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A B S T R A C T   

Background: Anterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory temporal 
lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of individuals experience a naming 
decline which can impact upon daily life. Measures of structural networks are associated with language per-
formance pre-operatively. It is unclear if analysis of network measures may predict post-operative decline. 
Methods: White matter fibre tractography was performed on preoperative diffusion MRI of 44 left lateralised and 
left resection individuals with TLE to reconstruct the preoperative structural network. Resection masks, drawn on 
co-registered pre- and post-operative T1-weighted MRI scans, were used as exclusion regions on pre-operative 
tractography to estimate the post-operative network. Changes in graph theory metrics, cortical strength, 
betweenness centrality, and clustering coefficient were generated by comparing the estimated pre- and post- 
operative networks. These were thresholded based on the presence of the connection in each patient, ranging 
from 75% to 100% in steps of 5%. The average graph theory metric across thresholds was taken. 
We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation (SCAD) least absolute 
shrinkage and selection operator (LASSO) feature selection and a support vector classifier to assess graph theory 
metrics on picture naming decline. Picture naming was assessed via the Graded Naming Test preoperatively and 
at 3 and 12 months post-operatively and the outcome was classified using the reliable change index (RCI) to 
identify clinically significant decline. The best feature combination and model was selected using the area under 
the curve (AUC). The sensitivity, specificity and F1-score were also reported. Permutation testing was performed 
to assess the machine learning model and selected regions difference significance. 
Results: A combination of clinical and graph theory metrics were able to classify outcome of picture naming at 3 
months with an AUC of 0.84. At 12 months, change in strength to cortical regions was best able to correctly 
classify outcome with an AUC of 0.86. Longitudinal analysis revealed that betweenness centrality was the best 
metric to identify patients who declined at 3 months, who will then continue to experience decline from 3 to 12 
months. Both models were significantly higher AUC values than a random classifier. 
Conclusion: Our results suggest that inferred changes of network integrity were able to correctly classify picture 
naming decline after ATLR. These measures may be used to prospectively to identify patients who are at risk of 
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picture naming decline after surgery and could potentially be utilised to assist tailoring the resection in order to 
prevent this decline.   

1. Introduction 

Language is impaired in up to 50% of patients with temporal lobe 
epilepsy (TLE) (Reyes et al., 2019). This impairment typically affects 
naming and verbal fluency (Allone et al., 2017), especially when the 
epileptogenic zone is within the language dominant hemisphere 
(Rosazza et al., 2013). Longer duration of disease can be associated with 
worse cognitive function (Helmstaedter and Kockelmann, 2006). For 
medically-refractory TLE patients, anterior temporal lobe resection 
(ATLR) is effective for seizure control. However, individuals undergoing 
language-dominant resection have a 30–50% risk of significant post- 
operative decline in language-related functions, particularly naming, 
which can impact daily life (Sherman et al., 2011; Zhao et al., 2014). An 
ability to minimize the impact of ATLR on language function would be 
beneficial. 

Language function is subserved by synchronized processing in 
dispersed cortical regions, connected through white matter fibers 
(Binding et al., 2022). Lateralization of cortical activation in visual and 
auditory naming functional MRI (fMRI) tasks to the ipsilateral temporal 
lobe predicts which patients will experience language decline (Trimmel 
et al., 2019). However, surgically sparing fMRI-activated cortical re-
gions does not avoid a naming impairment in 50% of individuals (Davies 
et al., 2005). This suggests a possible role of white matter damage in 
post-surgical language decline. 

There is interindividual variation of tract anatomy, functional 
cortical anatomy, and of tissue resected, including for relatively stand-
ardised ATLR, resulting in variability of language outcome. Highlighting 
this, cortical stimulation in the temporal lobe showed extremely high 
variability on cortical responses, emphasising a role for plastic reor-
ganisation in individual subjects (Sanai et al., 2008). In those with gli-
omas, distinct patterns of language reorganisation have been shown 
according to tumour location (Herbet et al., 2019). Individuals with 
epilepsy may undergo reorganisation specific to their epileptogenic 
network, which may be potentially predicted by network analysis. 

White matter fibres are anatomically arranged in fibre bundles. 
Recent work has demonstrated that transection of specific fibre bundles 
within the temporal lobe contributes to picture naming decline (Binding 
et al., 2023; Herbet et al., 2016). Fibre bundle analysis, however, is 
limited by our understanding of white matter fibre anatomy and func-
tion. A direct comparison of whole-brain tractography and fibre bundle 
analysis highlights superiority of the former in predicting postoperative 
outcome (Kaestner et al., 2020). Previous research utilising graph theory 
metrics in TLE has demonstrated the centrality metric was able to pre-
dict pre-operative picture naming scores to a high degree (Munsell et al., 
2019). 

There is uncertainty as to whether whole-brain network analysis and 
graph theory metrics can predict language decline following ATLR. Our 
aim is to explore whether the estimated change in the cortical region’s 
network properties after ATLR is able to classify picture naming decline, 
and ultimately might be used to mitigate such risk. The goal is to un-
derstand the disruption of structural connectivity following ATLR that 
relates to picture naming decline, with the aim of improving future 
outcomes through enhanced neurosurgical planning. 

2. Materials and method 

2.1. Participants 

We studied 44 patients with medically refractory left TLE (27 fe-
males, mean age: 40 yr) and left lateralised language who underwent 
ATLR at the National Hospital of Neurology and Neurosurgery, London, 

United Kingdom between 2010 and 2019. Exclusion criteria were a 
previous history of neurosurgery, incomplete data, or non-dominant, 
right, or bilateral language lateralisation. All patients had a pre- 
operative: T1-weighted structural MRI; dMRI; task-based language 
fMRI, and a post-operative T1-weighted MRI (obtained between 3- and 
12-months post-operatively). 

All patients had a typical ATLR, removing the anterior temporal lobe 
and the majority of the amygdala and hippocampus. Pathology 
comprised hippocampal sclerosis (HS; N = 27), cavernoma (CAV; N =
2), dysembryoplastic neuroepithelial tumour (DNT; N = 5), dual pa-
thology (N = 6), and other (N = 4). 

2.2. Standard protocol Approvals, Registrations, and patient consents 

This project was approved by London – Bloomsbury Research Ethics 
Committee (REC reference: 20/LO/0149; CAG number: 20/CAG/0013). 
Patient data were pseudo-anonymised. This project did not carry any 
risk to participants and was retrospectively conducted on clinically ac-
quired data. 

2.3. Neuropsychology 

Language was assessed via the McKenna Graded Naming Test which 
is a visual confrontation naming assessment (referred to as picture 
naming) (Warrington, 1997). This was performed pre-operatively and 3 
and 12 months post-operatively. There were seven patients missing data 
from the 12 months follow-up. These patients were removed from the 
12-month analysis. Change in neuropsychological performance was 
assessed using the reliable change index (RCI) which was dichotomized 
to create a binary variable that measured significant decline vs. no 
decline. An RCI-decline of ≥ 4 was considered a clinically significant 
decline as per previous research (Trimmel et al., 2019). There were 17/ 
44 (38.6%) and 11/37 (29.7%) patients who had clinically significant 
picture naming decline at 3 and 12 months, respectively. 

2.4. Clinical features 

Recent evidence suggests that side of surgery, age of onset, and 
preoperative naming scores are able to predict naming decline with high 
accuracy (Busch et al., 2018). While we already divided patients based 
on side of surgery, we extracted the fMRI LI, age at surgery, age of onset 
and preoperative naming scores for inclusion in our analysis. Table 1 
includes the mean and standard deviation for the clinical variables 
included split across patients who did and did not undergo clinically 
significant decline (as determined via the RCI). (see Table 2.) 

Table 1 
Descriptive statistics of clinical characteristics. Descriptive statistics are split 
between those with and without clinically significant decline which is deter-
mined by the reliable change index,   

3 Months 
Decline: 
Mean (STD) 

3 Month No 
Decline: 
Mean (STD) 

12 Months 
Decline: 
Mean (STD) 

12 Months 
No Decline: 
Mean (STD) 

Age of Onset 13.07(9.12) 20.17(14.82) 23.86 
(17.81) 

15.6(10.98) 

Preoperative 
naming score 

14.18(6.15) 15.46(5.67) 18.55(5.77) 13.62(5.19) 

fMRI LI 0.8(0.13) 0.71(0.2) 0.65(0.26) 0.78(0.14) 
Age 40.45(9.09) 40(12.12) 47.91(12.1) 36.85(9.15) 

Abbreviations: fMRI LI: functional magnetic resonance imaging lateralisation 
index; STD: standard deviation. 
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2.5. MRI acquisition 

Between 2009 and 2013 (N = 27) patients were scanned on a 3 T GE 
Signa Excite HDx (Taylor et al., 2018). Single-shell dMRI data were 
acquired using a cardiac-triggered single-shot spin-echo planar imaging 
sequence (Wheeler-Kingshott et al., 2002): 1.875 × 1.875 × 2.4 mm 
resolution, gradient directions: 6 and 52 at b-values: 0 and 1200/ mm2, 
δ/Δ/TE = 21/29/73 ms, and a 3D T1-weighted sequence was acquired. 
For verbal fluency fMRI (Tombaugh et al., 1999) gradient-echo planar 
T2*-weighted images were acquired with 58 contiguous 2.5 mm oblique 
axial slices, 96 × 96 matrix reconstructed to 128 × 128 for an in-plane 
resolution of 1.875 × 1.875 mm (TE/TR = 25/2500 ms). 

Between 2014 and 2019 (N = 17) patients were scanned on a 3 T GE 
Discovery MR750 (Taylor et al., 2018). A 3D T1-weighted sequence 
(MPRAGE) was acquired and multi-shell dMRI (2 mm isotropic resolu-
tion, gradient directions: 11, 8, 32, and 64 at b-values: 0, 300, 700, and 
2500 s/mm2; ∂/Δ = 21.5/35.9 ms, TE/TR = 74.1/7600 ms). For verbal 
fluency fMRI (Tombaugh et al., 1999) gradient-echo planar T2*- 
weighted images was acquired with 50 contiguous 2.4 mm (0.1 mm 
gap) slices with a 24 cm field of view, 64 × 64 matrix with an in-plane 
voxel size of 3.75 × 3.75 mm (TE/TR = 22/2500 ms). 

2.6. MRI processing 

2.6.1. Diffusion processing 
Diffusion MRI data were denoised (Veraart et al., 2016), Gibbs- 

unringed (Kellner et al., 2016), corrected for signal drift (Vos et al., 
2017), and distortion corrected using a synthesized b0 for diffusion 
distortion correction (Synb0-DisCo) (Schilling et al., 2019) with FSL 
topup (Andersson et al., 2003). Eddy currents and movement artifacts 
were corrected (Andersson and Sotiropoulos, 2016), rotating the b- 
vectors (Leemans and Jones, 2009). Additionally, bias-field correction 
was performed in MRtrix3 (Kellner et al., 2016). Response functions for 
cerebrospinal fluid, white and grey matter were estimated using Single- 
Shell 3-Tissue (Dhollander and Connelly, 2016) and Multi-Shell 3-Tissue 
(Dhollander et al., 2019) CSD in MRtrix3 (Kellner et al., 2016). 

2.6.2. fMRI processing 
Functional MRI data was used to determine patients’ expressive 

language lateralisation for the inclusion criteria in this study. Each pa-
tient performed a verbal fluency task-based fMRI language task. This 
consisted of a block design with 30 s of covert object generation 
beginning with the letter presented on screen alternating with 30 s of 
cross-hair fixation for the baseline condition over 5.5 min (Powell et al., 
2006). Hemispheric language lateralization was calculated using the 
bootstrap method of the lateralization index toolbox implemented in 
SPM8 (Wilke and Lidzba, 2007) on spmT maps. The WFU PickAtlas’ 
anatomical masks of the middle and inferior frontal gyri (including the 
pars triangularis, orbitalis, opercularis) were used based on previous 

research highlighting lateralising reliability of these regions (Szaflarski 
et al., 2017; Woermann et al., 2003). LI values were calculated: [LI=
(L–R)/(L + R)]. 

2.6.3. Resection mask 
Resection masks were drawn based on previous techniques (Taylor 

et al., 2018). Post-operative T1-weighted MRI were affinely registered to 
pre-operative T1-weighted MRI. Resection masks were then manually 
drawn in MRtrix3 by overlaying the post-operative T1-weighted MRI on 
the pre-operative T1-weighted MRI starting at the most anterior coronal 
slice of the temporal lobe, then proceeding posteriorly every three slices. 
Coronal slices were then joined by drawing in every sagittal slice. Masks 
were saved in pre-operative T1-weighted space. Resection mask reli-
ability and validity were assessed via inter-rater reliability between two 
raters. Impact of delineation accuracy was assessed using dilated 
resection masks (eAppendix 1, eTable 1). 

2.6.4. Network Generation 
Anatomically constrained tractography (ACT) (Smith et al., 2012) 

using hybrid surface and volume segmentation in MRtrix3 (Smith et al., 
2020) was performed using second-order integration over fiber orien-
tation distribution probabilistic fiber tracking algorithm (Tournier et al., 
2010). Tractography was seeded on the boundary of white and grey 
matter and selecting 10 million streamlines. Spherical-deconvolution 
informed filtering of tractograms (SIFT) (Smith et al., 2013) was per-
formed filtering tractograms down to 1 million streamlines. This served 
as our preoperative connectivity. To infer estimated postoperative 
connectivity, we removed all tracts that passed through the resection 
mask. 

The automated anatomical labelling atlas 2 (AAL2) (Rolls et al., 
2015) was transformed to native space by registering the brain MNI to 
the native space brain (which was extracted using SynthStrip (Hoopes 
et al., 2022) using non-linear registration in NiftiReg (Modat et al., 
2014; Modat et al., 2010). This included 94 cortical regions. To verify 
consistency across parcellations we also generated network metrics 
using the Harvard-Oxford cortical and subcortical structural atlas (114 
cortical regions) which can be seen in eAppendix 2 (eTable 2). Con-
nectivity matrices were generated by assigning tract endpoints within 1 
mm to each subcortical and cortical parcel. Connections from a region to 
itself were removed. As graph theory metrics can vary across the level of 
threshold applied, a threshold and average were applied similar to 
Bassett et al. (Bassett et al., 2008). Matrices were thresholded based on 
the prevalence of a connection across patients. This threshold increased 
in increments of 5%, from 75% to 100%. This was done to increase the 
reliability of connections included. Graph metrics were then averaged 
across thresholds. Connectivity matrices were transformed using a log10 
transformation due to the distributions being non-normal (see eAppen-
dix 3). 

2.7. Network quantification 

Network metrics (graph theory metrics) were generated using 
weighted and undirected versions of functions in the Brain Connectivity 
Toolbox (Rubinov and Sporns, 2010). Network metrics were generated 
taking into account the entire brain. We investigated measures of 
strength, betweenness centrality, and clustering coefficient. 

2.7.1. Cortical Strength 
Cortical strength represents the sum of white matter connections to/ 

from a cortical region, encapsulating the number of connections a given 
region has (Fig. 1.). The decrease of white matter connecting a cortical 
region gives an approximation of how the resection has impacted on 
cortical regions’ connectivity involved in the network. Estimated change 
in strength was calculated by dividing post-operative by pre-operative 
values, because post-operative values should never increase. 

Table 2 
Classification capability of clinical and graph theory metrics to picture naming 
decline.  

Timepoint 3 
Months  

12 
Months  

Longitudinal 
analysis  

Model AUC F1- 
score 

AUC F1- 
score 

AUC F1- 
score 

Clinical 
Features 

0.79 0.74 0.77 0.67 0.70 0.60 

Strength 0.62 0.52 0.86 0.77 0.71 0.61 
Betweenness 

Centrality 
0.73 0.68 0.76 0.64 0.74 0.67 

Clustering 
Coefficient 

0.81 0.76 0.67 0.55 0.73 0.64 

Combined 
Analysis 

0.84 0.80 0.72 0.61 0.67 0.54  
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2.7.2. Betweenness Centrality 
The betweenness centrality of a region represents the number of 

times a cortical region is a point on the shortest path between two other 
cortical regions (Fig. 1.). Betweenness centrality has been related to the 
speed of information processing (Krukow et al., 2019) and provides a 
metric of how important that node is in transfer of information. Esti-
mated change in betweenness centrality were calculated by subtracting 
the post-operative by the pre-operative values due to their ability to 
increase or decrease following resection (Taylor et al., 2018). 

2.7.3. Clustering coefficient 
The clustering coefficient provides information on the likelihood that 

neighbours of a given cortical region are interconnected with each other 
(Fig. 1.). It can be interpretated as how tightly knit the surrounding 
network is. It is associated with efficient information exchange (Sporns 
et al., 2004). Similar to betweenness centrality, the clustering coefficient 
can increase following surgery, thus estimated change is calculated by 
subtracting the post-operative by the pre-operative values (Taylor et al., 
2018). 

2.8. Analysis 

In order to assess the classification capability of clinical features, and 
the estimated change from pre- to post-operative graph theory metrics 
(strength, betweenness centrality, and clustering coefficient) both 
individually and as a group to binarized (via the RCI) picture naming 
decline at 3 and 12 months we used an established machine learning 
framework (Taylor et al., 2018). 

2.8.1. Machine learning 
To produce unbiased feature selection in assessing picture naming 

decline we used a two-step leave-one-out cross validation and feature 
selection method (Taylor et al., 2018). This resulted in feature selection 
being independent of the test dataset. 

Depending on the prevalence threshold, the range of missing con-
nections per cortical region ranged between 25% and 0%. Each feature 
was harmonised across scanners using NeuroCombat performing 
empirical Bayes harmonization across features with parametric adjust-
ment (Fortin et al., 2017). The data were then scaled to a standard de-
viation of 1. 

Feature (variable) selection was performed using a penalized least 
squares approach with a smoothly clipped absolute deviation (SCAD) 
penalty function (Fan and Li, 2001) with integrated leave-one-out cross 
validation (splitting data into 43 training subjects and 1 test subject, 44 

times). This was performed to select variables unbiased by the testing 
dataset, resulting in 44 different models being trained (Becker et al., 
2011). With this approach, the coefficient β are those that minimise the 
function: 

J(β) =
1
2n

||y − Xβ||22 +
∑p

j=1
p(βj, a, λ) (1)  

where: 

p(βj, a, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ|β||β| ≤ λ;

2aλ|β| − β2 − λ2

2(a − 1)
λ < |β| ≤ aλ;

λ2(a + 1)
2

|β| > aλ.

(2) 

Here, a represents the concavity parameter for SCAD, which was 
varied 50 times with values evenly spaced between 2 and 10. The λ was 
varied 100 times with a minimum ratio of 0.5, the maximum value was 
the minimum regularisation parameter which yielded an all-zero esti-
mate. This resulted in 5000 unique gamma and lambda combinations for 
each leave-one-out model. SCAD was chosen due to its superior per-
formance in feature selection (Becker et al., 2011) and the expectation of 
relatively large coefficients. 

To assess the non-zero features for each leave-one-out cross valida-
tion remaining after each λ and a penalisation on picture naming 
decline, we used a linear support vector classifier incorporating a leave- 
one-out cross-validation scheme. This two-step machine learning 
method allowed feature selection and support vector classification un-
biased from the testing dataset. Due to class imbalances (3 months: 17/ 
27; 12 months: 11/26; decline/no decline) for each leave-one-out iter-
ation, we incorporated synthetic minority over-sampling technique 
(SMOTE) (Chawla et al., 2002) on the training dataset. To increase speed 
and reduce complexity of the models tested, only models under 20 
variables were trained / tested in the support vector classification. While 
this does not guarantee the final model will have a maximum of 20 
variables as a result of the two-step leave-one-out cross validation and 
feature selection, it does reduce the number of models and variables 
tested. Trained feature coefficients were extracted to signify their 
importance in the model. The resulting model was then tested on the 
patient left out of the training set, with the patient’s predicted and actual 
outcome saved. 

To select the best model and the best feature combination across each 
a and λ (from SCAD) we used the receiving operator characteristic ‘area 
under curve’ (AUC), selecting the maximum score. The AUC represents 

Fig. 1. A visual representation of the pre-operative and post-operative network and network metrics: strength, betweenness centrality and clustering coefficient. 
Each line represents one streamline. Each coloured cortical region (pink, green, yellow, blue) represent a hypothetical cortical region. Red represents the resection 
mask. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the ability of a classifier to distinguish between classes, a bigger value 
represents better proportion between true and false positive rate. The 
F1-score was also calculated as a measure of accuracy from the precision 
and recall, where precision is the amount of true positive predictions 
divided by total number of positive predictions (true positive + false 
positive), and recall is the amount of the true positive predictions 
divided by the total number of actual positive observations (true posi-
tive + false negative). 

The reported models may have different features in each leave-one- 
out iteration (due to incorporating leave-one-out cross-validation in our 
feature selection to remove bias) and each threshold. To accurately 
describe feature importance, we created the weighted feature impor-
tance metric. This averaged the mean importance across all leave-one- 
out and threshold iterations. The feature importance was weighted 
with the percentage of inclusion to identify the most important feature 
across models/thresholds. This was done to avoid skewing results with 
features which were important but only occurring in one model. 

2.8.2. Longitudinal support vector classifier 
To assess if there were features which were able to classify patients 

who underwent RCI determined decline at 3 months and who then 
experienced further decline between 3 and 12 months, we employed a 
two-step linear support vector classifier classification chain. This first 
aims to correctly classify patients who underwent decline at 3 months, 
then the features and result of this classification are used to predict if 
patients will then undergo further decline by 12 months. Feature se-
lection was performed twice as described above, using both the 3- and 
12-month RCI decline. As SMOTE is unavailable for multioutput datasets 
we addressed class imbalances by weighting classes based on their 
proportion of the sample. As feature importance can no longer be 
identified from this model, we instead recorded the prevalence of fea-
tures in each leave-one-out classification model, expecting those with 
the highest prevalence to be the most important. To select the best 
feature combination, we calculated a weighted AUC, which calculated 
the AUC separately for each timepoint, and then combining the results 
weighting by the number of true instances for each label. 

2.8.3. Statistical analysis 
We used permutation testing as in Gleichgerrcht et al. (Gleichgerrcht 

et al., 2020) to assess if model prediction was significantly better than 
chance. Based on the final model, variables were extracted and under-
went SMOTE. 10,000 permutations were then used, shuffling the picture 
naming RCI and splitting the data into train and test sets. A linear sup-
port vector classifier was trained on the training data and used to predict 
the test data. The AUC for each permutation was calculated. The p-value 
was calculated based on the number of times the AUC was higher in the 
permutation model compared to the main model. 

Similarly, we used permutation testing to assess differences between 
those with and without picture naming decline in metrics selected by the 
machine learning model. For each variable, data were split by the pic-
ture naming RCI and a Welch’s t-test was performed on the actual data to 
calculate the actual T-value. For permutation testing (10,000 permuta-
tions) the RCI was shuffled, and each variable data were split by the 
reshuffled RCI, calculating the T-value. The p-value was calculated 
based on number of times the T-value in each variable was higher in the 
permutation model compared to the actual T-value. The mean p-value 
was calculated for each variable across thresholds and Bonferroni 
correction to account for multiple comparisons was applied. 

3. Results 

3.1. Machine learning overview 

The results for classifying binarized (via the RCI) picture naming 
decline at 3- and 12- months are summarised in Table 1. At 3 months, the 
best performing metric was a combination of network metrics and 

clinical features. At 12 months, the best performing metric was the 
estimated change in strength to cortical regions. Looking at metrics 
classifying decline at 3 months and using that information to classify 
decline at 12 months, estimated betweenness centrality change was the 
best metric in classifying picture naming decline. 

3.2. Picture naming 3 months: Combined analysis 

The best performing model was a combined analysis, including 26 
features. A permutation-based comparison of this combined model with 
a random model gave an AUC of 0.84 for the former and AUC = 0.50 for 
the latter (p < 0.001). This equated to a specificity of 85.2% and 
sensitivity of 77.8%, with an overall accuracy of 84.1%. This translates 
to correctly identifying 14/17 with and 23/27 without picture naming 
decline. When comparing this to the Harvard-Oxford cortical and 
subcortical structural atlas (see eAppendix 2, eTables 2) we demonstrate 
similar results with combined analysis being the best predictor with an 
AUC of 0.81 and an F1-score of 0.77. 

Table 3 summarises 15 of the most important features included in the 
models. This included 7 betweenness centrality, 5 clustering coefficient, 
1 strength, and 2 clinical features with 6 being ipsilateral to the resection 
(see Fig. 2). The most important feature was the estimated change of 

Table 3 
15 of the most important features (as defined by weighted importance) to the 
combined model classification across leave-one-out in a support vector classi-
fication model for inferring 3 months picture naming decline. Showing the 
weighted importance across leave-one-out models, each cortical region and the 
associated graph metric contributing significantly to the model, the corrected p- 
value for a permutation test (10,000 permutations, Bonferroni corrected), and 
the mean difference with a higher value representing that metric was higher in 
those with picture naming decline. For each region, the lobule is shown in 
brackets next to the region name.  

Weighted 
Importance 

Region Metric p- 
values  

Mean- 
difference  

76.91 Left Sub-callosal 
Anterior Cingulate 
Cortex (SC) 

Clustering 
Coefficient  

0.001  0.76  

66.85 Left Dorsolateral 
Superior Frontal 
Gyrus (F) 

Clustering 
Coefficient  

0.001  0.9  

64.93 Left Superior Frontal 
Gyrus Medial Orbital 
(F) 

Betweenness 
Centrality  

0.002  − 0.85  

64.37 Right Insula (I) Clustering 
Coefficient  

0.004  0.79  

61.23 Left Insula (I) Clustering 
Coefficient  

0.001  − 0.54  

50.51 Right Pallidum (SC) Betweenness 
Centrality  

0.002  0.54  

30.99 Pre-operative Picture 
Naming Scores 

Clinical  0.002  0.85  

27.59 Left Anterior 
Orbitofrontal Cortex 
(F) 

Betweenness 
Centrality  

0.002  0.57  

22.95 Right Paracentral 
Lobule (P) 

Betweenness 
Centrality  

0.002  − 0.75  

17.51 Left Middle Cingulate 
(SC) 

Betweenness 
Centrality  

0.002  0.69  

14.77 fMRI Lateralisation 
Index 

Clinical  0.002  1.03  

9.73 Right Precuneus (P) Betweenness 
Centrality  

0.002  − 0.64  

7.98 Right Middle 
Cingulate (SC) 

Strength  0.002  0.32  

3.52 Right Inferior 
Temporal Gyrus (T) 

Betweenness 
Centrality  

0.002  − 0.58  

2.89 Right Cuneus (O) Clustering 
Coefficient  

0.001  − 0.76 

Abbreviations: F: frontal; I: Insula; O: Occipital; P: parietal; SC: subcortical; T: 
temporal. 
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clustering coefficient in the left sub-callosal anterior cingulate cortex. 
The anatomical distribution of classification importance for picture 

naming decline at 3 months can be seen in the left panel in Fig. 2. The 
right panel shows the mean difference between patients with and 
without picture naming decline. Red represents the mean difference was 
greater for patients with decline while green represents it was greater for 
patients without picture naming decline. 

3.3. Picture naming 12 Months: Strength 

The best performing model was the estimated change in strength 
following surgery, including 11 features. Using a permutation test to 
compare how this model performed against a random model, an AUC of 
0.86 was significantly higher than random (random model AUC = 0.50, 
p = 0.002). This equated to a specificity of 80.77% and sensitivity of 
66.67%, with an overall accuracy of 83.78%. This translates to correctly 
identifying 10/11 with and 21/26 without picture naming decline. 
When comparing this to the Harvard-Oxford cortical and subcortical 
structural atlas (see eAppendix 2, eTables 2) we demonstrate different 
results. The strength metric of this atlas had an AUC of 0.57 with an F1- 
score of 0.45. Rather, betweenness centrality was the best predictor 
which showed similar metrics as presented here (AUC = 0.72, F1-score 
= 0.61). 

Table 4 summarises the 11 features included in the models. 4 vari-
ables were ipsilateral to the resection (see Fig. 3). The most important 
feature was the estimated change in strength to the left cuneus. 

The anatomical distribution of classification importance for inferring 
picture naming decline at 12 months can be seen in the left panel in 
Fig. 3. The right panel shows the mean difference between patients with 
and without picture naming decline. Red represents the mean difference 
was greater for patients with decline while green represents it was 
greater for patients without picture naming decline. 

3.4. Picture Naming: Longitudinal analysis 

The best performing model in classifying picture naming outcome at 
3 months and using these results to classify 12 months outcome was the 
estimated change in betweenness centrality following surgery, this 
included 25 features. Using a permutation test to compare how this 
model performed against a random model, an AUC of 0.74 was signifi-
cantly higher than random (random model AUC = 0.50, p = 0.001). This 

equated to a sensitivity of 63.6% and 44.4% and a specificity of 63.6% 
and 61.5% for 3- and 12-months classification, respectively, with an 
overall accuracy of 60%. This translates to correctly identifying 14/15 
and 8/11 of patients with decline and 14/22 and 16/26 without decline 
at 3- and 12-months, respectively. These are similar metrics to those 
from the Harvard-Oxford cortical and subcortical structural atlas (see 
eAppendix 2, eTables 2). The betweenness centrality metric had an AUC 
of 0.66 with an F1-score of 0.57. However, the combined analysis pro-
duced a better AUC for this atlas (AUC = 0.79, F1-score = 0.72). 

Table 5 summarises 15 of the most important features included in the 

Fig. 2. A mosaic of the most 15 important cortical regions included across all thresholds in the 3 months combined analysis classification as described in Table 3. The 
left panel illustrates weighted feature importance. The right panel shows if the metric was higher for patients with (red) or without (green) picture naming decline. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
The 11 features (ordered by weighted importance) involved in the estimated 
change in strength model classification across leave-one-out in a support vector 
classification model for inferring 12 months picture naming decline. Showing 
the weighted importance across leave-one-out models, each cortical region and 
the associated graph metric contributing significantly to the model, the cor-
rected p-value for a permutation test (10,000 permutations, Bonferroni cor-
rected), and the mean difference with a higher value representing that metric 
was higher in those with picture naming decline. For each region, the lobule is 
shown in brackets next to the region name.  

Weighted 
Importance 

Region Metric p- 
values  

Mean- 
difference  

134.66 Left Cuneus (O) Strength  0.001  0.44  
108.52 Left Inferior Occipital 

Gyrus (O) 
Strength  0.001  − 0.63  

103.8 Left Orbito-frontal 
Cortex, Medial (F) 

Strength  0.001  − 1.14  

77.97 Right Cingulate, Middle 
(SC) 

Strength  0.001  0.67  

51.05 Right Pallidum (SC) Strength  0.001  − 0.39  
25.33 Right Anterior Cingulate 

(SC) 
Strength  0.001  0.42  

2.32 Right Postcentral Gyrus 
(P) 

Strength  0.001  0.28  

2.25 Left Amygdala (T) Strength  0.002  0.14  
1.77 Right Caudate (SC) Strength  0.001  − 0.56  
1.05 Right Superior Frontal 

Gyrus, Dorsolateral (F) 
Strength  0.001  − 0.17  

0.59 Right Middle Temporal 
Gyrus (T) 

Strength  0.001  − 0.68 

Abbreviations: F: frontal; O: Occipital; P: parietal; SC: subcortical; T: temporal. 
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model, based on feature inclusion (see Fig. 4.). Six of these variables 
were ipsilateral to the resection. The most important feature was change 
in betweenness centrality to the right insula. 

4. Discussion 

We combined clinical information with structural brain network 
measures to infer their relationship with naming outcome following 
ATLR. We demonstrate that, for picture naming at 3 months, a combi-
nation of clinical and network metrics including strength, betweenness 
centrality, and clustering coefficient can infer naming decline with high 
accuracy. We also showed that for picture naming at 12 months, esti-
mated change in strength had high classification accuracy. Longitudinal 
analyses demonstrated that betweenness centrality was the best metric 
for classifying patients at 3 months and then for assessing further decline 
at 12 months. While previous work has highlighted pre-operative 
structural network measures associated with pre-operative perfor-
mance (Munsell et al., 2019), we demonstrate the classification utility of 
the estimated change in network metrics with immediate and longer- 
term post-operative picture naming decline. 

Previous research indicated the role of clinical characteristics in 
predicting which patients will undergo naming decline (Busch et al., 
2018). We support the notion that clinical characteristics are predictive 
of 3 month post-operative naming decline. Higher pre-operative picture 
naming scores were predictive of a worse outcome following surgery. 
Patients with higher cognitive function have “more to lose” (McAndrews 
and Cohn, 2012). Older age at epilepsy onset was predictive of worse 
outcome, as has been found previously (Busch et al., 2016). For 12 
month and longitudinal post-operative naming decline, estimated 
change in strength and betweenness centrality, respectively, alone out-
performed clinical characteristics and other networks combined. While 
we did not replicate the same predictive capability of clinical features as 
in Busch et al. (Busch et al., 2018), the difference between our and their 
study population could account for this. We included only those having 
language-dominant ATLR, which is already an “enriched” population at 
risk of decline, and was a strongly predictive variable in Busch et al. 
(Busch et al., 2018). 

Language representation in TLE is atypical as reorganisation dis-
perses function to similar contralateral regions, ipsilateral regions 
involved in language take on a greater role, as well as regions that are 

not typically involved in language (Binding et al., 2022). This could 
explain why contralateral and sub-cortical regions were so prominent, 
across all analyses. This could also explain why classical language re-
gions such as the ipsilateral temporal lobes (Binding et al., 2022) did not 
appear important. 

Picture naming is a complex cognitive function that involves the 
coordinated activity of multiple cortical regions dispersed throughout 
the brain. Research using graph theory to analyse the structural con-
nectome has revealed that the communicability of these regions is 
essential for successful naming, and dysfunction can impair language 
function in patients with TLE (Balter et al., 2019). These findings 
demonstrate that preoperative naming performance can be predicted to 
a high degree by analysing graph theory metrics of the structural con-
nectome in TLE patients. Our study found that estimated changes in all 
graph theory metrics (i.e., clustering coefficient, betweenness centrality, 
and strength) and clinical factors were able to classify decline in picture 
naming at 3 months after ATLR with an AUC of 0.89. Previous research 
showed that language function dips immediately after surgery followed 
by some patients improving (Binding et al., 2023). As such, our results 
suggest that all clustering coefficient, betweenness centrality, strength, 
and clinical factors play a role in the preparedness of the brain to a 
temporal lobe resection. 

Estimated changes in strength to specific cortical regions had the best 
performance in classifying picture naming outcome at 12 months. Spe-
cifically, our analysis identified the cuneus, inferior occipital gyrus, and 
orbito-frontal cortex as being strongly associated with decline. It is of 
interest that a post-operative increase in cuneus connection strength was 
associated with better outcome, while decreases in strength were 
important for the inferior occipital and orbito-frontal gyrus – indicating 
the complexity of the brain network changes and functional dependence 
on the network. The mechanisms underlying the cuneus estimated 
changes are not clear and may reflect a secondary effect with the 
removal of abnormally functioning regions that were interfering with 
picture naming network function. Further work to investigate these re-
sults would be essential to understand the mechanism behind the 
observed picture naming improvement. Greater resection of connections 
to the inferior occipital gyrus and orbito-frontal cortex was associated 
with patients with picture naming decline. The inferior occipital gyrus is 
part of the ventral visual processing pathway, which is essential for 
object recognition and visual association (Ungerleider, 1982; Creem and 

Fig. 3. A mosaic of the 6 cortical regions included across all thresholds in the 12 months combined analysis classification as described in Table 4. The left panel 
illustrates weighted feature importance with yellow (more) and purple (less) representing how important that feature was for classification. The right panel shows if 
the metric was higher for patients with (red) or without (green) picture naming decline. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

L. Peter Binding et al.                                                                                                                                                                                                                          



NeuroImage: Clinical 38 (2023) 103444

8

Proffitt, 2001). The medial orbito-frontal cortex is implicated in suc-
cessful memory encoding and retrieval (Duarte et al., 2010). Reduced 
white matter connectivity between these regions could impair visual 
recognition and memory retrieval. We can infer that this supports our 
previous research which linked the integrity of the inferior-fronto- 
occipital fasciculus (IFOF), which interconnects these regions, to pic-
ture naming decline at 3 months post-injury (Binding et al., 2023). While 
our previous analysis did not find a relationship between IFOF integrity 
and naming decline at 12 months, the IFOF encapsulates cortical con-
nections to many regions beyond the two regions we included in our 
analysis. 

When investigating which network metric was the best at classifying 
outcome at 3-, and then 12-months in our longitudinal analysis, we 
found that betweenness centrality outperformed other metrics and 
combinations. This could be due to betweenness centrality changes to 
specific cortical regions being more detrimental to post-operative 
functional reorganisation. The features with the strongest inclusion 
were the right insula, left fusiform gyrus, left superior frontal gyrus and 

right orbitofrontal cortex regions. Increased fMRI activity within the 
insula is proposed to be related to difficulty in articulatory effort 
(Sherman et al., 2011). Decrease of integration of the insula, failing to 
convey the correct articulatory motor movements with the surrounding 
network could lead to expressive errors or the “tip of the tongue” effect 
(Hamberger, 2003). The fusiform gyrus shows high specialisation to 
visual naming tasks, a disconnection of this region from the surrounding 
network could inhibit visual discrimination of objects (Binding et al., 
2022). The orbitofrontal cortex is hypothesised to be mainly related to 
memory, with its function being implicated in learning and reversing 
associations (Rolls, 2004). This highlights the multifaceted function of 
picture naming, and language in general, where reductions in any one of 
the associated functions in an interconnected network can lead to an 
impairment in ability. 

4.1. Clinical utility 

The language network is complex and widespread in healthy brains. 
In TLE, this network is atypical with function being dispersed to new 
regions or regions attaining new functions (Binding et al., 2022). Our 
retrospective analysis of estimated network changes using pre- and post- 
operative data might be used in the future to prospectively predict 
cognitive outcomes. In line with previous suggestions (Taylor et al., 
2018), pre-operative whole-brain tractography can be performed and an 
intended resection drawn based on pre-operative structural T1-weighted 
scans. This could be combined with previous work (Taylor et al., 2018) 
to identify the optimal resection cavity for seizure freedom and cogni-
tive outcome. An example of the clinical workflow is demonstrated in 
Fig. 5, which shows how these could be combined to maximise patient 
outcome. To reduce the impact on the structural network, more limited 
resections could be used as research shows no relationship between 
resection size and seizure outcome (Binding et al., 2023; Galovic et al., 
2019). Further, the use of laser interstitial thermal therapy (LITT) for 
ablations could reduce the footprint of the surgery, limiting the impact 
on the network (Kohlhase et al., 2021). 

4.2. Research evaluation 

All patients included in this study had surgery performed by the same 
two surgeons (AM, AMc). This had the benefit of ensuring there was a 
consistent surgical approach for all cases. However, replication studies 
are required to assess the generalizability of our findings to other 
centers. 

The use of manually-drawn resection masks to estimate post- 
operative tractography has the benefit of the rater being able to visu-
ally estimate for brain-shift but may introduce human error and image 
registration issues. Additional analyses were performed to investigate 
these issues and showed minimal impact (eAppendix 1). 

Several steps were taken to ensure the accuracy of our methods. As 
for tractography: (i) it was seeded on the boundary of grey and white 
matter boundary; (ii) we used ACT to ensure tractography could only 
run through white matter; (iii) we used SIFT to filter down probabilistic- 
tractography; and (iv) we thresholded the connectome based on the 
presence of the connection across individuals, making our results more 
reproducible. These steps increased the accuracy and replicability of our 
results. However, whole-brain tractography still comes with inherent 
problems such as false positives (Maier-Hein et al., 2017). Furthermore, 
results will depend on data quality, for which we include two levels, 
single- (poor) and multi- (good) shell data. We attempted to addressed 
this using NeuroCombat, normalising the two scanners output, but this 
does not change the inherent difference in the diffusion quality. 

The current study identified various cortical regions whose estimated 
change in network metrics were associated with picture naming decline. 
For prospective use, a proposed resection cavity mask could be used to 
generate estimated changes in graph theory metrics to determine 
whether this could infer decline in picture naming. Further research is 

Table 5 
15 of the most important features (as defined by weighted importance) to the 
combined model classification across leave-one-out in a chained support vector 
classification model for inferring 3- and then 12-months picture naming decline. 
As variable importance was unable to be extracted, we used the percentage of 
inclusion in leave-one-out models to judge the importance of cortical regions. 
We show the importance, each cortical region and the associated the graph 
metric contributing significantly to the model, the corrected p-value for a per-
mutation test (10,000 permutations, Bonferroni corrected), and the mean dif-
ference with a higher value representing that metric was higher in those with 
picture naming decline. For each region, the lobule is shown in brackets next to 
the region name.  

Percentage 
Inclusion 

Region Metric p- 
values  

Mean- 
difference 

100 Right Insula (SC) Betweenness 
Centrality  

0.002  − 0.69 

100 Left Fusiform Gyrus 
(T) 

Betweenness 
Centrality  

0.002  − 0.64 

97.3 Left Superior Frontal 
Gyrus Medial Orbital 
(F) 

Betweenness 
Centrality  

0.003  − 0.65 

97.3 Right Posterior 
Orbitofrontal Cortex 
(F) 

Betweenness 
Centrality  

0.001  0.65 

94.59 Right Lateral 
Orbitofrontal Cortex 
(F) 

Betweenness 
Centrality  

0.002  − 0.64 

70.27 Left Dorsolateral 
Superior Frontal 
Gyrus (F) 

Betweenness 
Centrality  

0.001  − 0.44 

62.16 Left Anterior 
Orbitofrontal Cortex 
(F) 

Betweenness 
Centrality  

0.002  0.63 

24.32 Left Superior 
Occipital Gyrus (O) 

Betweenness 
Centrality  

0.002  0.37 

21.62 Right Medial 
Orbitofrontal Cortex 
(F) 

Betweenness 
Centrality  

0.002  0.57 

8.11 Right Anterior 
Orbitofrontal Cortex 
(F) 

Betweenness 
Centrality  

0.002  0.51 

2.7 Right Pars 
Opercularis (F) 

Betweenness 
Centrality  

0.002  − 0.46 

2.7 Right Pars 
Triangularis (F) 

Betweenness 
Centrality  

0.003  − 0.34 

2.7 Left Orbitalis (F) Betweenness 
Centrality  

0.001  0.28 

2.7 Left Rectus (F) Betweenness 
Centrality  

0.002  0.4 

2.7 Left Posterior 
Cingulate (SC) 

Betweenness 
Centrality  

0.002  − 0.63 

Abbreviations: F: frontal; I: Insula; O: Occipital; SC: subcortical; T: temporal. 
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needed to investigate if pre-operative graph metrics alone can accurately 
predict patient decline, thereby increasing the applicability of this 
approach. 

While we performed cross validation with regard to prediction 
models, we were unable to further split data into training, testing, and 
validation sets because of a limited sample size. Our 12 month analysis 
was already limited by a reduced sample size which could reflect the 
increased classification ability. Additional analysis with the validation 
cohort would ensure unbiased model evaluation and aid in mitigating 
issues such as overfitting, where the model may perform well on the 
training data, but poorly on new data. Future research should aim to 
expand the sample size to permit a validation dataset. 

We investigated whether network metrics remained stable in 

classifying outcome across different atlases (eAppendix 2). We found 
that while the overall classification ability remained the same at each 
timepoint, the network metric of importance varied. This could be due to 
differences in cortical anatomy between atlases, for example, the 
Harvard-Oxford atlas splits each temporal gyri into anterior, middle, and 
posterior portions. Nevertheless, application of these results should be 
done with the same methodology described above for maximum 
reliability. 

4.3. Future directions 

Language representation is abnormal in TLE, and there are varying 
patterns of reorganization. This variability could contribute to the high 

Fig. 4. A mosaic of the 15 cortical regions included across all thresholds across the chained 3- and 12-months betweenness centrality analysis as described in Table 5. 
The left panel illustrates feature inclusion with yellow (more) and purple (less) representing the percentage of inclusion in each leave-one-out cross validation model. 
The right panel shows if the metric was higher for patients with (red) or without (green) picture naming decline. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Adapted from Taylor et al.(Taylor et al., 
2018) The combined clinical utility of the algo-
rithms produced in this paper and in Taylor et al. 
(Taylor et al., 2018) From left to right: Pre- 
operative MRI data is acquired and evaluated at 
multidisciplinary team meetings. If surgery is 
recommended data is a planned resection cavity is 
drawn and the data are pre-processed, using the 
resection mask to extract the expected change in 
network metrics. The estimated change in metrics 
is then fed into ours and Taylor et al.(Taylor et al., 
2018) algorithms to infer if the patient will be 
seizure free and if they will undergo picture 
naming decline. This information could be used to 
modify the resection plan to minimise the impact 
on network measures while maximising seizure 
freedom chances. The final plan could be used to 
inform the patient of the expected risk and 
remission rates.   
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degree of variability observed in leave-one-out models, in which the 
inclusion or exclusion of individual patients can affect the classification 
performance of network metrics. To improve classification accuracy, it 
may be useful to incorporate fMRI to map functional reorganization on a 
patient-specific level. Combining fMRI with dMRI to map the structural 
network could provide a more comprehensive understanding of the 
interplay between functional reorganization and structural connectivity. 
This approach could lead to more accurate classification of language 
dysfunction following surgery and ultimately inform targeted in-
terventions to preserve language function. 

While we have limited the scope of this paper to ATLR and naming 
decline, this method could be used in other epilepsy surgeries, such as 
frontal lobe epilepsy, in which language is impacted differently from 
TLE (Caciagli et al., 2021). Additionally, change in other cognitive do-
mains in TLE may be better predicted using these metrics, such as post- 
operative memory change (Fleury et al., 2022). 

This research could be utilised for pre-operative interventions to 
preserve cognitive function. Our results highlight the involvement of 
regions away from the resection site. Transcranial magnetic stimulation 
has demonstrated it can be used to induce suppression of the semantic 
network and upregulation of compensatory regions (Binney and Ralph, 
2015). This could be used on cortical regions included in the model to 
alter activity and the picture naming network. Further fMRI research is 
required to corroborate these results and the activity seen at each 
cortical region. 

The present study relies on the use of resection masks that were 
manually drawn. Although our results show a considerable degree of 
consistency in the definition of the resection cavity across different de-
lineators (as detailed in eAppendix 1), it is imperative that future 
research explores the impact of minor modifications to the boundaries of 
these masks on the stability of graph theory metrics. Such investigations 
would have valuable implications for the clinical utility of this approach, 
as they would provide insights into the precision required for pre- 
clinical assessments of resection masks.”. 

5. Conclusion 

The estimated changes in network metrics following language- 
dominant ATLR can classify the picture naming outcome of patients 
with high accuracy at both 3- and 12- months post-operatively. We also 
highlight cortical regions in which change in betweenness centrality is 
related to picture naming outcome at 3 months and then at 12 months. 
This method could be used to improve the information available to 
patients about their risk of naming decline from surgery and be utilised 
in resection planning to minimise the impact on the wider network. 
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