce and social media. Typically, actors will rate their interactions with
one another. These individual ratings are propagated through the system, and
considered by others when judging who is trustworthy. Timely and effective
propagation is necessary for actors to accurately judge each other. Non-ideal
networks introduce lag due to network connectivity, people providing ratings
late, or other reasons. An attacker can exploit this lag by engaging actors who,
due to lag, have not received news of the attacker’s prior negative behaviour and
still consider them trustworthy. Broadly, we define a reputation lag attack as any
instance where an attacker exploits a lag in the propagation of their negative
reputation to allow them to perform negative actions they otherwise couldn’t
have.

2 S. Sirur and T. Muller

No substantial research or well-reported instances of the reputation lag attack
exist (not much work has followed up [7], which introduced the notion). We
do not know the scale, prevalence and effect on vulnerable networks remains
unknown. Nonetheless, existing research [8] shows that the attack is viable on
proposed trust systems. Attacks on trust systems often combine different types,
and, e.g., fake ratings, Sybil accounts or camouflaging tactics are more obvious,
so combined attacks may have been classified as these.

There is general theoretical model of reputation lag attacks. A formal model
provides insight into the attacks, even without data. This paper takes a first
step towards defining a general formal model of reputation lag attacks. The
model successfully captures the core mechanism of the reputation lag attack:
some user(s) must trust an attacker who they would not have trusted had no lag
been present in the system. Three primary insights were gained from the model.
Firstly, if users judge all actions equally regardless of when they occurred, there
exists an ordering to the attacker’s actions which is always superior to any other
ordering: the attacker first behaves positively; waits for that reputation to spread
through the system; and then attempts to behave negatively as much as possible
before being rejected by the users. This drastically reduces the search space of
possible optimal sequences of actions for the attacker. Secondly, increasing the
rate of communication between users relative to the attacker is always detrimen-
tal to the attacker in the average case. Finally, how to successfully performing
a specified number of negative actions for a given instance of the system is an
NP-hard decidability problem for the attacker.

2 Related Work

Distributed systems can use ratings or recommendations between actors as a ba-
sis for trust, where an actor’s reputation is defined through these ratings [18]. In
such systems, reputation is imperative to actors’ decision-making processes, for
example in marketplace environments [5,17]. The delay present in the propaga-
tion of these ratings was first identified as a vulnerability by Kerr and Cohen [7]
as the “reputation lag attack”. The vulnerability is not present in previous sur-
veys on reputation systems [4,12]. Hoffman, Zage and Nita-Rotaru [4] is an
example of how the attack often went unrecognised. The authors decompose
reputation systems into their constituent parts and discuss the vulnerabilities
present in each. They are prudent in making rating propagation explicit within
the dissemination stage. However, no notion of lag is considered here so the
authors miss a likely environment for exploitation (focusing primarily on trans-
mission integrity).

Even once discovered, the reputation lag attack remained largely unnoticed
by the trust community, appearing in some subsequent surveys (e.g. [6,14]) but
not others (e.g. [9]). The first analysis is performed by Kerr and Cohen [8], when
investigating the success of dishonest sellers against various proposed trust sys-
tems in a simulated marketplace. They conclude that the reputation lag attack,
though somewhat successful, was largely less so than other attacks, acquiring

The Reputation Lag Attack 3

less profit and beating fewer trust systems. This finding comes with two major
caveats, however: Firstly, the authors’ intuitive but informal definition of repu-
tation lag attacks assumes the attacker must at some point behave honestly. We
find that no such restriction is necessary when defining the attack. The second
caveat is the implementation of the lag. Every sale suffers from a constant lag
before the buyer learns whether they have been cheated. There is no lag in the
propagation of this information, however. This makes it difficult to separate how
reputation lag effects buyers’ decision given that every sale is subject to the same
reputation lag effect. An implication of the above two caveats is that according
to their analysis the “re-entry attack” was more successful. We argue that, due
to limitations in analysis, the attack was functionally identical to the “repu-
tation lag attack”, except the attacker never needed to behave honestly (with
even the author’s noting this). An issue is that, beyond the initial intuition, it
is not always clear what a reputation lag attack entails. We feel the issues faced
in existing research motivate an abstract formal model to avoid conflating the
idiosyncrasies of an attack’s implementation with its analysis.

The reputation lag attack is not restricted to traditional reputation systems
with many distributed networks being vulnerable to it. Commonly, strong se-
curity guarantees exist through the use of trusted authorities or shared secrets.
In some networks, however, it is necessary to establish trust between nodes on
a more ad-hoc basis [16]. Any delay in the communication of trust establishing
information (and perhaps other “hopping” protocols) would be vulnerable to
reputation lag attacks. For example, while research on reputation lag attacks in
these contexts are not widespread, many instances of such networks encounter
malicious peers and it is possible that the mechanisms against these attack-
ers (e.g. distributed warning systems) are vulnerable to reputation lag attacks.
Examples include peer-to-peer networks used for file-sharing (Gnutella, BitTor-
rent) [10,19]; ad-hoc networks (mesh networks, vehicle-to-vehicle communica-
tion) [2,13]; hardware networks (BGP/routing, IoT) [11]; and overlay networks
(Tor, I2P) [1].

3 Preliminaries

In this section, some mathematical tools are defined for use later in the paper.
Sequences of events are an important notion through the paper as they are

used to describe the sequential behaviour in time of the model presented herein.
First, we define sequences recursively:

Definition 1 (Sequence). A sequence σ ∈ Σ over an alphabet C is recursively
defined:

σ :=

{
∅
σ :: c ∈ C.

We may write σ ::σ′ as a shorthand, where σ :: ∅ = σ and σ :: (σ′ :: c) = (σ ::σ′) :: c.
It is useful to reason about the length of a sequence, |σ|, by letting |∅| = 0 and
|σ :: c| = |σ|+ 1. This provides a mechanism for both differentiating the number

4 S. Sirur and T. Muller

of elements in sequences and assigning positions to elements of the sequence. To
refer to elements or subsequences of a sequence by their position, we introduce
indexing as follows:

σt =

{
σ′t t < |σ| ∧ σ = σ′ :: c

c t = |σ| ∧ σ = σ′ :: c
(1)

σx∼y =

{
σx∼y−1 ::σy x < y

σx x = y
(2)

It is useful to discuss the number of occurrences of a particular subset of elements
in a sequence as well as the order in which that particular subset occurs irrespec-
tive of the other elements e.g. when analysing the behaviour of that particular
subset alone. This is done by extracting the subsequence of a particular element
from within a sequence. The function @: 2C × Σ → Σ returns the subsequence
of σ consisting only of the members c ∈ C of the set of elements C ⊆ C:

C @ σ =


(C @ σ′) :: c if σ = σ′ :: c where c ∈ C
(C @ σ′) if σ = σ′ :: c′ where c′ 6∈ C
∅ if σ = ∅

(3)

It is useful to be able to compare two sequences, where one sequence is essentially
the same as another sequence, except it has certain additional actions sprinkled
in. Intuitively σ ≺C σ′ means that we can transform σ′ into σ, by removing
certain elements c ∈ C from σ′.

σ1 ≺C σ2 =


σ1 = ∅ if σ2 = ∅
σ′1 ≺C σ′2 if σ2 = σ′2 :: c′ and σ2 = σ′2 :: c′

σ1 ≺C σ′2 if σ2 = σ′2 :: c for c ∈ C
(4)

Probability theory plays a significant part in the paper as the system is
defined on continuous-time stochastic processes. If X is a (continuous) random
variable, then X(ω) represents the outcome of X, p(X = x) represents the
probability density at x, P (X < x) represents the probability that the outcome
of X is below x; so P (X < x) =

∫ x
−∞ p(X = x)dx.

The relevant stochastic processes can be modelled using continuous-time
Markov chains [15]. Intuitively, a CTMC is a series of random variables in-
dexed with a time t, representing the state at time t. More recent states are not
influenced by older states, as the process must be memoryless [15].

Definition 2. A continuous-time Markov chain [15] is a continuous series of
random variables (S)t for t ∈ R, such that for x > y > z, P (Sx=s|Sy=t) =
P (Sx=s|Sy=t, Sz=u).

4 Model

Our aim is to model the reputation lag attack. Honest users may communicate
information to each other, but when and how often depends on external factors,

The Reputation Lag Attack 5

1

23

A
rA

r12

r21

r13

r31
r32

r23

Fig. 1. A graph of users U = {1, 2, 3} and the independent attacker A with rate rA.

such as internet connectivity, configuration settings or preference. We assume
that honest users do not communicate strategically, and thus model them as
stochastic processes. The attacker behaves strategically and tries to act in a way
to maximise how often he can cheat others, relative to cooperating with others.
However, the attacker is still bound to physical limitations, and cannot act at
infinite speeds. The first step is to construct a model that defines how often
certain users tend to communicate, as well as how often the attacker may be
able to act. We refer to this model as the abstract model. The concrete model
(Section 4.3) is an instantiation of the abstract model, and tells us the exact
communication between users.

4.1 Abstract Model

The abstract model does not tell us what is being communicated, or what actions
have occurred. In order to be able to reason about the concrete communications
and actions (and thus the attacker’s strategy), we need to instantiate the at-
tacker’s actions appropriately. The concrete model is defined in Section 4.3 to
facilitate this. The final step will be to define and reason about the behaviour
of the attacker.

The abstract model defines when two users communicate but not what they
communicate. Attacker behaviour is not explicit in the abstract model, only
when the attacker has an opportunity to act. We introduce the notion of abstract
traces, which specify how and when users and the attacker communicate, but
not what they communicate. Users may communicate at different rates. The
attacker’s independent communication rate describes the rate at which they
receive the opportunity to act.

Definition 3. An abstract system ψ ∈ Ψ consists of a tuple ψ = (U , R, rA,M):
a set of users U = {i ∈ {1, ..., n} | n ∈ N>0}; an n × n matrix R describing the
communication rates between users, with rij ∈ R≥0 and rii = 0; and the rate
rA ∈ R≥0 with which the attacker acts.

As a shorthand, we write r = rA +
∑
i,j∈U rij and rS =

⋃
i,j∈U

rij ∪ rA.

An abstract trace is a sequence of abstract interactions between users and
the attacker. It describes in what order interactions occurred for some particular
instance of the stochastic system described in subsection 5. It is comprised of
either the empty trace; an interaction between two users; an abstract attacker

6 S. Sirur and T. Muller

action; or the concatenation of two other traces.. The trace semantics takes the
form of sets of messages assigned to users, representing which messages those
users have received:

Definition 4 (Abstract Trace). An abstract trace σ ∈ Σ is a sequence over
the alphabet C = {cij | i, j ∈ U} ∪ {cA}.

As a shorthand, we may write rc to mean rij or rA if c = cij or c = cA,
respectively.

The abstract model defines a stochastic system (or probabilistic run) describ-
ing who interacts when. In this system, the actors communicate at intervals. The
time between each communication is independent of the time between the pre-
ceding communications. Formally, every action in the abstract alphabet can be
modelled as a series of random variables representing the time between occur-
rences of that action.

Definition 5. A probabilistic run of the abstract system ψ consists of collection
of series of random variables satisfying the Markov property. For each c ∈ C, the
probability density functions of the corresponding series (m ≥ 0) of random
variables are:

p(τ cm=t) = rce
−rct

We let λck be a random variable representing the time in which the kth c-action
occurred: λck(ω) =

∑
0≤i≤k τ

c
i (ω).

The probabilistic run can be viewed as a distribution over possible traces.
In particular, we can say that the probabilistic run defines a (continuous-time)
Markov chain, where the state consists of the current trace. First, we define the

Definition 6. The abstract system execution is a continuous series of random
variables (S)t for t ≥ 0, such that S0(ω) = ∅, and for every t, there exists t′ < t
such that either St(ω) = St′(ω) or St(ω) = St′(ω) :: c. The latter case occurs if
and only if t′ ≤ λc′k(ω) ≤ t =⇒ c′ = c.

The random variable S10 would give you the distribution of all abstract traces
of the abstract system running for 10 time units. The intuition is that the state
only changes at times where the probabilistic run determines an action occurs.
The definition implicitly assumes that no two actions happen at exactly the same
time (and the probability of this occurring is indeed 0).

The abstract system execution is a continuous-time Markov chain:

Proposition 1. The abstract system execution satisfies, for x > y > z, that
P (Sx=σx|Sy=σy) = P (Sx=σx|Sy=σy, Sz=σz)

Proof. The definition of an abstract system execution trivially implies that
σx = σy ::σ′, for some σ′. If σx = σy, then P (Sx=σx|Sy=σy) = P (∀c,mτmc 6∈
[y, x]) = P (Sx=σx|Sy=σy, Sz=σz). If σx = σy :: c, then P (Sx=σx|Sy=σy) =
P (∀c′ 6=c,mτmc 6∈ [y, x] ∧ ∃1mτmc ∈ [y, x]) = P (Sx=σx|Sy=σy, Sz=σz). If σ′ isn’t ∅
or in C, then we can take x > y′ > y and recursively apply the argument.

The Reputation Lag Attack 7

In the abstract trace, the probability distribution for the “next” action re-
mains the same. Specifically, the probability is proportional to the rate.

Proposition 2. For any times t1, t2, the probability p(St2 = σ :: c|St1 = σ) ∝ rc.

Proof. Another way to state the theorem is that
p(St2

=σ :: c1|St1
=σ)

p(St2=σ :: c2|St1=σ)
=

rc1
rc2

. As-

sume w.l.o.g. that σ contains k1 instances of c1 actions, and k2 of c2. Due to
Proposition 1, we can assume w.l.o.g. that λc1k1 = λc2k2 . The ratio to prove is then

equal to p(τk1+1
c1 < τk2+1

c2) : p(τk1+1
c1 > τk2+1

c2), or
rc1

rc1+rc2
:

rc2
rc1+rc2

, proving the

proposition.

4.2 Reputation

Before defining the concrete model, it is important that we capture the notion
of reputation. We do this through the judgement function δ. We define a judge-
ment function as any function that defines a metric over ratings (messages)
that establishes the reputation of the attacker. Users will not accept interactions
with a disreputable attacker. Despite this generalised definition of δ, there are
some properties which we consider key to the definition of a rational judgement
function:

1. Only information known by a user can be made when judging an incoming
interaction on behalf of that user.

2. Positive actions must be rewarded and negative actions punished.
3. The judgement function must accept interactions from an attacker with no

known prior behaviour to ensure they can enter the system.

There are many additional properties a judgement function could satisfy.
Furthermore, it would be simple to extend the model to allow different users
to utilise different judgement functions thus representing the various tolerances
different users may have to the attacker’s behaviour. However, the basic δ defined
for all users in this paper takes only the number of > and ⊥ interactions known
to user i as arguments. This means, for instance, it is independent of the order
in which messages were received and the time at which interactions occurred.

Definition 7. The function δ : N0 × N0 → R is an arbitrary function with the
following properties:

δ(m′, n) > δ(m,n) when m′ > m (5)

δ(m,n′) < δ(m,n) when n′ > n (6)

δ(0, 0) ≥ 0 (7)

4.3 The Concrete Model

In the concrete model, the attacker instantiates their abstract actions with con-
crete actions consisting of an action applied to a user. Actions can have a posi-
tive impact or a negative impact, increasing or decreasing the actor’s reputation

8 S. Sirur and T. Muller

respectively. Positive actions are denoted > and negative ones ⊥. When the at-
tacker interacts with a user through one of the above actions, a message, held
by that user, is generated. This message contains information regarding what
action the attacker performed. It is then propagated through the graph of users,
who then use this information to judge the trustworthiness of the attacker. This
captures the notion of reputation. A user receiving messages from different users
reporting e.g. a positive action, must be able to distinguish which particular
action is being reported. We assume users can distinguish different actions and
model this using a unique index for each action.

Definition 8. The concrete system ψ ∈ Ψ is composed of a tuple
ψ = (U , R, rA,M,Θ, δ,A, Γ,): set of users U = {1, . . . , n}; an n × n matrix R
describing the communication rates between users, with rij ∈ R≥0 and rii = 0;
the rate rA ∈ R≥0 with which the attacker acts; a set of concrete messages
M = {(θ, i, x) | θ ∈ Θ, i ∈ U , x ∈ N}; two possible results Θ = {>,⊥}; a
judgement function δ; an attacker function A; and an instantiation function Γ .

As a shorthand, we write r = rA +
∑
i,j∈U rij and rS =

⋃
i,j∈U

rij ∪ rA.

Every abstract trace σ has a set of corresponding concrete traces. A concrete
trace σ is an abstract trace σ that has had every abstract attacker action cA sub-
stituted with a concrete attacker action. Concrete actions consist of interacting
positively or negatively with a user i (c>i or c⊥i) or skipping a turn (c).

Definition 9 (Concrete Trace). An concrete trace σ is a sequence over the
alphabet C = {cij |i, j ∈ U} ∪ {cθi |θ ∈ Θ, i ∈ U} ∪ {c }.

The family of functions defining the set messages known by users in the
concrete system is defined:

Definition 10. The function µO⊆Θi>0 : Σ → 2M returns the set of messages held
by user i concerning actions of a type in T given that the trace σ occurred:

µOi (σ) =


µOi (σ′) ∪ µOj (σ′) σ = σ′ :: cji

(θ, i, |σ|) ∪ µOi (σ′) (σ = σ′ :: cθi) ∧ (θ ∈ O)

µOi (σ′) σ = σ′ :: c, for other c

∅ σ = ∅

(8)

We introduce the shorthand:

µO(σ) =

U⋃
i=1

µOi (σ) (9)

δi(σ) = δ(|µ>i (σ)|, |µ⊥i (σ)|) (10)

δ(σ) = δ(|µ>(σ)|, |µ⊥(σ)|) (11)

5 Reputation Lag attack

Above we have defined the environment in which the reputation lag attack can
occur. Now, we define the attacker model and the attack itself.

The Reputation Lag Attack 9

5.1 The Attacker Model

In this model, the attacker A is captured as a function which outputs a trace
of concrete attacker actions which, when substituted into an abstract trace, in-
stantiates a set of abstract attacker action. The attacker function can instantiate
each abstract action with one of three actions c>i , c⊥i or c . The attacker aims
to maximise their profit. Informally, profit is simply defined as any function
monotonically increases with the attacker’s positive interactions and decreases
with their negative interactions i.e. the number of negative interactions the at-
tacker has succeeded in committing given the number of positive interactions
they have invested into the system. As such, an “optimal attacker” is defined as
an attacker which, for all abstract traces σ, can commit the maximum number
of negative interactions when restricted to a particular number of positive inter-
actions and/or given an abstract trace of finite length i.e. maximise their profit
given finite resources and/or finite time.

Definition 11. The attacker’s profit function % : Σ → R is subject to the fol-
lowing constraints:

%(σ) < %(σ′) when µ>(σ) > µ>(σ′) if µ⊥(σ) = µ⊥(σ′) (12)

%(σ) > %(σ′) when µ⊥(σ) > µ⊥(σ′) if µ>(σ) = µ>(σ′) (13)

In this model, different types of attacker can be delineated by how much in-
formation they have of the system when making decisions i.e. what subset of the
system is considered by the attacker A(s ⊆ ψ). For example, it is important to
consider how much of the abstract trace σ and attacker is aware of when making
decisions. Note, for the purposes of a security analysis, assuming an apparently
overestimated attacker is useful for testing the constraints of the system and
providing strong guarantees of the system’s resilience against attack. We will
consider this when choosing A:

1. Attacker Model 1 in which the attacker is omniscient to the past and future
i.e. the attacker can view the full abstract trace σ at will. This attacker’s
power is somewhat unrealistic as it grants the attacker the ability to see the
future when making decisions but, as stated, for the purposes of a security
analysis this is not unreasonable. For instance, an eavesdropping attacker
that monitors a system long enough to notice a pattern in the system be-
haviour could be captured somewhat realistically by this model. Thus, this
is the model considered in this paper.

2. Attacker Model 2 in which the attacker is an eavesdropper to the entire
system but is only aware of the past when making decisions i.e. for each
abstract attacker action σx = cA, the attacker can view σ1∼x−1.

3. Attacker Model 3 in which the attacker is blinded to every interaction in σ
which is not an attacker action i.e. the attacker only sees cA @ σ.

Similarly, the attacker’s knowledge of other aspects of the system such as the
user rates R or the judgement function δ can also be allowed or restricted to

10 S. Sirur and T. Muller

different extents. However, given the fact that the attacker is solely concerned
with instantiating an abstract trace such that their profit is maximised, for the
most powerful attacker it is sufficient to only consider the abstract trace σ and
the and judgement function δ.

Using this information the attacker generates a trace of concrete attacker
actions σ̇ such that |σ̇| = |cA @ σ|. This attack trace is then substituted into
the full abstract trace to make a concrete trace σ:

Definition 12 (Attack Trace). An attack trace σ̇ ∈ Σ̇ is a sequence over the
alphabet C = {cθi |θ ∈ Θ, i ∈ U} ∪ {c }.

Definition 13. Attack traces are constructed by the attacker function A : Σ ×
(N0 × N0 → R)→ Σ̇ defined thus:

A(σ, δ) =


∅
σ̇ :: cθi where (i > 0) ∧ (θ ∈ Θ)

σ̇ :: c

(14)

We give no explicit definition of the function itself and instead explore its
properties in section 6. The attack trace σ̇ is then substituted into the abstract
trace σ to construct the concrete trace σ. This is performed by an instantiation
function. To model the fact that users will not accept interactions with a dis-
reputable attack, the instantiation function will substitute any rejected attacker
actions with a c action. User i judges the attacker at each attacker action cθ∈Θi

via δ with only the information known to them:

Definition 14. The instantiation function Γ : Σ × Σ̇ → Σ is defined:

Γ (σ, σ̇, δ) =


∅ if σ = σ̇ = ∅
cij ::Γ (σ′, σ̇, , δ) if σ = cij ::σ′

c ::Γ (σ′, σ̇′, δ) if (σ = cA ::σ′) ∧ (σ̇ = c :: σ̇′) ∧ (δi(σ
′) ≥ 0)

c ::Γ (σ′, σ̇′, δ) if (σ = cA ::σ′) ∧ (σ̇ = c :: σ̇′) ∧ (δi(σ
′) < 0)

(15)

If none of the attacker’s actions are denied by a user, we deem that attack trace
complete for σ. Otherwise, we deem it incomplete for σ.

5.2 The Reputation Lag Attack

Here the reputation lag itself is defined in terms of the model presented thus far.
Informally, a reputation lag attack occurs when the attacker is allowed to perform
a (presumably malicious) interaction with a user who would have rejected the
interaction had they had perfect information of the attacker’s prior actions. By
construction, any example of imperfect user knowledge within this model stems

The Reputation Lag Attack 11

directly from a failure of the system to propagate the messages in a timely
manner. While this definition is very high-level, it successfully captures every
instance which could be considered a reputation lag attack.

If an attacker interaction with user i is accepted by that user using only
the information (messages) known to them but is rejected when using all the
information present in the system, then a reputation lag attack has occurred.

First, we define an omniscient instantation function in which users judge the
attacker with all the information available in the system:

Definition 15. The omniscient instantiation function Γ ∗ : Σ × Σ̇ → Σ is
defined:

Γ ∗(σ, σ̇, δ) =


∅ if σ = σ̇ = ∅
cij ::Γ ∗(σ′, σ̇, δ) if σ = cij ::σ′

c ::Γ ∗(σ′, σ̇′, δ) if (σ = cA ::σ′) ∧ (σ̇ = c :: σ̇′) ∧ (δ(σ′) ≥ 0)

c ::Γ ∗(σ′, σ̇′, δ) if (σ = cA ::σ′) ∧ (σ̇ = c :: σ̇′) ∧ (δ(σ′) < 0)

(16)

Here we define the reputation lag attack indicator. If the attacker has an in-
creased profit when instantiated normally compared to when instantiated by
the omniscient function (i.e. if the attacker has successfully exploited the lag for
their own gain), a reputation lag attack has occurred.

Definition 16. The reputation lag attack indicator is defined:

RLA(σ, σ̇, δ, %) =

{
1 %(Γ (σ, σ̇, δ)) > %(Γ ∗(σ, σ̇, δ))

0 %(Γ (σ, σ̇, δ)) = %(Γ ∗(σ, σ̇, δ))
(17)

6 Results

The primary motivation for the above formalism is to provide insight into the
reputation lag attack. Here we elicit the three following key properties of the
attack: the definition of δ defined herein is shown to be vulnerable to a superior
ordering of attacker actions; increasing the rate of user communication is shown
to never be detrimental to the users and could be detrimental to the attacker
in the average case; the decidability problem of whether the attacker can per-
form a specified number of negative actions is shown to be have an NP-hard
computational complexity.

6.1 Attack Ordering

The order in which the attacker executes their actions has an impact on their
success. In a structured attack trace, the attacker goes through three phases: a
> phase, a phase and a ⊥ phase. In a given phase, the attacker only executes
actions of that type. We show that structured attack traces, under the particular

12 S. Sirur and T. Muller

δ defined in the above model, are always superior to unstructured strategies.
Intuitively, this results from the fact that positive actions occurring earlier in
the trace gives them more chance to be propagated whilst negative occurring
later in the trace have less time to be propagated.

Definition 17. Define the reflexive partial order ≺ on attacker actions, s.t.
c>i ≺ c ≺ c⊥j , for all i, j. We define the partial order ≺ as σ̇ :: c :: c′ :: σ̇′ ≺
σ̇ :: c′ :: c :: σ̇′ iff c ≺ c′.

Proposition 3. For every σ̇, there is a minimal element σ̇′ ≺ σ̇, and this min-
imal element has the property that it is a structured attack trace.

Proof. If σ̇′ is structured, then there is no σ̇′ = σ̇1 :: c :: c′ :: σ̇2 where c′ ≺ c, so σ̇′

is a minimal element. Vice versa, any minimal element may not be of the shape
σ̇′ = σ̇1 :: c :: c′ :: σ̇2 either, so it must structured.

Theorem 1. For all abstract traces σ; attack traces σ̇ and σ̇′ ≺ σ̇ (where σ̇ is
complete for σ); users i; and locations x ≤ |σ|: δi(Γ (σ, σ̇′, δ)) ≥ δi(Γ (σ, σ̇, δ))

Proof. Consider two adjacent attacker actions σ̇a and σ̇a+1. We denote their
corresponding positions in the abstract (or concrete) traces as σy and σz respec-
tively. Two cases follow from this: σ̇a ≺ σ̇a+1 and σ̇a+1 ≺ σ̇a.

Case 1 (σ̇a ≺ σ̇a+1): As ≺ is reflexive, we may construct σ̇′ = σ̇. In this, it
follows trivially that δi(Γ (σ, σ̇′, δ)) ≥ δi(Γ (σ, σ̇, δ))

Case 2 (σ̇a+1 ≺ σ̇a): We construct σ̇′ by swapping the two elements in
question: σ̇′ = σ̇1∼a−1 :: σ̇a+1 :: σ̇a :: σ̇a+2∼|σ̇|. This implies that σ1∼x−1 = σ′1∼x−1
and σy+1∼|σ| = σ′y+1∼|σ′|. We consider the case where σ̇a+1 = σ̇′a = c>i . We notice

two things: firstly, user i is still aware of the c>i action at the time of σ′z and so
has lost no information in comparison to σ.

Secondly, we notice that the earlier introduction of c>i creates the oppor-
tunity for it to be propagated between σ′y and σ′z and thus possibly even fur-

ther. Essentially, more users u 6= i may be aware of the c>i in σ′ than in σ
from point y onward: for all users u and locations x ≥ y, µ>u (Γ (σ, σ̇, δ)1∼x) ⊆
µ>u (Γ (σ, σ̇′, δ)1∼x) =⇒ |µ>u (Γ (σ, σ̇′, δ)1∼x)| ≥ |µ>u (Γ (σ, σ̇′, δ)1∼x)|.

A symmetrical argument in the case that σ̇a = σ̇′a+1 = c⊥i leads us to conclude
that the each user is aware of less or equal negative actions after the swap: for
all users u and locations x ≥ |σ|, |µ⊥u (Γ (σ, σ̇′, δ)1∼x)| ≤ |µ⊥u (Γ (σ, σ̇, δ)1∼x)|. We
also see from both arguments that the case in which one of the swapped attacker
actions are c , that particular action has no effect on the knowledge of the users
i.e. the inequality holds trivially. By the definition of ≺, it is not possible for two
actions to be swapped where both actions are of the same type (e.g. where both
are positive).

The increased awareness of positive interactions and the decreased aware-
ness of negative ones coupled with the monotonicity of δ implies that, for all

The Reputation Lag Attack 13

users i and locations x ≤ |σ|, (|µ>u (Γ (σ, σ̇′, δ)1∼x)| ≥ |µ>u (Γ (σ, σ̇, δ)1∼x)|) ∧
(|µ>u (Γ (σ, σ̇′, δ)1∼x)| ≤ |µ>u (Γ (σ, σ̇, δ)1∼x)|)

=⇒ δi(Γ (σ, σ̇′, δ)1∼x) ≥ δi(Γ (σ, σ̇, δ)1∼x).
By transitivity of ≺, the proof for pairs holds for all traces. Proposition 3

shows that the optimal ordering is structured. ut

Thus, for all complete attack traces, structured traces are superior. We re-
strict our theorem to complete attack traces as incomplete traces contain coun-
terexamples and any optimal attack trace will be complete. Structuring may not
affect profit but it reduces the search space of attack traces as the optimal strat-
egy must be structured. However, structuring is dependent on the judgement
function. A judgement function in which reputation decays with time would be
sensitive to abrupt changes in behaviour such as in a structured attack trace,
thus making time-dependent judgement a simple but effective mitigation.

6.2 Effect of Communication Rates on the Attacker Strategy

Considering an optimal (and thus structured) attack trace σ̇, we show that
increasing the communication rates is detrimental to the attacker. We make the
assumption that we are in a state where the knowledge of the deals has spread
to all users, and the attacker is in the cheat stage of his structured attack. The
reason for this assumption, is that the question of how to most effectively cheat
many users, is the core question behind analysis reputation lag attacks.

We formulate our theorem as follows:

Theorem 2. Let ψ,ψ
′

be a pair of abstract systems differing only in their re-
spective matrices R,R′, such that Rij < R′ij. Let Se = S′e represent the initial de-
velopment of the system (including deals and skips). At any time t > 0, for all at-
tacker traces σ̇ consisting only of cheats, p(RLA(S′t, σ̇, δ, %)) ≤ p(RLA(St, σ̇, δ, %)).

Proof. First we prove that if σ ≺{cij} σ′, then σ allows at least as many repu-
tation lag attacks as σ′. If |σ1| = k, σ = σ1 ::σ2 and σ′ = σ1 :: cij ::σ2, then for
every h, either µh(σ′) = µh(σ) or µh(σ′) = µh(σ) ∪ µj(σ1). The latter means
that the messages j told i after σ1 have reached h, the former means that they
have not. In either case µh(σ′) ⊆ µh(σ). For any two traces with σ ≺{cij} σ′ we
can iteratively apply this argument for the additional messages.

Second, partition the set of all concrete traces Σ into Σ0 and Σ1, such that
if σ ≺{cij} σ′, then either σ, σ′ ∈ Σ0, σ, σ′ ∈ Σ1 or σ ∈ Σ0, σ

′ ∈ Σ1. Since
Rij < R′ij , it follows that

∑
σ∈Σ0

St(σ) ≥
∑
σ∈Σ0

S′t(σ) and
∑
σ∈Σ1

St(σ) ≤∑
σ∈Σ1

S′t(σ). In particular, we can select the partition Σ0 to be those traces up
to time t′ where the attacker can perform all his actions, and Σ1 those traces
where he cannot. S′t will assign more probability to the latter than St. ut

6.3 NP-Hardness

While strategies may exist to improve the attacker’s profit in different scenarios,
it is important to consider the feasibility of the optimal attacker. A polynomial

14 S. Sirur and T. Muller

optimal strategy for a given judgement function would be the ideal goal for
any attacker. However, we show below that, for any judgement function, the
computation complexity of constructing a strategy which can perform a specified
number of negative interactions is NP-hard.

Theorem 3. For any judgement function δ, the decidability problem of whether
it is possible to perform m cheats without performing deals is NP hard.

Proof. We provide a reduction to the 3-SAT problem, which is NP-complete [3].
In this proof outline, we provide the reduction itself, but omit the full proof
that it is indeed a reduction. The full proof is a tedious exercise in bookkeeping,
whereas the reduction provides insight in why it is NP-hard.

Let X = x1 . . . xk be the set of variables in the 3-sat problem. Let `ij be the
jth literal in the ith clause. Assume there are n clauses.

For each variable take a user for its positive and negative atom, take a user
for each literal in the formula, and we add an additional pair of users for every
variable: {ux, u¬xi

|xi ∈ X}∪{vij |`ij}∪{vxi
, v¬xi

|xi ∈ X}. The last pairs of users
form pseudo clauses – they represent the clause x∨¬x. There are a total of n+k
(pseudo) clauses. The set U≥h = {vij |i ≥ h, `ij} ∪ {vxi , v¬xi |i+ n ≥ h, xi ∈ X}.
As a short-hand, we say a set of users performs a kill-communication, if they
communicate their messages to all other users (O(n2)).

Consider an abstract trace σ with the following shape:

– The trace starts with k attacker actions.
– Then, for h ∈ [1, . . . k + n] do:
• Users U≥h perform a kill-communication.
• The users ux, uy, uz, corresponding to the inverse of literals `h1, `h2, `h3

send a single communication to the respective literals.
• The attacker gets 1 action.
• All users ux and u¬x communicate to `h1, `h2, `h3.

– After performing these k + n steps, the attacker gets k more actions.

The decidability question for k variables and n clauses is whether the attacker
can perform n+3k actions. The size of the trace σ is O(n3), which is polynomial.

ut

7 Conclusion

The formalism captured the two core properties of the attack: firstly, users in-
accurately judging the reputation of the attacker due to incomplete knowledge
caused by reputation lag and, secondly, a malicious actor exploiting this for their
personal gain. The primary aim of the paper was to gain insight regarding the
attacker’s strategies to help with both mitigation and detection of the attack.
There were three key outcomes: Theorem 1 shows how to re-order the attacker’s
actions, to increase the power of the attack: the attacker behaves positively;
waits for this reputation to spread to as many users as possible; then begins

The Reputation Lag Attack 15

behaving as negatively as possible before the users reject them. The fact that
our judgement function, which models reputation, does not have a decay fac-
tor is a crucial ingredient for this theorem. Trust/reputation with decay factors
may be somewhat more resistant against these attacks. Theorem 2 showed that
increasing user communication rates cannot be detrimental to users and may be
detrimental to the attacker. Intuitively, this follows directly from the definition
of the reputation lag attack which relies on poor user communication. However,
as also evidenced by Theorem 3, the issue of determining the effectiveness of
attacks is difficult, so it is important to have a proof of our intuitions. Finally,
Theorem 3 showed that performing a specified number of negative interactions
given any instance of the system σ is an NP-hard problem, implying the optimal
attacker is computationally unfeasible.

Our definitions were chosen to be sufficiently abstract to cover a variety of sys-
tems, and is readily extendable to more than just particular reputation systems.
The class of systems we consider are those systems where users communicate
certain information about how other users have acted in the past, where good
behaviour offsets bad behaviour, and too much bad behaviour leads to refusing
to interact. We argue that many systems that consist of a distributed set of
entities communicating knowledge about one another could be defined through
the presented model with some modification.

Here we discuss further study. There is much to learn about the system and
its effect on the attacker e.g. the effects of different judgement functions or how
profit functions affect them. Investigating the combination of the reputation lag
attack with other attacks may be of use for learning in which environments the
attack is likely to be. Identifying real-world examples of the attack would also
offer insight into the effectiveness of the model. Further investigation into the
attacker’s strategy is a vital next step as understanding identifying likely attack
patterns is imperative not only to mitigating but also to detecting reputation
lag attacks in the wild.

This paper provided a formal model of the reputation lag attack. The for-
malism captured the core properties of reputation lag attacks. The formalism
allowed us to prove three interesting properties of the reputation lag attack: deals
before cheats, communication benefits users but not the attacker, and finding
optimal attacks is NP-hard. However, the analysis presented here is still in early
stages. We hope to apply some of our techniques in practice, as well as continue
to strengthen the formalism. The attacker’s strategies and their relationship with
the system as a whole warrants further study.

References

1. Egger et al.: Practical attacks against the i2p network pp. 432–451 (2013).
https://doi.org/10.1007/978-3-642-41284-4 22

2. Fogue et al.: Securing warning message dissemination in vanets using cooperative
neighbor position verification. IEEE Transactions on Vehicular Technology 64(6),
2538–2550 (2015). https://doi.org/10.1109/TVT.2014.2344633

https://doi.org/10.1007/978-3-642-41284-4_22
https://doi.org/10.1109/TVT.2014.2344633

16 S. Sirur and T. Muller

3. Garey, M., Johnson, D.: Continuous-time Markov chains I, pp. 259–260. W. H.
Freeman & Co. (1990)

4. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense tech-
niques for reputation systems. ACM Computing Surveys 42, 1–31 (2009).
https://doi.org/10.1145/1592451.1592452

5. Jolivet, G., Jullien, B., Postel-Vinay, F.: Reputation and prices on the e-market:
Evidence from a major french platform. International Journal of Industrial Orga-
nization 45, 59–75 (2016). https://doi.org/10.1016/j.ijindorg.2016.01.003, http:

//www.sciencedirect.com/science/article/pii/S0167718716000059
6. Jøsang, A., Golbeck, J.: Challenges for robust trust and reputation systems. Pro-

ceedings of the 5th Int. Workshop on Security and Trust Management (STM2009)
(2009)

7. Kerr, R., Cohen, R.: Modeling trust using transactional, numerical units pp. 21:1–
21:11 (2006). https://doi.org/10.1145/1501434.1501460

8. Kerr, R., Cohen, R.: Smart cheaters do prosper. AAMAS ’09 Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems 2,
993–1000 (2009)

9. Koutrouli, E., Tsalgatidou, A.: Taxonomy of attacks and defense
mechanisms in p2p reputation systems - lessons for reputation sys-
tem designers. Computer Science Review 6(2), 47 – 70 (2012).
https://doi.org/10.1016/j.cosrev.2012.01.002”,i/S1574013712000093

10. Lee, S., Zhu, S., Kim, Y., Chang, J.: Analysis on malicious peer’s behavior of the
p2p trust resource chain model pp. 89–102 (2008). https://doi.org/10.1007/978-3-
540-70560-4 8

11. Liu X., Abdelhakim, M., Krishnamurthy, P., Tipper, D.: Identifying malicious
nodes in multihop iot networks using diversity and unsupervised learning pp. 1–6
(2018). https://doi.org/10.1109/ICC.2018.8422484

12. Marti S., Garcia-Molina, H.: Taxonomy of trust: Categorizing p2p
reputation systems. Computer Networks 50(4), 472–484 (2006).
https://doi.org/10.1016/j.comnet.2005.07.011

13. Meng, Y., Li, W., Kwok, L.: Evaluation of detecting malicious nodes
using bayesian model in wireless intrusion detection pp. 40–53 (2013).
https://doi.org/10.1007/978-3-642-38631-2 4

14. Muller et al.: On robustness of trust systems pp. 44–60 (2014).
https://doi.org/10.1007/978-3-662-43813-8 4

15. Norris, J.: Continuous-time Markov chains I, pp. 59–111. Cambridge University
Press (1997). https://doi.org/10.1017/CBO9780511810633

16. Pirzada, A., M.C.: Establishing trust in pure ad-hoc networks. In: Proceedings of
the 27th Australasian Conference on Computer Science - Volume 26. pp. 47–54.
Australian Computer Society, Inc. (2004)

17. Przepiorka, W.: Buyers pay for and sellers invest in a good reputa-
tion: More evidence from ebay. The Journal of Socio-Economics 42, 31–42
(2013). https://doi.org/10.1016/j.socec.2012.11.004, http://www.sciencedirect.
com/science/article/pii/S1053535712001163

18. Yahalom, R., Klein, B., Beth, T.,: Trust relationships in secure systems-a dis-
tributed authentication perspective. In: Proceedings 1993 IEEE Computer So-
ciety Symposium on Research in Security and Privacy. pp. 150–164 (1993).
https://doi.org/10.1109/RISP.1993.287635

19. Zeinalipour-yazti, D.: Exploiting the security weaknesses of the gnutella protocol
(2002)

https://doi.org/10.1145/1592451.1592452
https://doi.org/10.1016/j.ijindorg.2016.01.003
http://www.sciencedirect.com/science/article/pii/S0167718716000059
http://www.sciencedirect.com/science/article/pii/S0167718716000059
https://doi.org/10.1145/1501434.1501460
https://doi.org/10.1016/j.cosrev.2012.01.002",i/S1574013712000093
https://doi.org/10.1007/978-3-540-70560-4_8
https://doi.org/10.1007/978-3-540-70560-4_8
https://doi.org/10.1109/ICC.2018.8422484
https://doi.org/10.1016/j.comnet.2005.07.011
https://doi.org/10.1007/978-3-642-38631-2_4
https://doi.org/10.1007/978-3-662-43813-8_4
https://doi.org/10.1017/CBO9780511810633
https://doi.org/10.1016/j.socec.2012.11.004
http://www.sciencedirect.com/science/article/pii/S1053535712001163
http://www.sciencedirect.com/science/article/pii/S1053535712001163
https://doi.org/10.1109/RISP.1993.287635

	The Reputation Lag Attack

