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A B S T R A C T

Cloud dynamics are the main factor influencing the intermittent variability of short-term solar irradiance,
and therefore affect the solar farm output. Sky images have been widely used for short-term solar irradiance
prediction with encouraging results due to the spatial information they contain. At present, there is little
discussion on the most promising deep learning methods to integrate images with quantitative measures of
solar irradiation. To address this gap, we optimise the current mainstream framework using gate architecture
and propose a new transformer-based framework in an attempt to achieve better prediction results. It was
found that compared to the classical CNN model based on late feature-level fusion, the transformer framework
model based on early feature-level prediction improves the balanced accuracy of ramp events by 9.43% and
3.91% on the 2-min and 6-min scales, respectively. However, based on the results, it can be concluded that
for the single picture-digital bimodal model, the spatial information validity of a single picture is difficult to
achieve beyond 10 min. This work has the potential to contribute to the interpretability and iterability of deep
learning models based on sky images.
1. Introduction

As solar power generation grows, its inherent variability presents
the grid with issues related to reserve costs, dispatchability and ancil-
lary generation, and grid reliability in general [1]. Accurate forecasting
of solar irradiance at different time scales is a prerequisite for effective
utilisation of solar energy and a critical step in the grid integration
and management of solar farms [2,3]. Reliable solar forecasting tools
improve the economics of PV power generation and reduce the negative
impact of PV uncertainty on grid stability [4].

Changes in cloud cover are the leading cause of rapid changes
in solar irradiance. Since the prediction models based on statistical
numerical regression used in very short-term forecast models do not
include information on fast moving clouds, alternative or additional
data inputs that account for these rapidly changing meteorological
phenomena are required if accuracy at this time scale is to be improved.

Ground-based sky imagery represents one such exogenous data
source and plays a crucial role in solar energy forecasting due to its
ability to provide information on cloud distribution and motion. Solar
irradiation models informed by cloud motion data offer the potential
to deliver accurate forecasts of very short-term solar irradiation, and
thus provide valuable supporting information for grid management and
informing the market around power supply and demand [5].
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Currently, sky images taken by fish-eye cameras contain rich spatio-
temporal features and thus are widely accepted by the academic com-
munity as exogenous data for intra-hourly level sky modelling [6–8].
The main methods for predicting solar irradiance based on sky images
can be divided into two categories. The first is a sky modelling ap-
proach based on classical image analysis. To determine spatial features,
methods such as red–blue ratio (RBR) or red–blue difference (RBD) [9–
11], 3D cross correlation [12], or image feature correlation [13] are
used to identify cloud pixels in the sky image. To determine temporal
features, the most common approach is to use the cross correlation
method [10], which calculates the cloud motion vector by comparing
two consecutive cloud maps. In addition to cross correlation, other
methods include optical flow [6,14] and ray tracing [15]. The optical
flow method determines the velocity of feature pixels based on the in-
tensity of two consecutive images and uses this to calculate the position
of the cloud in relation to the ground projection of the cloud at the
approaching time point. The ray-tracing approach uses multiple images
of the sky taken simultaneously from different positions, combined with
ground shadow maps to model clouds in 3D. The advantage of this
approach is that the 3D model solves the problem of individual site
images not being able to determine the height of the cloud base [12],
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Fig. 1. Schematic diagram of the model architecture for the different stages of fusion.
while both the cross correlation and optical flow methods require
additional instrumentation to measure the height of the cloud base
to determine the correct ground projection of the cloud [16]. Image-
based forecasts determine the impact on solar irradiance estimates by
combining the estimates of cloud position with estimates of cloud trans-
mittance, and general methods used to determine the latter include
fixed transmittance [6,10], cloud density-based transmittance [7,17]
and cloud height-based transmittance approaches [18]. However, these
approaches to image analysis are still limited by the complex physical
properties of clouds. For example, cloud motion is assumed to involve
shifting only and does not account for cloud generation and dissipation.
Additionally, cloud transmittance depends on the transparency of the
cloud, but it is not currently feasible to measure the transmittance of
all cloud types directly. Therefore, this approach remains of limited
use in improving the accuracy of future irradiance forecasts [19]. At
present classical image analysis approaches feed a process of decision-
level fusion, i.e. solar irradiation forecasts and RAMP forecasts are
made independently of each other and only influence each other when
combined in the final stage as shown in Fig. 1(a).

The second approach uses deep learning methods [20–29]. This usu-
ally employs a combination of convolutional neuron networks (CNN)
[30] and recurrent neural networks [31] (RNN) based methods to
predict solar irradiance information for future time periods. The widely
used CNN-based computer vision models, such as ResNet [32] and
VGGNet [33], can extract feature information from a dataset containing
many sky images using deep convolutional neuron networks to obtain
spatial dimensional perception capability. After extracting the spatial
information of the images, various methods can be used to obtain time-
series based information. These include, pre-processing by stacking
a time series of images [21], convolution processes using 3D-CNN
with an extra temporal dimension [23], convolution-based long and
short-term memory (LSTM) network [20], convolution followed by
feature-based LSTM networks [22,28], directly using regression algo-
rithms for continuous results [21,23], or combine feature engineering
techniques with LSTM techniques [26]. By combining the architecture
of two networks and fitting them using a large amount of data, a
network model with both spatial and temporal feature perception can
be obtained. This stitching model can be used to map the relationship
between specific features in continuous input image data and forecast
targets. This type of model has been applied to short-term forecast
intervals for different forecast resolutions. In contrast to models based
on image analysis, current deep learning models can be mainly cate-
gorised as late feature fusion models, where the image and numerical
values respectively abstract features as a high-dimensional vector in
their respective models and concatenate the two vectors at the end of
their respective operations, as shown in Fig. 1(b). The tandem high-
dimensional vector can be thought of as a joint feature extract based on
2

the two modalities, and the final prediction is based on the extraction
of available information from that vector.

While deep learning networks have been shown to deliver predic-
tions with greater accuracy than those based on feature engineering
in the field of ground-based sky picture solar prediction, due to its
black box nature, researchers cannot assess the relationships between
variables that affect performance. For example, using sky images as
exogenous data to aid solar prediction has been shown to improve
model performance at time scales ranging from 2 min ahead [34] to
1 h ahead [35]. It is obvious that the images play a different role at
these two different time scales but the features it identifies are not
understood.

The research carried out by Paletta et al. [20]. highlighted that
prevailing image- and numerical-based forecasting models show a
propensity towards reactive, rather than anticipatory, predictions. This
predilection represents a significant challenge in current prediction
models. More specifically, these models did not anticipate the timing
of imminent solar ramp events from sky images as anticipated by the
researchers.

We argue in this paper that solar irradiance forecasting using
ground-based images from which numerical features are extracted that
describe the solar field can be categorised as a general multimodal
learning domain, rather than a purely computer vision domain. That
is, the model is forecasting through use of a deep learning network
based on two or more heterogeneous data sources with complementary
information.

As shown in Fig. 1, for the broad field of image-informed multi-
modal learning, besides the two aforementioned architectures, i.e.
decision-level and late feature-level fusion of image information, the
fusion methods also include: data-level fusion (not shown in Figure)
and early feature-level fusion. Of these, early feature-level fusion and
late feature-level fusion both extract feature fusion within the model,
with early fusion focusing on modal interactions and late fusion fo-
cusing on feature extraction [36]. In deep learning models used for
solar forecasting, two architectures are currently applied, namely late
feature-level fusion [20,22,37,38] and decision-level fusion [21,39]. In
the work of Paletta et al. [20], the use of numerical data as additional
inputs fused with a computer vision model improved the 2-min forecast
skill (FS), which rose from −3.4% to 12.9% and the 10-min FS, which
rose from 18.8% to 23.9%.

However, the literature suggests that the interest of researchers
is currently focused on the image feature side to improve overall
forecasting power through a more robust image network. This approach
neglects both the role that the numerical component plays in the model
and whether it interacts effectively with the image component. For
example, the numerical regression-based fully connected Multi-Layer
neural network module (MLP) has been added to forecasting models
by default due to the use of PV logarithms as an additional numerical
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input in the work of Sun et al. [37] and significantly improved the
performance of the model.

Another potential area of research responds to the fact that the
image–numerical bimodal model currently in use is not modal inter-
action friendly. The prevailing image feature framework is the convo-
lutional neuron network (CNN), where specific features of an image
are extracted by sliding convolutional modules through the image
and gradually constructing a high-dimensional vector representation
of the image by multi-layer superposition. This architecture means
that it is not possible to extract features present in the 3D image
and use these directly with complementary data held in a 1D array.
Therefore, if data features of different dimensions are extracted simul-
taneously by convolutional computation, i.e. early feature-level fusion,
this must be done by projecting the 1D data to a higher dimension and
concatenating it with another, a process that may lead to distortion
of the low-dimensional data. Venugopal et al. [39] compared CNN
networks against PV output-based regression predictions with different
fusion methods. Their results showed that late feature-level fusion and
decision-level fusion achieved better prediction performance, but data-
level fusion and early feature-level fusion failed to effectively interact
information across modalities to achieve results beyond the baseline.

Multimodal learning, adopts a unique feature extraction approach,
where its transformer architecture enables data from different modal-
ities to be fed into the encoder in parallel to achieve early feature-
level fusion, as shown in Fig. 1(c). It can effectively address the
challenges of inherent data misalignment arising from the variable
sampling rate and establishing cross-modal element correlations of each
modality’s sequence [36]. Thus, the transformer-based model is widely
used in the multimodal learning fields of image-language interpreta-
tion [40], image-sentiment recognition [41], the joint expression of
video–audio–text [42,43], etc. These applications share commonality
with the mixed-mode data feeds available for irradiation forecasting.
The original contributions of this study are:

1. To present two new approaches for picture–numerical bimodal
model interaction. Namely, an improvement of the later feature-
level fusion method by means of a gate architecture and a
new early feature-level fusion method based on the Transformer
architecture.

2. To assess the performance of the model 2, 6, and 10 min forecast-
ing horizons by scoring its quantitative statistical performance
using the Smart Persistence Model (SPM)-based FS metric and
the qualitative performance of the model using the Ramp Events
(RE)-based Balanced Precision (BP) metric.

3. To show contradictions in the quantitative and qualitative per-
formance of late feature-level fusion models in terms of sin-
gle image and numerical fusion. In particular, the widely used
CNN model based on late feature-level fusion obtained higher
FS while resulting in lower BP. From which we speculate on,
and attempt to demonstrate, a link between this and the poor
sensitivity of its architecture to images.

4. To demonstrate that for the end-to-end single picture–numerical
bimodal model, the main variability of the model, both architec-
turally and algorithmically, was most pronounced for the 2 min
ahead forecast. This variability fades with longer forecasting
horizons. At 10-min ahead forecast, the validity of the image
information is extremely low and all models have degenerated
into a mean reversion model that relies primarily on irradiance
and clear sky irradiance.

The remainder of the paper is structured as follows: Section 2
resents the overall experimental approach, including Data
re-processing, model architecture, and evaluation methods; Section 3
resents results that show quantitative and qualitative evaluation re-
ults for all models and discusses the results; and Section 4 presents
ur conclusions and recommendations for future work.
3

2. Methodology

Fig. 2 illustrates the methodology adopted in this study. The ap-
proach to building a deep learning solar forecasting model based on
image–numerical fusion comprised three stages. The first was a data
pre-processing stage, which aligned, filtered, sampled, and grouped the
raw data into a format suitable for training a deep learning model.
The second was a training stage, where the training dataset was fed
into the model and the weights within the model were fixed by back
propagation. Following this, the model was evaluated on a validation
set to assess the performance trained in training dataset. Through
continuous iteration, the model that achieves the optimal result on the
validation set, i.e. the model with the least loss, is saved to end the
training process. The final stage involved use of a test dataset to obtain
a forecast for comparison with ground truth data, in order to quantify
the final performance of the different models studied in this paper.

Clear sky index (CSI), i.e. the solar irradiance as a percentage of the
clear sky irradiance, was chosen as the target for forecasts rather than
the GHI, reflecting consensus within the solar forecasting community
around its ability to improve the accuracy of solar irradiance forecasts
made using numerical regression algorithms [44], including those that
involve image–numerical multi-modality approaches. Additionally, use
of CSI as a forecast target has a beneficial inductive bias compared
to the direct forecast of irradiance, i.e., the model assumes a priori
knowledge of the clear sky background. Forecasts generate an atmo-
spheric transmission rate (or attenuation rate) based on the clear sky
background, which is also consistent with traditional image analysis
methods when harnessed for use in irradiance forecasting.

The reach of the forecast target was informed by the approach of
Kong et al. [45]. A forecast resolution of 4 min and forecast span of
10 min were selected, and the input data set was used in three different
models to generate independent solar irradiance forecasts, each over
2-, 6-, and 10-min time horizons. Results were compared to quantify
the relative forecasting performance of the models under 3 different
forecast horizons.

As shown in Fig. 2, Section 2.1 the data pre-processing explains the
process of going from raw data to trainable data. Section 2.2 describes
the process employing the five main supervised image–numerical mul-
timodality models in this paper along with other standard model archi-
tectures. Section 2.3 evaluation matrix introduces the two main criteria
for model prediction performance evaluation.

2.1. Data pre-processing

Data for the experiments were obtained from the Folsom, Califor-
nia [46] public database, supplemented by clear sky irradiance values
from the McClear [47] clear sky irradiance model. Output from the
latter was generated using the timestamps of corresponding Folsom
data points.

Inputs to each of the models comprised a set of time synchronised
data that included clear sky irradiance (global horizontal irradiance,
direct normal irradiance, diffuse horizontal irradiance), measured ir-
radiance (GHI, DNI, DHI), weather data (dry bulb air temperature,
humidity, relative air pressure, wind speed, and wind direction) mea-
sured at ground base stations, and solar geometry (solar zenith and
solar azimuth angles).

Data alignment and quality control The initial stage of data pre-
processing involved image compression, alignment of images to nu-
merical data, quality control, and data normalisation. The Folsom
dataset provides raw image data (1536 pixels × 1536 pixels), solar
irradiance data, and weather data. These data first went through a
process of temporal alignment using timestamps and the corresponding
clear sky irradiance was then sourced from the McClear clear sky model
Following this, quality control filters were applied to screen each piece
of data.
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Fig. 2. Overview of the solar forecasting framework.

For numerical data, a quality control strategy following Yang‘s [48]
work was used to reject data outliers, with decisions being made on the
basis of identifying extremely-rare limits [49], a diffuse ratio test [49],
and other filters [5].

Images were down-sampled to 128 pixels × 128 pixels, a resolution
considered to be the smallest resolution that can be maintained for sky
information, using the bilinear method to match the input format of
the ANN. In addition, the image dataset showed occasional time shifts
possibility due to cumulative errors resulting from continuous shooting.
Data points that showed significant offsets (more than 15 s from the
timestamps) were removed. Finally, to balance the weights of all inputs,
all RGB channels and numerical data of the images were normalised
to the interval [0, 1], except for the solar altitude angle which was
normalised to [−1, 1] after a trigonometric transformation.

Segmentation and resampling of dataset The Folsom dataset pro-
vides numerical and image data for three years from 2014–2016. In
this study, the 2014 data was used as the training set, the 2015 data
as the validation set, and the 2016 data as the test set. Following the
data alignment and quality control stage these contained 195k, 233k,
228k data points respectively. Within these datasets, the sample size
for sunny periods was much larger than that for non-sunny days, the
former accounting for approximately 60% of the entire dataset. As
may be inferred from the cumulative distribution of CSI on left side
of Fig. 3, the dataset is unbalanced, with a clustering of CSI values
between approximately 0.9 and 1.05. Recent research [50] suggests
that unbalanced datasets can generate models biased towards non-
critical conditions — in the case of the Folsom dataset, the sunny
periods. To guard against potential bias, a simple algorithm was used
to filter out consecutive data points within sunny period. Specifically, a
data point was excluded if the preceding five and following ten points
where ‘sunny’ as defined by the limits of the data clustering, i.e., a
CSI greater than 0.9 and less than 1.05. The right side of Fig. 3 shows
the data distribution after resampling, suggesting it is better balanced.
The remaining datasets contains 86 K, 100 K and 94 K data points
respectively.

To accommodate computer memory and training time constraints,
the analysis was completed using a quarter of what remained of each
dataset (Details are provided in Appendix A, Fig. A.14). The final train-
ing, validation, and test datasets used in the study therefore contained
approximately 21k, 25k and 23k datapoints respectively. The detailed
monthly distribution of the final data is shown in Appendix A, Fig. A.15
4

2.2. Development of deep-learning based irradiance forecast model

We propose to utilise models and network architectures aimed at
enhancing of optimising the interaction or fusion between patterns,
balancing the predictive role of image patterns in multimodal mod-
els. In this section, we introduce the mainstream architecture of the
current image-to-text multimodal prediction model, namely the late
fusion architecture at the feature level, and propose the use of gate
mechanisms to dynamically balance the outputs between modalities.
Next, we present our novel model, which is based on an attention-based
Transformer architecture, enabling early fusion at the feature level.

2.2.1. Bimodal model based on late feature-level fusion
Currently, mainstream deep learning-based image–numerical bi-

modal models are based on late-stage feature-level fusion architec-
tures [20,22,23,37,45], as illustrated in Fig. 4(a). The architecture
consists of three main components: an image embedding process that
extracts the input image features as high-dimensional vectors; a numer-
ical embedding process that extracts the input numerical features as
high-dimensional vectors; and a modal interaction module that extracts
the joint features from the two vectors after a process of concatenation,
which ultimately derives the forecasting results.

CNN — Current image embedding Among the sky image-based
PV forecast models, CNN and other variants based on convolutional
computation, are currently the dominant image feature extractors due
to their excellent image resolution performance [20,23,45]. These ex-
tract features from images in a continuous convolutional scan, building
a weighting system from detailed to macroscopic images by sequen-
tially expanding the receptive field size of the model through a multi-
layer repetitive architecture. In this study, the most widely accepted
ResNet-18 model [32] was used as a baseline model for CNN image
extractors.

ViT — Proposed image embedding As mentioned above, methods
based on Transformer architecture are emerging as a widely used
backbone network for a variety of tasks, and amongst these, the Vision
Transformer (ViT) has been developed to undertake image feature
extraction [51]. Unlike the convolution-based scanning adopted by
CNN models, ViT-based vision models build a weighted system by
extracting interconnections between patches within images. As a result,
such models can establish relationships between pixels at different
areas within the image. This paper postulates that since the main
feature of the sky image in short-term solar forecasts is primarily the
relative relationship between regions occupied by cloud, clear sky and
the sun, the relative importance of fine-grain texture and detail in the
image is lower and ViT models, based on multiple self-attention, are
able to extract the more important larger-scale features in sky images
more efficiently.

For a module that acts only as an image feature extractor, based on
the work [32], the computational process can be expressed as

𝐳𝑖0 =
[

𝐱class ; 𝐱1𝑝𝐄;⋯ ; 𝐱𝑁𝑝 𝐄
]

+ 𝐄pos

𝐄 ∈ R(𝑃 2⋅𝐶)×𝐷,𝐄pos ∈ R(𝑁+1)×𝐷 (1)

𝐳𝑖′𝑙 = MSA
(

LN
(

𝐳𝑖𝑙−1
))

+ 𝐳𝑖𝑙−1, 𝑙 = 1…𝐿 (2)

𝐳𝑖𝑙 = MLP
(

LN
(

𝐳𝑖′𝑙
))

+ 𝐳𝑖′𝑙 , 𝑙 = 1…𝐿 (3)

𝐳𝑖 = LN
(

𝐳0𝑖 𝐿
)

(4)

As shown in Fig. 5(a), the image input 𝐱 ∈ R𝐻×𝑊 ×𝐶 is divided into
𝑁 patches of side length 𝑃 and stitched into a 2D sequence 𝐱𝑝 ∈
R𝑁×(𝑃 2⋅𝐶). Following this, the pixels of each patch are projected linearly
onto 𝐷 dimensions via transfer embedding, a learnable latent vector
𝐄 ∈ R(𝑃 2⋅𝐶)×𝐷. Following the process described by Devlin et al. [52],
the input after reshaping is stitched with an additional learnable class
token, 𝐱class, and embedded with a learnable position component 𝐄pos ∈
R(𝑁+1)×𝐷, which describes the spatial relationships between patches.
Eventually, the image part of the input is represented as 𝐳 ∈ R(𝑁+1)×𝐷.
𝑖0
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Fig. 3. Data before (left) and after (right) resampling CSI distribution.
Fig. 4. Schematic diagram of the numerical-image bimodality model. (a) Late Feature-level fusion [37]. (b) Early Feature-level fusion.
This input is added to a standard Transformer module, shown in
Fig. 5(b), i.e., a module based on a Multiheaded Self-Attentive (MSA)
process [53] and a Multi-Layer Perceptron (MLP) process, iterated 𝐿
times. Ultimately, the learnable class token, xclass, is extracted, and
after Layer Normalisation (LN), is output as a high-dimensional vector
𝐳𝑖, representing the image feature.

ANN — Current modality interaction embedding Currently, mul-
tilayer feedforward Artificial Neural Networks (ANN), also known as
MLP, are widely used as one-dimensional vector feature extractors in
models with numerical inputs [54]. ANNs are also used widely in
the modal fusion phase of image–numerical bi-modal solar forecast-
ing models [20,22,23,37]. As mentioned above, when ANNs are used
as a cross-modal feature extractor, as shown in Fig. 6(a), the direct
concatenation that takes place before feature extraction fails to make
effective connections between the input parameters, and the interaction
of the inter-model outputs is completely dependent on the subsequent
adaption of the network architecture to such outputs. Also, due to the
heterogeneity of the different data, models based on ANNs face multiple
challenges when performing mapping (converting image information
into irradiance data) and fusion forecasting (combining information
from two modalities to predict ramp events). These challenges include
instances where information from different modalities have different
5

predictive power and noise topology, or instances where models are
unable to capture features from one of the modalities.

ANN with gate architecture — proposed modality interaction embed-
ding In order to improve the attention given to target features in both
modalities processed by the MLP and to suppress feature activation in
irrelevant regions, this paper proposes this addition of a layer based
on attention gate architecture, as shown in Fig. 6(b). It is implemented
by a mechanism similar to the gated recurrent unit in the LSTM [31],
by controlling the weighting of the parameters through the layers.
The gate architecture generates a gating coefficient for each node
in the ANN with the same dimensionality as the input feature and
then converts this into an attention weight map multiplied by the
original feature. The attention gate performs the task of focusing the
model’s attention on essential regions of the input data and neglecting
irrelevant regions. The simplicity of this approach makes it possible to
improve feature extraction without significant an increase in computing
cost.

2.2.2. Transformer-based early feature-level fusion
As mentioned above, the MSA-based ViT model finds application

beyond image processing. Because the MSA module inputs are a series
of 1D multidimensional vectors or tensors, it is possible to input im-
age and numerical data in parallel. As an alternative to CNNs, such
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Fig. 5. Schematic diagram of Vision Transformer (ViT) image embedding.
Fig. 6. Schematic diagram of modality interaction in late feature-level fusion models. (a) ANN feature extractor (b) Gated-ANN feature extractor.
backbone networks have been shown to offer outstanding capabilities
in several fields dealing with multi-modality tasks, such as image and
text [55], video and text [56], etc. However, there is, as yet, no
such work applied to the field of solar energy forecasting. Therefore,
inspired by Kim et al. [57], this paper speculates that multi-modality
input short-term irradiance forecast models that combine sky images
and measurement logs can also be constructed using the Transformer
module as the backbone network to replace both the CNN visual layer
and the MLP numerical regression computational layer to construct
input data with early feature-level fusion.

The proposed early feature and fusion model is based on the Trans-
former architecture shown in Fig. 7. The main inputs to the model
comprise image data and numerical data. For the image data, input
follows the patching process illustrated in Fig. 5(a). For the numerical
data, a standard unbiased MLP for numeric features is used to up
dimension the numeric information to 𝐷, MLP(𝐲) ∈ R1×𝐷, and provide a
learnable class token. The numerical data are divided into five groups
based on type: solar irradiance, clear sky solar irradiance, sun angle,
ground wind conditions, and weather parameters (dry bulb air temper-
ature, humidity and relative air pressure). As with image processing
similar to the ViT process, the image part of the input is represented
6

Fig. 7. Schematic diagram of image/text bimodal transformer architecture.
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as 𝐳𝑖0. Meanwhile, the learnable class token for numerical data, 𝐲class,
ombined with learnable position embedding 𝐄seq ∈ R(𝑀+1)×𝐷 is used
o describe the position relationships within the data sequence. The
umerical part of the input is represented as 𝐳𝑛0 ∈ R(𝑀+1)×𝐷. Finally, 𝐳𝑖0
nd 𝐳𝑛0 are embedded separately in the model type embedding process
s 𝐳type

𝑖 and 𝐳type
𝑛 , before the process of concatenation to generate

0 ∈ R(𝑀+𝑁+2)×𝐷. The vector 𝐳0 is iteratively updated through 𝐿-
epth transformer layers up until the final sequence 𝐳𝑙. The final 𝐳̂
epresenting the forecast vector is generated by a linear projection of
he two learnable vectors 𝐳0𝑖 𝐿 and 𝐳0𝑛𝐿 in series with hyperbolic tangent
ctivation.

The overall data processing can be described as

𝐳𝑖0 =
[

𝐱class; 𝐱1𝑝𝐄;⋯ ; 𝐱𝑁𝑝 𝐄
]

+ 𝐄pos

𝐄 ∈ R(𝑃 2⋅𝐶)×𝐷,𝐄𝑝𝑜𝑠 ∈ R(𝑁+1)×𝐷 (5)

𝑛0 =
[

𝐲class ;MLP(𝐲1);⋯ ;MLP(𝐲𝑀 )
]

+ 𝐄seq

𝐄seq ∈ R(𝑀+1)×𝐷 (6)

𝐳0 =
[

𝐳𝑖0 + 𝐳type
𝑖 ; 𝐳𝑛0 + 𝐳type

𝑛

]

(7)

𝐳′𝑙 = MSA
(

LN
(

𝐳𝑙−1
))

+ 𝐳𝑙−1, 𝑙 = 1…𝐿 (8)

𝐳𝑙 = MLP
(

LN
(

𝐳′𝑙
))

+ 𝐳′𝑙 , 𝑙 = 1…𝐿 (9)

𝐳̂ = LN
(

[𝐳0𝑖 𝐿; 𝐳
0
𝑛𝐿]

)

(10)

For all experiments presented in this paper, hidden size 𝐷 of 192,
ater depth 𝐿 of 12, patch size 𝑃 of 8, 𝑀𝐿𝑃 size of 192, and number
f attention heads of 12 are used.

.2.3. Smart persistent model
This paper uses the Smart Persistent Model (SPM) as the benchmark

or evaluating the performance of alternative modelling approaches.
n contrast to the Persistent Model (PM), which assumes that solar
rradiance remains constant throughout the forecast interval, the SPM
ssumes instead that the clear sky index remains constant. This offers
he advantage that potential seasonal and temporal factors are added
o the model as default preconditions and can be expressed as follows:

̂SPM(𝑇 + 𝛥𝑇 ) =
𝐳(𝑇 )

𝐳clear(𝑇 )
⋅ 𝐳clear(𝑇 + 𝛥𝑇 )

Implicit in the use of a SPM is the requirement for a clear sky
odel as a reference for clear sky irradiance. In this paper, the McClear
odel [47] is used for clear sky irradiance generation.

.2.4. AutoML - additional machine learning benchmarks
As part of the process of evaluating the performance of image-

umerical multi-modal learning, an additional predictive regression
odel based on only the numerical input data was created to serve as

n additional benchmark. This made use of the AutoGluon [58] tool,
hich was used to train a forecast model and is based on the idea of au-

omated machine learning (AutoML). AutoGluon can automate model
election, hyper-parameter tuning and model integration. The final
odel was generated by integrating one or more of neural networks:

ightGBM boosting trees [59], CatBoost boosting trees [60], random
orests, extreme randomisation trees, and kNearest Neighbours, and
s based on multilayer stack resembling and repeated k-fold bagging
trategy to increase the final accuracy [58]. In the presentation and
iscussion of the results, this model is referred to using the abbreviation
UM.

.2.5. Summary of models and criteria for evaluating performance
A summary of the models used in this paper is provided in Ta-

le 1. The SPM, NUM, and CNN-L models represent benchmarks for
ersistence, numerical-based machine learning, and combined image–
umerical based deep approaches, respectively. ViT represents the
mage backbone network based on Transformer architecture proposed
7

ere as the alternative to the use of a CNN. The terms appended to
CNN and ViT define the approach taken to fusion where -L represents
late feature-level fusion architecture, -LG represents extra gate architec-
ture, and -E represents feature-level fusion architecture. More detailed
models architecture is presented in Appendix B.

2.3. Evaluation matrix

Two criteria were used to evaluate the performance these models.
The first involved quantifying the error between the predicted irradi-
ance 𝐳̂ and the ground truth data 𝐳∗. Standard metrics widely used by
the solar forecasting community, and adopted in this paper, include FS
based on metrics such as RMSE, MAE or MSE to measure the running
accuracy of the forecast. The second criterion was based on BP, which
quantifies forecasting ability in the presence of a Ramp Event, i.e., a
sudden rise or fall in irradiance due to sudden changes in cloud cover.

Forecast skill As with statistical indicators such as RMSE, MAE
or MSE tend to behave in a homo-trending manner in solar forecasting.
The Forecast Skill (FS), adopted in this paper used the Smart Persistent
Model (SPM) clear-sky model to represent the baseline performance
and RMSE to quantify error, as follows:

Forecast Skill = (1 −
𝑅𝑀𝑆𝐸Model
𝑅𝑀𝑆𝐸Baseline

) × 100%

Balanced precision Although FS can quantify the general error
between model forecasts and ground truth, it does not demonstrate the
ability of models to forecast ramp events. These qualitative behaviours
are of particular importance in PV generation as the rapid power
fluctuations that result, increase the system frequency stabilisation cost.
Balanced precision (BP) is a metric developed for ramp events [61],
which defines a ramp as a rapid solar irradiance event with a rate of
change exceeding 10% of the maximum installed capacity. This paper
uses a modified version of the metric where periods exhibiting a rate of
change in GHI exceeding 100 W∕m2∕min are defined as ramp events —
this is to reflect the fact that for the database used, there is not a grid
to as a reference. Following the suggestions of Kong et al. [45], this
paper also defines the ramp direction. For each forecast, data can be
classified into three categories based on the magnitude and direction
of change in solar irradiance, i.e., positive ramp events where cloud
cover diminishes, negative ramp events where cloud cover grows, and
periods of relatively consistent irradiation, implying an absence of ramp
events. After categorising the forecast data to identify ramp events, BP
may be defined as:

Balanced Precision = 1
2
∑

𝑐∈𝐶

𝒯𝑐
𝒩𝑐

Where 𝒯𝑐 represents successfully forecast events in the positive
or negative ramp category and 𝒩𝑐 represents the total sample in the
positive or negative ramp category.

3. Results and discussion

Modelling was undertaken using a PC with a 3.8 GHz AMD Ryzen
9 3900X CPU and a GeForce RTX 2080 SUPER GPU on the Tensorflow
2.5 [62] platform with Keras [63] built in. To reduce errors intrinsic
to the modelling process, including randomisation of the observation
order in mini-batch calculating and use of a random number generator
in training, the results presented are derived from five repeat trials
carried out for each image model.

3.1. Results

3.1.1. Quantitative solar irradiance forecasting
Results for the criteria used to evaluate the quantitative capabilities

of the five image–numerical models (CNN-L, CNN-LG, ViT-L, ViT-LG,
ViT-E) and two numerical models (SPM and NUM) are summarised in

Table 2.
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Table 1
Irradiance Forecasting models explored through this paper.

Models Inputs Encoder architecture Fusion Reference

Numerical Images Numerical Images

SPM ✓ Persistence / /
NUM ✓ AutoGluon / / [58]
CNN-L ✓ ✓ ANN Res-18 Late [20,37,45]
CNN-LG ✓ ✓ ANN Res-18 Late, Gated [31]
ViT-L ✓ ✓ ANN ViT-Base-patch8–128 Late [51]
ViT-LG ✓ ✓ ANN ViT-Base-patch8–128 Late, Gated [31,51]
ViT-E ✓ ✓ Transformer ViT-Base-patch8–128 Early
Table 2
GHI forecast results. The errors are expressed as mean ± 1 standard deviation. Forecast skill was calculated relative to the SPM model.

Models 2 min 6 min 10 min

RMSE (W∕m2) ↓ FS (%) ↑ RMSE (W∕m2) ↓ FS (%) ↑ RMSE (W∕m2) ↓ FS (%) ↑

SPM 85.62 N/A 117.57 N/A 129.67 N/A
NUM 77.31 9.70 98.69 16.06 113.14 12.75
CNN-L 79.37 ± 0.55 7.29 ± 0.64 98.68 ± 0.45 16.07 ± 0.38 105.15 ± 0.49 18.9 ± 0.37
CNN-LG 79.89 ± 0.66 6.68 ± 0.76 98.54 ± 0.64 16.18 ± 0.54 104.15 ± 0.37 19.68 ± 0.29
ViT-L 82.77 ± 0.82 3.32 ± 0.96 99.97 ± 0.65 14.97 ± 0.55 105.28 ± 1.27 18.81 ± 0.98
ViT-LG 85.16 ± 1.34 0.53 ± 1.56 101.29 ± 0.8 13.84 ± 0.67 105.26 ± 0.45 18.82 ± 0.34
ViT-E 81.45 ± 0.68 4.87 ± 0.79 98.68 ± 0.72 16.06 ± 0.61 104.91 ± 0.7 19.09 ± 0.53
It may be seen that all models outperformed the SPM model which
as used as the FS baseline predictive power. The AutoML-based NUM
odel achieved the best forecast results at the 2-min horizon; the CNN
odel with a gate architecture achieved the best results for the 6-min

nd 10-min forecasts. Overall, there was a large difference in model
S levels at the 2-min horizon, and this difference diminished as the
orecast horizon was extended. In particular, the models based on ViT
s the graphical feature extractor were all inferior to the CNN-based
odels in FS.

It is worth noting that for the late feature level fusion models,
he effect of gate architecture is not significant, with the difference
n FS being less than 1% across all models. The ViT-LG model is the
xception, which delivers significantly lower FS at the 2-min time
orizon. At all time horizons, the ViT-E model, where the numerical
nd image inputs share a single encoder, outperforms both the ViT-L
nd ViT-LG models, where features are extracted separately and then
used. As shown by the linear regression curves in Fig. 8, the errors
n all models manifest as an overestimation of irradiance at lower
rradiance and an underestimation at higher irradiance.

.1.2. Qualitative solar irradiation (ramp event) forecasting
Table 3 presents the qualitative results for all models in terms of

ow often Ramp Events were accurately predicted, and Fig. 9 illustrates
erformance as a confusion matrix. It may be seen that models based
n the ViT framework achieve the best performance across all time
orizons. It may also be seen that the qualitative results exhibit a
imilar trend to the quantitative results, i.e., the variability between
odels decreases as the forecast time horizon increases. In the case of

ualitative results, however, the variability is more pronounced. At all
orizons, the BP of the ViT-based models was greater than or equal
o that of the CNN-based models. Additionally, the performance of the
odels with gate architectures exceeded or equalled that of the non-

ated models. Interestingly, the BP of the widely used CNN-L fusion
ramework was even lower than that of the purely numerical forecast-
ased model NUM for 2-min forecast. Even after the addition of the gate
rchitecture enhanced the model’s BP ability, its performance was still
ower than that of NUM. Finally, it may be seen that models successfully
aptured falling RE more frequently than rising RE, the exception being
he ViT frame model over the 2-min horizon.

.1.3. Comparison of model variability
Fig. 10 shows the combined FS and BP performance for all models.

s the SPM model has little RE predictive power, it can be approx-
8

mated as being at the origin of the coordinate system and is not
plotted in the figure. As observed in the work of Paletta et al. [34],
the effect of architecture used in different models fed by the same
inputs gradually decreases as the size of the forecast horizon grows.
For the bimodal frameworks studied here, it is difficult to identify any
significant variability in the models at the 10 min time horizon.

In reflecting upon performance, it is worth distinguishing between
the relative importance of quantitative verses qualitative measures. In
the field of solar forecasting, the merit of a model is usually deter-
mined using quantitative error, i.e., FS. The optimal strategy for such
models fitted by statistical errors for rapidly changing cloudy weather
is often based on mean reversion. However, for very short-term solar
forecasting (10 min or less), the ability to capture Ramp events is more
important as the information may be used to inform grid operability.

Such ramp forecasts require the model to predict the occurrence of
sudden and large changes in irradiance, as opposed to consistent pre-
dictions of absolute irradiance, and metrics that quantify performance
in terms of statistical error, e.g., RMSE, tend to penalise the former
qualities. The 2- and 6-min results from Fig. 10 show that the models
with high BP performance, i.e., ViT-L and ViT-LG, perform poorly when
performance is expressed as FS, while the opposite is true for CNN mod-
els. The early feature-level fusion model, ViT-E, maintained relatively
strong BP performance in the 2- and 6-min predictions compared to
the late model, and both delivered the best FS. It is posited here that
there are two main reasons for this, namely the ability of the model
to abstract image features, and the dual-modality strategy the model
adopts to accommodate the visual and numerical inputs.

3.1.4. Impact of images in bimodal models
To explore the sensitivity of different models to the image input,

randomly selected images were used as inputs to the models on 17 June
at 18:35, while keeping the numerical input unchanged. The condition
of the sky at this time is shown in Image 1 of Fig. 11, as are the
replacement images used in the analysis — Images 2 to 5, are taken
from the same day but with different sky conditions and Image 6, which
is fabricated comprises only black pixels. The output from this analysis
is plotted in Fig. 11 and shows that models based on ViT as an image
feature extractor are more significantly affected by the image input
than those based on CNN under complex sky conditions. In addition,
most of the models with gate architecture (light blue in the figure)
are more sensitive to images than those based on late fusion (light
yellow-green in the figure). Furthermore, the ViT-E model is always the
most sensitive to images. Interestingly, when fed the picture without
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Fig. 8. Forecasts using the image–numerical bimodal models over three time horizons. The blue dashed line is the predicted linear regression and the black dashed line is the
expected regression (predicted value = actual value).
Table 3
Ramp Event forecasting results. For image–numerical models, results are expressed as the mean ± 1 standard deviation from the results of
five repeat trials.

Horizon Models Increasing RE ↑ Decreasing RE ↑ BP (%) ↑

2 min

SPM 0/1131 4/1071 0.19
NUM 135/1131 214/1071 15.96
CNN-L 62.6 ± 62/1131 171.8 ± 34.9/1071 10.78 ± 3.41
CNN-LG 96.2 ± 58.2/1131 188.6 ± 29.7/1071 13.05 ± 1.94
ViT-L 226.8 ± 52.5/1131 180.8 ± 55/1071 18.46 ± 1.02
ViT-LG 241 ± 29.6/1131 185.4 ± 34.9/1071 19.31 ± 1.1
ViT-E 239.4 ± 18.8/1131 206.2 ± 28.6/1071 20.21 ± 2.01

6 min

SPM 0/1979 23/2028 0.57
NUM 421/1979 697/2028 27.82
CNN-L 518 ± 84.7/1979 659.8 ± 95.3/2028 29.35 ± 2.26
CNN-LG 537.4 ± 91.5/1979 759.4 ± 59.7/2028 32.3 ± 1.03
ViT-L 548.8 ± 63.3/1979 752.6 ± 33.2/2028 32.42 ± 1.35
ViT-LG 609.2 ± 25.8/1979 752.2 ± 55.6/2028 33.93 ± 1.78
ViT-E 671.8 ± 28.7/1979 660.6 ± 27.8/2028 33.26 ± 0.9

10 min

SPM 0/2483 42/2603 0.81
NUM 212/2483 426/2603 12.45
CNN-L 808 ± 61.7/2483 1101 ± 74.9/2603 37.42 ± 1.52
CNN-LG 819.8 ± 33.5/2483 1072.8 ± 85.6/2603 37.11 ± 1.52
ViT-L 788 ± 76.4/2483 1133.8 ± 123.1/2603 37.64 ± 1.58
ViT-LG 852.4 ± 93.5/2483 1050 ± 93.2/2603 37.33 ± 2.55
ViT-E 819.6 ± 140.4/2483 1060.6 ± 148.6/2603 36.87 ± 2.55
any information, the output of CNN-L is almost unaffected, while ViT-
E deviates significantly from the reference GHI value. These results
suggest that the widely used CNN-L architecture is relatively insensitive
to image inputs. In particular, the model is extremely insensitive to
the incorrect input. This may be explained by the findings of Paletta
et al. [20] who suggest, after evaluating multiple graphical models, that
fusion models always behave like a smarter SPM. i.e., the model lacks
interaction between image and numerical inputs, including alignment,
translation, and co-representation. This makes the model dependent
on the numerical inputs and relatively insensitive to the image-based
output. To address this shortcoming, methods that use an image feature
extractor that is more effective at of parsing images, such as ViT, or
enhancing the interaction between image and numerical data, such as
a gate architecture, can be considered as more effective approaches.
9

3.1.5. Interaction of image and numerical data in ViT-E
To understand how the Self-Attention mechanism processes image–

numerical information across modalities, the attention layer of the
ViT-E model was abstracted and overlaid with the input for visualisa-
tion, as shown in Fig. 12. The visualised heat map consists of two main
parts: on the left side are the relative attention weights corresponding
to the 256 patches in the image input, and on the right side are
the relative attention weights corresponding to five sets of numerical
inputs, in order from top to bottom: irradiance, ambient environment,
clear sky irradiance, wind condition, and solar angle. Fig. 13(a) shows
the GHI prediction from the ViT-E model for three different forecast
horizons for the 17 June. A sample of five images, including that used
in Fig. 12, representing a range of sky conditions were extracted and
processed to visualise the model attention weights as described above,
and are shown in Fig. 13(b).
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Fig. 9. Confusion matrix of Ramp predictive power for 5 different image–numerical models on three time horizon.
Fig. 10. FS and BP results for all models over different time horizons.
It may be seen from Fig. 13(b), that the longer the forecasting
horizon, the lower the attention weight of the model to the image-
side input and the higher the attention weight to the numerical input.
In the 2-min ahead prediction, different levels of cloud cover and sun
position significantly affect the attention of the model. For scenarios
with low cloud-sun correlation, such as those with significant areas of
clear sky in the region around the sun, or those where the sun is totally
obscured by cloud, the model assigns weights to both numerical and
image models in a balanced manner. For scenarios with high cloud-
sun correlation, such as cloud approaching or cloud blocking part of
the sun, the model assigns more attention to the images. In the 6-min
ahead model, although the distribution of attention weights for the
images reflects that of the 2-min ahead model, the weighting of the
numerical data is the most important part of the model. This trend of
assigning a gradually decreasing weighting to images continues in the
10-min ahead model, where the model becomes primarily dependent
on irradiance and clear sky irradiance numerical inputs rather than the
images.

This pattern of behaviour offers an explanation for the variability
in model performance observed in Fig. 10 where accuracy of the
10
forecast declines as the prediction window is lengthened. That is, the
impact of the details in the pictures on the prediction decreases as
the prediction scale is lengthened. Although other potentially valuable
information visible in the images (e.g., air mass) might still benefit
the predictive capabilities of the model and thus outperform models
without an image input, enhancing the feature extraction capability
for the images for these longer time horizon forecasts is unlikely to
deliver better model performance. This observation matches that made
in relation to models based on the classical image analysis method for
forecasting DNI [64], i.e., the gain offered by including image data in
predictions is more pronounced for time horizons below five minutes,
and gradually decreases for those beyond five minutes.

We believe that the trend is a good explanation for the reason for
model inter-model performance variability in Fig. 10 declines as the
prediction window is lengthened. That is, the impact of the details in
the pictures on the prediction is gradually decreasing as the prediction
scale is lengthened. Although other potentially visible information in
the images (e.g., air mass) can still enable the model to benefit in pre-
diction and thus outperform the model without image input, enhancing
the model’s feature extraction capability for the images at this point no
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Fig. 11. Image sensitivity testing for a 2-min time horizon. Image 1 is the original
image input and Image 2 to Image 6 are replacement inputs. The upper panel shows
the 2-min ahead prediction from the 5 image–numerical bimodal models. The blue
dashed line represents the output from the SPM model.

Fig. 12. ViT-E model visualisation indicating relative attention weights. The colour of
the heat map within each patch reveals its relative value in terms of average attention
across all heads.

longer leads to better model performance. This reflects the predictive
characteristics observed in solar forecasting models based on traditional
image analysis methods [65], suggesting that the field of view from a
fisheye camera might struggle to cover rapidly moving low-level clouds
within a span exceeding 8 minutes, and thus, the approach to enhance
model performance by improving the image feature processing module
might have limited impact in forecasting 10 minutes in advance.
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The results from this study suggest that there are advantages to
using the transformer framework for combined image–numerical ultra-
short-term solar forecasting. Specifically, the model extracts features
based on the association between each of each input elements, i.e., im-
age patches and numerical features, and dynamically assigns the impact
of each element on the final prediction based on these features. This
functional advantage is not conferred by ANN-based architectures as
model fusion feature extractors.

In addition, as shown in Fig. 13(b), the 10-min forecast irradiance
has a similar weighting to the clear irradiance. In other words, clear
sky irradiance is of equal importance to prevailing irradiance for solar
irradiance prediction. The advantages of using CSI, i.e. the ratio of GHI
to clear GHI, rather than using GHI directly as a prediction target [44],
are intuitively demonstrated.

4. Discussion

Despite deep learning methods having demonstrated superior ef-
fectiveness over other approaches in terms of results, this study il-
lustrates that the currently implemented intra-hour solar power fore-
casting deep model architectures can still yield diametrically opposing
performances. It has been evidenced that different architectures and
modal fusion methods can significantly influence the predictive capa-
bility of the model. As seen in Fig. 10, the quantitative and qualitative
performance of different models are not uniform. Models leveraging
Convolutional Neural Networks (CNNs) as the image feature extraction
algorithm show insensitivity to changes in the image modal input,
whereas architectures based on attention mechanisms lack precision in
quantitative results.

On the one hand, algorithmically, as proposed in Section 2.2, we
speculate that this disparity might be determined by the underlying
algorithms of the network backbone architectures. Attention mecha-
nisms excel in inferring through relative relationships between image
pixels, thus they are more sensitive than convolutional computations
that extract image details in sky image analysis. On the other hand,
from the evaluation perspective, we believe that the intrinsic contra-
diction between qualitative and quantitative analyses results in models
exhibiting markedly different patterns.

In quantitative analyses, models are expected to achieve larger FS,
in other words, smaller RMSE. This constraint makes the model more
sensitive to numerical data, showing a trend for mean prediction [20].
Under such circumstances, the model tends to be conservative when
dealing with rapid extreme changes, like ramp events, as observed in
Fig. 11. In qualitative analyses, models are expected to capture more
REs and further predict their trends. In this process, mean prediction
sensitive to numerical values causes the model to miss most REs. How-
ever, the ViT-L series architecture, which is more sensitive to image
analysis, tends to over-predict REs and loses quantitative performance.
In addition, the attention model ViT-E, which is based on early fusion
and accepts inputs from different modals, can achieve a more balanced
quantitative and qualitative result.

Furthermore, in Section 3.1.5, the strength of weightings within
the model indicates that the importance of ground-based sky image
information for solar power deep networks gradually decreases with
the extension of the forecast horizon. Particularly for ramp event
prediction, which is of great interest for intra-hour forecasting, a longer
forecast horizon tends to homogenise different models, eventually dis-
playing similar performances. We speculate that this phenomenon may
be associated with the limited presence time of low-level rapid clouds
in sky images, which are responsible for rapid RE changes. This con-
clusion aligns with cloud observation findings based on image analysis
methods [65].
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Fig. 13. (a) GHI predictions from 17 June, based on ViT-E 2-, 6-, and 10-min forecasts. (b) Attention map of the ViT-E model based on five representative GHI conditions from
Fig. 13(a).
5. Conclusions

Accurate short-term forecasting is essential for predicting solar
power output, and thus for effective grid management. This study found
that the modal interaction component has been under-appreciated in
previous studies of deep learning models for solar forecasting that
combine images with numerical inputs. Also, there is ambivalence
between the quantitative and qualitative performance of late feature-
level fusion models for single image and numerical fusion in such
models. Therefore, this project proposed the ViT-E model as being
complementarity in quantitative and qualitative forecast performance
by varying the modal interactions to achieve relatively superior per-
formance. In addition, the study explored the weighting of image
inputs in this class of model. The results show that the longer the
forecast horizon based on a single image, the less emphasis the model
12
places on its contents. For forecasts made at the 10-min horizon, the
features that can be extracted by current vision models is minimal.
As mentioned in [66], the accuracy of the model is as important as
its interpretability in advancing its understanding and development.
This study reveals a potential shortcoming in current multimodal solar
prediction: model validation relies only on performance improvements
in instead of for the results, and there is a lack of studies exploring
the interaction between the actual performance of the different modes
of the model, such as ablation experiments. Transformer-like models
shows potential in hybrid modelling for solar energy prediction due to
the intuitive interpretability of their framework. Furthermore, in future
work, we propose to use the RNN framework in combination with the
Transformer framework for Seq2sqe models with dynamic picture data
streams as a framework to drive the current prediction framework.
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Fig. A.14. Sampling ratio validation experiments. The training set was used to train
five different models with sampling ratio of 0.05, 0.1, 0.15, 0.25, 0.5, 0.75 and 1.0.
The models were then validated under the same validation set. The model loss tends
to flatten out above a sample ratio of 0.25.
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Table B.4
Hyperparameters of Adam optimiser for training models.

Hyperparameters CNN-L CNN-LG ViT-L ViT-LG ViT-E

Learning rate 0.01 0.01 0.0008 0.0008 0.0008
Optimiser SGD SGD SGD SGD SGD
Optimiser momentum 0.9 0.9 0.9 0.9 0.9
Loss MSE MSE MSE MSE MSE
Weight decay 0.0001 0.0001 0.0001 0.0001 0.0001
Batch size 64 64 8 8 8
Training epochs 80 80 80 80 80
Warm up percentage 25% 25% 0 0 0
Learning rate decay Cosine Cosine Cosine Cosine Cosine
Early stop True True True True True
Early stop tolerance 20 20 20 20 20
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Appendix A. Random sampling

See Figs. A.14 and A.15.

Appendix B. Model details

See Tables B.4–B.9.
Fig. A.15. Monthly CSI distribution of raw data, compared to Clear sky filtered data and 25% randomly sampled filtered data.
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Table B.5
The details of ViT-E model.

Block Layer Resolution Channels

Image Inputs – 128 × 128 × 3 1

Image Patch Embedding Conv 8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token Transfer Embedding Projection 8 × 8 × 3 → 192 256 → 256
Class Token Concat 192 256 → 257

Position Embedding Position Embedding 192 257

Numerical Inputs – 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Class Token Numerical Projection (MLP) 14 → 192 5
Class Token Concat 192 5 → 6

Sequence Embedding Sequence Embedding 192 6

Concatenation Concat 192 263 (257 + 6)

Attention Block × 12

LayerNorm 192 263
Multi-Head Attention × 12 192 263
Add (residual connection) 192 263
LayerNorm 192 263
Multi-Head Attention × 12 192 263
Add (residual connection) 192 263

Layer Normalisation LayerNorm 192 263

Regression Head

Extract Class Token 384 1
MLP 768 1
MLP 512 1
MLP 64 1
MLP 1 1
Table B.6
The details of ViT-LG model.

Block Layer Resolution Channels

Image Inputs – 128 × 128 × 3 1

Image Patch Embedding Conv8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token Transfer Embedding Projection 8 × 8 × 3 256 → 256
Class Token Concat 8 × 8 × 3 256 → 257

Position Embedding Position Embedding 8 × 8 × 3 257

Image Attention Block × 12

LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257
LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257

Image Feature Vectorisation Extract Class Token 192 1
MLP 768 1
MLP 64 1

Numerical Inputs – 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Vectorisation MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
Gate MLP 80 1
Gate Multiply 80 1
MLP 64 1
MLP 16 1
MLP 1 1
Table B.7
The details of ViT-L model.

Block Layer Resolution Channels

Image Inputs – 128 × 128 × 3 1

Image Patch Embedding Conv 8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token Transfer Embedding Projection 8 × 8 × 3 256 → 256
Class Token Concat 8 × 8 × 3 256 → 257

Position Embedding Position Embedding 8 × 8 × 3 257

(continued on next page)
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Table B.7 (continued).
Block Layer Resolution Channels

Image Attention Block × 12

LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257
LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add(residual connection) 192 257

Image Feature Vectorisation Extract Class Token 192 1
MLP 768 1
MLP 64 1

Numerical Inputs – 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Vectorisation MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
MLP 64 1
MLP 16 1
MLP 1 1
Table B.8
The details of CNN-LG model.

Block Layer Resolution Channels

Image Inputs – 128 × 128 × 3 1

ResNet Block Conv 1 Conv 7 × 7 128 × 128 × 3 → 64 × 64 × 3 1 → 64
Max Pooling 3 × 3 64 × 64 × 3 → 32 × 32 × 3 64

ResNet Block Conv 2 × 2

Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Add (residual connection) 32 × 32 × 3 64

ResNet Block Conv 3 × 2

Conv 3 × 3 32 × 32 × 3 → 16 × 16 × 3 64 → 128
BatchNormal 16 × 16 × 3 128
Conv 3 × 3 16 × 16 × 3 128
BatchNormal 16 × 16 × 3 128
Add(residual connection) 16 × 16 × 3 128

ResNet Block Conv 4 × 2

Conv 3 × 3 16 × 16 × 3 → 8 × 8 × 3 128 → 256
BatchNormal 8 × 8 × 3 256
Conv 3 × 3 8 × 8 × 3 256
BatchNormal 8 × 8 × 3 256
Add (residual connection) 8 × 8 × 3 256

ResNet Block Conv 5 × 2

Conv 3 × 3 8 × 8 × 3 → 4 × 4 × 3 256 → 512
BatchNormal 4 × 4 × 3 512
Conv 3 × 3 4 × 4 × 3 512
BatchNormal 4 × 4 × 3 512
Add(residual connection) 4 × 4 × 3 512

Image Feature Transformation Global Average Pooling 512 1
MLP 64 1

Numerical Inputs – 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Transformation MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
Gate MLP 80 1
Gate Multiply 80 1
MLP 64 1
MLP 16 1
MLP 1 1
Table B.9
The details of CNN-L model.

Block Layer Resolution Channels

Image Inputs – 128 × 128 × 3 1

ResNet Block Conv 1 Conv 7 × 7 128 × 128 × 3 → 64 × 64 × 3 1 → 64
Max Pooling 3 × 3 64 × 64 × 3 → 32 × 32 × 3 64

(continued on next page)
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Table B.9 (continued).
Block Layer Resolution Channels

ResNet Block Conv 2 × 2

Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Add (residual connection) 32 × 32 × 3 64

ResNet Block Conv 3 × 2

Conv 3 × 3 32 × 32 × 3 → 16 × 16 × 3 64 → 128
BatchNormal 16 × 16 × 3 128
Conv 3 × 3 16 × 16 × 3 128
BatchNormal 16 × 16 × 3 128
Add (residual connection) 16 × 16 × 3 128

ResNet Block Conv 4 × 2

Conv 3 × 3 16 × 16 × 3 → 8 × 8 × 3 128 → 256
BatchNormal 8 × 8 × 3 256
Conv 3 × 3 8 × 8 × 3 256
BatchNormal 8 × 8 × 3 256
Add (residual connection) 8 × 8 × 3 256

ResNet Block Conv 5 × 2

Conv 3 × 3 8 × 8 × 3 → 4 × 4 × 3 256 → 512
BatchNormal 4 × 4 × 3 512
Conv 3 × 3 4 × 4 × 3 512
BatchNormal 4 × 4 × 3 512
Add (residual connection) 4 × 4 × 3 512

Image Feature Transformation Global Average Pooling 512 1
MLP 64 1

Numerical Inputs – 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Transformation MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
MLP 64 1
MLP 16 1
MLP 1 1
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