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Summary

� Increasing drought phenomena pose a serious threat to agricultural productivity. Although

plants have multiple ways to respond to the complexity of drought stress, the underlying

mechanisms of stress sensing and signaling remain unclear. The role of the vasculature, in par-

ticular the phloem, in facilitating inter-organ communication is critical and poorly understood.
� Combining genetic, proteomic and physiological approaches, we investigated the role of

AtMC3, a phloem-specific member of the metacaspase family, in osmotic stress responses in

Arabidopsis thaliana. Analyses of the proteome in plants with altered AtMC3 levels revealed

differential abundance of proteins related to osmotic stress pointing into a role of the protein

in water-stress-related responses.
� Overexpression of AtMC3 conferred drought tolerance by enhancing the differentiation of

specific vascular tissues and maintaining higher levels of vascular-mediated transportation,

while plants lacking the protein showed an impaired response to drought and inability to

respond effectively to the hormone abscisic acid.
� Overall, our data highlight the importance of AtMC3 and vascular plasticity in fine-tuning

early drought responses at the whole plant level without affecting growth or yield.

Introduction

Plants, as sessile organisms, have evolved ways to endure water
scarcity and periods of drought stress. However, the tissue-
specific mechanisms underlying the adaptation of plant growth
and architecture to limited water conditions are not completely
understood. Only by improving our understanding of the contri-
bution of each tissue in plant acclimation to such a complex stress
as drought, we will be able to translate this knowledge into bio-
technological and breeding solutions and improve crop perfor-
mance in the field (Tenorio Berrı́o et al., 2022).

When facing drought stress, plants arrest growth, close sto-
mata, and begin accumulating osmoprotectant molecules to pre-
vent excessive water loss and minimize cellular damage (Gupta

et al., 2020). As a result of stomatal closure, photosynthesis is
arrested, leading to a negative carbon balance and carbon depri-
vation which may cause mortality in the long run (Thalmann &
Santelia, 2017). Many of these physiological responses are trig-
gered by the synthesis and perception of the hormone abscisic
acid (ABA), an essential orchestrator of abiotic stress resistance
mechanisms that regulate water status to protect cell systems
and induces the expression of a gene network that includes
dehydration-tolerant proteins (Kuromori et al., 2018, 2022).

To coordinate an efficient response to water deprivation at the
organismal level, plants rely on their vascular system connecting
distantly separated organs. In higher plants, such as Arabidopsis
thaliana (hereafter Arabidopsis), the vascular system comprises
xylem and phloem tissues. While the main function of xylem is
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root-to-shoot transport of water and nutrients, the phloem distri-
butes photoassimilates and growth regulators throughout the
entire plant body. It is well accepted that drought stress triggers
the translocation of root-synthesized ABA to the shoot through
the xylem, while coordinating stomatal closure (Hartung
et al., 2002; Takahashi et al., 2020). Recent studies have demon-
strated that drought stress promotes endodermal production of
ABA (Ondzighi-Assoume et al., 2016; Ramachandran et al.,
2018; Bloch et al., 2019), which is then translocated to the xylem
where it modulates the signaling cascades governing its specifica-
tion and differentiation (Ramachandran et al., 2021). Most of
these studies have focused on the modification of xylem architec-
ture as a response to the stress, whereas in the case of phloem,
knowledge is limited to the fact that drought-associated osmotic
imbalance may promote the release of water from phloem cells
and eventually collapse tissue transport. While loss of xylem con-
ductivity is a hallmark of plant death, it has been proposed that
the timing of phloem collapse could determine the revival capa-
city of the plants after drought, making this tissue an important
factor for forecasting the plant behavior under water scarcity
(Sevanto, 2018).

In Arabidopsis, two types of conductive elements constitute
phloem tissue, protophloem, and metaphloem sieve elements
(PSE and MSE, respectively), whose survival depends on the
activity of neighboring companion cells (CCs; Fig. 1a,b). Unlike
metaphloem, the molecular mechanism underpinning proto-
phloem specification and differentiation has been extensively stu-
died during the last decade (Rodriguez-Villalon, 2016; Seo
et al., 2020). PSEs are the first cells to differentiate within the
root meristem and they orchestrate the development of their
neighboring tissues. The functional association between CC and
PSEs provides developmental plasticity to root cells safeguarding
the functionality of the phloem tissues (Gujas et al., 2020; Otero
et al., 2022). Early differentiation of PSEs is required for the root
meristematic unloading of sugars and hormones (Band et al.,
2014). Since sugars constitute the energy source for root develop-
ment, defects in protophloem differentiation are reflected in an
impaired meristematic activity and, in turn, postembryonic root
growth (Truernit et al., 2012; Rodriguez-Villalon et al., 2014).
Less studied is the plasticity of the tissue in response to environ-
mental stresses, although proteomic profiling of exudates
from plants exposed to drought stress has revealed that the
phloem transports water-deficit-related signals (Ogden et al.,
2020).

Metacaspases are a group of cysteine proteases that participate
in various stress responses (Tsiatsiani et al., 2011; Minina
et al., 2017). This protein family is found in plants and lower
eukaryotes and have some structural resemblance to the animal
cell death regulators known as caspases, although their mode of
action is considerably different, as they are calcium-dependent
and cleave substrates after a lysine or an arginine (Chang &
Yang, 2000; Watanabe & Lam, 2005; McLuskey & Mottram,
2015). In plants, metacaspases can be divided into type I and
type II based on the presence/absence of a prodomain, respec-
tively. The role of metacaspases has been mostly investigated in
the context of stress responses and regulated cell death in

Arabidopsis, which carries nine metacaspase genes, three type I
(AtMC1/AtMCAIa-AtMC3/AtMCAIc) and six type II (AtMC4/
AtMCAIIa-AtMC9/AtMCAIIf; Vercammen et al., 2004; He
et al., 2008; Coll et al., 2010; Bollhöner et al., 2013; Hander
et al., 2019).

Here, we show that the previously uncharacterized Arabidopsis
type I metacaspase AtMC3/AtMCAIc displays specific expression
in the phloem vascular tissue. Altered AtMC3 levels leads to dif-
ferential accumulation of stress-related proteins, indicating that
AtMC3 is specifically involved in regulating osmotic stress
responses. We demonstrate that a phloem-localized metacaspase
contributes to drought tolerance by affecting vascular tissue dif-
ferentiation and maintaining effective long-distance transport
under osmotic stress conditions. Additionally, we provide evi-
dence that reduced AtMC3 levels affect plant sensitivity to ABA.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana (L.) Heynh. accession Col-0 was used (geno-
types shown in Supporting Information Table S1). Surface-
sterilized seeds were sown in Murashige and Skoog (MS) media
with vitamins and without sucrose. After 48 h of vernalization,
plates were grown vertically under long day (LD) conditions
(16 h : 8 h, light : dark; 22°C, 60% relative humidity) unless spe-
cified otherwise. DNA C-TAB extraction protocol (Murray &
Thompson, 1980) was used for all plant genotyping experiments
(primers for genotyping shown in Table S2).

DNA constructs

For reporter line proAtMC3:GUS-GFP, Gateway cloning was
used. Briefly, a 1500-bp promoter region of AtMC3 was cloned
into the binary vector pBGWFS7. proUBQ10:AtMC3-GFP,
proAtMC3:AtMC3-GFP, proUBQ10:AtMC3-C230A-GFP, and
proAtMC3:AtMC3-C230A-GFP constructs were generated using
the GREENGATE cloning strategy as described previously
(Lampropoulos et al., 2013). To generate the catalytic inactive
version of the gene, the Quick Site Mutagenesis Kit (Agilent
Technology, Santa Clara, CA, USA). Plants were transformed
using Agrobacterium tumefaciens (GV3101)-mediated floral dip
as described previously (Zhang et al., 2006). Homozygous trans-
genic lines were selected either on MS media supplemented with
20 μg ml�1 Basta (glufosinate-ammonium) or by red/green. Pri-
mers used for cloning are shown in Table S2.

CRISPR mutagenesis

The target sequence was selected using CRISPOR (Haeussler
et al., 2016). DNA backbone fragments of a total length of 500
bp contained: 20 bp of the target sequence neighboring the PAM
sequence, attB sequences, tracrRNA, U6 promoter, and restric-
tion sites (gBlocks®, IDT). The gBlock sequence was introduced
to pDONR207 using BP clonase II enzyme (Thermo, Waltham,
MA, USA). Three gRNAs were combined in one vector after
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Fig. 1 AtMC3 shows phloem-specific expression. Schematic representation of (a) a radial view and (b) longitudinal view of a primary root of Arabidopsis
thalianawith color-coded cell types. (c–f) Expression pattern of AtMC3 gene as revealed by proAtMC3:NLS-3xVENUS construct with confocal microscopy
(c) in the root differentiation zone and (d–f) in the root meristem of 6-d-old seedlings. Nuclear-localized mVENUS signals (green) are co-visualized with
calcofluor staining (white). (e, e0) Radial observations of different zones of the root indicated by color in (d). (f) Magnification of the vascular tissue from
the meristematic zone at the protophloem enucleation point. (g) Localization of arabidopsis metacaspase (AtMC3) protein monitored with proAtMC3:

AtMC3-GFP in the root differentiation zone in 7-d-old seedlings. Translational fusions with GFP signals (green) are co-visualized with propidium iodide
(red). (h) Radial observation of the root. (i) Magnification of (g) for the cytoplasmic companion cell (CC) visualization. (j–n) Localization of AtMC3
monitored with proUBQ10:AtMC3-GFP in the root of 7-d-old seedlings. Translational fusions with GFP signals (green) are co-visualized with propidium
iodide (PI; red). (j) Differentiation zone of the root. (k, l) Meristematic zone focusing on the vasculature with magnification. Asterisks indicate the first
enucleated sieve element (SE). (m, n) Meristematic zone focusing on the epidermal cells with magnification. Bars, 50 μm.
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digestion with restriction enzymes BamHI/PstI/SalI. The
pDONR207 vector containing the triple gRNAs sequences and
the single gRNA sequence was then transferred into the pDe-
CAS9-DsRED vector (Morineau et al., 2017) via LR reaction
(Thermo). A. tumefaciens (GV3101)-mediated floral dip was used
to deliver the construct to WT plants as described previously
(Zhang et al., 2006).

Confocal analysis

Confocal laser scanning microscopy was performed using a Leica
SP2 AOBS inverted confocal microscope or a Zeiss LSM 780.
For the detection of fluorescent signal eGFP, 488 nm excitation
and 505–550 nm emission were used and for propidium iodide
561 nm excitation and 595–620 nm emission were used.
Calcofluor-stained samples (Ursache et al., 2018) were excited at
405 nm, and emission was collected at 425–475 nm. Different Z
stacks and transverse optical versions were obtained using IMAGEJ
software.

Cotyledons vein pattern

Cotyledons of 6-d-old seedlings were submerged for 1 h in a 3 : 1
95% ethanol: acetic acid solution. Subsequently, they were
washed twice for 30 min with 70% ethanol and incubated over-
night at 4°C with 100% ethanol. 10% NaOH was added for 1 h,
and the samples were left at 37°C before Clear-See was added as
a final step. Digital pictures were obtained on a Leica DM6 epi-
fluorescence microscope.

β-Glucuronidase (GUS) staining

Seedlings were harvested from plates at the 2-cotyledon stage and
then fixed/stained as described (Bollhöner et al., 2013). Five seed-
lings were mounted in 50% glycerol and were viewed at 10×.
Hypocotyls from mature plants were stained with GUS solution,
fixed in 50% ethanol, 10% formaldehyde, 5% acetic acid,
embedded in LRwhite + PEG, and sectioned at 18 μm with a
microtome after embedding in Entellan.

Transcriptional analysis

Tissue was collected separately from roots and cotyledons of 7-d-
old seedlings. RNA extraction, cDNA synthesis, and reverse tran-
scription quantitative PCR (RT-qPCR) were performed as
described previously using 2 μg of RNA template (Salguero-
Linares et al., 2022). EIF4a (AT4G18040) was used as reference
gene, and calculations were done with the 2�C t method (Livak &
Schmittgen, 2001). Primers are shown in Table S3.

Proteomic and terminomic analysis

For terminome analysis, c. 600 mg of 7-d-old roots was harvested
per genotype. HUNTER N-terminome analysis was performed
after stable isotope labeling by reductive demethylation as
described (Weng et al., 2019).

For identification of interactors, WT and plants overexpressing
AMC3 (proUBQ10::AtMC3-GFP) were grown for 3 wk before
subjected to water withdrawal. Leaf tissue was collected from
plants well-watered and subjected to drought for 5 d. Protein
extraction buffer (20 mM Tris–HCl, pH 7.5, 150mM NaCl,
1 mM EDTA, Glycerol, 1% Triton X-100, 0.1% SDS, and 5mM
DTT) supplemented with a 1 : 100 dilution of plant protease inhi-
bitor cocktail (Roche) was added to the ground samples and centri-
fuged 20min at 6000 g at 4°C. The supernatant was collected and
centrifuged at 11 000 g, 4°C. The supernatant was again collected,
and protein concentrations were measured using Bradford (Bio-
Rad) and equalized at 1.5 μg. Fifty microliters of anti-GFP mag-
netic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) were
added to the protein extracts and incubated for 1 h at 4°C in a
rotary mixer. Magnetic beads were immobilized on a magnetic
separator (Miltenyi Biotec) and washed and eluted according to
the manufacturer’s instructions. Three independent plants were
bulked in each of the four independent biological replicates.

LC/MS/MS and data analysis

LC–MS/MS analysis was performed with an UltiMate 3000
RSCL nano-HPLC system (Thermo) online coupled to an
Impact II Q-TOF mass spectrometer (Bruker, Billerica, MA,
USA) via a CaptiveSpray Ion Source boosted with an ACN-
saturated nitrogen gas stream. For preHUNTER samples, pep-
tides were loaded on an Acclaim PepMap100 C18 trap column
(3 μm, 100 Å, 75 μm i.d. × 2 cm; Thermo) and separated on an
Acclaim PepMap RSLC C18 column (2 μm, 100 Å, 75 μm
i.d. × 50 cm; Thermo) with a 2 h elution protocol that included
an 80 min separation gradient from 5% to 35% solvent B (sol-
vent A: H2O+ 0.1% FA, solvent B: ACN+ 0.1% FA) at a flow
rate of 300 nl min–1 at 60°C. For IP samples, peptides were
loaded on a μPAC pillar array trap column (1 cm length; Pharma-
Fluidics) and separated on a μPAC pillar array analytical column
(50 cm flowpath; PharmaFluidics). Line-mode MS spectra were
acquired in mass range 200–1400m/z with a Top14 method.

For analysis of preHUNTER and IP data, peptides were
identified by matching spectra against the UniProt Arabidopsis
thaliana protein database (release 2020_2) with appended MAX-

QUANT contaminant entries using the Andromeda search engine
integrated into the MAXQUANT software package (v.1.6.10.43)
with standard settings (Tyanova et al., 2016). Further analysis
was performed using the PERSEUS software package (v.1.6.14.0 or
v 1.6.15.0). For preHUNTER proteins changing, at least 50% in
abundance (log2 fold change<�0.58 or > 0.58) supported by a
t-test P-value< 0.05 were considered as differentially accumulat-
ing. For AtMC3 IP analysis, significant differences between the
individual experimental groups followed by analysis for signifi-
cant changes using the ANOVA test (P-value< 0.05) followed
by Tukey’s post hoc test (FDR< 0.05).

ABA sensitivity assays

Approximately 100 seedlings were sown on MS plates without or
with ABA at concentrations of 1 or 2 μM. Germination was
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quantified after 8 d as the number of seeds that showed both radi-
cal protrusion and elongation.

For senescence measurements, detached cauline leaves from
5-wk-old plants were soaked in distilled water without/with
50 μM ABA for 3 d. Each leaf was weighed and mechanically
homogenized. Two milliliters of 80% acetone was added, and
samples were incubated at 4°C for 16 h in the dark. Chlorophyll
a was calculated as described previously (Lichtenthaler, 1987).

To measure stomatal aperture, cotyledons were collected from
10-d-old seedlings and immediately immersed in a stomata-
opening buffer with 10 mM KCl, 0.2 mM CaCl2, and 10 mM
Mes-KOH (pH 6.15) for 21/2 h under continuous white light at
22°C. ABA was then added into the buffer to a final concentra-
tion of 10 μM and the cotyledons were collected after 30 min.
Guard cells were photographed using a LEICA DM6 micro-
scope, and stomatal widths were measured with IMAGEJ.

Drought stress for scoring plant survival

Seedlings grown in MS-agar plates were transferred after 7 d to
individual to pots containing 30� 0.5 g of substrate (plus 1 : 8 v/v
vermiculite and 1 : 8 v/v perlite). For each biological replicate, 40
plants of every genotype were grown for 3 wk before subjected
to severe drought stress. Water was withheld for 8 d followed by
re-watering. After the 6-d recovery period, the surviving plants
were counted and photographed. Every genotype was tested at
least in five independent replicates.

Physiological parameters and chlorophyll fluorescence

Plants were grown for 3 wk on individual pots containing 30�
0.5 g of substrate (plus 1 : 8 v/v vermiculite and 1 : 8 v/v perlite)
before being subjected to water withholding. Relative water con-
tent (RWC, %) was calculated according to the formula: (FW-
DW)/(TW-DW). Water was withheld until reaching 30%, 60%,
75%, and 90% water loss. Pots were weighted daily to monitor
evapotranspiration (CW). Water-saturated soil was weighted
initially (SW), and several pots with soil were placed in the oven
for 72 h to calculate the dry weight (DW). Field capacity was cal-
culated for each pot daily as (CW-DW)/(SW-DW).

Photosynthesis efficiency was measured in well-watered and
drought-treated plants at 40% and 6% field capacity. After dark
adaptation, the kinetics of chlorophyll fluorescence in whole rosettes
were monitored by measuring F0 in the dark and Fm with initial
saturation pulse using Imaging PAMM-series, MAXI version device.
Fv/Fm and F 0

v=F
0
m (PSII efficiency) ratio for the maximum quantum

efficiency upon dark and light conditions was calculated according
to the manufacturer’s instructions (Walz, Effeltrich, Germany).

Osmotic stress assays

For salt treatments, seedlings were grown for 3 d before trans-
ferred to MS plates containing 0, 50, or 100 mM NaCl concen-
tration for seven additional days. Primary root length was
measured 10 d after germination using IMAGEJ. Emerged lateral
roots were counted using an Olympus DP71 stereomicroscope.

For sorbitol treatments, seeds were sown on ½ Murashige &
Skoog (MS) medium supplemented with 1% sucrose and grown
for 3 d in continuous light conditions and then transferred to ½
MS plates without sucrose containing 120 mM sorbitol for three
additional days before confocal microscopy analysis. Primary root
length was measured at 6 d after germination using IMAGEJ soft-
ware.

CFDA

A stock of 5-(and-6)-carboxyfluorescein diacetate (CFDA) was
prepared by dissolving 5 mg ml�1 CFDA (Sigma Aldrich) in
acetone. Plants were grown vertically for 3 d before being trans-
ferred into 120 mM sorbitol for three additional days before the
treatment. A droplet of CFDA was supplied to the cotyledons of
6-d-old seedlings after pinching them with fine tweezers. Fluores-
cence intensity was imaged after 1 h of incubation using a Leica
stereomicroscope with GFP filter and was calculated as mean
intensity values from a circular region in the area above the meris-
tematic zone of the root tip using FIJI/IMAGEJ.

Hypoxic stress assays

Seedlings were grown in ¼ strength MS plates for 4 d under short
day (conditions: T= 20°C, light intensity= 110 μmol m�2 s�2).
Plates without lids were then transferred to a desiccator (hypoxia
chamber) in the dark, and nitrogen gas was introduced at a flow
rate of 4 l min�1, for 4 h. Oxygen within the chamber was
reduced to < 0.3% within 1 h. Treatment and survival rate was
measured as previously (Hartman et al., 2019).

Hormone quantification

Three-week-old plants were subjected to drought stress by water
withholding for 5–6 d. Approximately 100 mg of leaf material
were harvested from plants under drought and well-watered con-
ditions and ground to a fine powder in liquid nitrogen. IAA,
ABA, SA, JA, GA1, GA3, GA4, GA7, ACC, tZ, tZR, OPDA,
IPA, and melatonin were quantified as described previously
(Müller & Munné-Bosch, 2011).

Results

AtMC3 is a phloem-specific metacaspase

AtMC3 expression is specifically detected in vascular tissues of all
plant organs in young seedlings, as revealed by transgenic Arabi-
dopsis lines carrying the AtMC3 promoter fused to GUS
(proAtMC3:GUS; Fig. S1a–d) and as reported previously (Kwon
& Hwang, 2013; Otero et al., 2022). AtMC3 expression was
mostly restricted to the phloem, as shown by transverse cuts
either in the stem or the hypocotyl (Fig. S1e–l). In the hypocotyl
phloem, the expression appears to be strongest in a small cell type
that represents CCs (Fig. S1g). To determine the cell-specific
expression of AtMC3, Arabidopsis reporter lines containing
nuclear-localized fluorescent VENUS protein under the
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endogenous AtMC3 promoter were generated (proAtMC3:NLS-
3xVENUS). Confocal microscopy analysis of proAtMC3:NLS-
3xVENUS roots confirmed the phloem pole-specific expression
of AtMC3 (Fig. 1c–f). Initiation of proAtMC3-driven NLS-
3xVENUS expression within the root meristem was observed in
PSE differentiating cells before their enucleation. After comple-
tion of the PSE differentiation process, NLS-3xVENUS was
detected in the CCs of the elongation zone (Fig. 1d–f). Addition-
ally, proAtMC3-driven NLS-3xVENUS expression was also speci-
fically detected at the CCs from the differentiation zone onwards
in the root (Fig. 1c).

To identify whether AtMC3 expression corresponded to the
site of AtMC3 protein accumulation or transport through the
vasculature, we generated transgenic lines stably expressing
proAtMC3:AtMC3-GFP. Confocal analysis revealed that
AtMC3-GFP specifically localizes in CCs in the differentiation
zone and the signal could also be detected in the differentiating
PSE in the meristematic zone (Figs 1g–i, S2a,b). As expected,
AtMC3 overexpression (proUBQ10:AtMC3-GFP) resulted in
protein accumulation (Fig. 1j–n). Interestingly, GFP signal was
not detected in enucleated SEs, suggesting that AtMC3 cannot
be transferred through the vasculature (Fig. 1l). Subcellularly,
proAtMC3-driven AtMC3 expression appeared evenly distributed
throughout the cytoplasm (Fig. 1i,l,n) as indicated by the absence
of the signal in the nucleus or the vacuoles. This is consistent
with the localization of most of the metacaspases studied (Coll
et al., 2010; Bollhöner et al., 2013; Hander et al., 2019). Muta-
tion of the predicted catalytic cysteine to an alanine in AtMC3
(C230A; Fig. 2a) did not affect protein localization, (Fig. S2c–f),
but resulted in increased accumulation of the protein (Fig. S2g),
as observed previously for other metacaspases, such as AtMC1
(Lema Asqui et al., 2018).

Altered expression of AtMC3 enhances seedling root
growth without affecting phloem formation

To investigate the role of AtMC3 within phloem tissues,
CRISPR genome editing technology was employed to generate
targeted mutations (Fauser et al., 2014). Homozygous lines were
obtained, each containing a different mutation in the AtMC3
sequence that resulted in C-terminal truncations of the proteins
due to frame alteration and generation of premature stop codons
(Fig. 2a): atmc3 #6.10 and #13.3. The latter presents a 763-bp
deletion and was therefore selected for further functional analysis.
AtMC3 transcript levels demonstrated that only atmc3#13.3
plants are null mutants, incapable of producing full-length tran-
scripts, while transgenic lines overexpressing AtMC3 show
enhanced levels of expression compared with wild-type (WT)
plants (Fig. 2b).

To determine whether AtMC3 is involved in plant growth or
development, a detailed phenotypic characterization of atmc3
mutants and overexpressor lines was performed. No significant
differences were observed at the adult stage in terms of rosette
size, plant height or inflorescence tissues (Figs 2c, S3a). However,
at the seedling stage, both the null mutant and overexpressor lines
exhibited a larger root meristem size compared with WT plants,

which translated into significantly longer roots (Fig. 2d,e; Ruiz
Sola et al., 2017). The smaller increase in root length observed
for the second independent overexpressor line could be due to
lower accumulation of AtMC3 (Figs 2d, S2g). Furthermore, no
differences were observed in lateral root formation or cotyledon
vein pattern, which are typically associated with phloem defects,
between the lines examined (Fig. S3c,d). Confocal microscopy
analysis showed no defects in protophloem continuity (Fig. S3b),
as evidenced by the continuous nuclear expression of GFP driven
by the protophloem-specific promoter COTYLEDON VASCU-
LAR PATTERN 2 (CVP2; Fig. 2f,f0). Additionally, protophloem-
mediated unloading in the root tip was not affected in the
atmc3#13.3 mutant as demonstrated by the detection and quanti-
fication of GFP expressed under the companion cell-specific pro-
moter SUCROSE TRANSPORTER 2 (SUC2) in root meristem
cells (Fig. 2g,g0,h).

Since other metacaspases have also been shown to be expressed
in the vasculature (Kwon & Hwang, 2013), one potential expla-
nation for the lack of phenotype could be redundancy between
AtMC3 and other family members. Transcriptional analysis
revealed that there was no compensatory expression of any other
metacaspase family member in the atmc3#13.3 mutant back-
ground (Fig. S4a). Nonetheless, redundancy cannot be comple-
tely ruled out, since post-translational differences could occur in
other metacaspases as a result of AtMC3 mutation.

atmc3 Null mutant displays reduced sensitivity to the stress
hormone abscisic acid (ABA)

To assess the effects of altered AtMC3 levels on plants and
whether its putative protease function is relevant, a proteomic
approach was employed. The initial objective was to compare the
degradomes of the atmc3#13.3 mutant and AtMC3 overexpressor
to WT plants, aiming to identify potential proteolytic substrates
of AtMC3, as the protein is predicted to be a cysteine protease
(Uren et al., 2000). We performed High-efficiency Undecanal-
based N Termini EnRichment (HUNTER; Weng et al., 2019)
using root tissue. However, the N-terminome enrichment experi-
ment did not reveal any bona fide AtMC3 substrates – that is,
proteins cleaved after an arginine and/or lysine. Nonetheless,
analysis of the digested proteome before enrichment provided
protein abundance measurements in the different AtMC3 back-
grounds (Dataset S1). Pairwise comparisons between the differ-
ent genotypes revealed a core set of proteins with their levels
consistently altered (> 50% change in abundance, t-test P-value-
< 0.05) in the AtMC3 overexpressing line when compared to
both WT and atmc3 mutant plants (Fig. 3a,b; Dataset S2, S3).
Most of the significantly accumulating proteins in the overexpres-
sing line were related to responses to stressful environmental
conditions (Fig. 3c; Dataset S4). In particular, four positive regu-
lators of the response to hypoxia and oxidative stress (ACX1,
At4g19880, FAD-OXR, and DJ1A), one positive regulator of
drought stress responses (BGLU18), and a positive regulator of
defense responses (KTI4) were found in higher abundance
(Fig. 3d). Consistently, three negative regulators of ABA signal-
ing (BGLU22, BFRUCT4, and SASP), a negative regulator of
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Fig. 2 Characterization of the AtMC3 CRISPR mutant. (a) Schematic representation of the AtMC3 gene and protein structure of Col-0 wild-type (WT) and
CRISPR mutant plants generated. Target sites chosen are indicated with green arrows and mutations generated are indicated in red on top of the gene loci
affected. Brown line indicates the fragment amplified for the detection of gene expression by quantitative PCR. The different gray boxes represent the
exons of the gene sequence. In the protein structure, green color represents the metacaspase prodomain, pink and orange colors indicate the catalytic
p20 and p10 domains, respectively. The predicted catalytic sites are indicated with H for Histidine in position 174 and C for Cysteine in position 230.
(b) Expression analysis for the AtMC3 gene in WT, overexpressor (independent lines #10.6, #5.2), atmc3#13.3, and atmc3#6.10 plants, in 7-d-old seed-
lings roots. Data are means (�SE) of three biological replicates. Significant differences fromWT were determined by Student’s t-test: ***, P< 0.0005.
(c) Rosette phenotypes of 3-wk-old plants for WT, two independent overexpressor lines, and two CRISPR mutant lines. (d) Root length of 7-d-old seedlings
and (e) meristematic size of 6-d-old seedlings measured fromWT, overexpressors, atmc3#13.3 mutant, and complemented plants with the gene under the
endogenous promoter (atmc3#13.3 proAtMC3:AtMC3-GFP). Different lowercase letters depict significant differences in a one-way ANOVA plus a
Tukey’s HSD test between the genotypes: P< 0.05. Box plots represent six biological replicates with n≥ 40 roots per genotype f, f0) Representative pictures
from root tips for observation of PSE nuclei in WT and atmc3 #13.3 mutant plants carrying proCVP2:NLS-3xVENUS. Nuclear-localized VENUS signals
(green) are co-visualized with calcofluor staining (white; g, g0) Representative pictures from root tips of WT and atmc3 #13.3 mutant plants carrying pro-

SUC2:GFP. Nuclear-localized GFP signals (green) are co-visualized with PI staining (red). (h) Quantification of unloaded cytosolic GFP of plants from
(g, g0), (�SE). Fluorescence intensity was quantified over a rectangular area 100 μm above the QC; n≥ 12 roots per genotype. ns, non-significant.
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drought responses (NAI2), and several peroxidases responding to
oxidative stress (PER3, PER29, and PER45) were identified
among the proteins depleted in the AtMC3 overexpressor line
(Fig. 3d). The atmc3 mutant was also compared with WT, but
application of the selection criteria identified a single differen-
tially accumulating protein; the chloroplastic serine peptidase
CGEP, which was significantly more abundant in WT plants
(Fig. S5; Dataset S5). The lack of striking differences between
WT and mutant plants could be explained by the discrete expres-
sion of AtMC3 in WT plants, concentrated in the phloem tissue,

which rendered impossible to detect native protein levels by
immunoblot.

Proteomic data suggested that AtMC3 may be involved in
ABA signaling and drought/hypoxia responses, both of which
have a dramatic impact in the osmotic balance of the plant
(Munns, 2002; Tan & Zwiazek, 2019; Zahra et al., 2021). To
test this hypothesis, we first examined whether atmc3#13.3
mutant or AtMC3 overexpressing plants displayed altered respon-
siveness to ABA compared with WT or to atmc3#13.3 plants
complemented with a WT copy of AtMC3 (atmc3#13.3
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Fig. 3 Proteomic analysis in root tissue showed differential abundance of stress-related proteins depending on AtMC3 protein levels. Volcano plots of pep-
tide abundance in (a) overexpressor line of AtMC3 (OE #10.6) compared with WT plants and (b) overexpressor line of AtMC3 (OE #10.6) compared with
the atmc3#13.3 mutant plants. N-terminal peptides with significantly reduced or increased abundance (Student’s t-test: P-value< 0.05; and log2 FC<

–0.5 or > 0.5) are highlighted with blue and red color, respectively. Results are means from four independent biological replicates. For the complete list of
proteins that were deregulated by the different expression levels of AtMC3, see Supporting Information Dataset S1–S3. (c) Gene ontologies (GO) terms
representing enriched biological processes derived from proteins significantly deregulated in AtMC3 overexpressing plants compared with WT samples
(t-test, ANOVA analysis). The most general GO provided by PLAZA (Van Bel et al., 2022) was plotted along with its corresponding gene number, fold
enrichment, and P-value< 0.05. For the complete list of GO terms, see Dataset S4. (d) Summary of stress-related proteins which were found differentially
abundant in the comparisons performed. Biological processes are presented according to the GO following: Response to oxidative stress: (GO:0006979),
(GO:0042744), (GO:1900409) Response to osmotic stress: (GO:0009269), (GO:0071472), (GO:0009651), (GO:0009414), (GO:0030104), ABA signal-
ing: (GO:0009687), (GO:0009738), (GO:0009789), (GO:0009737), PCD: (GO:0008219), (GO:0012501), ROS: (GO:0034614), (GO:0042542).
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proAtMC3:AtMC3-GFP). Treatment with ABA has been shown
to inhibit seed germination and seedling establishment (Planes
et al., 2015; Xu et al., 2020). We observed that the inhibition of
germination caused by different ABA concentrations was signifi-
cantly less severe in atmc3 mutants and seedlings were able to
establish better, indicating that the mutant was less sensitive to
the hormone (Figs 4a,b, S6a). Furthermore, since ABA can

promote senescence in detached organs (Song et al., 2016), we
treated rosette leaves with ABA and quantified the level of
induced senescence by measuring chlorophyll levels. ABA treat-
ment caused a less pronounced decrease in chlorophyll a, the
main photosynthetic pigment, in atmc3 mutants compared with
WT plants, indicating that the absence of AtMC3 may affect
ABA-induced senescence (Figs 4c, S6b). Finally, since ABA is a
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Fig. 4 AtMC3 null mutants show less sensitivity to abscisic acid (ABA). (a) Germination assay of wild-type (WT), overexpressors, atmc3#13.3 mutant, and
complemented plants of AtMC3 with and without ABA treatment. Seeds were germinated on MS-medium plates supplemented with 0 (control), 1 or 2 μM
ABA solution and were grown for 8 d before germination rate was calculated. Bar plots are means (�SE) from at least three biological replicates per geno-
type (n> 90 per replicate/per genotype). Asterisk indicates significant differences in a chi-squared test for survival ratios compared with WT within every
treatment: *, P < 0.05; ***, P < 0.0005. (b) Dose-response curve for ABA sensitivity of seed germination of WT, overexpressor, atmc3#13.3 mutant, and
complemented plants of AtMC3. ABA concentration ranged from 0 to 2 μM. Error bars represent SE. (c) Senescence assay. Rosette leaves from 5-wk-old
plants were cut and incubated with 0 (control) and 50 μMABA. After 3 d, the amount of chlorophyll a was estimated. Experiments were repeated three
times and independent leaves were used to measure the absorbance (n> 5 per replicate). Different letters depict significant differences in a one-way
ANOVA plus a Tukey’s HSD test between the different genotypes and the treatments: P< 0.005. (d) Changes in stomatal aperture in WT, overexpressors,
atmc3 #13.3 mutant, and complemented plants after ABA treatment. Cotyledons of 10-d-old plants were treated without (control) or with 10 μMABA.
Bar plots are means from stomatal aperture measurements (�SE) from at least three biological replicates per genotype; 30 guard cells were examined in
each condition/genotype in all of the three replicates. Different letters depict significant differences in a one-way ANOVA plus a Tukey’s HSD test between
the genotypes within each treatment: P< 0.05.
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positive regulator of stomatal closure in response to water deficit,
we tested the responsiveness of the plants with altered AtMC3
levels to ABA treatment by analyzing their ability to close their
stomata upon treatment. As shown in Fig. 4(d), stomata of atmc3
plants were less responsive to ABA after 30 min of treatment
compared with all other genotypes tested. Taken together, these
results demonstrate that the absence of AtMC3 results in general-
ized decreased sensitivity to ABA, which becomes especially evi-
dent in the osmotic stress-related responses such as in our
stomatal assay.

Overexpression of AtMC3 confers enhanced drought
tolerance

Next, we investigated whether AtMC3 could play a role in the
response to water-deficit conditions that are mainly regulated by
ABA (Hossain et al., 2016; Muhammad Aslam et al., 2022). For
this, we first compared the survivability of lines with altered
AtMC3 levels to wild-type and AtMC3 complemented mutant
plants to severe drought stress. Water was withheld for 8–9 d
in fully grown plants, and the survival rate was calculated after
re-watering. Interestingly, plants overexpressing AtMC3 (inde-
pendent lines #10.6 and #5.2 tested) showed increased drought
tolerance compared with WT plants (Fig. 5a,b). Furthermore,
both atmc3 mutants showed reduced survival rate under drought
conditions. The predicted catalytic site did not seem to be
required for the drought tolerant role of AtMC3, since a trans-
genic line expressing a version of AtMC3 with a cysteine to ala-
nine substitution in the putative catalytic site in an atmc3#13.3
mutant background (atmc3 #13.3 proAtMC3:AtMC3-C230A-
GFP) still restored the survival rate in a WT comparable level
under drought conditions (Fig. 5a,b).

Next, we measured water loss through relative water content
(RWC), and photosynthetic performance at specific levels of field
capacity in plants subjected to drought stress, to ensure that the
plants are sensing the same water loss and thus experiencing com-
parable stress levels. The AtMC3 overexpressor plants along with
the atmc3 complemented line took 8–9 d to reach 10% field
capacity (low water availability), whereas WT and null mutant
plants needed only 7 d (Fig. 5c). This suggests that plants overex-
pressing AtMC3 can withhold water in a more efficient way and
minimize losses while the stress is progressing, a fact that explains

the higher survival detected. In addition, hormonal analysis after
5 d of water deprivation showed that the overexpressor line con-
tained lower levels of ABA and the cytokinin isopentenyl adeno-
sine (IPA), which could be an additional indication of reduced
stress-sensed levels (Figs 5d, S7). On the contrary, atmc3#13.3
contained elevated levels of salicylic acid (SA) and gibberellin
(GA; Fig. S7). GA levels have been shown to be reduced under
drought in order to inhibit growth, aiding plants to cope better
with the stress (Wang et al., 2008).

Under drought progression (40% and 6% field capacity), there
were no differences in RWC observed among the different geno-
types. However, in well-watered conditions (100% field capa-
city), the overexpressor and the atmc3 complemented line
displayed slightly higher water content than the WT plants,
which may indicate that they can take better advantage of envir-
onmental water when available (Fig. 5e). Maximum quantum
yield of photosystem II (Fv/Fm) under severe drought revealed
that AtMC3 overexpressors showed enhanced photosynthesis per-
formance as observed from the less distributed values than WT
or atmc3#13.3 mutant plants (Figs 5f, S8). In summary, these
data may indicate that increasing the levels of AtMC3 enhances
the ability of the plant to cope with drought stress without affect-
ing its growth rates.

The reduced ABA sensitivity displayed by the atmc3#13.3
mutant was not attributed to any changes in the expression of
ABA biosynthesis genes (AAO3), ABA receptors (PYL5 and
PYL4), and negative regulators of ABA signaling (ABI1 and
HAB1), as demonstrated by gene expression analysis (Fig. 6).
However, the transcripts of RD29A and RD22, two ABA
dehydration-responsive genes to maintain the osmotic balance in
the cell, were downregulated in atmc3 when no stress was applied.
Moreover, upregulation of ADH, a gene that imparts tolerance to
multiple stresses including hypoxia and drought (Shi et al., 2017;
Rasheed et al., 2018; Ventura et al., 2020), was detected in the
AtMC3 overexpressing lines under normal growth conditions
(Figs 6, S4b).

In an attempt to identify potential interactors of the protein,
we obtained a large number of proteins that co-
immunoprecipitate with AtMC3 both under mock and drought
conditions using plants overexpressing AtMC3 and WT
(Dataset S6, S7). From GO analysis, in drought conditions, 111
out of 600 proteins were related to metabolic processes

Fig. 5 AtMC3 is involved in drought tolerance. (a) Pictures from 3-wk-old plants before drought stress in well-watered conditions (left column, before
drought) and after 5 d of re-watering and recovery (right column, recovery). From top to bottom rosettes of wild-type (WT), OE#10.6, OE#5.2,
atmc3#13.3, complementation line of the atmc3#13.3 mutant, atmc3#6.10, and complementation line of atmc3#13.3 with a predicted catalytic inactive
version of the protein are shown. (b) Plant survival rates calculated as the percentage of plants that survived after 5 d of re-watering relative to the total
number of plants used. Bar plots represent averages of 11 independent biological replicates (�SE; n> 150). Asterisks indicate significant differences in a
two-sided chi-squared test for survival ratios compared with WT: *, P < 0.05; **, P < 0.005; ***, P < 0.0005. (c) The number of days (�SE) needed to
reach different percentages of field capacity for WT, overexpressor, atmc3#13.3 mutant, and complementation line are shown in bar plots for five
independent replicates (n> 40). (d) Abscisic acid (ABA) hormone quantification. Barplots represent the results from four independent replicates in control
(well-watered) conditions and 5 d after water withholding when plants started showing wilting symptoms. Student t-test was performed to detect
significant differences in comparison with the WT in each treatment: *, P< 0.05. (e) Relative water content (RWC) of mature rosettes at 100%, 40%, and
6% field capacity. Experiments were repeated four times (n> 16). Different letters depict significant differences between genotypes per treatment in a
one-way ANOVA plus a Tukey’s HSD test: P< 0.05. (f) MaximumQuantum Yield of photosynthesis (Fv/Fm) ratio for WT, overexpressor, atmc3 #13.3
mutant, and complementation line at 100%, 40%, and 6% field capacity. Experiments were repeated four times (n> 16). Different letters depict
significant differences between genotypes in a one-way ANOVA plus a Tukey’s HSD test: P< 0.05.
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(GO:0006091/GO:0044281), and among those, proteins related
to metabolism or transport of osmoprotectants such as sucrose
and proline were enriched already in control conditions
(Fig. S9a,b; Dataset S8). Furthermore, several of the enriched
proteins were related to abiotic stress responses (Fig. S9c), with

some of them reported to show specific vascular expression such
as Annexin1 (ANN1) and ABCG11 transporter. ANN1 is
responsible for the post-phloem distribution of sugar in the root
tip and conferring drought tolerance when overexpressed
(Konopka-postupolska et al., 2009; J. Wang et al., 2018).
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Aquaporins, dehydrins, and oxidative stress-related proteins were
enriched under both control and drought conditions (Fig. S9c).
Although limiting, these findings provided hints toward a poten-
tial role of AtMC3 in osmotic stress responses.

To determine whether AtMC3 is involved in responses to
other osmotic-related stresses, we tested hypoxia and salinity con-
ditions. Under low oxygen conditions (hypoxia), the AtMC3
overexpressing line showed a markedly higher survival rate
compared with WT plants, similar to the prt6 mutant that consti-
tutively induces hypoxia responsiveness through the PCO
N-degron pathway (Holdsworth & Gibbs, 2020; Fig. S10a).
Interestingly, the atmc3#13.3 mutant also showed enhanced sur-
vival rates under hypoxia conditions. Several hypoxia-marker
genes were tested under basal conditions. A clear upregulation of
ADH1 under mock conditions in the AtMC3 overexpressor com-
pared with WT could lead to a better/faster response to hypoxia
(Fig. S10b). On the contrary, increased levels of salinity result in
inhibition of primary root growth and induce lateral root

formation. Overexpression of AtMC3 resulted in a larger number
of lateral roots than WT under salinity stress (Fig. S10c), a phe-
notype usually observed in plants that display higher salinity tol-
erance. By contrast, increased levels of salinity resulted in similar
levels of primary root growth inhibition in all lines tested
(Fig. S10d). In conclusion, our data indicate that AtMC3 may
play a role in multiple osmotic stress responses in plants resulting
from either excess or absence of water.

Increased AtMC3 levels lead to early metaphloem
development and maintain functional transportation under
osmotic stress

Considering the specific spatial expression and localization pat-
tern of AtMC3 and its involvement in responses to osmotic stress
conditions, we investigated whether stress impinges on the devel-
opmental formation of vascular tissues and whether AtMC3 plays
a role in these conditions. Upon osmotic stress, root cells lose
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Fig. 6 Expression levels of abscisic acid (ABA)-related genes in plants with altered AtMC3 levels. Expression levels of genes related to ABA biosynthesis
(AAO3), downstream signaling (HAB1, ABI1, RBOHD, PYL4, PYL5, PP2C, RD22, and RD29A), and a target gene (ADH1) relative to the housekeeping
gene EIF4a were analyzed from the cotyledons of 7-d-old seedlings grown in Murashige and Skoog- media of wild-type (WT), AtMC3 overexpressor, and
atmc3#13.3mutant plants. Total RNA was extracted and used for cDNA synthesis, which were then used for quantitative PCR analysis. Data correspond
to means (�SE) from three biological replicates. Significant differences fromWT were determined by Student’s t-test: *, P< 0.05.
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water content and accumulate sugars and other osmoprotectant
compounds to balance the water shortage from the environment,
minimize losses and avoid cellular damage (Sevanto, 2018;
Ozturk et al., 2021). As previously documented, incubation of
WT plants in media containing sorbitol to cause osmotic imbal-
ance resulted in root growth arrest and a comparable decreased
meristematic activity (Cajero-Sanchez et al., 2019), a phenotype
also observed in all genotypes tested (Fig. 7a,b).

To better assess whether sorbitol affects phloem development,
sorbitol-treated roots were stained with calcofluor white and ana-
lyzed by confocal microscopy. Prolonged exposure (72 h) to
osmotic stress triggered a premature differentiation of PSEs, as
indicated by the appearance of stained cell walls close to the quies-
cence center (Fig. 7d–h0). While this phenotype was observed in
all tested genotypes, > 30% of the roots with altered AtMC3
levels showed premature differentiation of MSE – either in one or
two strands of MSEs – as manifested by their thick cell wall, before
the differentiation of protoxylem strands (Fig. 7c,d–h0). In WT
plants, this phenotype was also observed in a lesser extent.
Metaphloem is the main transport form of the phloem, which
functionally replaces the protophloem tissue when the surround-
ing cell types have already differentiated; thus, its differentiation
occurs at c. 14 nm above the QC (Rodriguez-Villalon, 2016;
Graeff & Hardtke, 2021). Protoxylem differentiation was also
measured as the distance from the first spiral cell to the QC in con-
trol and stress conditions. We detected that under sorbitol treat-
ment, plants overexpressing AtMC3 can form protoxylem closer
to the QC compared with the rest of genotypes tested, although
the meristem size was similar for all of them (Fig. 7i). These data
suggest that AtMC3 levels have an impact on metaphloem and
protoxylem differentiation. To elucidate how long-distance trans-
portation is affected in these conditions, we used 5(6)-
carboxyfluorescein diacetate (CFDA), a known phloem-mobile
probe (Ross-Elliott et al., 2017). CFDA was applied for 1 h on the
cotyledons of sorbitol-treated seedlings to ensure its successful
loading into the vasculature. Interestingly, we observed that the
overexpressing AtMC3 line #10.6 displayed higher amounts of
CFDA in the protophloem unloading zone compared with WT
plants in control conditions and under osmotic stress, was able to
maintain significantly higher levels of transport compared with
the atmc3 #13.3 plants (Fig. 7j,k). To sum up, fine-tuned levels of
AtMC3 are required for the plants to show the appropriate sensi-
tivity to drought stress by affecting vascular formation; increased
levels of the protein to ensure proper function of the tissue.

Discussion

The Arabidopsis type I metacaspase AtMC3 exhibits a vascular-
specific expression pattern concentrated in the phloem pole
(Fig. 1; Otero et al., 2022). Our data show that AtMC3 displays
a restricted expression pattern with a shift from the differentiating
PSE to the surrounding CCs (Figs 1, S2), similar to multiple
genes related to phloem formation such as APL, NAC45/86, and
CLE45 (Bonke et al., 2003; Rodriguez-Villalon et al., 2014).
Furthermore, we demonstrate that the AtMC3 protein also loca-
lizes in the vasculature.

Although altered levels of the protein did not cause any detri-
mental changes in plant growth and development (Figs 2, S3),
proteomic analysis suggested that AtMC3 is involved in
abiotic stress responses. ABA downstream signaling, osmotic, and
hypoxia stress-related proteins appeared deregulated in plants
with altered AtMC3 levels, even under control growth conditions
(Fig. 3). Multiple peroxidases accumulated to lower levels in
plants overexpressing AtMC3, potentially indicating changes in
the endodermal layer of the root. Additionally, BGLU22, which
shows reduced expression upon mannitol treatment (Ahn
et al., 2010), accumulated to higher levels in the mutant, while
BGLU18 (or ATBG1), involved in the de novo biosynthesis of
ABA (Lee et al., 2006), showed the opposite behavior. Support-
ing this data, BGLU18 was found also to co-immunoprecipitate
with AtMC3 under drought stress (Fig. S9c). Interestingly,
SASP, a protease that negatively regulates drought responses by
leading OST1 to degradation (Q. Wang et al., 2018), was found
less abundant in the AtMC3 overexpressing line. Similarly, we
detected reduced accumulation of NAI2, which is involved in ER
body formation and was shown to enhance downstream signaling
under stress conditions (Kumar et al., 2015). Reduction in NAI2
could be an indication of increased proline accumulation, which
assists as an osmoprotectant and improves responses to drought.

ABA has been long considered a ‘stress’ hormone, as it regu-
lates most of the plant responses to challenging environmental
conditions. Plants lacking AtMC3 showed reduced sensitivity to
ABA treatment (Figs 4, S6), which may explain their diminished
ability to cope with drought and their increased water losses
(Fig. 5b,c). Reduced expression of specific dehydration-
responsive genes in atmc3 mutants could indicate that AtMC3
may be involved in signaling downstream ABA (Fig. 6). Alterna-
tively, the limited responsiveness to ABA observed in the atmc3
mutant, particularly under osmotic stress, may suggest that
AtMC3 directly or indirectly participates in long-distance trans-
port of the hormone, mediated by the xylem (Fig. 7i).

We demonstrated that plants overexpressing AtMC3 were
more tolerant to drought stress, as indicated by their increased
survival rate and their ability to maintain their photosynthetic
capacity more stably (Figs 5, S8). By contrast, atmc3 mutants sur-
vived less compared with WT plants, which was restored by com-
plementing the mutant with both a WT copy of AtMC3 and a
variant version carrying a mutation in the predicted catalytic site.
The fact that the predicted protease function of AtMC3 is not
required for its function raises the question of whether the pro-
tein might act as a potential stress sensor in CCs. This notion is
underscored by the fact that we were not able to detect any direct
AtMC3 proteolytic cleavage from the degradome analyses. In
addition, the activity of AtMC3 or its catalytic mutant could not
be assessed biochemically due to the lack of available enzymatic
assays for Arabidopsis Type I metacaspases. Interestingly, meta-
caspases have been proposed to act as homeostatic rheostats, in
some cases with functions partly independent of their catalytic
activity (Shrestha & Megeney, 2012).

The vascular tissue is a prerequisite for establishing inter-organ
communication throughout the plant body. The interaction
between phloem and xylem and the maintenance of tissue
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plasticity are key for plant adaptation to stress. Sugars are actively
loaded into the phloem from source tissues, and the xylem is
transferring water into the phloem strands to generate appropri-
ate pressure and flow of the macromolecules. Upon arrival at sink

tissues, sugars are unloaded and distributed while water returns
to the xylem files (Sevanto, 2018). Osmotic stress affects the
source-sink relationships, and the phloem needs to adjust the
osmotic pressure generated from water reduction in the xylem
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files. An efficient way to achieve this may be by increasing the
levels of osmoregulators in the phloem sap (Fàbregas et al., 2018;
Sevanto, 2018). Genes involved in vascular development were
shown to be affected under osmotic stress (Dinneny et al., 2008),
leading to the speculation that promoting phloem development
could increase tolerance. Indeed, we showed that upon osmotic
stress, plants form PSE closer to the quiescent center (Fig. 7d–h0).
Additionally, altered AtMC3 levels result in premature differen-
tiation of MSE (Fig. 7c). The specific localization of AtMC3
raises the question of whether this protein might be acting as a
sensor of stress conditions and what is the role of CCs in signal
perception. A functional metaphloem closer to the root tip as
observed in the AtMC3 overexpressing line could provide an
advantage to the plants by facilitating the allocation of photoassi-
milates and osmoprotectant molecules to decrease the water
potential in roots or provide the necessary energy for the sur-
rounding tissues to maintain their function and respond. This
observation was further supported by the enhanced long-distance
transport of CFDA to the root tips in AtMC3 overexpressor plants
(Fig. 7k). Osmotic balance may be maintained more effectively
along with the simultaneous induction of xylem differentiation by
ABA (Bloch et al., 2019; Ramachandran et al., 2021) as it was
observed in the AtMC3 overexpressing plants (Fig. 7i). Counter-
intuitively, the premature metaphloem differentiation observed in
the atmc3mutant did not result in a similar increase in conductiv-
ity, which may suggest that the correct dosage of AtMC3 is
required to fine-tune the trade-off between osmotic protection
and root development. Although faster protoxylem development
was proposed to increased lethality in early seedling stages due to
osmotic stress caused by reduced cell wall viscoelasticity (Rama-
chandran et al., 2021; Augstein & Carlsbecker, 2022), the combi-
nation of both vascular tissues might be beneficial for plant
survival. Specifically, under drought stress, proteins related to cell
wall modification and phloem development (such as CALS8 and
SEOB) co-precipitated with AtMC3, highlighting the importance
of the cell-border plasticity in plant responses (Dataset S7).

Overall, our results document the role of a vascular metacaspase
in osmotic stress responses through a yet-to-be-defined mechan-
ism. The fact that in some instances mutating or overexpressing

AtMC3 led to the same phenotype – slightly longer roots with
larger root meristem size and premature MSE differentiation
upon osmotic stress –may indicate that the levels of AtMC3 need
to be precisely fine-tuned for correct function. Further examining
of the potential interactors or substrates of the protein could shed
more light about the AtMC3 function under drought stress,
which could be addressed with the future development of
tissue-specific proteomic approaches. Importantly, AtMC3-
overproducing plants are capable of maintaining WT-like growth
and yield, unlike other drought-resistant plants reported to date.
Severe drought results in significant reduction in dry weight, ulti-
mately resulting in diminished harvested biomass and yield.
Therefore, identifying genetic features that may allow for tissue-
specific engineering to enhance drought tolerance without com-
promising plant growth may constitute an extremely valuable
strategy for sustainably improving valuable crops.

Statement of limitation of the study

This study has limitations associated with the fact that AtMC3 is
a protein exclusively located in the phloem. Considering that our
experiments are performed in Arabidopsis thaliana, this implies a
limitation of tissue to perform certain approaches used in this
study such as proteomics or detecting the protein by immunoblot
when the transgene was under the control of its native promoter.
Therefore, some of the experiments had to be performed using
plants constitutively expressing AtMC3, with the limitations that
this implies in terms of interpretation of the results. Additionally,
proteins immunoprecipitating with AtMC3 have not been vali-
dated experimentally and therefore are only indicative of poten-
tial interactions. Finally, the activity of AtMC3 or its catalytic
mutant could not be assessed biochemically due to the reasons
described above together with the lack of available enzymatic
assays for Arabidopsis Type I metacaspases.
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Fig. 7 Vascular tissue formation and function under osmotic stress is affected by AtMC3 levels. (a) Root length and (b) meristem size of 6-d-old seedlings
measured from wild-type (WT), overexpressors, atmc3#13.3 mutant plants, and complementation line in control (darker green) and under 120mM sorbitol
treatment (lighter green). Box plots represent four biological replicates (n> 40 per genotype, per treatment). Different letters depict significant differences
in a one-way ANOVA plus a Tukey’s HSD test between genotypes under control conditions (small letters) and under sorbitol conditions (capital letters):
P< 0.005. (c) Percentage of early metaphloem sieve elements (MSE) differentiated earlier that protoxylem strands in none (dark green), one (medium
green), or both (light green) MSE strands. C stands for Control and S for sorbitol treatment. (d–h0) Indicative pictures from the MSE quantification for the
one or both MSE strands affected. Bars, 100 μm. (d0, e0, f0, g0, h0) for sorbitol treatments. On the right panel is the magnification of the vascular tissue focus-
ing on the phloem strands. Calcofluor staining was used to visualize the roots. White asterisk indicates the differentiated MSE strand. (i) Quantification of
protoxylem differentiation distance from the QC for 6-d-old seedlings fromWT, overexpressors, atmc3#13.3 mutant plants, and complementation line in
control (darker green) and under 120mM sorbitol treatment (lighter green). Experiments were repeated in three independent replicates (n> 30 per geno-
type, per treatment). Different letters depict significant differences in a one-way ANOVA plus a Tukey’s HSD test between genotypes and treatments:
P< 0.005. (j) Representative pictures showing phloem loading from 6-d-old seedlings for WT, overexpressor of AtMC3, and atmc3 #13.3 mutant in
control (upper panels) and sorbitol (lower panels) conditions. Pictures were taken from the root tips c. 1 h after loading CFDA on cotyledons. CFDA
fluorescence is visualized in LUT Green Fire Blue. Bar, 500 μm. (k) Quantification of fluorescence intensity in the phloem unloading zone (red circle depicted
in j) in WT, overexpressors, atmc3 #13.3 mutant, and complementation line in 6-d-old seedlings of control and sorbitol-treated plants; bars, 250 μm; four
independent replicates were performed (n> 30), and different letters depict significant differences in a one-way ANOVA plus a Tukey’s HSD test between
genotypes and treatments: P< 0.05.
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root samples from Col-WT, atmc3 #13.3 crispr mutant, and
overexpressor line seedlings.

Dataset S2 List of proteins with significant changes in abundance
between overexpressor and WT root samples.

Dataset S3 List of proteins with significant changes in abundance
between overexpressor and atmc3 #13.3 crispr mutant root
samples.

Dataset S4 GO enrichment for Biological Process ontology in
preHUNTER experiments of proteins with significantly altered
levels when AtMC3 was compared with WT.

Dataset S5 List of proteins with significant changes in abundance
between atmc3#13.3 crispr mutant and WT root samples.

Dataset S6 Complete list of proteins that co-immunoprecipi-
tated with AtMC3 in control and drought conditions in compar-
ison with the WT plants under the same respective conditions.

Dataset S7 Complete list of proteins that co-immunoprecipi-
tated with AtMC3 only in drought conditions.

Dataset S8 GO enrichment for Biological Process ontology in
drought conditions of proteins co-immunoprecipitated with
AtMC3 compared with WT.

Fig. S1 Localization of AtMC3 promoter activity in transgenic
lines carrying proAtMC3-GUS promoter fusions.

Fig. S2 Localization pattern of AtMC3 catalytic inactive version
of protein in roots.

Fig. S3 Phenotypical analysis of AtMC3 overexpressor and mutant
lines.
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Fig. S4 QPCR analysis.

Fig. S5 Proteomic analysis in root tissue between WT and
atmc3#13.3 mutant plants.

Fig. S6 ABA sensitivity assays.

Fig. S7 Hormonal profile in plants with different AtMC3 levels
under drought.

Fig. S8 Efficiency of PSII in severe drought stress.

Fig. S9 AtMC3 interactome analysis.

Fig. S10 AtMC3 is involved in responses to multiple abiotic
stresses.

Table S1 Transgenic and mutant lines used in this study.

Table S2 Primers used for cloning strategies and genotyping.

Table S3 Primers used in qPCR analysis.
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