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a b s t r a c t 

Cardiac alternans, in which the membrane potential and the intracellular calcium concentration exhibit 

alternating durations and peak amplitudes at consecutive beats, constitute a precursor to fatal cardiac 

arrhythmia such as sudden cardiac death. A crucial question therefore concerns the onset of cardiac al- 

ternans. Typically, alternans are only reported when they are fully developed. Here, we present a mod- 

elling approach to explore recently discovered microscopic alternans, which represent one of the earliest 

manifestations of cardiac alternans. In this case, the regular periodic dynamics of the local intracellular 

calcium concentration is already unstable, while the whole-cell behaviour suggests a healthy cell state. In 

particular, we use our model to investigate the impact of calcium diffusion in both the cytosol and the 

sarcoplasmic reticulum on the formation of microscopic calcium alternans. We find that for dominant 

cytosolic coupling, calcium alternans emerge via the traditional period doubling bifurcation. In contrast, 

dominant luminal coupling leads to a novel route to calcium alternans through a saddle-node bifurca- 

tion at the network level. Combining semi-analytical and computational approaches, we compute areas 

of stability in parameter space and find that as we cross from stable to unstable regions, the emergent 

patterns of the intracellular calcium concentration change abruptly in a fashion that is highly dependent 

upon position along the stability boundary. Our results demonstrate that microscopic calcium alternans 

may possess a much richer dynamical repertoire than previously thought and further strengthen the role 

of luminal calcium in shaping cardiac calcium dynamics. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cardiac arrhythmias progress through a number of stages be-

ore becoming life-threatening. One of the earliest indications of

 pathological condition are T-wave alternans in the electrocar-

iogram (ECG) ( Qu et al., 2010; 2014 ). Here, the amplitude of

he T-wave in the ECG alternates between large and small val-

es on successive heartbeats. There is now compelling evidence

hat these macroscopic signals emerge from pathologies at the sin-

le cell level. Indeed, alternations in the action potential dura-

ion (APD) and the intracellular calcium ( Ca 2+ ) concentration have

een firmly linked with T-wave alternans ( Qu et al., 2010; 2014 ).

onsequentially, single cell alternans have received substantial at-

ention ( Alvarez-Lacalle et al., 2015; Weiss et al., 2006; Shiferaw

t al., 2003; Cherry, 2017; Tomek et al., 2018; Alvarez-Lacalle et al.,

013; Groenendaal et al., 2014; Shiferaw et al., 2005; Restrepo

t al., 2008; Kanaporis and Blatter, 2017; Edwards and Blatter,

014; Shkryl et al., 2012; Qu et al., 2016 ). 
∗ Corresponding author. 
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A significant milestone in the study of cardiac alternans was

he discovery of subcellular Ca 2+ alternans ( Shiferaw and Karma,

006; Rovetti et al., 2010; Qu et al., 2013; Gaeta et al., 2009; 2010;

aeta and Christini, 2012; Restrepo and Karma, 2009; Aistrup et al.,

009 ). Originally, cardiac alternans were reported at the whole

ell level where the Ca 2+ concentration was averaged across the

ell. With the advent of high-speed confocal microscopy, spatio-

emporal structures of the intracellular Ca 2+ concentration have

een revealed where different parts of the cell exhibit out-of-

hase alternations of the Ca 2+ concentration. In a typical exam-

le, the right half of a ventricular myocyte displays large ampli-

ude Ca 2+ transients, while the amplitudes are small in the left

alf ( Krogh-Madsen and Christini, 2012 ). On the next beat, this

everses, with small amplitude transients in the right half and

arge amplitudes in the left half. These alternans result from in-

tabilities of single Ca 2+ release units (CRUs), which comprise es-

ential components of the Ca 2+ signalling toolbox in the dyadic

unction such as the L-type Ca 2+ channel or the ryanodine recep-

or (RyR) ( Krogh-Madsen and Christini, 2012; Qu et al., 2013 ). In

ealthy conditions, each CRU follows a regular period-1 orbit with

he same amplitude of the Ca 2+ transient at each heartbeat. It is

his regularity that ensures high fidelity contraction of the cardiac
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic of a 1D CRU network. Three CRUs with network label μ − 1 , 

μ and μ + 1 are shown. The grey line at the top corresponds to the sarcolemmal 

membrane, the light blue areas denote the subsarcolemmal space within the dyadic 

clefts, and the SR is coloured in blue. For the definition of the different Ca 2+ con- 

centrations, see Materials and Methods. The pale orange arrows denote diffusive 

coupling through the bulk cytosolic Ca 2+ concentration with strength τ c . (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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muscle ( Bers, 20 02; 20 08 ). Under pathological conditions, this

period-1 orbit destabilises, giving rise to an orbit where Ca 2+ am-

plitudes alternate in magnitude on successive heartbeats. These

single node alternans then feed forward to the whole cell to pro-

duce macroscopic Ca 2+ alternans exemplified by the left-right pat-

tern mentioned above. Crucially, there is now compelling evidence

that these subcellular Ca 2+ alternans can induce travelling Ca 2+ 

waves, which in turn can initiate arrhythmogenic afterdepolarisa-

tions ( Kockskämper and Blatter, 2002; Diaz et al., 2002; Blatter

et al., 2003 ). 

An innovative analysis technique recently revealed a more gran-

ular view on subcellular Ca 2+ alternans ( Tian et al., 2012 ). For

moderate pacing periods, whole cell Ca 2+ transients appeared reg-

ular, suggesting a healthy ventricular myocyte. However, single

CRU recordings identified alternating Ca 2+ patterns, demonstrating

that the cell was already pathological. To emphasise the fact that

these Ca 2+ alternans occur at single CRUs, they were termed mi-

croscopic Ca 2+ alternans. To date, microscopic Ca 2+ alternans con-

stitute the earliest precursor for cardiac arrhythmias, which ren-

ders a comprehensive understanding of their emergence a crucial

challenge in achieving cardiac well-being. 

In the present work, we use a modelling framework to explore

the onset of microscopic Ca 2+ alternans in more detail. In partic-

ular, we are interested in how the coupling between individual

CRUs drives this arrhythmia. We therefore focus on Ca 2+ diffu-

sion in the cytosol and the sarcoplasmic reticulum (SR) to better

characterise this network effect. Commonly, subcellular Ca 2+ alter-

nans have been studied either through direct numerical simula-

tions or by investigating low-dimensional maps ( Gaeta et al., 2010;

Shiferaw and Karma, 2006; Qu et al., 2013 ). Here, we use a dif-

ferent approach. We employ a piecewise linear (PWL) caricature

( Thul and Coombes, 2010 ) of a well-established Ca 2+ cycling model

( Shiferaw et al., 2003 ). In turn, this allows us to perform a linear

stability analysis of the entire network in a semi-analytical manner

without the need to reduce the number of equations. Moreover, we

can explicitly compute the eigenvector associated with the eigen-

value that leaves the unit disk — hence signalling the onset of an

instability — which predicts the spatial patterns of the microscopic

Ca 2+ alternans very well. 

The impact of Ca 2+ diffusion on the formation of Ca 2+ al-

ternans has been studied before both at the level of a single

CRU (where diffusion acts between different compartments of the

CRU model) and entire CRU networks ( Cantalapiedra et al., 2017;

Restrepo et al., 2008 ). As with other changes that lead to Ca 2+ 

alternans such as steeper load-release functions, impaired sarco-

endoplasmic Ca 2+ ATPase (SERCA) pumps or refractoriness of the

RyR ( Alvarez-Lacalle et al., 2013; Tomek et al., 2018; Huertas et al.,

2010; Nivala and Qu, 2012; Rovetti et al., 2010; Qu et al., 2016; Díaz

et al., 2004; Li et al., 2009 ), Ca 2+ alternans usually emerge via a

period-doubling bifurcation in this case. An exception can be found

in ( Cantalapiedra et al., 2017 ), where for a single CRU Ca 2+ alter-

nans emerge via a saddle-node bifurcation. Here, we report a novel

route to microscopic Ca 2+ alternans. For strong luminal coupling,

we observe a saddle-node bifurcation at the network level , where

an eigenvalue leaves the unit disk through (+1) along the real axis.

In contrast to a period-doubling bifurcation (where an eigenvalue

leaves at −1 ), which we also found in the case of strong cytosolic

coupling, individual CRUs follow a period-1 orbit, but the ampli-

tudes of neighbouring CRUs alternate. Hence, while the global cel-

lular Ca 2+ patterns are similar for Ca 2+ alternans that emerge via a

period-doubling and saddle-node bifurcation, respectively, the sub-

cellular Ca 2+ pattern is distinct. This shows that microscopic Ca 2+ 

alternans exhibit rich dynamics, and consequentially the route to

cardiac arrhythmias can proceed along more ways than previously

established. 
. Results 

.1. One dimensional CRU network 

We first investigate a one-dimensional (1D) network consisting

f 75 CRUs corresponding to 75 sarcomeres paced at T p = 0 . 9 s .

ig. 1 shows a schematic of three connected CRUs in such a net-

ork. 

When Ca 2+ diffusion in the cytosol is weak, the network ex-

ibits synchronous Ca 2+ release. Fig. 2 A and B illustrate this by

howing that the time evolution of the Ca 2+ concentration in both

he bulk cytosol and the SR for two neighbouring CRUs is identical.

he bar plot in Fig. 2 C summarises this for the 10 innermost CRUs

f the network. When we increase the cytosolic diffusion strength,

.e. make τ c smaller, we observe the emergence of subcellular Ca 2+ 

lternans as illustrated in Fig. 2 D–F. It is worth noting that in the

bsence of diffusion, each CRU follows a stable period-1 orbit that

s identical to the synchronous network state displayed in Fig. 2 A

nd B. In other words, the emergence of the subcellular Ca 2+ alter-

ans is a pure network effect and not the result of changes in the

ocal dynamics of the CRUs. Since we are interested in the onset of

a 2+ alternans, the difference in maxima between the small and

arge amplitude oscillations is small. However, if we move further

eyond the instability, this difference becomes more pronounced

nd corresponds to observed changes of the intracellular Ca 2+ con-

entration. 

It is worth noting that the global Ca 2+ concentration, i.e. the

a 2+ concentration averaged over the entire CRU network, remains

nchanged irrespective of whether subcellular Ca 2+ alternans exist

r not (see Fig. S1). In other words, the global Ca 2+ concentration

oes not predict if pathological Ca 2+ alternans are present. 

We can further quantify the onset of subcellular Ca 2+ alternans

y computing the eigenvalues of the linearised network equations.

ig. 3 A shows the eigenvalues corresponding to the dynamics plot-

ed in Fig. 2 A–C. All eigenvalues are contained within the unit disk,

ndicating that the synchronous network state is linearly stable. As

e increase the diffusive coupling, an eigenvalue passes through

(−1) along the real axis, which signals the onset of Ca 2+ alternans,

ee Fig. 3 B and C. A further strengthening of the cytosolic diffusion

eads to more eigenvalues leaving the unit disk as exemplified in

ig. 3 D. 

A strength of the PWL framework employed here is that we

an compute the eigenvectors associated with the eigenvalues and

ompare them with the actual spatial Ca 2+ concentration profile.

n Fig. 4 A we plot the peak subsarcolemmal Ca 2+ concentration

uring one beat across the entire 75 CRU network when only one

igenvalue lies outside the unit disk. The alternations in the Ca 2+ 

oncentration are clearly visible. At the same time, the difference
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Fig. 2. Emergence of alternans in a 1D network. Bulk cytosolic Ca 2+ concentration (A, D) and SR Ca 2+ concentration (B, E) of two neighbouring CRUs (solid blue and dashed 

red, respectively) in a 1D network containing 75 CRUs at a pacing period of T p = 0 . 9 s and cytosolic coupling of strength τc = 3 s (top), τc = 2 . 301 s (bottom). Corresponding 

peak subsarcolemmal Ca 2+ concentrations (C, F) during one pacing period of the 10 innermost CRUs of the network. All other parameter values as in Tables S1–S5. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Eigenvalues in a 1D network. (A) τc = 3 s , (B) τc = 2 . 301 s , (C) blow up of (B), (D) τc = 2 . 29 s . All other parameter values as in Tables S1–S5 and T p = 0 . 9 s . 
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n amplitude between neighbouring CRUs is maximal in the middle

f the network and decreases towards the edges. This results from

he no-flux boundary conditions of the network, which mimic the

hysical cell boundaries at either end of the cell. We observe no

apering of the amplitudes when we implement periodic bound-

ry conditions (see Fig. S2). Fig. 4 B displays the eigenvector that

orresponds to the single eigenvalue that lies outside the unit disk

n Fig. 3 C. Its shape mirrors the pattern of the peak subsarcolem-

al Ca 2+ concentration shown in Fig. 4 A, which demonstrates that
e can use the eigenvector to predict the Ca 2+ concentration pro-

le across the network after the onset of the instability. It is worth

mphasising that this calculation is feasible because we can explic-

tly construct the matrix of the linearised network equations based

n the semi-analytical solution for the synchronous network state

see Materials and Methods). 

One of the reasons for predicting the shape of the subcel-

ular Ca 2+ alternans in Fig. 4 is that only one eigenvalue lies

utside the unit disk. However, when we increase the diffusive
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Fig. 4. Eigenvector prediction close to alternans onset. (A) Peak subcarcolemmal Ca 2+ concentration for τc = 2 . 301 s during one pacing period of the full 75 CRU network 

of Fig. 2 D–F. (B) Eigenvector corresponding to the single eigenvalue that has left the unit disk in Fig. 3 C. All other parameter values as in Tables S1–S5. 

Fig. 5. Critical eigenvectors further from alternans onset. (A) Peak subsarcolemmal Ca 2+ concentration during one stimulus period for τc = 2 . 29 s . (B–D) Eigenvectors 

corresponding to the three eigenvalues outside the unit disk shown in Fig. 3 D. All other parameter values as in Tables S1–S5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Eigenvector prediction further from alternans onset. Bar plot (pale blue) 

of peak subsarcolemmal Ca 2+ concentration from a simulation in a network of 75 

CRUs with T p = 0 . 9 s and τc = 2 . 29 s . The overlaid stencil plot (red) shows a linear 

combination of the eigenvectors added to the uncoupled peak subsarcolemmal Ca 2+ 

concentration for the same system. All other parameter values as in Tables S1–S5. 

(For interpretation of the references to colour in this figure legend, the reader is 

r

coupling strength, more eigenvalues exit through the unit circle,

see e.g. Fig. 3 D. Would the eigenvectors for these three eigenvalues

still predict the emergent Ca 2+ pattern? Fig. 5 shows the corre-

sponding Ca 2+ concentration profile together with the three eigen-

vectors associated with the corresponding eigenvalues. At first

sight, none of the individual eigenvectors recover the shape of the

simulated Ca 2+ concentration profile. Compared to Fig. 4 A, the re-

gion where the amplitude between next-nearest neighbours stays

constant is much extended, and the decrease in amplitude differ-

ence towards the edges of the network occurs over a much smaller

number of CRUs. The tapering of the leading eigenvector shown in

Fig. 5 B is too strong to account for this behaviour, and the remain-

ing two eigenvectors in Fig. 5 C and D are multimodal, while the

actual Ca 2+ concentration profile is unimodal. 

Because the eigenvectors are solutions to the linearised equa-

tions, superposition holds. We therefore tested whether a suitable

combination of eigenvectors can reproduce the observed spatial

pattern in Fig. 5 A. As Fig. 6 reveals, adding the three eigenvectors

with suitable weights to the synchronous network state approxi-

mates the actual Ca 2+ concentration profile well. The superposition

displays more undulations towards the centre of the network. This

is understandable since the validity of the linear theory decreases

the further we move away from the onset of the instability. 
eferred to the web version of this article.) 
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Fig. 7. Emergence of alternans in a 2D network. Bulk cytosolic Ca 2+ concentration (A, D, G) and SR Ca 2+ concentration (B, E, H) of two neighbouring CRUs (solid blue and 

dashed red, respectively) in a 2D network containing 250 CRUs for τc = 5 s , τsr = 100 s (top), τc = 4 . 53 s , τsr = 100 s (middle) and τc = 100 s , τsr = 25 . 3 s . Corresponding 

peak subsarcolemmal Ca 2+ concentrations (C, F, I) during one pacing period for the entire network. All other parameter values as in Tables S1-S5 and T p = 0 . 9 s . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Taken together, the above findings demonstrate that our mod-

lling approach captures the onset of subcellular Ca 2+ alternans in

he entire 75 CRU network, and that we can use the eigenvectors

orresponding to the eigenvalues that have left the unit disk to

redict the pattern of the subcellular Ca 2+ alternans that emerges

fter the onset of the instability. 

.2. Two dimensional CRU networks 

We next study two-dimensional (2D) networks containing 250

RUs in a 10 × 25 grid. In contrast to the results for the 1D case

here we included only cytosolic coupling between neighbouring

RUs, we now allow for diffusive coupling through both the cy-

osol and the SR. As a control case, we first consider weak cou-

ling in both compartments. Fig. 7 A and B show the bulk cytosolic

nd the SR Ca 2+ concentration for adjacent CRUs, respectively. Both

RUs behave identically, which suggests that the network has set-

led into stable synchrony. This is confirmed by plotting the peak

ubsarcolemmal Ca 2+ concentration during one pacing period for

he entire network, which does not exhibit any spatial structure.

tarting from this control case, we first increase the strength of

ytosolic coupling, i.e. we lower τ c . 

As with the 1D case, the synchronous network state becomes

nstable giving rise to subcellular Ca 2+ alternans. Fig. 7 D and E

isplay the telltale alternations in the peak amplitudes in succes-

ive beats and show that neighbouring CRUs are out-of-phase with

ach other. The plot of the peak subsarcolemmal Ca 2+ concentra-

ion during one beat across the entire network in Fig. 7 F provides

urther evidence of this. We again note that the difference in am-
litude between adjacent CRUs is most pronounced in the centre

nd decreases towards the edges. As for the 1D network, this re-

ults from the no-flux boundary conditions. When we increase the

uminal coupling and keep the cytosolic coupling weak, we observe

 novel form of subcellular Ca 2+ alternans. Fig. 7 G and H demon-

trate that each CRU follows a stable period-1 orbit — the maxima

f the blue trace remain constant across time, so do the amplitudes

f the red dashed trace. However, the red dashed trace has a lower

aximal value than the blue solid trace, indicating that the ampli-

ude of the oscillations alternates between adjacent CRUs. There-

ore, plotting the peak subsarcolemmal Ca 2+ concentration during

ne pacing period yields the same plot as for dominant cytoso-

ic coupling, i.e. the global Ca 2+ pattern remains the same. What

hanges is the local dynamical behaviour. 

To elucidate where this new behaviour originates from we plot

he eigenvalues in both cases. Fig. 8 A and B reveal that for domi-

ant cytosolic coupling an eigenvalue crosses through (−1) along

he real axis, giving rise to the standard period doubling bifurca-

ion. In contrast, dominant luminal coupling results in an eigen-

alue leaving the unit disk through (+1) . Therefore, the novel form

f subcellular Ca 2+ alternans is coordinated by a non-canonical

ifurcation for cardiac arrhythmias, i.e. a saddle-node bifurcation.

s Fig. 8 B and E show, only one eigenvalue leaves the unit disk.

ence, we computed the associated eigenvectors, which are plot-

ed in Fig. 8 C and F, respectively. As in the 1D case, we find that

he eigenvectors correctly predict the spatial patterns of the sub-

ellular Ca 2+ alternans, in particular the larger differences in am-

litude towards the centre of the cell and the tapering off towards

he edges. Note that the emergence of a saddle-node bifurcation at
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Fig. 8. Eigenvalues and eigenvectors in a 2D network. (A–C) τc = 4 . 53 s and τsr = 100 s and (D–F) τc = 100 s and τsr = 25 . 3 s , corresponding to Fig. 7 D–F and Fig. 7 G–I, 

respectively. The left column shows all eigenvalues, the middle column is a blow-up around (-1) (B) and (+1) (E), and the right column shows the eigenvector associated 

with the eigenvalue that left the unit disk. 

Fig. 9. Bifurcation diagram The lines delineate regions of stability, with different colours representing different pacing periods. Above and to the right, the synchronous 

state is stable (indicated by the letter S), while below and to the left, Ca 2+ alternans exist. The lines stemming from the y axis (in the purple coloured region) refer to 

saddle-node bifurcations, those originating from the x axis (in the grey coloured region) to period doubling bifurcations. All parameter values as in Tables S1–S5 except (A) 

v up = 405 s −1 and (B) v up = 250 s −1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the network level is a consequence of the strong luminal coupling

and not of the dimensionality of the network. As Fig. S3 illustrates,

saddle-node bifurcations also occur in 1D networks with dominant

SR coupling. 

Given a set of parameter values, the computation of the eigen-

values for the linearised network dynamics is straightforward.

However, we can also invert this approach and determine the pa-

rameter values that correspond to a certain bifurcation. Because of

the PWL character of the model, this problem is computationally

inexpensive, which allows us to construct bifurcation diagrams as

plotted in Fig. 9 . Here, we show the regions of stability and insta-

bility in the 1/ τ sr and 1/ τ c plane. We chose to use the reciprocal

of the coupling strengths because when both of them vanish, the

network is uncoupled. Hence, starting from (τ−1 
c , τ−1 

sr ) = (0 , 0) any

increase along the axes corresponds to an increase in the coupling

strength. Focussing first on Fig. 9 A, we observe that when we keep

1/ τ c small and increase 1/ τ sr , we first hit one of the straight lines

that stems from the y axis (in the purple coloured region). 

These lines correspond to saddle-node bifurcations, and the dif-

ferent colours represent different pacing periods. We find that the

longer the pacing period, the stronger luminal diffusion has to be

for the onset of Ca 2+ alternans. This follows directly from the fact

that the slope of the straight line is larger for longer pacing peri-

ods compared to that for shorter periods; see e.g. the blue curve
or T p = 0 . 6 s and the red curve for T p = 0 . 9 s . On the other hand,

hen 1/ τ sr is small and 1/ τ c is increased, we encounter the lines

hat originate from the x axis (in the grey coloured region). These

re period-doubling bifurcations, and as for the saddle-node bi-

urcation, Ca 2+ alternans only emerge for stronger coupling when

he pacing period gets longer. This behaviour differs from when

/ τ sr takes on intermediate or larger values in the diagram, e.g.

 /τsr = 0 . 5 s −1 . Here, for vanishing cytosolic coupling, the syn-

hronous network state is unstable and only gains stability for

arger values of cytosolic diffusion. The same holds true for larger

alues of 1/ τ c and an increase of 1/ τ sr . First, synchrony is unsta-

le and only stabilises above the period-doubling bifurcation line.

n general, we see that when the coupling is balanced, i.e. 1/ τ c 

nd 1/ τ sr are of similar magnitude, the synchronous network state

s stable. For Fig. 9 B, we repeat the calculation, but with weaker

ERCA pumps. We again observe straight lines originating from the

xes, with lines indicating saddle-node bifurcations starting from

he y axis (purple coloured region) and those signalling a period-

oubling bifurcation stemming from the x axis (grey coloured re-

ion). Also, longer pacing periods can tolerate stronger coupling

trengths before the onset of Ca 2+ alternans. The main difference

etween Fig. 9 A and B is the range of the pacing periods. While in

he former, we cover more than 0.3 s, in the latter, there is little

ariation. 
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Fig. 10. Bifurcation diagram Plots showing the values of τ−1 
sr and τ−1 

c at which the synchronised network state undergoes a bifurcation at fixed pacing periods of T p = 0 . 6 s 

(A) and T p = 0 . 95 s (B) in a network of 250 CRUs. In regions labelled S the synchronised network state is stable, whilst it is unstable in regions labelled U. The blue line marks 

the values for a saddle-node bifurcation and the red line is for a period-doubling bifurcation. The symbols in panel (A) refer to the parameter values used in Figs. 11 and 12 . 

All other parameter values as in Tables S1–S5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Subcellular Ca 2+ alternans for dominant SR coupling Plots showing the peak subsarcolemmal Ca 2+ concentrations from a single pacing period in a network of 250 

CRUs with pacing period T p = 0 . 6 s . The coupling parameters are τ−1 
sr = 203 / 20 s −1 and τ−1 

c = 2 s −1 (A), τ−1 
sr = 676 / 25 s −1 and τ−1 

c = 5 s −1 (B), τ−1 
sr = 76 . 33 s −1 and τ−1 

c = 

15 s −1 (C). These values correspond to the purple diamond, square and triangle in Fig. 10 A, respectively. All other parameter values as in Tables S1–S5. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In Fig. 9 , we focus on the region around the origin in the 1/ τ c 

nd 1/ τ sr plane to elucidate the behaviour for the onset of cou-

ling. In Fig. 10 , we take a wider look as can be deduced from

he increased axis ranges. Fig. 10 A shows the saddle-node bifur-

ation line in blue and the period-doubling bifurcation line in red

or a fixed pacing period of T p = 0 . 6 s . When we fix a cytosolic

iffusion strength and increase luminal coupling, the synchronous

etwork is stable above the red period doubling bifurcation line

nd unstable below it, in accordance with the results shown in

ig. 9 . For smaller values of 1/ τ c , we enter a region of instability

ia a saddle-node bifurcation, before leaving it again via a saddle-

ode bifurcation into a region of stability. In contrast, when lumi-

al coupling is constant and we make cytosolic diffusion stronger,

he synchronous network state is first unstable before gaining sta-

ility through a saddle-node bifurcation. Upon increasing the pac-

ng period, the bifurcation diagram develops additional structures

s illustrated in Fig. 10 B. For larger values of cytosolic coupling,

e again find regions where when increasing luminal coupling, the

ynchronous network state is first stable, then unstable and finally

table again. But for weaker coupling in the cytosol, an additional

egion of unstable solutions bounded by a saddle-node bifurcation

merges. 

It is now instructive to explore the patterns of the Ca 2+ con-

entration in the vicinity of the bifurcation lines. In Fig. 11 , we plot

hree examples of the peak subsarcolemmal Ca 2+ concentration at

ne beat as we move along the lower part of the blue saddle-node

ifurcation line in Fig. 10 A. All three cases depict subcellular Ca 2+ 

lternans, but the patterning is distinct. For the weakest coupling

hown in Fig. 11 A, adjacent corners of the cell oscillate with differ-

nt amplitudes, while the dynamics of the Ca 2+ concentration in

pposing corners is identical. In the intermediate case in Fig. 11 B,

he peak values in the centre of the cell are larger than those at
he periphery, while for stronger coupling, the cell exhibits a left-

ight asymmetry. Note that the stripes in the last two cases run

arallel to the short axis of the cell, i.e. the variation occurs along

he long cell axis. 

Given that the patterns of the subcellular Ca 2+ alternans change

s we traverse the saddle-node bifurcation line, we checked

hether a similar behaviour occurs for the period-doubling bifur-

ation. Fig. 12 demonstrates that is indeed the case. Here, we plot

he peak subsarcolemmal Ca 2+ concentration at two subsequent

eats as we move along the red line in Fig. 10 A. For weaker cy-

osolic coupling, Fig. 12 A and B illustrate complex microscale vari-

tions, with all CRUs oscillating out-of-phase with respect to their

eighbours. As expected for a period doubling bifurcation, the Ca 2+ 

oncentration for a given CRU changes peak amplitude from one

eat to the next, even for the green bands, where the difference

n amplitude is small. Increasing the coupling changes the patterns

ompletely. As Fig. 12 D and E highlight, the wavelength of the pat-

ern increases, with extended regions showing similar peak ampli-

udes. The pattern is reminiscent of the one observed in Fig. 11 A.

owever, here, the corners at the top and at the bottom behave

dentically and are out-of-phase with respect to each other. More-

ver, there are additional maxima and minima towards the centre

f the cell. Since both patterns are characterised by a single eigen-

alue that has left the unit disk, we plot the corresponding eigen-

ectors in Fig. 12 C and F, respectively. Again, we observe excellent

greement between the eigenvector and the emerging pattern of

he subcellular Ca 2+ alternans. 

All results so far have been obtained with the PWL model. The

ain reason for this is that we can explicitly perform the lin-

ar stability analysis, which has allowed us to unravel complex

atterns of subcellular Ca 2+ alternans. At this point, it stands to

eason what impact the PWL caricature has on our findings. We
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Fig. 12. Subcellular Ca 2+ alternans for dominant cytosolic coupling Plots of the peak subsarcolemmal Ca 2+ concentration from two simulations of a 250 CRU network 

across two successive pacing periods. (A, D) represent the first pacing periods whilst (B, E) represent the second pacing period. For both these simulations T p = 0 . 6 s . In 

the top row, τ−1 
c = 1 . 2 s −1 and τ−1 

sr = 0 . 37745 s −1 , while in the bottom row τ−1 
c = 25 s −1 and τ−1 

sr = 393 / 50 s −1 . (C, F) show the eigenvector associated with the single 

eigenvalue that has left the unit disk corresponding to the simulations in (A,B) and (D, E), respectively. The coupling parameters for the top (bottom) are shown as grey 

diamond (square) in Fig. 10 A. All other parameter values as in Tables S1–S5. 

Fig. 13. Comparison between PWL and nonlinear model Plots of the peak subsarcolemmal Ca 2+ concentration for two consecutive pacing periods in a network of 250 

CRUs for T p = 0 . 6 s . (A,B) show results for the PWL model, while (C,D) show results for the nonlinear model in Shiferaw et al. (2003) with clamped buffers. In both cases, 

the coupling is τc = 37 s −1 and τsr = 280 s −1 . In (C,D) we used γ = 4 and i Ca = 6600 μmol C −1 cm 

−1 . All other parameter values as in Tables S1–S5. 
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therefore simulated the original model from Shiferaw et al.

(2003) and compared it to our PWL model. Representative results

are shown in Fig. 13 . The patterns are almost identical, with the

peak amplitudes in the PWL model slightly higher than in the orig-

inal model. 

The analysis technique that we have employed to determine

linear stability in this study is general in that it can cope with

any synchronous network state. The results above all pertain
o a synchronous network state with period 1. However, the

odel also supports a synchronous period-2 orbit as illustrated in

ig. 14 , which corresponds to spatially concordant alternans (SCAs).

ig. 14 A shows that the time course of the subsarcolemmal Ca 2+ 

oncentration for two adjacent CRUs is identical, and when we plot

he peak subsarcolemmal Ca 2+ concentration at two successive

acing periods we observe no spatial variation, but clear changes

n the amplitude. Moreover, all eigenvalues are contained within
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Fig. 14. Stable spatially concordant alternans (A) Trajectories from two neighbouring CRUs (solid blue and dashed red line, respectively) of the subsarcolemmal Ca 2+ 

concentration. (B) Plot of the eigenvalues of the system. (C, D) Plots of the peak subsarcolemmal Ca 2+ concentration across two successive pacing periods. The network 

contains 250 CRUs with coupling strengths τc = 0 . 08 s , τsr = 0 . 2 s and is simulated with pacing period T p = 0 . 5 s . All other parameter values as in Tables S1–S5. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Instability of spatially concordant alternans Peak subsarcolemmal Ca 2+ concentration from 4 consecutive pacing periods (A–D) of a network containing 250 CRUs 

with coupling strengths τc = 0 . 012 s, τsr = 1 . 3 s and simulated at a pacing period T p = 0 . 5 s . Also plotted are the key eigenvalues (E) and the eigenvector corresponding to 

the eigenvalue outside the unit disk (F). All other parameter values as in Tables S1–S5. 

t  

t  

e  

i  

o  

t  

p  

a  

i  

r  

p  

a

c  

b  

t  

t  

F  

s  

t  

e  
he unit disk as depicted in Fig. 14 B, confirming that the pattern

hat we see is stable. We are now in the position to study the lin-

ar stability of these SCAs. When we increase the coupling strength

n the cytosol, but decrease luminal coupling, we obtain a period-4

rbit as shown in Fig. 15 . In Fig. 15 A, we see that the peak ampli-

ude of the subsarolemmal Ca 2+ concentration during one pacing

eriod develops a spatial pattern with stripes of larger amplitudes

t the left and right edge of the cell and a lower peak amplitude

n the centre. During the next pacing period ( Fig. 15 B) the stripes

emain, but the peak amplitude is now larger in the centre com-
ared to the edges, and the values of the Ca 2+ concentrations have

lmost halved. At the third pacing period, the range of the Ca 2+ 

oncentration corresponds to the one in the first pacing period,

ut now the peak amplitude is large in the centre and small at

he periphery. Hence Fig. 15 A and C as a pair would correspond

o a period-2 orbit, but now they are two pacing periods apart.

inally, Fig. 15 D shows a flipped case of Fig. 15 B, concluding the

equence of the period-4 orbit. As Fig. 15 E demonstrates, SCAs, i.e.

he synchronous period-2 orbit, have indeed gone unstable via an

igenvalue crossing through −1 along the real axis. Since only one
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eigenvalue lies outside the unit disk, we compute the eigenvector

associated with this eigenvalue. It is depicted in Fig. 15 F and cor-

responds to the spatial pattern shown in Fig. 15 A–D. 

3. Discussion 

Cardiac alternans present a severe disruption of the healthy

cardiac rhythm. In particular, they often form precursors to fatal

cardiac arrhythmias such as sudden cardiac death, which renders

their understanding highly relevant for our well-being. 

In this present study, we investigated the role of Ca 2+ dif-

fusion in both the cytosol and the SR in the formation of mi-

croscopic Ca 2+ alternans ( Tian et al., 2012 ), which form one of

the earliest harbingers of cardiac arrhythmia. When cytosolic dif-

fusion dominates, Ca 2+ alternans are induced via the standard

period-doubling bifurcation, where the critical eigenvalue passes

through (−1) along the real axis ( Figs. 3 B and C, 8 A and B).

For strong luminal diffusion, we uncovered a novel route to mi-

croscopic Ca 2+ alternans via a saddle-node bifurcation, where an

eigenvalue leaves the unit disk at (+1) ( Fig. 8 D and E). Globally,

the emergent cell wide patterns of the Ca 2+ concentration look

similar ( Fig. 8 C and F), in that adjacent CRUs display alternating

maxima of the Ca 2+ concentration. The main difference lies in the

temporal evolution of the Ca 2+ concentration at individual CRUs. In

the period-doubling case, each CRU exhibits alternating Ca 2+ dy-

namics ( Figs. 2 D–F, 7 D and E) i.e. a period-2 orbit, while for the

saddle-node bifurcation, each CRU follows a period-1 orbit, but the

Ca 2+ concentration at adjacent CRUs takes on different maximal

values ( Fig. 7 G and H). 

The microscopic Ca 2+ alternans that have been measured so far

(see e.g. Tian et al. (2012) ) resemble the ones shown in Fig. 7 D–

F, where neighbouring sites exhibit alternating period-2 orbits that

oscillate out-of-phase with respect to one another. Our theoreti-

cal results suggest that biological microscopic Ca 2+ alternans may

possess more complex patterns than previously thought. The hall-

mark of microscopic Ca 2+ alternans is that whole cell Ca 2+ signals

look regular, while Ca 2+ transients at individual CRUs already dis-

play pathological behaviour. For both the period-doubling and the

saddle-node bifurcation, global signals would almost be indistin-

guishable. However, the local dynamical behaviour differs substan-

tially as described above. This suggests that to more faithfully pre-

dict the onset of Ca 2+ alternans, it is crucial to investigate a larger

fraction of the CRU network. This will generate sufficient data to

obtain high quality statistics on the peak amplitudes of Ca 2+ tran-

sients, which is important since establishing a period-1 orbit for

individual CRUs does not suffice to conclude healthy behaviour in

light of the saddle-node bifurcation reported here. 

Focussing on Ca 2+ diffusion also addresses a still unanswered

question in cardiac physiology: is Ca 2+ diffusion in the SR slow

or fast? Studies to date provide contradicting results ( Swietach

et al., 2008; Picht et al., 2011; Bers and Shannon, 2013 ). The

findings reported here provide a possible avenue for distinguish-

ing between these two hypotheses as different SR Ca 2+ diffusion

strengths lead to different microscopic Ca 2+ alternans. For fast dif-

fusion, we would expect microscopic Ca 2+ alternans where CRUs

follow a period-1 orbit, but with different peak amplitudes, while

for slow SR diffusion, we should observe the well-known alternat-

ing Ca 2+ concentration profiles at individual CRUs. 

When investigating cardiac alternans, one is always confronted

with the bidirectional coupling between membrane voltage and in-

tracellular Ca 2+ . Essentially, voltage dependent Ca 2+ fluxes such as

Ca 2+ entry through the L-type Ca 2+ channel or Ca 2+ extrusion via

the sodium-calcium exchanger (NCX) alter the intracellular Ca 2+ 

concentration. In turn, the intracellular Ca 2+ concentration feeds

back to these AP-dependent pathways through e.g. Ca 2+ dependent

gating of the L-type Ca 2+ channel and the NCX. To make progress,
oth experimentally and theoretically, the AP is often clamped. We

ere followed this approach and considered a model of Ca 2+ cy-

ling only ( Shiferaw et al., 2003; Thul and Coombes, 2010 ). In light

f the discussion in Jordan and Christini (2007) our results there-

ore apply to the case when cardiac alternans are Ca 2+ -driven. 

The Ca 2+ subsystem offers multiple ways of inducing Ca 2+ al-

ernans, including the activity levels of SERCA pumps, the load-

elease function of the SR and the refractoriness of the RyR

 Alvarez-Lacalle et al., 2013; Tomek et al., 2018; Huertas et al.,

010; Nivala and Qu, 2012; Rovetti et al., 2010; Qu et al., 2016;

íaz et al., 2004; Li et al., 2009 ). These factors control the local be-

aviour of CRUs. We are interested in the network effects that con-

ribute to the formation of subcellular Ca 2+ alternans. Therefore,

e focussed on the role of Ca 2+ diffusion in both the cytosol and

he SR, as it is Ca 2+ diffusion that couples adjacent CRUs to form

 network. For this endeavour to be meaningful, we assumed that

 single uncoupled CRU follows a physiologically regular period-

 orbit and does not exhibit Ca 2+ alternans. Indeed, most models

or isolated CRUs can be driven into Ca 2+ alternans by decreasing

ERCA pump activity or steepening the load-release function for

xed pacing periods. However, if the local Ca 2+ dynamics at a CRU

s already unstable, observing Ca 2+ alternans at the network level

s less surprising. Consequentially, our findings are particularly rel-

vant to any alterations that increase the propensity for inducing

a 2+ alternans at a single CRU as microscopic Ca 2+ alternans are

ore likely in this case. Another reason for homing in on Ca 2+ dif-

usion is that it is affected by endogenous and exogenous buffers

uch as dyes. Therefore, even if the local CRU dynamics would lead

o healthy behaviour, buffers might change that. 

A number of studies have investigated the formation of subcel-

ular Ca 2+ alternans. Conceptually, they fall into two main classes:

ither large-scale numerical simulations of CRU networks or re-

uced one- or two-dimensional maps. Here, we advocate a mod-

lling philosophy that sits in the middle of these extremes. On the

ne hand, we would like to investigate the entire network with-

ut reducing the number of differential equations, hence incorpo-

ating the more realistic setup of large-scale simulations. On the

ther hand, we would like to exploit the mathematical tractabil-

ty of low dimensional maps. We have achieved both aims by con-

idering a PWL model of a CRU that we developed in Thul and

oombes (2010) and which is based on the established model of

a 2+ cycling in Shiferaw et al. (2003) . This allows us to explicitly

onstruct both period-1 and period-2 orbits for a single CRU, i.e.

he healthy regular and the Ca 2+ alternating rhythm, respectively.

n turn, this provides the input for the stability approach developed

n Pecora and Carroll (1998) . As shown in Materials and Methods,

e can explicitly construct the matrix S m 

that relates some initial

etwork perturbation δy 0 to its final value δy m +1 after one pacing

eriod, i.e. δy m +1 = S m 

δy 0 . The ability to compute S m 

endows our

odelling framework with the mathematical tractability typically

ssociated with maps, while the entries of S m 

encapsulate the dy-

amics of the entire network. 

At this point, one might ask how well PWL models capture the

ynamics of the associated nonlinear models. There is now a large

ody of evidence that shows that PWL models reproduce key fea-

ures of their nonlinear counterparts. Of particular note is the McK-

an model ( McKean, 1970 ), which constitues a PWL caricature of

he seminal Fitzhugh-Nagumo equations ( FitzHugh, 1961; Nagumo

t al., 1962 ) for neural activity. For the PWL model employed here,

e demonstrated in Thul and Coombes (2010) that it reproduces

oth the physiological period-1 and the pathological alternating or-

it of a single CRU. Moreover, Fig. 13 demonstrates that even at the

etwork level the PWL model behaves almost identically to the

riginal model. What does differ between the two modelling ap-

roaches are parameter values, which cannot necessarily be trans-

ated one-to-one from one model to the other. In this respect, PWL
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odels should be understood as a tool to probe the dynamical

epertoire and explain in fundamental terms the behaviour of the

ull nonlinear system. 

A defining characteristic of microscopic Ca 2+ alternans is that

hey describe cardiac dynamics just after the point when the reg-

lar period-1 orbit of a CRU goes unstable ( Tian et al., 2012 ). Our

WL model is ideally suited to zoom in on this. Firstly, we can

race the eigenvalues of the full network stability calculation to

etermine the exact moment when the network undergoes an in-

tability. Secondly, we can compute the eigenvector that is associ-

ted with the eigenvalue that induces the instability. As Figs. 4 B,

 C and F, 12 C and F demonstrate, these eigenvectors provide a

ery good prediction of the emergent subcellular Ca 2+ pattern. As

oon as more than one eigenvector lies outside the unit disk, the

mergent network pattern is a linear combination of the eigenvec-

ors associated with these eigenvalues, see Figs. 5 and 6 . In this

ase, the predictive power of the eigenvectors is limited as a priori

e do not know their weights with which they enter the super-

osition. What these eigenvectors allow us, though, is to scan the

atterns that could potentially emerge by exploring different linear

ombinations of these eigenvectors. 

Since determining the eigenvalues and eigenvectors is numeri-

ally inexpensive, we computed bifurcation diagrams as plotted in

ig. 10 . They show that the period doubling bifurcation and the

addle-node bifurcation both divide the parameter plane but that

he former occurs under dominant cytosolic coupling and the lat-

er when luminal diffusion is strong. Interestingly, the topology of

he bifurcation diagrams changes as we alter the pacing period. In

articular, we find additional lobes of unstable solutions as we in-

rease the pacing period. Because of the predictive power of the

igenvectors close to the stability boundaries, we computed a se-

ies of them associated with the single eigenvalue that leaves the

nit disk. We found that the patterns of the eigenvectors change

ignificantly as we move along the stability boundaries. For in-

tance, in the vicinity of the lower branch of saddle-node bifurca-

ions in Fig. 10 A, we find some chequerboard pattern of Ca 2+ activ-

ty for weaker coupling strength ( Figs. 11 A), which changes into a

attern of stripes for stronger coupling ( Figs. 11 B) and then into a

eft-right asymmetry for even stronger coupling ( Figs. 11 C). What

s remarkable is that there is no obvious ordering of these pat-

erns, in that knowing one does not predict the next one as we

ncrease the coupling. The point at which these patterns change

ometimes coincides with a kink in the bifurcation line. For in-

tance, we found such a change at the small cusp around 1 /τc = 5

n the lower saddle-node bifurcation line in Fig. 10 A. 

Some of the Ca 2+ alternans that we have investigated can be

lassified as spatially discordant since different parts of the cell

xhibit out-of-phase patterns with respect to their peak ampli-

udes ( Weiss et al., 2006 ). For example, Figs. 11 and 12 demon-

trate that during one pacing period, parts of the cell exhibit small

mplitudes, while the amplitude is large in other parts. However,

CAs exist as well, where the peak amplitude is either small or

arge across the entire cell ( Fig. 14 ). From a mathematical perspec-

ive, SCAs correspond to a synchronous network state. The only

ifference being that it is a period-2 orbit instead of a period-1

rbit. Importantly, our analysis works for any synchronous state.

e therefore tested the linear stability of SCAs and found that

hey lose stability to a period-4 orbit ( Fig. 15 ). Again, the eigen-

ector that is associated with the single eigenvalue that leaves

he unit disk predicts the spatial pattern of the emergent period-4

rbit. 

. Conclusion 

We analysed the impact of cytosolic and luminal Ca 2+ diffusion

n the formation of subcellular Ca 2+ alternans in 1D and 2D net-
orks of CRUs. When cytosolic diffusion dominates, Ca 2+ alternans

merge via a period-doubling bifurcation. Stronger diffusion in the

R leads to an instability via a saddle-node bifurcation, which to

ate has not been reported for Ca 2+ alternans and which generates

icroscopic Ca 2+ alternans that are distinct from the ones driven

y a period-doubling bifurcation. The PWL modelling framework

hat we adopted allowed us to perform a linear stability analysis

or the entire network without the reduction in the number of dy-

amical variables. As part of this, we computed the eigenvectors

hat are associated with the eigenvalues that leaves the unit disk

nd showed that they correctly predict the spatial patterns of the

mergent subcellular Ca 2+ alternans. Importantly, we found that

hese patterns vary substantially along bifurcation lines. 

The pathways of the Ca 2+ cycling model that we employ cap-

ure the core Ca 2+ dynamics at a CRU. In a next step, it would be

nteresting to explore the impact of further Ca 2+ dependent path-

ays on the generation of microscopic Ca 2+ alternans, in particular

he role of the refractory period of the RyR and of additional ac-

essory proteins in the junctional SR such as triadin and junctin. In

ddition, our model is deterministic, but fluctuations based on the

tochastic recruitment of RyRs is of central interest in the study of

a 2+ alternans. It will therefore be exciting to marry the random

ynamics of RyRs with the PWL model employed here to unravel

urther the complex dynamics of subcellular Ca 2+ alternans. 

. Materials and Methods 

We used the PWL model in Thul and Coombes (2010) ,

hich is based on the established Ca 2+ cycling model in

hiferaw et al. (2003) . The PWL equations are given by 
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ere, c 
μ
s , c 

μ
i 

, c 
μ
j 

, c 
μ
u and I 

μ
r denote the subsarcolemmal Ca 2+ con-

entration, the bulk cytosolic Ca 2+ concentration, the total Ca 2+ 

oncentration in the SR, the Ca 2+ concentration in the unrecruited

R and the release current from the unrecruited SR into the sub-

arcolemmal space at the μth CRU, respectively. βs and β i denote

uffer constants, and v i and v s refer to the volumes of the bulk and

ubsarcolemmal space, respectively. The Ca 2+ flux through the L-

ype channel is given by I 
μ
CaL 

and that through the NCX by I 
μ
NCX 

. I 
μ
up 

enotes Ca 2+ uptake through SERCA pumps. τ s , τ c , τ sr , τ a and τ r 

epresent time constants for transport between the subsarcolem-

al space and the cytosolic bulk, cytosolic Ca 2+ diffusion between

djacent CRUs, luminal Ca 2+ diffusion between neighbouring CRUs,

ransport between the SR Ca 2+ compartments and decay of the re-

ease current, respectively. The load-release function is given by

 , and g measures the release strength. Note that I CaL is nega-

ive since it is an inward current, which renders the first term in

he equation for I 
μ
r positive. The sum over η extends over nearest

eighbours. For the full definition of the currents I 
μ
CaL 

, I 
μ
NCX 

and I 
μ
up 

nd the load-release function Q , we refer the reader to Thul and

oombes (2010) . The clamped voltage for a pacing period T p is
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described by 

 (t) = 

{
V + (t) , kT p ≤ t ≤ (k + x ) T p , 
V min , (k + x ) T p ≤ t < (k + 1) T p , 

(2)

where k ∈ N counts the number of APs and x = a x / (a x + T p ) with

a x = 2 / 3 . Hence, the APD decreases with faster pacing periods. The

resting potential is given by V min = −70 mV , and V + (t) captures the

shape of the clamped voltage, given by 

 + (t) = V min + (V max − V min ) 

√ 

1 −
(

t − kT p 

xT p 

)2 

, (3)

for kT p ≤ t ≤ (k + x ) T p , where the maximal AP is given by V max =
30 mV . 

The PWL character of Eq. (1) results from a set of switches

( Thul and Coombes, 2010 ), which are either state- or time-

dependent. An example for a state-dependent switch is the change

of the load release function when c 
μ
u crosses certain values, while

the voltage-dependent inactivation of the L-type channel repre-

sents a time-dependent switch. The voltage dependence induces

a time dependence since we clamp the voltage, i.e. it is a function

of time only. Between switching events, Eq. (1) can be succinctly

written as 

d x 

d t 
= Ax + F (t) + G � Hx , (4)

where x = (x 1 , x 2 , . . . , x N ) is a 5 N dimensional vector, where each

entry x μ, μ = 1 , . . . , N, corresponds the 5-dimensional state vec-

tor of a single CRU, i.e. x μ = (c 
μ
s , c 

μ
i 

, c 
μ
j 

, c 
μ
u , I 

μ
r ) , in a network

of N CRUs. F ( t ) is a 5 N dimensional vector that represents the

voltage-dependence of the network and hence only depends on

time. A ∈ R 

5 N×5 N is a constant matrix, and G ∈ N 

N×N denotes the

Laplacian matrix of the network. The matrix H ∈ R 

5 ×5 encodes

through which variables the coupling occurs and what the cou-

pling strength is. For instance, for cytosolic coupling only, H 22 =
1 /τc , while all other components of H vanish. The usual ten-

sor product is given by �. We can then linearise Eq. (4) around

the synchronous network state s ( t ) by making the ansatz x (t) =
1 N � s (t) + δx, where 1 N is an N -dimensional vector that only con-

tains ones. Note that s ( t ) is 5-dimensional. Introducing the new

variable δy = (�−1 
� I 5 ×5 ) δx, where the columns of � contain the

eigenvectors of G and I n × n is the n -dimensional identity matrix,

it can be shown that the linearised system factorises into N 5-

dimensional equations ( Pecora and Carroll, 1998 ). In other words,

to determine linear stability, we do not need to investigate a 5 N -

dimensional systems, but only N 5-dimensional ones. Hence, we

can write δy m +1 = S m 

δy 0 , i.e. 

δy m +1 = 

⎛ 

⎜ ⎜ ⎝ 

δy 1 m +1 

δy 2 m +1 

. . . 

δy N m +1 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

S 1 m 

0 · · · · · · 0 

0 S 2 m 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . S N−1 
m 

0 

0 · · · · · · 0 S N m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

δy 1 0 

δy 2 0 
. . . 

δy N 0 

⎞ 

⎟ ⎟ ⎠ 

= S m 

δy 0 , (5)

where S i m 

denotes the matrix for the i th 5-dimensional stability

problem, and δy 0 and δy m +1 represent the initial perturbation and

the perturbation at the end of one pacing period, respectively.

The index m indicates that there are m switches in Eq. (1) . Let

p i denote an eigenvector of S m 

. Then (� � I 5 ×5 ) p are the eigen-

vectors that we plot in e.g. Fig. 4 . From a conceptual point of

view, the above method is similar to that developed in Li and

Otani (2003) for a single CRU. In both cases, a matrix is computed

that connects an initial perturbation to a final perturbation by fol-
owing the flow of the underlying ODEs. The main difference is

hat this matrix can only be approximated in Li and Otani (2003) ,

hile we obtain an exact representation. 
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