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Abstract
In one of his long tales, after falling into a swamp, Baron Münchhausen salvaged himself and the
horse by lifting them both up by his hair. Inspired by this, the paper presents a technique to justify
very dependent types. Such types reference the term that they classify, e.g. x : F x. While in most
type theories this is not allowed, we propose a technique on salvaging the meaning of both the term
and the type. The proposed technique does not refer to preterms or typing relations and works in a
completely algebraic setting, e.g categories with families. With a series of examples we demonstrate
our technique. We use Agda to demonstrate that our examples are implementable within a proof
assistant.
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1 Introduction

When we want to understand how powerful the given type system is, we identify objects
that the given type is allowed to depend on. For instance, in simply-typed systems types
are built from a fixed set of ground types and operations. In System F we introduce type
variables and binders making it possible to define new operations that compute types. In
dependently-typed systems we are allowed to compute types from terms.

At the same time, we rarely explore dependencies within a typing relation. For example,
consider the case when the type is allowed to depend on the term that it is typing:

x : Fx

Such a situation is often referred to as very dependent type [10]. The immediate two questions
arise: (i) does this ever occur in practice? (ii) how do you support this within a type system?
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10:2 The Münchhausen Method in Type Theory

Let us consider an example where such a type occurs very naturally. There is a well-known
type isomorphism, saying that pairs can be represented as functions from boolean:

A × B ∼= (b : Bool) → if b then A else B.

Consider now upgrading the isomorphism to dependent product on the left hand side. Given
A : Type, B : A → Type, we want something like

Σ A B ∼= (b : Bool) → if b then A else (B □),

but what do you put in the placeholder □? It should be the output of the function when the
input is b = true. Once the function is given a name, we can refer to it:

f : (b : Bool) → if b then A else (B (f true))

Supporting such definitions in a type system can be tricky. Hickey gives [10] a type
system with very dependent functions using pre-terms and typing relations [5]. However, it
turns out that many very dependent types can be understood algebraically and even encoded
in proof assistants.

Many practical examples are easier to understand when very dependent types are present.
One familiar example is the use of type universes in proof assistants such as Coq or Agda.
Both systems use Russell universes, and if we ignore the universe levels, Set is of type Set in
Agda, and Type is of type Type in Coq. This is clearly the case of very dependent types.

Our main observation is that algebraic presentation requires cutting the cycle of a
given very dependent type. This is achieved by introducing a temporary placeholder type
and a number of equations that eliminate the placeholders. The proposed scheme can be
summarised as follows. For a very dependent type (x : F x) find:

A : Set; G : A → Set; α : {a : A} → G a → A

Such that F can be decomposed in G ◦ α. In this case, a very dependent type can be expressed
as the following triplet:

a : A – Placeholder
x : G a – The data
eq : a ≡ α x – Closing the cycle

This approach works if these equations are propositional, but it forces a lot of transport
along the newly introduced equations (this situation is commonly referred to as transport
hell). In Agda we can turn these propositional equations into definitional ones by means of
rewrite rules or forward declarations.

The main contribution of this paper lies in applying the Münchhausen method to
five practical examples. Our setting is Martin-Löf type theory extended with function
extensionality, UIP (uniqueness of identity proofs) and forward declarations. From [12] we
know that such a formulation without forward declarations is conservative with respect to
its intensional version. This means that, in principle, all the presented types that do not use
forward declarations can be given in intensional type theory, but in a much more verbose
way. We conjecture that the same holds for the type theory with forward declarations as
well, but as these are not very well understood, we would not claim this.

We use Agda to demonstrate concrete implementation of our examples, but there is
nothing Agda-specific in the method itself. In Agda, the Münchausen method can be realised
in four different ways:
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1. Identity types and explicit equations (Section 3);
2. Forward declarations (Sections 3, 4 and 5);
3. Shallow embedding as described in [14] (Sections 6 and 6);
4. Postulates and rewrite rules (Section 7)

While it is not yet clear whether all very dependent types as defined in [10] can be
handled by the proposed method, we believe that the examples that we provide give a first
step towards answering this question.

This paper is an Agda script, therefore all the examples in the paper have been
typechecked.

The content of this paper was presented at the TYPES’22 conference in Nantes [3].

2 Background

In this section we give a brief introduction to Agda, which is an implementation of Martin-
Löf’s dependent type theory [16] extended with a number of constructions such as inductive
data types, records, modules, etc. We make a brief overview of the features that are used in
this paper. For the in-depth introduction please refer to Agda’s user manual [1].

2.1 Datatypes
Datatypes are defined as follows:

data N : Set where
zero : N
suc : N → N

data Fin : N → Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n → Fin (suc n)

The type N of unary natural numbers is a datatype with two constructors: zero and suc. The
type of N is Set which is Agda’s builtin type of small types.

The type Fin is indexed by N and it also has two constructors zero and suc. The names
of the constructors can overlap. In the definition of the Fin constructors we used implicit
argument syntax1 to define the variable n. When using constructors of Fin, we can leave out
specifying these arguments relying on Agda’s automatic inference. These can be also passed
explicitly as follows:

a : Fin 2
a = zero {n = 1}

Numbers 0, 1, 2, . . . are implicitly mapped into N in the usual way.

2.2 Records
Agda makes it possible to define records2. They generalise dependent products, making it
possible to name the fields. For example, we can define the type of dependent pairs using
records as follows:

1 https://agda.readthedocs.io/en/v2.6.3/language/implicit-arguments.html
2 https://agda.readthedocs.io/en/v2.6.3/language/record-types.html
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record Pair (A : Set) (B : A → Set) : Set where
constructor _,_
field

fst : A
snd : B fst

The Pair record is parametrised by the type A and the family B (over A). The type has two
fields named fst and snd that correspond to first and second projections of the dependent pair.
Finally, we can give a constructor _,_ that we can use to construct the values of type Pair.
Note that the constructor uses the mixfix notation3. This means that arguments replace the
underscores, so the comma , becomes a binary operation. The values can be constructed as
follows:

b : Pair N Fin
b = 5 , zero

2.3 Modules
Modules4 make it possible to collect the definitions that logically belong together, giving
them a separate namespace. Modules can accept parameters. They abstract variables for
the definitions within the module. In the paper we only use modules to group the definitions
together and reuse the names of the definitions. For example, here we define modules X and
Y, where Y is parametrised with the variable n, which is a natural number.

module X where
foo : N
foo = 5

module Y (n : N) where
foo : N
foo = n

2.4 Forward Declarations
Agda makes it possible5 to make a declaration and provide a definition later. This is useful
when dealing with mutual definitions. For example, we can have a mutual definition of even
and odd numbers as the following indexed types:

data Even : N → Set
data Odd : N → Set

data Even where
zero : Even zero
suc : {n : N} → Odd n → Even (suc n)

data Odd where
suc : {n : N} → Even n → Odd (suc n)

3 https://agda.readthedocs.io/en/v2.6.3/language/mixfix-operators.html
4 https://agda.readthedocs.io/en/v2.6.3/language/module-system.html
5 https://agda.readthedocs.io/en/v2.6.3/language/mutual-recursion.html#mutual-recursion-

forward-declaration
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First we defined the signature of both data types; after that we gave the definitions of
their constructors. By making such a forward declaration, we were able to refer Odd in the
definition of the suc constructor in Even.

2.5 Postulates
Agda makes it possible6 to declare objects without ever providing a definition. This can be
thought of as a typed free variable. For example, we can postulate that there exists some
natural number q:

postulate
q : N

2.6 Rewrite Rules
Agda makes it possible to define rewrite rules7, which are typically used to turn propositional
equations into definitional ones. However, in combination with postulates, we can also simulate
some reduction behaviour. For example, we can postulate natural numbers, eliminator for
natural numbers and reduction equalities. Then we can use rewrite rules to simulate reduction.

postulate
Nat : Set
z : Nat
s : Nat → Nat
elim : (P : Nat → Set) → P z → ((n : Nat) → P n → P (s n))

→ (n : Nat) → P n
elim-z : ∀ {P pz ps} → elim P pz ps z ≡ pz
elim-s : ∀ {P pz ps n} → elim P pz ps (s n) ≡ ps n (elim P pz ps n)
{-# REWRITE elim-z elim-s #-}

We postulate the type for natural numbers Nat and its two constructors z and s. After that,
we postulate the type for the eliminator for natural numbers in the usual way. Finally we
define two β-like equalities for the eliminator. By turning these equalities into rewrite rules,
we make our eliminator to reduce in the usual way.

3 Dependent Sequences

We start with a detailed exploration of the dependent product isomorphism presented in the
introduction. While this example is not very practical, it is concise and easy to understand.

For a fixed pair of types, the encoding of non-dependent pair can be expressed in Agda
as follows:

pair : (b : Bool) → if b then String else N
pair true = "Types" – first projection
pair false = 22 – second projection

6 https://agda.readthedocs.io/en/v2.6.3/language/postulates.html
7 https://agda.readthedocs.io/en/v2.6.3/language/rewriting.html
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Surprisingly, similar presentation of dependent pairs for a fixed type and a family over it
is expressible in Agda using forward declarations. For example, for N and Fin we have:

dpair-hlpr : N
dpair : (b : Bool) → if b then N else Fin dpair-hlpr
dpair-hlpr = dpair true

dpair true = 5 – first projection of type N
dpair false = # 3 – second projection of type Fin 5

According to Münchhausen method, we “cut” the cyclic dependency of dpair by introducing
a placeholder called dpair-hlpr. Here forward declarations make it possible to postpone the
definition of dpair-hlpr. After that, we define dpair and we “close the cycle” by giving the
value to the placeholder.

Let us try to abstract this encoding to arbitrary types, and prove the isomorphism from
the introduction. For non-dependent pairs, we have:

module _ (ext : ∀ {a b} → Extensionality a b) where
Pair : Set → Set → Set
Pair A B = (b : Bool) → if b then A else B

Pair∼=× : ∀ A B → (A × B) ↔ Pair A B
Pair∼=× A B = mk↔ {f = to}{from} (to◦from , λ _ → refl)

where
to : _; from : _; to◦from : _
to (a , b) = λ {true → a; false → b}
from f = f true , f false
to◦from f = ext λ {true → refl; false → refl}

The ↔ is a type for bijections, and mk↔ constructs the bijection from forward and backward
functions and a pair of proofs that they are inverses of each other. As can be seen, conversion
from Pair is memoisation. Correspondingly, conversion into Pair is “unmemoisation”. These
operations are clearly inverses of each other, assuming functional extensionality.

Encoding of dependent pairs has to mention the placeholder h and the value that this
placeholder gets (f true) by means of explicit equation eq.

record DPair (A : Set) (B : A → Set) : Set where
constructor _▷_[_]
field

h : A
f : (b : Bool) → if b then A else B h
eq : h ≡ f true

Such an encoding corresponds to the first variant of the Münchhausen method, as the equality
that closes the cycle is made explicit. Note that eq corresponds to the definition of dpair-hlpr
in the presentation above.

The isomorphism between dependent pairs and DPair requires a little bit more work, as
we are dealing with equations within the structure. Assuming functional extensionality ext
and uniqueness of identity proofs uip, equality of two DPairs can be derived from point-wise
pair equality given by _≡d_.
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module _ (ext : ∀ {a b} → Extensionality a b)
(uip : ∀ {A : Set}{a b : A} → (p q : a ≡ b) → p ≡ q) where

record _≡d_ {A}{B} (a b : DPair A B) : Set where
constructor _&_
field

fst : DPair.h a ≡ DPair.h b
snd : DPair.f a false ≡ subst B (sym fst) (DPair.f b false)

≡d⇒≡ : ∀ {A B} {a b : DPair A B} → a ≡d b → a ≡ b

With these definitions at hand, the isomorphism between DPairs and Σ types is very similar
to its non-dependent version:

Pair∼=Σ : ∀ A B → (Σ A B) ↔ DPair A B
Pair∼=Σ A B = mk↔ {f = to}{from} (to◦from , λ _ → refl)

where
to (a , b) = a ▷ (λ {true → a; false → b}) [ refl ]
from (h ▷ f [ eq ]) = f true , subst B eq (f false)
to◦from (h ▷ f [ eq ]) = ≡d⇒≡ (sym eq & cong (λ x → subst B x (f false)) (sym◦sym eq))

As can be seen, working with explicit equalities is tricky. Switching to more powerful
type theories (e.g. cubical type theory) would eliminate the necessity to use axioms, but it
would not solve the transport hell problem. The pair example works so nicely, because we
essentially turned the propositional equality into the definitional one.

3.1 Infinite Sequences
In the type theory proposed by Hickey, the only extension to the standard type theory is
addition of very dependent functions. It is observed that (very) dependent records can be
always presented as very dependent functions by choosing a domain type that enumerates
the fields. This is essentially what the example with dependent pairs does – Σ type has two
fields that are enumerated by booleans.

However, dependent functions can do more than that, as their domain does not have to be
finite. Let us now consider such an infinite case by defining non-increasing infinite sequences.
With a little abuse of notation, we can present those as the following very dependent type.

– ↓-seq : (n : Nat) → if n == 0 then N else Fin (1 + ↓-seq (n - 1))

The same Münchhausen technique with forward declarations can be used to define such a
function. We start by forward declaring Ty (expression on the right hand side of the arrow
in the type above) and its interpretation I into natural numbers.

Ty : N → Set
I : ∀ n → Ty n → N

At the same time we forward declare the actual sequence that we want to define:

↓-seq : (n : N) → Ty n

The type of the elements in the sequence is defined inductively as follows: for zero we
have N, the successor case gives us Fin of whatever the interpretation of the sequence that
we are defining at predecessor is going to return us.

TYPES 2022
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Ty 0 = N
Ty (suc n) = Fin $ suc $ I n (↓-seq n)

The interpretation of the elements at the given sequence is straight-forward: zero case
has a natural number that we return; elements of Fin types are casted into natural numbers.

I 0 n = n
I (suc n) i = toN i

Finally, we define the actual data of our non-increasing infinite sequence.

↓-seq 0 = 5
↓-seq 1 = # 3
↓-seq 2 = # 2
↓-seq (suc (suc (suc n))) = # 0

Notice that in this particular case, the types of the elements in sequence only depend on
the previous element. We can imagine full induction, where the element can depend on all
the previously defined elements. In this case induction-recursion becomes crucially important
to generate an n-fold dependent type.

4 Multi-dimensional Arrays

The next example we consider is a type for multi-dimensional arrays that are commonly found
in array languages such as APL [13]. Arrays can be thought of as n-dimensional rectangles,
where the size of the rectangle is given by the shape, which is a vector of natural numbers
describing extents along each dimension. Array languages follow the slogan “everything
is an array”, treating natural numbers and shape vectors as arrays. Natural numbers are
0-dimensional arrays, e.g. their shape is the empty vector. Shape vectors are 1-dimensional
arrays, e.g. their shapes are 1-element vectors.

The problem with capturing this construction with inductive types is the following
circularity. Array types depend on shapes, but the shapes are arrays. That is, the index of
the type is the very type that we are defining.

4.1 Unshaped arrays
One way to define the array type inductively is to avoid the shape argument entirely. This
construction is proposed by Jenkins [9]:

module Unshaped where
data Ar : Set where

z : Ar – Natural numbers with zero (z)
s : Ar → Ar – and successor (s)
[] : Ar – Cons lists with empty list ([])
_::_ : Ar → Ar → Ar – and cons operation (_::_).
reshape : Ar → Ar → Ar – Multi-dimensional array constructor.

With these definitions we get a closed universe of arrays of natural numbers. On the
positive side, we obtained the uniformity of arrays as in APL – if a function expects an array,
it is possible to pass a number or a vector without any casting.
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0a 1a 2a 3a : Ar – Natural numbres
0a = z; 1a = s 0a; 2a = s 1a; 3a = s 2a

v2 v4 mat22 : Ar
v2 = 2a :: 2a :: [] – Vector [2,2]
v4 = 1a :: 0a – Flattened identity matrix [[1,0],[0,1]]

:: 0a :: 1a :: []
mat22 = reshape v2 v4 – Identity matrix of shape [2,2]

On the negative side, our array type does not enforce any shape invariants. That is, we can
produce non-rectangular arrays such as:

weird1 = reshape (2a :: 2a :: []) (1a :: 2a :: 3a :: [])
weird2 = (3a :: []) :: weird1

While it might be possible to define the meaning for such cases, normally they are considered
type errors. We could also try restricting these constructions with refinement types, but we
are interested in intrinsically-typed solution instead.

4.2 Inductive-inductive
Intrinsically-typed array universe can be defined using inductive-inductive types, following
the ideas from [18]. We define arrays and shapes mutually.

module Univ where
data Sh : Set
data Ar : Sh → Set
data Sh where

scal : Sh
vec : Ar scal → Sh
mda : ∀ {s} → Ar (vec s) → Sh

The shapes form the following hierarchy: scalars (e.g. natural numbers) have a unit shape;
vector shapes are parametrised by scalars; multi-dimensional shapes are parametrised by
vectors.

Nat : Set
Nat = Ar scal

Vec : Nat → Set
Vec n = Ar (vec n)

prod : ∀ {n} → Vec n → Nat

We define names Nat and Vec which are synonyms for arrays of the corresponding shape.
We also make a forward declaration of the prod function that computes the product of the
given vector. Now we are ready to define the array universe as follows:

data Ar where
z : Nat
s : Nat → Nat

TYPES 2022
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[] : Vec z
_::_ : ∀ {n} → Nat → Vec n → Vec (s n)
reshape : ∀ {n} → (s : Vec n) → Vec (prod s) → Ar (mda s)

We use exactly the same constructors as before, except vectors are indexed by their length,
and multi-dimensional arrays are indexed by shape vectors. Also, the reshape constructor
has a coherence condition saying that the number of elements (prod s) in the vector we are
reshaping matches the new shape s.

We complete the definition of prod, expressing it as a fold with multiplication _*n_
(defined as usual, not shown here).

0a 1a 2a 3a : Nat
0a = z; 1a = s z; 2a = s 1a; 3a = s 2a; 4a = s 3a

prod [] = 1a

prod (x :: xs) = x *n prod xs

Vector and matrix examples can be expressed as follows.

v2 : Vec 2a

v2 = 2a :: 2a :: []

v4 : Vec 4a

v4 = 1a :: 0a

:: 0a :: 1a :: []

mat22 : Ar (mda v2)
mat22 = reshape v2 v4

While the numbers, vectors and arrays are elements of the same universe, we did not achieve
the desired array uniformity. The problem is that we maintain the distinction between arrays
and shapes, even though morally they are the same thing. For example, the type of mat22
is Ar (mda v2), not Ar v2. Also, the expression reshape [] (1a :: [])) cannot be typed as Nat,
even though it is an array of the empty shape.

4.3 Münchhausen universe
In order to resolve the lack of uniformity, we use the Münchhausen method (the variant with
forward declarations). Our goal is to equate Ar and Sh. Therefore, we forward-declare Sh as
a placeholder to bootstrap the array type. After that we close the cycle by defining Sh to be
Ar with a certain index.

We start with forward-declaring types N (natural numbers) and shapes Sh that are
indexed by natural numbers. Both of these types are placeholders that we will eliminate
later.

module UniformUniv where
N : Set
Sh : N → Set

The array type is a concrete definition, whereas its parameter is a placeholder type.

data Ar : ∀ {n} → Sh n → Set



T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:11

We make forward declarations of N and Sh constructors that are needed to fill-in the indices
of the array type. Note that N constructors are used to fill-in the indices of Sh constructors.

z’ : N
s’ : N → N
[]’ : Sh z’
_::’_ : ∀ {n} → N → Sh n → Sh (s’ n)

We define names Nat and Vec for 0-dimensional and 1-dimensional arrays correspondingly.
We also make a forward declaration of prod as before, except we use placeholder types.

Nat : Set
Nat = Ar []’

Vec : N → Set
Vec n = Ar (n ::’ []’)

prod : ∀ {n} → Sh n → N

Now we can define an array universe, exactly as before.

data Ar where
z : Nat
s : Nat → Nat
[] : Vec z’
_::_ : ∀ {n} → Nat → Vec n → Vec (s’ n)
reshape : ∀ {n} → (s : Sh n) → Vec (prod s) → Ar s

Finally, we eliminate the placeholder types by equating N and Sh with 0-dimensional and
1-dimensional arrays correspondingly. After we do this, we define the placeholder constructors
to be those defined in Ar.

N = Ar []’
Sh n = Ar (n ::’ []’)
z’ = z; s’ = s; []’ = []; _::’_ = _::_

This closes the cycle and turns Ar into a very dependent type that is witnessed by the
following Agda expression:

_ : ∀ {n : Ar []} → (s : Ar (n :: [])) → Set
_ = Ar

As expected, our examples are definable, and 1-dimensional arrays can be immediately used
as array shapes.

0a 1a 2a 3a 4a : Nat
0a = z; 1a = s 0a; 2a = s 1a; 3a = s 2a; 4a = s 3a

v2 : Ar (2a :: [])
v2 = 2a :: 2a :: []

v4 : Ar (4a :: [])
v4 = 1a :: 0a :: 0a :: 1a :: []

TYPES 2022
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One technical drawback that we ran into is that with such a cyclic type, Agda loops when
attempting to define pattern-matching functions. The loop happens when solving the
unification problem – it has to check that two arrays type match. As array types are indexed,
Agda has to unify the indices, which triggers unifying the type of the indices, and so on. As
a workaround, we can define eliminators via rewrite rules, which makes it possible to define
prod. The rest works as expected.

prod {n} xs = sh-elim _ 1a (λ n x xs r → x *n r) n xs

mat22 : Ar v2

mat22 = reshape v2 v4

scal-test : Nat
scal-test = reshape [] (1a :: [])

5 Russell Universes

In pure type systems [5] there is no separate sort for terms and types, there are only terms
and those terms which appear on the right hand side of the colon in the typing relation
are called types. Using well-typed terms, this would lead to the following very dependent
type for the sort of terms: Tm : (Γ : Con) → Tm Γ U → Set. That is, terms depend on a
context and a term of type U. Using the Münchhausen method (its variant with forward
declarations), we can make sense of this. We temporarily introduce types and the type U’
for the universe, then after declaring the sort of terms we can say that actually types are
just terms of type U’, then we can add the actual U operator for terms and close the loop
by saying that U’ is the same as U. Using forward declarations, part of the syntax of type
theory is given as follows.

data Con : Set
Ty : Con → Set – forward declaration
data Con where

· : Con
_▷_ : (Γ : Con) → Ty Γ → Con

U’ : ∀ {Γ} → Ty Γ – forward declaration
data Tm : (Γ : Con) → Ty Γ → Set
Ty Γ = Tm Γ U’
data Tm where

U : ∀ {Γ} → Ty Γ
Π : ∀ {Γ} → (A : Ty Γ) → Ty (Γ ▷ A) → Ty Γ
lam : ∀ {Γ A B} → Tm (Γ ▷ A) B → Tm Γ (Π A B)

U’ = U

Note that such a theory is inconsistent through Russell’s paradox, but it is easy to fix this
by stratification (adding natural number indices to Ty and U, see e.g. [15]). More precisely,
we say that a stratified category with families (CwF [6]) with a type former U : (i : N) → Ty
Γ (i+1) satisfying U i [ σ ]T = U i is Russell if the equations Ty Γ i = Tm Γ (U i) and A [
σ ]T = A [ σ ]t hold (where _[_]T and _[_]t are the substitution operations for types and
terms, respectively).
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Any CwF with a hierarchy of Tarski universes can be equipped with a Russell family
structure supporting the same type formers as the Tarski universe. A hierarchy of Tarski
universes is given by the universe types U i : Ty Γ (i+1), their decoding El : Tm Γ (U i) → Ty Γ
i, a code for each universe u i : Tm Γ (U (i+1)) such that their decoding is the actual universe
El (u i) = U i. We further have the evident substitution rules and additional operations
expressing that U is closed under certain type formers. The Russell family structure then is
defined by TyR Γ i := Tm Γ (U i) and TmR Γ A := Tm Γ (El A), both substitution operations
are _[_]t, context extension is Γ ▷R A := Γ ▷ El A. The Russell universe is defined as UR i :=
u i, thus we obtain the Russell sort equation by TyR Γ i = Tm Γ (U i) = Tm Γ (El (u i)) =
TmR Γ (UR i). We formalised this model construction using the shallow embedding trick of
[14], the formalisation is part of the source code of the current paper8.

6 Type Theory without Contexts

Having Russell universes could be called “type theory without types” as types are just special
terms. Type theory without contexts is when contexts are just types without free variables.

When defining type theory as an algebraic theory, the final goal is to describe the rules
for types and terms. Contexts and substitutions (the category structure) are only there as
supporting infrastructure. However, when enough structure is added to types and terms,
we don’t need this supporting infrastructure anymore and we can get rid of it using the
Münchhausen technique. We will still have explicit substitutions, but we use terms instead
of context morphisms. The resulting theory with very dependent types includes the following
sorts and operations. Note that some of these operations are not only very dependently
typed, but the typing is very mutual: for example, the type of Ty includes ⊤ which is only
listed later.

Ty : Ty ⊤ → Set
Tm : (Γ : Ty ⊤) → Ty Γ → Set
_[_]T : Ty Γ → Tm ∆ (Γ [ tt ]T) → Ty ∆
_[_]t : Tm Γ A → (σ : Tm ∆ (Γ [ tt ]T)) → Tm ∆ (A [ σ ]T)
id : Tm Γ (Γ [ tt ]T)
⊤ : Ty Γ
tt : Tm Γ ⊤
Σ : (A : Ty Γ) → Ty (Σ Γ (A [ snd id ]T)) → Ty Γ
_,_ : (a : Tm Γ A) → Tm Γ (B [ id , a ]T) → Tm Γ (Σ A B)
fst : Tm Γ (Σ A B) → Tm Γ A
snd : (w : Tm Γ (Σ A B)) → Tm Γ (B [ id , fst w ]T)

It is difficult to derive the above in Agda using forward declarations or rewrite rules, but
working on paper (in extensional type theory) this is possible. A model of type theory without
contexts is given by a CwF with ⊤ and Σ types9 where the following equations hold.

8 See https://bitbucket.org/akaposi/combinator/src/master/post-types2022/russel.lagda
9 List of notations: the category is denoted Con, Sub, _◦_, id, the empty context (terminal object) ⋄, the

empty substitution ε, types are Ty Γ with the substitution operation _[_]T, terms Tm Γ A with _[_]t,
context extension _▷_, substitution extension _,_ and projections p : Sub (Γ ▷ A) Γ, q : Tm (Γ ▷ A)
(A [ p ]T). The type former ⊤ : Ty Γ comes with constructor tt and η law. Σ’s constructor is denoted
_,_, the destructors are fst and snd and we have both β laws and an η law.
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Con = Ty ⋄
Sub ∆ Γ = Tm ∆ (Γ [ ε ]T)
σ ◦ ν = σ [ ν ]t
⋄ = ⊤
ε = tt
Γ ▷ A = Σ Γ (A [ q ]T)
σ , t = σ , t
p = fst id
q = snd id

Note that the well-typedness of the second equation depends on the first equation, as Γ : Con
has to be viewed as Γ : Ty ⋄ and then we can substitute it with the empty substitution to
obtain Γ [ ε ]T : Ty ∆. Just as substitutions are special terms, composition of substitutions
is a special case of substitution of terms, the empty context is ⊤ : Ty ⋄, context extension is
a Σ type where A : Ty Γ, but Σ requires a Ty (⋄ ▷ Γ), so we need a Sub (⋄ ▷ Γ) Γ = Tm (⋄ ▷

Γ) (Γ [ ε ]T) = Tm (⋄ ▷ Γ) (Γ [ p ]T), which is given by q {⋄}{Γ}.
We can check that in a model of type theory without contexts, the very dependent types

listed above are all valid.
As for Russell models, we have a model construction which replaces any CwF with ⊤ and

Σ with a model without contexts. We cannot directly use the equations of model without
contexts above for the model construction. E.g. if we said that Con’ := Ty ⋄ and ⋄’ := ⊤
and Ty’ Γ := Ty (⋄ ▷ Γ) then we would have Con’ = Ty ⋄ ≠ Ty (⋄ ▷ ⊤) = Ty’ ⋄’. Instead we
define Con’ := Ty (⋄ ▷ ⊤), ⋄’ := ⊤ and Ty’ Γ := Ty (⋄ ▷ Γ [ ε , tt ]T). Now we have Con’ =
Ty (⋄ ▷ ⊤) = Ty (⋄ ▷ ⊤ [ ε , tt ]T) = Ty (⋄ ▷ ⋄’ [ ε , tt ]T) = Ty’ ⋄’. We refer to Appendix A
for the definition of the rest of the components of the output model and also for a proof that
if the input model has Π types then so does the output model. We formalised this model
construction using shallow embedding [14], the formalisation is part of the source code of the
current paper10.

7 Combinatory Type Theory

In our final example, we also present a (dependnet) type theory without contexts. Instead of
eliminating contexts with equations as we did in the previous section, we avoid introducing
them in the encoding. This raises the question: if there are no contexts, how do we talk
about well-scoped variables? As a matter of fact, we do not talk about variables at all.

It is well known that for simply-typed systems, combinator calculus [11] gives a contextless
presentation of the type system. There are no variables, function space is built-in, and the
combinators S and K are used to define functions.

Combinator calculus for dependently-typed systems is a much more challenging [17] task,
and it was never defined. Unsurprisingly, contextless dependently-typed theory is an example
of a very dependent type, and we use Münchhausen method to define it. Specifically, we
use postulates and rewrite rules to encode very dependent types. While there might be a
solution with forward declarations, we chose rewrite rules for the sake of simplicity of the
presentation.

10 See https://bitbucket.org/akaposi/combinator/src/master/post-types2022/uncat.lagda
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First Attempt
In our first attempt we started defining a non-dependent function type, hoping to internalise
it in the universe and define Π types afterwards. Concretely, we define types Ty, terms Tm
indexed by types, the universe U, and eliminate the Ty type. After that, we define the arrow
type _⇒_, applications, the arrow type within the universe |⇒| and the equation that turns
the arrow into the internal arrow.

module FirstAttempt where
postulate

Ty : Set – Types
Tm : Ty → Set – Terms
U : Ty – Universe
TmU : Ty ≡ Tm U – Russell-ification
{-# REWRITE TmU #-}
_⇒_ : Ty → Ty → Ty – Non-dependent (external) arrow type
_$_ : Tm (X ⇒ Y) → Tm X → Tm Y – Applications
|⇒| : Tm (U ⇒ U ⇒ U) – Internal arrow type
∅⇒ : X ⇒ Y ≡ |⇒| $ X $ Y – Internalising arrow

While this looks promising, after rewriting ∅⇒ we run into the following problem. Consider
the sequence of rewrites that is happening for the type Tm (X ⇒ Y) which is the type of the
first argument of the application _$_.

_1 : Tm (X ⇒ Y) – Expands to
_1 : Tm (|⇒| $ X $ Y) – Show hidden arguments
_2 : Tm ((_$_ {U}{U ⇒ U} |⇒| X) $ Y) – Arrow in (U ⇒ U) again!

As Agda applies all the rewrite rules before type checking, we end-up in the infinite rewrite
loop. There does not seem to be an easy fix.

Second Attempt
Now we start with Π types straight away and use them to define dependent combinators.
The notion of types, terms and the universe is the same as before.

module SecondAttempt where
postulate

Ty : Set
Tm : Ty → Set
U : Ty
Tm-U : Tm U ≡ Ty
{-# REWRITE Tm-U #-}

We introduce the notion of a U-valued family and the application operation for it. Using
family we can immediately define Π types and applications to the terms of Π types.

Fam : Ty → Ty – Fam X ≈ (X ⇒ U)
_$f_ : Tm (Fam X) → Tm X → Ty – Apply (x : X) to (t : Fam X)

Pi : (X : Ty) → Tm (Fam (Fam X)) – X → ((X ⇒ U) ⇒ U)
_$_ : {X : Ty}{Y : Tm (Fam X)}

→ Tm (Pi X $f Y) → (a : Tm X) → Tm (Y $f a)

TYPES 2022
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Consider defining a non-dependent function type for (X Y : Ty) using the Pi type. We can
immediately apply X to Pi, but then we need to turn Y into a constant X-family in order to
complete the definition (Pi X $f □). To achieve this we introduce the Kf combinator that
turns a type into a constant family. Its beta rule is the same as of the standard K combinator.
Using Kf we can complete the definition of non-dependent arrow.

Kf : (Y : Ty) → Tm (Fam X) – Kf Y ≈ λ a → Y
Kf$ : ∀ {a : Tm X} → _$f_ {X} (Kf Y) a ≡ Y
{-# REWRITE Kf$ #-}

_⇒_ : (X Y : Ty) → Ty
X ⇒ Y = Pi X $f (Kf Y)

Let us remind ourselves, the type of dependent K combinator:

[K] : (X : Set)(Y : X → Set) → (x : X) (y : Y x) → X
[K] X Y x y = x

Translation into our formalism requires expressing (x : X)(y : Y x) → X as a Pi type. More
precisely, how do we express (Y x → X) as an X-family? We do this by introducing a helper
combinator with the corresponding beta rule. After that, defining dependent K and its beta
rule becomes straight-forward.

postulate – Dependent K
Yx⇒Z : ∀ X (Y : Tm (Fam X)) → (Z : Ty) → Tm (Fam X)
Yx⇒Z$ : ∀ X Y Z {x : Tm X} → Yx⇒Z X Y Z $f x ≡ Y $f x ⇒ Z
{-# REWRITE Yx⇒Z$ #-}

Kd : {Y : Tm (Fam X)} → Tm (Pi X $f Yx⇒Z X Y X)
Kd$ : ∀ {Y : Tm (Fam X)}{x : Tm X}{y : Tm (Y $f x)}

→ Kd {X = X}{Y = Y} $ x $ y ≡ x
{-# REWRITE Kd$ #-}

Similarly to dependent K, we start with reminding ourselves the type of the dependent S
combinator. We will use the same strategy of defining extra combinators to construct parts
of the type signature.

[S] : (X : Set)(Y : X → Set)
(Z : (x : X) → Y x → Set) – λ (x : X) → Yx⇒U x

→ (f : (x : X) → (y : Y x) → Z x y) – λ (x : X) → Π[Yx][Zx] x
→ (g : (x : X) → Y x)
→ ((x : X) → Z x (g x)) – λ (g : ΠXY) → ΠX[Zx[gx]] g

[S] X Y Z f g x = f x (g x)

We annotate the combinators we introduced at the corresponding positions of the [S] type.
With these definitions, we can define dependent S and its beta rule as follows.
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postulate – Dependent S
Yx⇒U : ∀ X (Y : Tm (Fam X)) → Tm (Fam X)
Yx⇒U$ : ∀ X Y {x : Tm X} → Yx⇒U X Y $f x ≡ Fam (Y $f x)
{-# REWRITE Yx⇒U$ #-}

Π[Yx][Zx] : ∀ X (Y : Tm (Fam X)) → (Z : Tm (Pi X $f Yx⇒U X Y)) → Tm (Fam X)
Π[Yx][Zx]$ : ∀ X Y Z {x : Tm X} → Π[Yx][Zx] X Y Z $f x ≡ Pi (Y $f x) $f (Z $ x)
{-# REWRITE Π[Yx][Zx]$ #-}

Zx[gx] : ∀ X (Y : Tm (Fam X)) (Z : Tm (Pi X $f Yx⇒U X Y))
→ Tm (Pi X $f Y) → Tm (Fam X)

Zx[gx]$ : ∀ X Y Z g {x} → Zx[gx] X Y Z g $f x ≡ Z $ x $f (g $ x)
{-# REWRITE Zx[gx]$ #-}

ΠX[Zx[gx]] : ∀ X (Y : Tm (Fam X)) (Z : Tm (Pi X $f Yx⇒U X Y))
→ Tm (Fam (Pi X $f Y))

ΠX[Zx[gx]]$ : ∀ X Y Z g → ΠX[Zx[gx]] X Y Z $f g ≡ Pi X $f (Zx[gx] X Y Z g)
{-# REWRITE ΠX[Zx[gx]]$ #-}

Sd : {Y : Tm (Fam X)}{Z : Tm (Pi X $f Yx⇒U X Y)}
→ Tm (Pi X $f Π[Yx][Zx] X Y Z

⇒ (Pi (Pi X $f Y) $f (ΠX[Zx[gx]] X Y Z)))
Sd$ : {Y : Tm (Fam X)}{Z : Tm (Pi X $f Yx⇒U X Y)}

→ {f : Tm (Pi X $f Π[Yx][Zx] X Y Z) }
→ {g : Tm (Pi X $f Y)}
→ {x : Tm X}
→ Sd $ f $ g $ x ≡ f $ x $ (g $ x)

{-# REWRITE Sd$ #-}

Finally, with a few more rewrite rules, we can define non-dependent S and K combinators
as special cases of their dependent versions.

K : Tm (X ⇒ Y ⇒ X)
K {X}{Y} = Kd {X}{Kf Y}

S : Tm ((X ⇒ Y ⇒ Z) ⇒ (X ⇒ Y) ⇒ X ⇒ Z)
S {X}{Y}{Z} = Sd {X}{Kf Y}{K $ (Kf Z)}

We made a good progress with defining combinatory type theory. However, current
combinators are not yet powerful enough to internalise Pi and Fam. The problem is that
in Pi, Kd and Sd type parameters X, Y and Z are quantified externally. We need to define
the version of these combinators that internalises this quantification within U. There is
no conceptual problem in doing so, but the resulting terms become incredibly large and
inconvenient to work with. Specifically, the one for the dependent S combinator. It is not
clear whether there is a more elegant way of doing this.

TYPES 2022



10:18 The Münchhausen Method in Type Theory

8 Conclusions

This paper demonstrates a technique to justify and make practical use of very dependent
types. Our method is based on the observation that the “cycle” of a very dependent type can
be “cut” by introducing placeholder types, defining the data and then eliminating placeholders
by means of equations.

When we try to apply the proposed technique within the actual theorem provers such
as Agda, we have a few choices on how to implement this. First, we can pack together
placeholders, data and explicit equalities, e.g. as we do in DPair type in Section 3. This
is a straight-forward implementation of the Münchhausen technique. However, dealing
with explicit propositional equalities as parts of data often brings us to the situation called
“transport hell”. For example, the isomorphism proof about DPairs is an instance of that.
Alternatively, for the objects of very dependent types, we can turn propositional equalities
into definitional ones. On paper, extensional type theory achieves this, and in special cases
we can use shallow embedding (as in the formalisation of Sections 5 and 6). In Agda, there
are two ways to do this: forward declarations and rewrite rules. Forward declarations are
demonstrated when declaring pair in Section 3, Ar universe in Section 4 and Tm in Section 5.
While this is a very convenient feature of Agda, it is considered11 not very well understood
by many Agda developers. Also, as we have seen with Ar example, currently it leads to loops
in the typechecker, which is clearly a bug.

Rewrite rules [7] make it possible to turn arbitrary propositional equalities into definitional
ones, but this feature of Agda is considered unsafe. However, it is clearly a localized imple-
mentation of extensional type theory which is conservative over intensional type theory with
extensionality principles (as available in Cubical Agda). We expect that the conservativity
result [12] extends to our setting and hence the use of rewriting rules is only a cosmetic
and labour saving tool to avoid transport hell. We use rewrite rules in Section 7. Currently,
the interplay between the rewrite rules and the typechecker is not always satisfying. For
example, our first attempt in Section 7 ends up in an infinite rewrite, as all the rules have to
fire before the typechecker. We believe that more interleaved approach to rewriting could
make our example to typecheck.

The examples show that very dependent types can be used in a fully algebraic setting,
i.e. without referring to untyped preterms as in [10]. The essential ingredient are forward
declarations, i.e. we introduce the type of an object but only define it later while already
using it in the types of other objects – see [2] for a formal definition of this concept. This is
also the idea in inductive-inductive definitions, where constructors may depend on previous
constructors [4, 8].

Clearly, Agda provides us with a mechanism to play around with these concepts but it is
not yet clear what exactly the theory behind these constructions is. In this sense, our paper
raises questions instead of answering them. We believe that this is a valuable contribution to
the subject.
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A The Type Theory without Contexts model construction

The input is a CwF with ⊤ and Σ types both having η rules. We use the same notation
as in Section 6, the components of the model are Con, Ty, and so on. The components of
the output model without contexts are denoted the same. We list all of them here in the
following order: category, terminal object, types, terms, context extension, unit, Σ. This
model construction was fully formalised in Agda.

Con := Ty (⋄ ▷ ⊤)
Sub ∆ Γ := Tm (⋄ ▷ ∆ [ ε , tt ]T) (Γ [ ε , tt ]T)
σ ◦ ν := σ [ ε , ν ]t
id := q
⋄ := ⊤
ε := tt
Ty Γ := Ty (⋄ ▷ Γ [ ε , tt ]T)
A [ σ ]T := A [ ε , σ ]T
Tm Γ A := Tm (⋄ ▷ Γ [ ε , tt ]T) A
t [ σ ]t := t [ ε , σ ]t
Γ ▷ A := Σ Γ (A [ ε , q ]T)
σ , t := σ , t
p := fst q
q := snd q
⊤ := ⊤
tt := tt
Σ A B := Σ A (B[ ε , (q [ p ]t , q) ])T
u , v := u , v
fst t := fst t
snd t := snd t

All the equations hold. If the input model has Π types, so does the output model. If the
input model has a Coquand-universe, so does the output model. The operations are the
following.

Π A B := Π A (B[ ε , (q [ p ]t , q) ])T
lam t := lam (t [ ε , (q [ p ]t , q) ]t)
app t := (app t) [ ε , fst q , snd q ]t
U := U
El t := El t
c A := c A

All the equations hold.


	1 Introduction
	2 Background
	2.1 Datatypes
	2.2 Records
	2.3 Modules
	2.4 Forward Declarations
	2.5 Postulates
	2.6 Rewrite Rules

	3 Dependent Sequences
	3.1 Infinite Sequences

	4 Multi-dimensional Arrays
	4.1 Unshaped arrays
	4.2 Inductive-inductive
	4.3 Münchhausen universe

	5 Russell Universes
	6 Type Theory without Contexts
	7 Combinatory Type Theory
	8 Conclusions
	A The Type Theory without Contexts model construction

