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Artificial Intelligence (AI) has enormous potential to improve the safety of healthcare, from 

increasing diagnostic accuracy,[1] to optimising treatment planning,[2] to forecasting 

outcomes of care.[3] However, integrating AI technologies into the delivery of healthcare is 

likely to introduce a range of new risks and amplify existing ones. For instance, failures in 

widely used software have the potential to quickly affect large numbers of patients;[4] 

hidden assumptions in underlying data and models can lead to AI systems delivering 

dangerous recommendations that are insensitive to local care processes;[5,6] and opaque AI 

techniques such as deep learning can make explaining and learning from failure extremely 

difficult.[7,8] To maximise the benefits of AI in healthcare, and to build trust amongst 

patients and practitioners, it will therefore be essential to robustly govern the risks that AI 

poses to patient safety. 

 

In a recent review in this journal, Challen and colleagues present an important and timely 

analysis of some of the key technological risks associated with the application of machine 

learning in clinical settings.[9] Machine learning is a subfield of AI that focuses on the 

development of algorithms that are automatically derived and optimised through exposure 

to large quantities of exemplar ‘training’ data.[10]  The outputs of machine learning 



 2 

algorithms are essentially classifications of patterns that provide some sort of prediction—for 

instance, predicting whether an image shows a malignant melanoma or a benign mole.[11] 

Some of the basic techniques of machine learning have existed for half a century or more, but 

progress in the field has accelerated rapidly due to advances in the development of ‘deep’ 

artificial neural networks[12] combined with huge increases in computational power and the 

availability of enormous quantities of data. These techniques have underpinned recent 

public demonstrations of AI systems that display superhuman performance in a range of 

games, such as Go and chess, that have generated a mix of hope, hype and horror about the 

transformative potential—and risks—posed by AI.[13] Away from the headlines, intensive 

efforts are underway to apply machine learning to a variety of clinical tasks, particularly 

those involving the analysis of medical scans and other images,[4] and health systems are 

actively seeking to harness the benefits of AI while also beginning to define principles of 

appropriate conduct.[14,15] 

 

Given this rapid pace of development, Challen et al analyse how machine learning may pose 

risks to patient safety in the short, medium and long term.[9] In the short term, they identify 

safety issues as primarily arising from the reliability and interpretability of predictions made 

by machine learning systems. These issues include mismatches between the data a system is 

trained on and the world it must make predictions about (the problem of ‘distributional 

shift’), and the challenges of understanding and explaining how machine learning systems 

make predictions (the ‘black box’ problem). In the medium term, key safety issues are 

determined to be human over-reliance on the outputs of machine learning systems (the 

problem of ‘automation complacency’), along with the challenges of needing large quantities 

of historical data to train machine learning systems, which will therefore struggle to 

accommodate rapid changes in practice or policy. In the long term, Challen et al point to the 

potential implications of some fundamental technical challenges being grappled with in the 

field of AI safety. These include, for instance, autonomous systems that independently 
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discover novel ways to meet the letter, but not the spirit, of an intended objective (the 

‘reward hacking’ problem), and in so doing cause unintended harm.[9]  

 

Challen and colleagues’ review of these technological sources of risk posed by machine 

learning, combined with accelerating efforts to implement AI, raises a range of urgent 

questions regarding the governance of AI safety in healthcare. Answering these questions 

will require the development of a broad analytical and research framework that includes but 

also extends far beyond the technical issues faced in the operation of specific algorithms. It 

will involve looking backward to the practical activities of defining, developing, testing and 

deploying the models and data that underlie AI systems. And it will involve looking forward 

to the organisational and institutional contexts in which AI tools will be embedded—and in 

which they will sometimes fail.  

 

 

Governing the development of AI 

 

Many of the key safety issues identified by Challen et al both arise from, and need to be 

addressed during, the initial design and development of AI systems. Activities such as 

defining requirements and objectives, collecting and cleaning data, training and testing 

models, and producing user-facing interfaces all involve difficult decisions, necessary trade-

offs and fine-grained human judgements that can have considerable implications for 

safety.[10] Understanding these decisions, and the human and organisational processes that 

underpin them, is critically important to developing a complete picture of the safety of an AI 

system. For example, to properly govern the safety of a machine learning algorithm, it will be 

important to not only ascertain that a system ‘errs on the side of caution’ in its 

predictions.[9] It will also be important to understand how any asymmetric cost ratio that 
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underlies this behaviour was defined and agreed upon,[10] what evidence was drawn on to 

determine this, which stakeholders were involved and on what basis, and whether the 

balance between false positive and false negative errors is appropriate in relation to the work 

systems and safety controls in place in the setting in which the AI tool will be embedded. 

These are also, of course, the sorts of questions that will need to be answered in safety 

investigations when AI systems are involved in future adverse events.  

 

 

Grappling with opacity and inscrutability  

 

A more fundamental challenge to assuring the safety of machine learning systems 

highlighted by Challen et al is that of opacity: the basis of predictions made by some machine 

learning systems, particularly deep neural networks, are effectively an inscrutable ‘black 

box’, taking the form of a distribution of weights over a network rather than a logic that 

might (in principle) be explainable by—and to—humans. Technical solutions, such as 

saliency maps[9] and variable importance plots[10] may help in future. But while the precise 

workings of an algorithm itself may remain inscrutable, it should still be possible to examine 

and explain such things as the design decisions, functional requirements, training activities 

and input data that produce and constrain an AI system and its behaviour—as long as these 

are appropriately documented and auditable.[16] A relevant patient safety analogue might be 

found in current approaches to learning from unexpected adverse events in clinical care. To 

explain these, investigators do not (at present) seek to understand the precise neural basis of 

clinicians’ actions. Rather, in an ideal world they aim to understand what information was 

available at key points, if there were any constraints on decision making or cognition, 

whether there were gaps in knowledge or training, how decisions and actions were 

supervised or checked, and a whole range of other sociotechnical factors.[17] Governing the 

safety of AI technologies in healthcare will require analytical and explanatory frameworks 

that can explain these broader sociotechnical processes, as much as the underlying 
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mechanics of the algorithms themselves. Despite that, irreducible technical inscrutability—

along with the need for large quantities of retrospective training data best suited to a largely 

stable world[18]—may still render some approaches to machine learning unsuitable for 

safety-critical applications.[19]  

 

 

Integrating AI into clinical systems  

 

In addition to safety issues associated with the design and development of AI systems, 

Challen et al importantly draw attention to some risks associated with practical 

implementation. Ensuring that AI technologies ‘fail safe’ when they are unable to make 

reliable predictions is critical. However, ‘failing safe’ can not be fully understood as simply a 

technical property of an AI system declining to provide a prediction when its confidence is 

low,[9] but rather is a sociotechnical property of the entire work system that a technology is 

embedded in. For example, the introduction of AI technologies will likely need to be 

accompanied by targeted strategies to maintain the practical expertise of clinicians and avoid 

long-term deskilling in relation to tasks that become routinely performed by AI.[20] An AI 

tool that occasionally refrains from providing a prediction and hands a task back to a 

deskilled clinician is unlikely to constitute a safe clinical system. Other industries have long 

faced these sociotechnical challenges of automation, as illustrated by the loss of Air France 

447 over the Atlantic Ocean in 2009–a disaster in part initiated by the simple disconnection 

of the aircraft’s autopilot in level cruise due to uncertain data inputs, coupled with the crew’s 

limited experience of manually recovering from flight upsets at high altitude, related to 

broader deskilling across the industry.[21]  
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Governing machines that learn: AI as sociotechnical systems 

 

AI has the potential to transform healthcare in exciting and important ways but will also 

pose new risks to patient safety. To effectively manage these risks, the analysis and 

governance of AI safety must be treated as a fundamentally sociotechnical problem that 

considers the entire human, social and organisational infrastructure that AI technologies 

both emerge from and are embedded in. The field of AI is developing rapidly and in some 

instances new technologies, such as patient-facing symptom checkers, have already been 

deployed on a large scale with limited evaluation[22] in a light-touch regulatory 

environment.[23] Healthcare rapidly needs to develop governance systems, institutions and 

specialists with the expertise and resources to develop robust sociotechnical safety 

requirements and conduct integrated safety analysis of AI systems.[24] In particular, 

mechanisms are needed to detect, analyse and learn from the failures of emerging AI 

technologies, and to take preventative action before serious failures can cause harm to 

patients. At a minimum, AI systems should be subject to rigorous testing and require the 

publication of detailed safety cases[25] that explain and evidence how risks to patient safety 

have been managed both in the technical development and organisational implementation of 

a system—before those systems are used in patient care. Open publication of these reports 

will be particularly important in building trust and acceptance of new AI technologies. Even 

with rigorous testing, technologies still fail. AI systems should therefore incorporate the 

equivalent of airline ‘black box’ recorders to capture data related to safety events[13,19], and 

existing regulatory requirements, institutional structures and social agreements will need to 

be reformulated to ensure that all relevant data and information about AI safety issues can 

be openly shared, robustly investigated and systematically analysed to support accountability 

and learning. Due to the rapid pace of development in AI and its varied applications, as well 

as the continually-learning nature of some AI technologies,[26] systems of AI safety 

governance themselves will need to be adaptive, flexible and able to rapidly learn from 
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experience—and failure. Institutional infrastructures of learning will need to be built around 

these new technologies of learning.[27] 

 

The development of safety governance systems for emerging AI technologies will need to be 

supported by a broad-based programme of interdisciplinary research. Some of the safety 

challenges associated with AI will echo similar challenges encountered in medical 

technology, health informatics, complex automation and organisational safety, but others 

will be novel and unique. Four initial lines of inquiry seem particularly urgent. First, it will 

be important to understand and survey the forms of sociotechnical risks that AI systems are 

likely to introduce into different arenas of healthcare, to develop a coherent map of the safety 

landscape. Second, it will be necessary to identify, develop and adapt models of 

sociotechnical safety—and associated analytical methods—that are well suited to explaining 

and governing the patient safety risks arising from AI. Third, it will be critical to explore 

patient, public and practitioner perspectives on the risks, benefits and acceptability of AI 

systems in healthcare, and the social and institutional mechanisms that may be required for 

acceptance and to build trust. Fourth, it will be necessary to move beyond high level 

principles and examine the practical regulatory functions and concrete governance 

mechanisms that are best suited to assuring the safety of emerging AI systems, and that can 

accommodate the unique challenges of governing technologies that may have the potential to 

act autonomously and continuously learn and adapt. Many of these challenges are being 

actively explored in other sectors, such as the nascent autonomous vehicle industry [27,28] 

which has already experience high-profile safety failures and fatalities[29]. It will therefore 

be important for research and policy in healthcare to both contribute to and learn from these 

broader experiments and debates in AI safety and governance. By drawing attention to some 

key technological risks posed by machine learning, Challen et al[9] provide an important 

step forward and help to start a new conversation about the governance of AI safety in 

healthcare. A core premise of this debate must be that to effectively govern the safety of AI it 
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will be necessary to understand the vulnerabilities of the human and organisational systems 

that create and interact with AI—just as it will be necessary to understand the vulnerabilities 

of AI technologies themselves.  
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