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Abstract
We present a flexible scalable open-source computational framework, named SECUReFoam, based on the finite-volume 
library  OpenFOAM®, for flow and transport problems in highly heterogeneous geological media and other porous materi-
als. The framework combines geostatistical pre- and post-processing tools with specialised partial differential equations 
solvers. Random fields, for permeability and other physical properties, are generated by means of continuous or thresholded 
Gaussian random fields with various covariance/variogram functions. The generation process is based on an explicit spectral 
Fourier decomposition of the field which, although more computationally intensive than Fast Fourier Transform methods, 
allows a more flexible choice of statistical parameters and can be used for general geometries and grids. Flow and transport 
equations are solved for single-phase and variable density problems, with and without the Boussinesq approximation, and 
for a wide range of density, viscosity, and dispersion models, including dual-continuum (dual permeability or dual porosity) 
formulations. The mathematical models are here presented in details and the numerical strategies to deal with heterogeneities, 
equation coupling, and boundary conditions are discussed and benchmarked for the heterogeneous Henry and Horton–Rog-
ers–Lapwood problems, and other test cases. We show that our framework is capable of dealing with large permeability 
variances, viscous instabilities, and large-scale three-dimensional transport problems.

Keywords Open-source software · Porous media flow · Dual-porosity · Natural convection · Viscous fingerings · Variable 
density

1 Introduction

Partial differential equations (PDEs) models in porous media 
are an essential part of many engineering, environmental 
and biological applications. They play a fundamental role 
in geothermal energy utilization [1–3], aquifer remediation 
[4], drug delivery in tissues [5] or bio-film formation [6, 
7], to name a few. Fluid flow, energy and solute transport 
in porous media are complex because of the variation in 
fluid properties and the heterogeneous nature of the porous 

medium. Fluid properties such as density and viscosity vary 
with the solute concentration and fluid temperature. These 
changes can lead to fluid instabilities greatly affecting the 
migration of dissolved substances, the mixing of fluids and 
chemical reactions [8–11]. Heterogeneity is present across 
all scales. The interaction between the porous structure and 
the fluid flow manifest itself in the formation of preferen-
tial flow paths and stagnant regions. This in turn affects the 
migration and residence times of solutes, which often dis-
play an anomalous behavior [12].

Given the complexity of the phenomena related to porous 
media, numerical simulations provide the possibility to 
explore a multitude of configurations that can help analys-
ing field and experimental data. However, producing accu-
rate and reliable numerical data requires, considering the 
current state-of-the-art, advanced knowledge of numerical 
schemes and programming languages. Therefore, there is a 
need for robust and precise simulation tools capable of pro-
viding high quality results, but also flexible enough to deal 
with the enormous variety of porous media applications. 
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Reproducibility of numerical results is often as important as 
accuracy. Reproducibility can only be achieved if data sets, 
results and simulation tools are accessible to the public. This 
can be achieved through the use of an open-source license 
and by building the simulation tools over well-known, well-
maintained open-source libraries.

In this work, we present the open-source computational 
framework SECUReFoam for the simulation of complex 
flow and transport in porous media. The code is named after 
the H2020 EU project Subsurface Evaluation of Carbon 
capture and storage and Unconventional Risk”, in which 
most of the code development took place. The framework 
is developed in C++ within the  OpenFOAM® library and 
includes new solvers, boundary conditions, pre- and post-
processing utilities, and new numerical schemes. We detail 
the implementation of the geostatistical pre-processing 
library and solution strategites for saturated flow and trans-
port solvers that account for variable fluid properties (e.g., 
density, viscosity, relative permeability). Heterogeneity can 
be accounted directly through the definition of random per-
meability fields and by means of double porosity models. 
The formers are based on multi-Gaussian and thresholded 
Gaussian random fields (also known as pluri-Gaussian) [13, 
14]. Although this kind of fields can be generated with other 
available geostatistics toolboxes (GSLib [15], T-PROGS 
[16]), the integration with the flow and transport solvers pro-
vides the computational framework the capability to tackle 
a wide variety complex problems.

Various other open-source packages are available for 
porous media applications, such as OpenGeoSys [17], 
porousMultiphaseFoam [18], GeoChemFoam (focused on 
pore-scale) [19], DuMux [20], MRST [21]. Our work dif-
fers from these packages in a number of ways and provides 
unique contributions to the community, such as: 

1. fully integrated workflow from geostatistics to complex 
flows, including post- and co-processing (see Sects. 4.1, 
5.1 and 5.3);

2. focus on a clear and simple mathematical formulation 
and general-purpose PDE solvers with extra features 
developed into object-oriented external modules (see 
Sect. 4);

3. novel numerical methods for equation coupling and sta-
ble finite volume formulation (see Sect. 4.2);

4. pluri-Gaussian discontinuous fields, multi-scale features, 
and dual-porosity models (see Sect. 3);

5. out-of-the-box parallel scalability and C++ implementa-
tion (thanks to the underlying  OpenFOAM® structure).

The paper is organised as follows, Sect. 2 presents the math-
ematical formulation of flow and transport models in porous 
media at the Darcy scale. Section 3 describes the generation 
of thresholded Gaussian random fields. Then the numerical 

details of the implementation are discussed in Sect. 4 and 
illustrated with some examples in Sect. 5. Finally, we present 
some conclusions.

2  Flow and transport models

2.1  Darcy flow

In all our models, we assume the validity of the Darcy’s 
law for porous medium fully saturated by an incompressible 
fluid, which reads as follows:

where v [LT−1] is Darcy velocity, � = �(x) [L2] is the perme-
ability tensor, � [ML−1T−1] is fluid viscosity, p [ML−1T−2] is 
pressure, � [ML−3] is the fluid density, g [LT−2] is the acceler-
ation of gravity vector. We assume that � and � are non con-
stant but dependent only of the solute concentration c [ML−3] 
although extensions to double diffusive models (where there 
is an additional dependency on temperature), compressible, 
and multiphase descriptions are currently being developed 
in the code.

Darcy’s law can be rewritten in terms of a reduced pres-
sure p�gh = p − �g ⋅ x removing the hydrostatic pressure 
contribution1 as follows:

2.2  Continuity equation

The continuity equation is the balance of mass of fluid per 
volume of porous medium. It can be formulated as

where � [1] is the medium porosity and there is a sink/source 
flow Q [L3∕T] of density �∗.

We can expand the first term of (3) as

where S0 = ��∕�p [M−1L2T] is the storativity which takes 
into account the linearised porous matrix compressibility.

(1)v = −
�

�
(∇p − �g),

(2)v = −
�

�
(∇p�gh + (g ⋅ x)∇�).

(3)
���

�t
+ ∇ ⋅ (�v) = �∗Q,

(4)
���

�t
= S0�

�p

�t
+ �

��

�c

�c

�t
,

1 It is worth noting that we use here the (non-constant) density field 
� for the reduced pressure instead of a reference density of the acque-
ous phase as more commonly done.



Engineering with Computers 

1 3

2.3  Transport equation

The transport equation gives the solute mass balance per vol-
ume of porous medium. We write the transport in terms of the 
solute concentration c [ML−3] as

where c∗ is the concentration of the sink/source and D 
[L2T−1] is the hydrodynamic dispersion tensor

with I being the identity matrix, Dm [L2T−1] the diffusion 
coefficient and �L, �T [L] the longitudinal and transverse 
dispersion coefficients respectively.

2.4  Density and viscosity models

Fluid viscosity and density can be written as a function of the 
concentration of dissolved solutes as well as temperature. In 
the following we will focus on linear relations for �(c) and 
�(c) , namely:

where f is either density or viscosity. A more extensive 
choice of non-linear models is available in the code (see 
section C). The same structure can be used for temperature-
dependent viscosity and densities and extended to simultane-
ous dependence on concentration and temperature (double 
diffusive model).

2.5  Boussinesq approximation

It is sometimes convenient to rewrite the continuity equation 
as a condition for the divergence of the velocity field to make 
use of incompressible flow splitting algorithms. In this case, 
eq. (3) can be reformulated as:

where it can be noticed that the right hand side contains the 
Lagrangian derivative of c. Therefore, by either assuming 
𝜌′

𝜌
≪ 1 or advection-dominated solute transport, we obtain 

the Boussinesq approximation, which, for non-deformable 
porous skeleton (i.e., S0 = 0 ) and in absence of sources/
sinks, reduces to the divergence free condition

(5)
��c

�t
+ ∇ ⋅ (vc) − ∇ ⋅ (�D∇c) = Qc∗,

(6)D = DmI + 𝛼
T
|v|I + (𝛼L − 𝛼T)

v⊗ v

|v|
,

(7)f (c) = f0 + f �c,

(8)S0
�p

�t
+ ∇ ⋅ v = −

��

�

(

�
�c

�t
+ v ⋅ ∇c

)

+
�∗Q

�
,

(9)∇ ⋅ v = 0.

2.6  Dual‑porosity and multi‑continuum models

The equations above are no longer a good approximation when 
the porous medium is highly-heterogeneous. For example, 
the pore space could be composed of large highly permeable 
pores (such as fractures) connected to a system of narrow low 
permeability (micro)-pores. In these cases, two separate con-
tinuity and momentum equations can be considered for two 
overlapping continua representing the porous spaces. Under 
the assumptions of Eqs. (9) and (3), the system of equations 
for the two pressures is:

where ⋅̂  denotes the variables in the second continuum (e.g. 
fractures). The transfer term between the two continua is 
in general an unclosed integral term depending on the con-
nectivity between the domains, but it is commonly approxi-
mated as a linear transfer term

where �0 [LT/M] is a linear transfer coefficient between 
matrix and fracture continua.

3  Random fields generation

Continuous and thresholded Gaussian random fields (also 
known as pluri-Gaussian) [13, 14, 22] can be generated using 
different approaches (sequential Gaussian simulations [23], 
Markov chain probability [24], multiple-point statistics [25]). 
In contrast with the number of geostatistics open-source 
toolboxes available (GSLib [15], T-PROGS [16]), we use an 
integrated framework to combine geostatistics with flow and 
transport simulation and post-processing. Another key differ-
ence is that our random field generators do not make use of 
the fast Fourier transform or other discrete transform. This can 
make the generation more computationally intensive but this is 
mostly overcome by the efficient C++ implementation and par-
allel scalability. In our tests, in fact, although the random field 
generation can be significantly expensive, it is nevertheless 
often negligible compared to the cost of the flow and transport 
solvers, and these steps can be fully integrated in a single run.

3.1  Continuous and pluri‑Gaussian truncated fields

Gaussian random fields (GRF) have often been adopted 
in geostatistics to mimic the spatial distributions of geo-
logical properties due to their mathematical properties. 

(10)∇ ⋅

[

−�
�

�
(∇p�gh + (g ⋅ x)∇�)

]

= �(p�gh, p̂�gh)

(11)∇ ⋅

[

−�̂
�̂

�
(∇p̂�gh + (g ⋅ x)∇�̂)

]

= −�(p�gh, p̂�gh),

(12)�(p�gh, p̂�gh) = −�0(p�gh − p̂�gh),
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Generally these fields well fit the purpose of geological 
descriptors as long as the spatial transition of the geologi-
cal properties is smooth. The choice of correlation func-
tion can tune the smoothness of the function but always in 
a continuous manner. However, sediments’ deposits rarely 
show a continuous structure. In these cases a continuous 
GRF can be post-processed with thresholding or binning 
to allow for abrupt transitions and discontinuities. This 
process is called single-truncation rule. However, if the 
sediment pattern is characterised by non-layered or non-
stratified geometries where one category share its border 
with more than other two, the single-truncation model 
does no longer provide realistic results. To reproduce non-
stratified geometries the thresholding needs to be done 
on a multivariate Gaussian random field. When two (or 
more) independent Gaussian random fields are thresh-
olded according to a multi-dimensional truncation rule, 
the resulting field is called a pluri-Gaussian random field. 
The underlying idea is to simulate two or more GRFs on 
a domain and compare them through a series of inequali-
ties which allows us to assign a unique value to each cell 
(Fig. 1).

An example of a two-dimensional truncation rule 
with three ( t1, t2, t3 ) and two ( s1, s2 ) thresholds in the 
fist and second dimension, respectively, applied to two 
independent random realisations of GRF ( Z1(x) and 
Z2(x) ) is depicted in Fig. 2. In the example, all red cells 
in the domain satisfy the condition t1 < Z1(x) < t3 and 
s1 < Z2(x) < s2 . The rule gives rise to four facies (geo-
logical domains) all connected to each other.

If the thresholds are expressed in terms of percentiles of 
the GRF, the probability, i.e., the proportion of the facies 
i, j is

Given I and J thresholds, respectively, the problem of 
choosing a truncation rule for N facies is underdetermined 
if N < (I + 1)(J + 1) . Extra constraints might come from the 
connectivity or surface area of each facies. In the previous 
examples a total of twelve regions are identified by the Car-
tesian truncation diagram but these have been then merged 
into a total of four facies. This can be solved by constrained 

(13)pi,j =
[
G1(ti) − G1(ti−1)

][
G2(sj) − G2(sj−1)

]
.

Fig. 1  Pluri-Gaussian simulation method: a two continuous Gaussian random fields are created; b at every position in space, the values of the 
continuous GRFs are used as coordinates to enter the truncation rule; c an heterogeneous non-Gaussian field is generated

Fig. 2  Qualitative truncation rule. Note that the areas of the differ-
ent facies do not correspond to the their respective proportions in the 
simulations, not because of the qualitative nature of the image, but 
because the underlying continuous variables are not uniformly dis-
tributed but Gaussian
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minimisation problem involving (I + 1)(J + 1) error func-
tions. In other words, in this case, there are infinite threshold 
combinations which honour a given set of volume propor-
tions and some constraints need to be defined beforehand to 
allow for a single solution. A more detailed analysis of this 
problem can be found elsewhere [26]. In the computational 
framework we present here, the user needs to specify directly 
the thresholds rather than the facies volumes.

As an example, in Fig. 3, we show two-dimensional 
realisations of continuous, truncated and pluri-truncated 
GRFs obtained using formula (15) and Gaussian (18), 
exponential (19) and Matérn (20) covariances.

4  Numerical implementation

In this section we present a few more details about some 
of the most important solvers and tools implemented in 
SECUReFoam, namely:

• setRandomField: a pre-processing utility to generate 
random fields for permeability, porosity and other prop-
erties;

• rhoDarcyFoam: a variable-density flow and transport 
solver;

• dualSimpleDarcyFoam: a dual-porosity Darcy solver;

together with boundary conditions, sources and post-pro-
cessing tools. Other solvers and utilities included the library 
but not described here include

• simpleDarcyFoam: a simple single-phase Darcy solver;
• multiRateScalarTransportFoam: a multi-rate mass 

transfer model [27, 28];
• poroelasticFoam: a linear Biot poroelasticity solver;
• dualRhoDarcyFoam: a dual-porosity variable density 

solver;
• mesh importing utilities from gslib, ijk, and grdecl for-

mat;
• spatialPdf: an utility to create linear and log-spaced his-

tograms from spatial data;
• fieldMetrics: co- and post-processing utility to com-

pute statistics of spatial data. This is a specialised and 
extended version of the functionObject structure of 
 OpenFOAM®.

4.1  Meshing and random field generator 
setRandomField

OpenFOAM® is an unstructured finite-volume library that 
can deal with arbitrary cell types. Cartesian grids are treated 
internally as non-structured meshes. In the present work we 
have limited ourselves to Cartesian meshes generated by the 
 OpenFOAM® native blockMesh utility. However, included 

Fig. 3  Two-dimensional lognormal random field with a Gaussian correlation, b exponential correlation and c Matérn correlation with � = 1 (see 
appendices for the mathematical definition of these covariances)
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in SECUReFoam are utilities for importing corner-point 
reservoir models, based on the work done within the MRST 
project [21]. Alternatively more complex geometries can be 
meshed combining from elementary volume objects or CAD 
files.

Once the grid has been created, the material properties 
can be populated with the random field generator setRan-
domField. As we have seen in the previous section, this 
is based on the generation of GRFs. Several well-known 
methods have been implemented in literature for generat-
ing GRFs [15, 22, 29, 30]. According to Mandelbrot and 
Van Ness [31], a GRF can be represented using a stochastic 
Fourier integral:

where a are frequencies, dW(a) is a complex-valued white 
noise random measure and S(a) is the amplitude of the spec-
tral measure. The latter can be found as the Fourier spectrum 
of correlation functions written in spherical coordinates. To 
allow for deformations along the x, y, z directions (i.e., dif-
ferent correlation lengths in each direction), a rescaling is 
implemented to the three-dimensional frequency space. This 
can be easily extended by including rotations, or more gen-
eral transformation matrices, allowing therefore more flex-
ibility in the orientation of the facies.

The discrete form of (14) becomes

Instead of relying on the FFT algorithm to compute (15), 
which would significantly reduce the computational cost 
of computing the Fourier integral, we have directly imple-
mented the formula for a number of reasons. First of all, 
FFT can hardly be extended to non-Cartesian unstructured 
meshes. These are very common in geology and reservoir 
simulation. The other disadvantage of the FFT is that the 
random realisation becomes dependent on the spatial dis-
cretisation used. This makes (deterministic) convergence 
studies (for a given random field) hardly achievable. With 
(15) instead, for a given (pseudo-)random set of Gaussian 
variables Wi , we can generate multiple random fields at dif-
ferent spatial resolution. Finally this approach allows us to 
relax the periodicity assumptions by including larger wave 
numbers to the sum, simulating therefore non-stationary 
random fields.

Once the GRFs are generated as above, they are 
either scaled to obtain the desired mean and variance, or 

(14)Z(x) = ∫
+∞

−∞

e−2�ia⋅x
√
S(a)dW(a),

(15)

Z(x) =

Nf∑

j=0

cos(2�aj ⋅ x)
√

S(aj)Wj

+ i

Nf∑

j=0

sin(2�aj ⋅ x)
√

S(aj)W
�
j
.

thresholded, as explained in Sect. 3.1, to obtain discon-
tinuous fields. The options and parameters for the random 
field generation are described in Sect. B.

4.2  Variable density solver rhoDarcyFoam

rhoDarcyFoam solves variable-density flow and transport 
problems with the models presented in Sect. 2. Differ-
ent formulation of the equations can be used, based on 
standard pressure (1) or the reduced pressure (2), with or 
without Boussinesq approximation ((9) vs (8)).

The transport model is based on (5). Multiple param-
eters can be defined as heterogeneous fields, including 
permeability, porosity, dispersion parameters, and stora-
tivity. Various dispersion, density, and viscosity models 
are included by means of a object-oriented modular struc-
ture and selectable through simple input file (following 
 OpenFOAM® standard, most of the physics settings have 
been included into the transportProperties dictionary).

The resulting system is a non-linear coupled PDE sys-
tem. An under-relaxed Picard iteration loop is employed 
to couple the transport and Darcy equations. This is based 
on the pimple class in  OpenFOAM®, that allows the con-
trol of outer iterations to exit the loop when the residuals 
fall below a certain value or when the maximum number 
of iterations is reached. This also allows to remove the 
relaxation in the last iteration to prevent it from delay-
ing the dynamic evolution of the fields. Using existing 
 OpenFOAM® capabilities, fully implicit (through Picard 
iterations) and explicit time stepping (by setting one single 
iteration) can be implemented with first and second-order 
backward integration. Adaptive time-stepping is included 
based on a maximum Courant number computed using the 
total fluxes. The whole formulation is based on the fluxes 
across faces, rather than the cell-averaged velocities. This 
ensures exact mass conservation. Optionally, each linear 
system can be solved multiple times to better incorporate 
explicit corrections due to non-orthogonal meshes or flux-
limiter schemes, as is the case for most of the standard 
solvers shipped with  OpenFOAM®.

The permeability and dispersivity field can be speci-
fied as a symmetric matrix field on the faces (e.g. inverse 
of face transmissibility) or at the faces. While the for-
mer does not require any interpolation, the latter instead 
requires an interpolation to the faces. The standard inter-
polation schemes in  OpenFOAM® are overridden to 
enforce weighted harmonic interpolation for diffusive 
fluxes. Gradients at the faces are approximated with two-
point or multi-point flux approximation (TPFA, MPFA). 
The latter is based on least-squares high-order gradient 
approximation, included in  OpenFOAM®.
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4.3  Dual‑porosity solver dualSimpleDarcyFoam

Dual-porosity solvers are available for simple constant den-
sity Darcy flow (dualSimpleDarcyFoam) as well as an 
extension of the variable density solver for dual-porosity 
problems (dualRhoDarcyFoam). We limit ourselves here to 
the description of the Darcy solver. The dual-porosity model 
(10) is solved in a segregated (iterative) manner. To increase 
the convergence of the inner iteration, we make use of a new 
splitting scheme [32] recently developed for coupled sys-
tems. These are based on an approximate Schur-complement 
that allows to increase the coupling between the equations.

4.4  Boundary conditions and other modules

Various new elements as separate modules to be used with 
various solvers and applications. This includes many new 
boundary conditions, source terms, and post-processing util-
ities. Most new boundary conditions have been implemented 
based on a new general-purpose Robin boundary condition 
(Robin) with linear [33] or exponential [34] reconstruction 
of the solution near the wall. This is then extended to include 
advective fluxes (RobinPhi) and then used as base class for 
more complex BCs. All the BCs are implemented using the 
standard  OpenFOAM® class structure for fvPatchFields. 
We describe here two particular types of BCs which will be 
extensively used in the numerical results.

Darcy-based boundary conditions Specific boundary 
conditions have been implemented for single-phase and 
variable-density Darcy solvers. These include a darcyFixed-
Velocity condition to impose a pressure gradient to ensure 
a fixed inlet or outlet velocity is obtained. This automati-
cally switches between different formulations of the pressure 
equation, anisotropic permeabilities, different solvers, and 
the presence of gravity. hydrostaticPressure is a condi-
tion that allows to specify the dynamic pressure while using 
a solver that includes the hydrostatic pressure in the total 
pressure.

Flux-based boundary conditions In practical applica-
tions it is often convenient to specify a boundary condition 
for the total fluxes at a boundary for flow and transport. 
To this aim, we developed the boundary conditions named 
darcyFixedVelocity and fixedTransportFlux. The former 
adapts automatically the specific formulation used by the 
solver (see Sect. 4.2) to impose a given fixed velocity. The 
latter can be written in general, for a given field f,

where the first and second terms of the left hand side repre-
sent the diffusive and advective normal fluxes, respectively, 
and the left hand side contains the external fluxes imposed 

(16)−D∇nf + unf = unfa − d(fd − f )∕Δ + F,

by the user. These are an advective flux with a given inlet 
concentration fa and the true fluid velocity un , a discrete dif-
fusive flux computed with a diffusion coefficient d and an 
external concentration fd (that accounts for the given half-
cell distance from the boundary Δ ), and an explicit flux F.

5  Numerical examples

In the following we present a series of numerical example to 
illustrate the capabilities of SECUReFoam. The heteroge-
neous and dispersive Henry problem (Sect. 5.1) shows how 
the platform deals with variable density in heterogeneous 
porous media. The performance of the under-relaxed Pic-
ard is demonstrated by solving a strongly non-linear viscous 
fingering instability (Sect. 5.2) and a highly heterogeneous 
Horton–Rogers–Lapwood problem (Sect. 5.3), which also 
shows the use of truncated pluri-Gaussian fields. Finally, we 
present a quarter five-spot injection problem to demonstrate 
the dual-porosity formulation and the capability to deal with 
discontinuous highly heterogeneous fields.

5.1  Heterogeneous Henry problem

The Henry problem [35] is an abstraction of the seawater 
intrusion in a coastal aquifer. It has been extensively used 
to understand the interaction between the aquifer and the 
sea and as benchmark of variable density groundwater flow 
codes [36]. In the Henry problem the aquifer is represented 
by a 2 × 1 m rectangle. The right side of the domain is the 
boundary with the sea where hydrostatic pressure is pre-
scribed using seawater density for the flow equation and 
an inlet/outlet boundary condition is used for the transport 
equation. On the left boundary a freshwater flow is simu-
lated by prescribing flow Qin . The rest of the boundaries are 
impervious. Density depends linearly on the salt concentra-
tion �(c) = �0 + �c and viscosity is constant. The boundary 
conditions for the concentration are homogeneous Neumann 
everywhere but the right (sea) boundary where a constant 
Dirichlet ( c = 1 ) is imposed. However, to avoid the forma-
tion of a boundary layer when an outward flux develops, an 
automatic switching is adapted to impose Neumann condi-
tion when the velocity is pointing outwards.

Along with the original Henry problem (Fig. 4 left), we 
also consider a dispersive case (Fig. 4 right) and a hetero-
geneous case (Fig. 5) to illustrate the role of hydrodynamic 
dispersion and the heterogeneity of the permeability. The 
parameters for all cases can be found in Table 1. As shown 
in Fig. 4, hydrodynamic dispersion causes the interface 
between the seawater and the fresh water to become flat-
ter. Dispersion also affects the movement of the saltwater 
wedge, which travels further inland in the dispersive case 
than in the diffusive case. The same effect on the wedge’s 
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toe position is observed for the heterogeneous case. Hetero-
geneity, however, distorts more strongly the geometry of the 
saltwater–seawater interface. The low permeability zones 
near the sea (right) boundary modify the discharge of the 
freshwater and lead to the formation of high concentration 
zones along the boundary. The boundary conditions on that 

boundary are switching between Dirichlet and Neumann, 
therefore creating a seemingly oscillatory patterns which 
is however stable and purely due to the heterogeneities and 
the resulting horizontal velocity which switches between 
positive and negative. This also shows the limitation of this 
simple testcase in highly heterogeneous systems.

5.2  Viscous fingering

Viscous fingering is a flow instability that appears when a fluid 
displaces another one of different viscosity [8]. The instabil-
ity is caused by the difference in mobility between the fluids, 
which leads to the formation of fingering patterns. The pat-
terns displays a complex tip-splitting, shielding and coales-
cence dynamics, which is affected by the medium heterogene-
ity [37–39] and chemical reactions [40–42]. Figure 6 shows 
an example of miscible viscous fingering in a 3D cylindrical 
geometry. In this case viscosity is a function of concentra-

tion �(c) = �0e
Rc with R = −3 . A fluid with c = 1 is injected 

at constant rate from the left boundary displaces the resident 
fluid ( c = 0 ). Pressure and a zero gradient for concentration 
are prescribed at the outlet. The system is characterised by the 
Péclet number Pe = q0L∕�Dm = 103 , where q0 is the velocity 

Table 1  Henry problem parameters for the diffusive and dispersive 
cases

Parameter Value Units

Qin 6.6 ⋅ 10−2 kg/s
� 0.35 –
�0 1000 kg/m3

� 0.6832 –
csea 36.5925 kg/m3

k 1.02 ⋅ 10−9 m2

� 0.001 Pa s
Dm 6.6 ⋅ 10−6 m2/s
�L 0.1 m
�T 0.01 m
�x 0.2 m
�z 0.1 m
�2
log k

2

Fig. 4  Solution for the concentration for the original Henry (left) and dispersive Henry problem (right) at time 6000 s. As a result of hydrody-
namic dispersion the freshwater–saltwater interface is flatter and advances more inland

Fig. 5  Map of log-permeability field (left) used to solve the heterogenous Henry problem permeability and the resulting concentration (right) at 
time 6000 s
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at the inlet, L the domain length, � the porosity and Dm the 
diffusion coefficient. We observe how the interface deforms 
and the fingering pattern appears (Fig. 6, left). At late times 
(Fig. 6, right), the fingers merge and the pattern is form by 
fewer thicker fingers. The tip splitting and shielding mecha-
nisms are also reproduced in the simulation.

These results have been obtained with 200 × 200 × 1000 
Cartesian grid which is cut and adapted to the cylinder 
walls using the  OpenFOAM®native meshing tool snap-
pyHexMesh. The adaptive time step is chosen to be pro-
portional to the local mesh size and the inverse of the local 
velocity magnitude, with a proportionality constant of 0.1. The 
instability patterns are however only qualitatively independ-
ent on the mesh size and time step as no initial perturbation 
is imposed. Particularly important here (and even more for 
heterogeneous permeability fields) is the harmonic interpo-
lation of the viscosity and diffusive coefficients to properly 
characterise the fingering.

5.3  Unstable flow in highly heterogeneous media

The Horton–Rogers–Lapwood (HRL) problem [43, 44] is a 
heat transport problem in which a temperature difference is 
prescribed between the top and bottom boundaries of a rectan-
gular domain. Fluid density decreases linearly with tempera-
ture so that an unstable density stratification is form that trig-
gers a Rayleigh–Bénard instability. The system is characterised 
by the Rayleigh number

where Kth is the thermal conductivity, k permeability, � 
viscosity, Δ� the density difference between the top and 
bottom boundaries, H the height of the domain and � the 
medium porosity. For a square domain the system is stable 
for Ra < 4𝜋2 . For 4𝜋2 < Ra < 1300 the system becomes 
unstable and convection cells that occupy the whole domain 

(17)Ra =
kgΔ�H

��Kth

,

form [45]. For Ra > 1300 the convection regimes becomes 
chaotic and flow organises itself in columnar patterns [46]. 
During the convection-dominated regimes, mixing and heat 
fluxes through boundaries are significantly increased with 
respect to the stable regime [47].

For illustration purposes we consider a 2 × 1 domain 
discretised using 1024 × 512 cells. Temperature 1 and 0 is 
prescribed at the bottom and top boundaries respectively 
and zero temperature gradient is prescribed at the lateral 
boundaries. Initially temperature varies smoothly with 
depth. The initial time step is set to 0.1 and the maximum 
Courant number to 0.5. Two heterogenous cases are solved. 
First, a log-normally distributed permeability field with 
�2 = 2 and correlation lengths lx = 0.2; lz = 0.05 (Fig.  7 
left). Second, a truncated permeability field with thresholds 
2.7 × 10−1, 58.9, 1.83 × 10−2 , and 3.99) chosen from the 
previous permeability distribution (Fig. 8 left). Flow and 
transport parameters are chosen so that Ra = 104 . Solutions 
for temperature at time 5 are shown in the right panels of 
Figs. 7 and 8.

It is important to notice, compared to the classical HRL 
problem with constant permeability, that the heterogeneities 
tend to stabilise the flow. In fact, both results in Figs. 7 and 
8 are steady state, although for other statistically equivalent 
realisations it has been observed that small local fluctuations 
could still happen for variance of the log-permeability up 
to 2. The discontinuities in the permeability field creates, 
as expected, more defined structures and further stabilise 
the flow.

5.4  Dual‑porosity and discontinuous permeabilities

Dual porosity models are a convenient representation of 
fractures porous media [48]. In the following example we 
consider a quarter of a five spot geometry [49] in which a 
low permeability matrix is traversed by two fractures with 
high anisotropic permeability. Although this model is suit-
able to describe complex relatively homogeneous networks 

Fig. 6  3D viscous fingering at Pe = 103 at dimensionless times 0.3 
and 0.7. A high viscosity fluid (red) displaces a low viscosity fluid 
forming a fingering instability. As time passes the initially small 

fingers merge into larger ones. Shielding and tip splitting can be 
observed in the fingers of the panel on the right
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of fractures, for demonstration purposes, we focus here on 
a testcase where the fractures are localised in a cross-like 
structure. Therefore, the fractures permeability tensors have 
only one non-zero component corresponding to the orien-
tation of the fracture. That is, only the Kyy component is 
non-zero for the vertical fracture and the Kxx component for 
the horizontal one. An injection takes place in the lower left 
corner and an extraction of the same magnitude on the upper 
right corner (Fig. 9). The underlying matrix permeability 
is isotropic and constant and set to an intermediate value 
Kmat = 10−11 m 2 . The matrix porosity is chosen to be 0.3 for 
the matrix, dropping to 10−5 in the regions where fractures 
are present, while the fracture porosity is close to one (0.99) 
in the fracture-dominated regions and close to zero ( 10−5 s −1 ) 
elsewhere. The linear transfer coefficient � is constant and 
equal to 10−5 . A Cartesian mesh of 100 × 100 is used.

The resulting system has a very strong coupling as 
the flow can only traverse the domain by communicating 
through the fracture system. This means that the iterative 
solution of the coupled system via the sequential solutions 
of matrix and fracture pressure would be very slow (up to 
thousands of iterations). Thanks to the Schur-based decou-
pling scheme implemented (the interested reader is referred 
to [32]), the convergence is achieved in only four iterations. 
Figure 10 show the resulting velocity field with the sharp 

transitions between matrix-dominated and fracture-domi-
nated region. For this type of system, where fractures are 
very localised, the dual-porosity model assumptions breaks 
down, and similar results could have been obtained with a 
single highly heterogeneous permeability field. However, the 
aim here is to test the robustness of the method for solving 
highly heterogeneous dual-porosity permeability fields. For 
smoother transitions and larger-scale testcases, where one 
has a non-negligible fracture and matrix porosity (and per-
meability) everywhere, the dual-porosity model assumptions 
would be instead verified. Our geostatistical generation of 
the fields could be used to produce more realistic scenarios 
but with the additional difficulty of prescribing a relation or 
correlation between, not only porosity and permeability of 
the matrix (as commonly done), but also transfer coefficient 
and fracture porosity and permeability.

6  Conclusions

In this work we have presented the general-purpose open-
source framework SECUReFoam for the computational 
modelling of various porous media flow and transport prob-
lems. An important element of this work is the combina-
tion of geostatistical tools with partial differential equations 

Fig. 7  Log-permeability field (left) and temperature field at dimensionless time 5

Fig. 8  Truncated log-permeability field (left) and temperature solution at dimensionless time 5
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solvers. We focused here on a very general yet simple 
approach to generate discontinuous random fields (for poros-
ity, permeability and other properties), namely the truncated 
pluri-Gaussian simulation. We have limited our attention to 
unconditioned fields although it is possible to extend this 
to assimilate real-data by conditioning the random fields. 
The numerical implementation of continuous and truncated 
random fields is based on the explicit spectral representation 
evaluated in each mesh points rather than Discrete Fourier 
Transform, therefore independent from the space discretisa-
tion and making it suitable for the use with non-structured, 
non-orthogonal, and locally refined meshes, which are very 
common in geosciences. Future work will include the condi-
tioning on real data (kriging) and the extension to arbitrary 
anisotropic correlation matrices including rotations, or more 
general transformation matrices, allowing therefore more 
flexibility in the orientation of the facies.

Several mathematical models are implemented, focusing 
on Darcy’s flow, including dual-porosity media, and variable-
density flow with different correlation models available for 
viscosity, density and other parameters. The computational 
framework also include more advanced physics, such as poro-
mechanics, unsaturated flows, and phase-field methods but, 
due to the physical complexity of these models, these will 
be the focus of later works. All equations are solved sequen-
tially within a fully implicit Picard-type iteration which deals 
with non-linearities and coupling between the equations. 

Fig. 9  Five-spots injection problem. The low permeability matrix (blue) is traversed by two anisotropic high permeable fractures (red)

Fig. 10  Velocity field for the quarter of a five-spot injection problem. 
Injected water moves preferentially through the matrix (white arrows) 
until it reaches the high permeability factures (yellow arrows) which 
focus the flow through the domain. Water leaves the system through 
the extraction point in the upper right corner
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Operator-based preconditioning and relaxation is used to 
improve the coupling between the equations. Future work will 
include the implementation of Newton and Krylov-based itera-
tions for coupled non-linear operators.

We test the framework with well-known benchmark 
problems, namely the Henry problem for variable-density 
Darcy flow, the Horton–Rodgers–Lapwood testcase for Ray-
leigh–Benard instability, a three-dimensional pipe flow for 
viscous fingering, and a quarter five-spot problem for the 
dual-porosity model. We demonstrate how the computational 
framework is robust to highly heterogeneous media, instabili-
ties and coupled problems. All solvers and testcases are avail-
able open-source online [50, 51].

Appendix 1: Covariance functions 
and spectra

Covariance functions compute the covariance value �(r) 
between a pair variables located at points separated by the 
distance r. We focus here on the following cases:

Gaussian

Exponential

Matérn [52]

where K� is the modified Bessel function of the second kind.
Spherical [52]
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Appendix 2: Random field generator options

The users can tune their models on two different levels: 
by setting pre-defined key words and numerical fields in a 
dictionary or editing the source code for more substantial 
changes. The tuning options available in the dictionary are:

• type of GRF: truncated for ordinate geological 
formations (i.e. facies are self-embedded) or bitrun-
cated for domains where facies show more complicate 
pattern. The difference at computational level is that the 
former generates a single GRF while the latter produces 
two GRFs;

• correlation function: gaussian, exponential 
or matern;

• fields and correlation parameters:

– Kmean and Ksigma: mean and variance of the 
Gaussian fields;

– Lcorr: correlation lengths;
– � and � : just for matern;
– nfreq: correlation spectrum parameters;

• disableY and/or disableZ: they provide control 
over the number of dimensions of the field. When they 
are false the generated TGS is 3D;

• periodic: it controls the periodicity structure of the 
domain;

• values: float numbers taken by the facies;
• thresholds: float array which sets the boundaries of 

the of the facies on the chosen Gaussian distribution;
• thresholds2: same as thresholds but for the 

second Gaussian distribution, in case bitruncated 
option is selected.

Appendix 3: Density and viscosity models

Pre-defined options in the library that can be selected inde-
pendently for �(c) and �(c) . The models are: 

constant:  A costant value is used for the fluid 
property.

linear:  Fluid property changes linearly with 
concentration as f (c) = f0 + f1c.

exponential:  An exponential relation of the form 
f (c) = f0e

Rc is used for density or 
viscosity.

tabulated:  Fluid properties are interpolated 
from tabulated data (c,  f) allow-
ing the use of more complex func-
tions or experimental data. The 
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interpolation is done using the nonU-
niformTable class of openfoam 
thermophysicalFunctions.
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