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Abstract 

Recent years have seen an increased interest in the mechanical characterisation of materials via 

the inverse analysis of depth-sensing indentation data; however, at low-loads both the reaction 

forces measured by the instrument and the contact evolution at the indenter-material interface may 

be severely affected by indentation size effects (ISEs). Notwithstanding the knowledge of ISE, the 

inverse analyses proposed to date have failed to investigate the divergence between the small-

scale properties measured via indentation and the large-scale properties extracted from other 

techniques, e.g. tensile testing. Therefore, this study investigates the sensitivity of an inverse 

analysis methodology to the indentation size in relation to the size of the microstructure. The 

proposed inverse analysis approach is based on a multi-objective function (MOF) optimisation 

model that finds the combination of material properties (Young’s modulus, yield stress and 

strain-hardening exponent) that provides the best fit to both the experimental load-displacement 

(P-h) curve extracted from the indentation instrument and pile-up profile of the residual imprint 

measured with an atomic force microscope. Therefore, the piling-up/sinking-in effect, which 

is strongly linked to the plastic hardening behaviour of the indented material, is considered to 

address the non-uniqueness issue of the inverse analysis of indentation. A Berkovich indenter 

was used to measure the near surface properties of three different materials, including a 

titanium alloy (Ti-6Al-4V), chromium-molybdenum-vanadium steel (CrMoV) and high purity 

copper (C110); materials have been selected to represent a wide range of ductile metallic 

materials so as to assess the generality of the MOF model.  

 



 

 

1 Introduction 

Depth-sensing indentation has become a common technique to study the elastic and plastic 

behaviour of materials owing to its capability of measuring very small volumes of material 

while inflicting minimal damage to the sample. The test involves pressing a hard indenter into 

a solid body by applying either a controlled load or displacement and recording the response 

such that a load-depth (P-h) curve is extracted. The Oliver-Pharr method is a primary technique 

for determining hardness and elastic modulus from the predicted contact area; however, the 

derivation is based on Sneddon’s [1] work of elastic indentation and therefore is limited to 

materials that sink-in. The sink-in effect is more pronounced for strain-hardening or non-strain 

hardening materials with a low value of E/σy and involves material flowing inward and 

downwards as the plastically displaced material is accommodated mainly by far-field elastic 

displacements. By contrast, non-strain-hardening materials with a high value of E/σy deform 

more locally causing plastically displaced material to pile-up around the indenter due to the 

incompressibility of plastic deformation [2]. This is schematically illustrated in Figure 1. 

 

 

Figure 1. Schematic diagram of the surface profile at loading and unloading for indenter 

 

Therefore, both the elastic recovery and the indentation deformation behaviour contribute to 

the uncertainty in predicting the actual contact area of indentation and consequently in the 

determination of material properties. Errors of up to 60% in the prediction of the actual contact 

area and consequently a deviation of up to 60 and 50% in the calculations of hardness and 

Young’s modulus respectively could be expected for materials in which pile-up is significant 

[3]. A study conducted by N’jock et al. [4] concluded that a better approximation to the actual 

contact area when piling-up predominates is achieved following the method proposed by 

Loubet et al. [5]; the maximum error in the value of the reduced Young´s modulus of five 

different materials that exhibited pile-up deformation mode was found to be at least 50% 



 

 

smaller compared to the value predicted by the Oliver-Pharr method. Recent advances in 

computational capacities have allowed the development of (forward) finite element models to 

study the solid mechanical foundations of the indentation problem [6-8]. Inverse analysis 

methods have been developed more recently to recover elastic–plastic material properties from 

P–h curves. The methodologies available to date to relate the mechanical properties of a 

material to the indentation P-h curve can be categorised into three main groups: A first group 

provides empirical-analytical relationships derived from either Sneddon’s solution to elastic 

indentation, e.g. [5, 9, 10], or the finite element solutions to the indentation problem, e.g. [8, 

11-13]. A second group employs finite element calculations and the Π theorem [14] in 

dimensional analysis to derive the set of dimensionless functions that define the shape of the 

P-h curve in terms of the mechanical properties of the indented material, e.g. [15-17]. The third 

group relies on the optimisation theory in order to find the set of mechanical properties that 

provide the best fit between a target and a predicted P-h curve; both empirical-analytical 

formulae, e.g. [18, 19], and the FE approach, e.g. [20, 21], have been adopted to define the 

predicted P-h curve; however, the main concern with these approaches purely based on the P-

h curve is the existence of different materials that exhibit an identical mechanical response to 

indentation, i.e. the so-called ‘mystical’ materials [22]. The solution to the inverse analysis of 

indentation is not unique as a consequence of different factors such as the difficulties in 

representing numerically the complex strain field developed under the indenter during 

indentation, the existence of an intrinsic relationship among the characteristic parameters that 

can be established from a P-h curve [23, 24] and its low sensitivity to the plastic properties of 

the material [13, 25]. A few authors have explored the gains attained by measuring the residual 

imprint in addition to the P-h curve. The work presented by Bolzon et al. [26] using pseudo-

experimental data (FE simulated) concluded that information from residual imprints improves 

the optimisation of material properties. The objective function was defined as follows: 
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where the subscripts exp and com refer to experimental and computed quantities, respectively, 

hi is the indentation depth at a force i and uj the displacement at a point j from the axis of 

symmetry. The factors α and β take a value of 1 (α = β = 1) to include both the data from the 

P-h curve and residual imprint. In a further study [27], experimental residual imprints of a 

Rockwell hardness test at macro-scale (hmax = 260 µm) in a pipeline steel were measured using 



 

 

a contact profilometer. A genetic algorithm was invoked to minimise Equation 1; the mean 

values of the identified properties by means of the suggested approach, deviated between 17.8 

– 20.9% and 5.6 – 16.7% from the experimental values of E and σy. Moy et al. [28] adapted 

Bolzon’s [26] function by using only the value of maximum pile-up (hpile-up) and therefore the 

second term in Equation 1 was modified accordingly. The minimisation was performed using 

a trust region algorithm. The elastic-plastic properties (E, σy and n) of an Al 2024 alloy in the 

as-received and two age-hardened conditions were investigated. The inclusion of the maximum 

pile-up height significantly improved the prediction of the material properties, particularly the 

discrepancies between the predicted and experimental value of n and σy decreased from a 

maximum of 64.29% to 7.61% and from 38.75 to 11.75%, respectively. For the case of E, the 

improvement was less marked with errors reduced from a maximum of 11.70 to 10.79%. These 

studies [26-28] used a sphero-conical indenter and consequently a 2D axisymmetric 

formulation was proposed. It is apparent that many authors are more concerned in the 

development of new or different approaches to conduct an inverse analysis than on the study 

of the virtues and disadvantages of those available; therefore, this paper discusses in detail the 

capabilities of a MOF model coupled with a continuum mechanics FE approach to recover 

elastic-plastic properties of three polycrystalline materials. Furthermore, although different 

mechanisms that produce a sensitivity of microhardness to indentation size effects have been 

reported in the literature for at least thirty years [29], it appears that there is little awareness 

regarding the gap between the mechanical response to indentation at different scales. 

Therefore, this paper discusses the potential risks of attempting to recover mechanical 

properties when the indentation size is of the same order of magnitude as the microstructural 

features of the tested material. 

 

2 Experimental methods 

2.1 Materials and metallographic preparation 

Three materials with different elastic-plastic behaviour, including moderate strain-hardening 

(CrMoV steel), a low strain-hardening (Ti-6Al-4V) and an elastic-perfectly plastic (C110 

copper) material, have been selected to represent a wide range of ductile metallic materials so 

as to assess the generality of the MOF model. The material composition is included in Table 1. 

CrMoV steel was used in the tempered martensite condition and therefore the as-received 

sample was austenitized at 940 °C for 45 minutes, oil quenched and tempered at 570 °C for 

120 minutes.  



 

 

 

Table 1. Chemical composition of studied materials 

(weight %) as per a) Columbia metals, b) Aircraft 

materials and c) VSMPO-Trius. 

 C110a CrMoVb Ti-6Al-4Vc 

Cu 99.99 - - 

Pb 0.001 - - 

P 0.0003 0.020 - 

S 0.002 0.020 - 

C - 0.35-0.43 - 

Si - 0.10-0.35 - 

Cr - 3.0-3.5 - 

Mo - 0.80-1.10 - 

Ni - 0.30 max - 

Sn - 0.03 - 

Mn - 0.40-0.70 0.01 

V - 0.15 - 0.25 4.04 

Ti - - 88.83 

Fe - - 0.14 

Al - - 6.85 

Nb - - 0.03 

 

Flat specimens of CrMoV, Ti-6Al-4V and C110 were mounted in a conductive resin and then 

ground with abrasive paper down to 1200 grit (15.3μm), followed by polishing with 5 and 1 

µm diamond suspension. Ultimately, specimens were polished with colloidal silica down to 

0.06 µm for a minimum of 20 minutes, in order reduce the size of the hardened layer formed 

due to mechanical polishing. 

 

2.2 Mechanical testing at macro- and micro-scale  

At least two tensile test specimens were prepared from each material and tested as per ASTM 

E8/E8M-15a [30] to characterise their bulk properties (macro-scale). Due to the condition of 

supply, flat specimens were cut via electrical discharge machining (EDM) from a 3 mm sheet 

of Ti-6Al-4V and round specimens were machined from 25.4 mm bars of both CrMoV and 

C110. All specimens were tested in an Instron Servohydraulic Test Machine at room 

temperature and crosshead velocity of 0.25 mm/min (strain rate ~ 10-4 s-1) in order to ensure 

quasi-static conditions.  

 

Depth-sensing indentation tests were conducted using a Micro Materials Ltd. NanoTestTM NTX 

equipped with a Berkovich indenter. A new Berkovich diamond indenter with a tip radius of 

less than 20 nm has been used to perform the indentation. Before testing, both the indenter area 



 

 

function and the load frame compliance were calibrated using a standard sample of fused silica 

in compliance with ISO 14577 [31]. In order to remove the effects of surface roughness on the 

results, indentation loads were selected to reach maximum indentation depths of at least 20 

times the average roughness (Ra) of the specimen in accordance with ISO14577 [31]. Given 

that the polishing procedure affects the surface of the specimen to a depth of about the nominal 

grit size, due to strain-hardening or cold-working [2], indentations were performed at sufficient 

load to ensure indentation depths of at least three times the thickness of the strain-hardened 

layer as suggested by Liu et al. [32]. Therefore, the indenter has been loaded from an initial 

contact force (Pi) of 0.1 mN to a maximum force (Pmax) of 240 mN at a loading and unloading 

rate of 10 mN/s for CrMoV and Ti-6Al-4V. In order to investigate the mechanical response at 

a lower scale, CrMoV was also loaded to 120 mN at the same rate of 10 mN/s. C110 on the 

other hand was loaded to 120 mN at a rate of 4 mN/s in order to obtain a similar number of 

data points. In specimens of CrMoV, a dwell period of 30 s at Pmax was applied so as to ensure 

the unloading data used for analysis purpose were mostly elastic. In addition, the load was held 

constant for a period of 30 s at 0.1Pmax to establish the rate of displacement produced by thermal 

expansion in the system, that is, thermal drift, allowing thermal drift corrections to be 

performed on these curves; however, due to the complications in the inverse analysis caused 

by a non-continuous P-h curve, this load-time sequence was avoided in C110 and Ti-6Al-4V 

and instead, a single loading and unloading ramp was defined. Sets of five indentations were 

performed per indentation test, at an offset of at least 20 times the maximum depth as suggested 

by ASM International [33]. 

 

2.3 Surface topography measurements 

The residual imprints of the indents of interest were measured using a Bruker FastScan Bio 

Icon atomic force microscope (AFM) in peak force mode. As it was impractical to analyse 

every indentation for a given set of indentation parameters, surface topography measurements 

were taken only from the indents which exhibited the highest (HS) and lowest stiffness (LS) 

for each set of indentations. Furthermore, from each pair of measurements, only the indentation 

with the best agreement between the depth measured via the indentation instrument and AFM 

has been selected as input data for the optimisation procedure. Three pile-up profiles were 

extracted from each indentation, i.e. one per each of the directions of the bisector of the side of 

the triangular impression. However, in order to prove the enhanced capabilities of the MOF 

model to converge to the constitutive properties of the indented material only the most 



 

 

characteristic pile-up pattern has been selected for the optimisation analysis presented in 

section 4.2.2. That is, the one showing the smoother transition from maximum pile-up to free 

surface. Notwithstanding, section 5 discusses on the sensitivity of the optimisation solution to 

the direction of the pile-up profile used as a second objective. Owing to the equivalency of the 

projected areas, the same parameters were defined to measure the surface topography 

regardless of the material, i.e. 512 lines of 512 sample data points per scan line, scanned in a 

squared frame between 20 to 25 µm at a scan rate of half a line per second (0.5 Hz). Bruker 

RTESPA-300 etched silicon probes with tip radii in the range 8 to 12 nm, as per the 

manufacturers’ specifications, were used. A cantilever coated with Al reflective was employed, 

as recommended for highly reflective samples, with a spring constant of 40 N/m. Before 

analysing the height measurements, a first-order plane fit was applied to the heights of each 

pixel in the image in order to correct for tilting. Roughness statistics were reported from areas 

neighbouring the residual imprint following the ISO 4287/1-1997 [34] standard. 

 

The residual imprint area was quantified as the area beneath the free (reference) surface; 

however, due to the highly irregular topography of Ti-6Al-4V, the reference depth was offset 

to -100 μm from the free surface in this case. 

  

3 Numerical methods 

3.1 Finite element modelling of the indentation test with a Berkovich tip 

The indentation test of a bulk metal has been numerically simulated in this study using the 

ABAQUS Standard 6.12-3 FE code. The model assumes a rigid indenter pressed into an 

isotropic, elastic-plastic, rate independent, semi-infinite body under quasi-static and isothermal 

conditions. A homogenous constitutive behaviour was assumed for the indented body and 

therefore the model is valid only for indentation tests carried out at sufficiently deep indentation 

depths so that the effects of the characteristic microstructural size parameters are negligible. 

The material constitutive model follows a Swift power law hardening rule,   
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where E is the Young’s modulus, σy the initial yield stress corresponding to the yield strain εy, 

n the work-hardening exponent, and K is the strength coefficient of the indented body. Given 

that the Berkovich indenter is a triangular-based pyramid, only a sixth of the body has been 

modelled as illustrated in Figure 2. The Berkovich indenter has been modelled as a 3D discrete 

rigid body using 3-node 3D rigid triangular facet elements (R3D3 in ABAQUS). The specimen 

was defined as a 3D deformable body and has been discretised using linear tetrahedral elements 

(C3D4 in ABAQUS) owing to their capability to approximate complex boundaries, such as the 

plasticised material around the indenter. Hexahedral shaped elements with reduced integration 

were also tested; however, due to the imposed large rotations beneath the indenter, hourglass 

modes were observed. Full integration elements eliminated the mesh instabilities, yet the 

solution was penalised in computation time. Computations using tetrahedral and hexahedral 

elements, both with reduced and full integration, provided consistent results. Beneath the 

indenter, where steep strain gradients are expected, a finer mesh size of 0.2 μm was defined 

based on the results of a convergence study as illustrated in Figure 3. Boundary conditions on 

the deformable body (specimen) were defined as follows: The displacement of nodes on Plane 

I that come in contact with the indenter, is governed by a master-slave surface-to-surface 

boundary condition with zero friction as the effect of friction on the indentation process can be 

assumed to be negligible [11]. The nodes in the planes of symmetry (II and III) and bottom 

surface (IV) can only deform in their own planes and the cylindrical surface V is traction free. 

The FE solution was confirmed insensitive to far-field effects by comparing the results with 

that of a model constrained with a roller boundary condition (U1 = U3 = 0) on surface V. Load 

and displacement boundary conditions were imposed to the indenter such that the rigid body 

was only allowed to translate in the vertical direction (U1 = U3 = UR1 = UR2 = UR3 = 0).  

 



 

 

 

Figure 2. Geometry and boundary conditions defined in the 3D indentation model 

 

 

Figure 3. Sensitivity of hmax to the mesh size at the contact 

zone. CM refer to the coarsest mesh. 

 

3.2 Development of a multi-objective function optimisation model to solve the inverse 

analysis of indentation 

The optimisation problem was designed to minimise the error between both the experimental 

and predicted P-h curves, i.e. the first objective (f1(x)), and pile-up profiles, i.e. the second 

objective (f2(x)), as derived in Equation 3.  
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The vector x contains the optimisation parameters, i.e. the values of the material properties, 

and f(x) is the objective function to be minimised. The space of possible solutions has been 

limited by a set of bound constraints, where xj
L and xj

U represent the lower and upper boundaries 

of xj. The model can be considered a multi-objective function optimisation since f(x) is the 

weighted sum of squares between two sets of experimental (exp) and predicted data (pre), i.e. 

those related to the P-h curve and pile-up profile stored respectively in vectors f1(x) and f2(x). 

Therefore, hk is the indentation depth at a load step k, yl the axial coordinate of the residual 

imprint at the corresponding radial coordinate stored in data point l. Both physical data 

extracted from experimental indentation and FE simulated data have been linearly interpolated 

in order to evaluate the objective function at the specific sample points, i.e. k and l. 

Experimental height measurements along the pile-up profile were interpolated at intervals 

between 350 and 500 nm to ensure a reasonable number of data points M. Linear interpolation 

of more than one point within two experimental data points was avoided. Bearing in mind that 

the capabilities of the indentation sensing instrument allows significantly more data points (N) 

to be generated to define the P-h curve compared with those to define the pile-up profile, 

scaling coefficients have been introduced with the purpose of controlling the contribution of 

each objective function to the squared 2-norm of the residual. With the aim of keeping the 

number of calibration parameters to a minimum, and given that both measurements, i.e. the 

displacement of both the indenter and material along an edge of the indenter in the U2 direction, 

are of the same order of magnitude, it is reasonable to define the sum of the scaling coefficients 

equal to unity.  



 

 

 

Therefore, the components of both f1(x) and f2(x) are ‘artificially’ reduced by c and 1 - c, 

respectively, with the purpose of equilibrating the global contribution of each objective 

function. Based on the outcome of a methodological assessment [38] c was set to either 0.25 

or 0.5 and the ratio of N/M was kept between 2 and 7.5 to ensure the solution is insensitive to 

the number of data points. 

  

 

Figure 4. Flow chart of the multi-objective function 

optimisation procedure. 

 

4 Results 

4.1 Characterisation of ‘mystical’ materials 

Several authors have reported the existence of materials that yield indistinguishable P-h curves 

regardless of the difference in the constitutive parameters and indenter geometry [18, 39-41], 

which implies that the number of possible solutions to the inverse analysis of indentation purely 

based on experimentally obtained P-h curves is infinite. The mystical materials illustrated in 



 

 

Figure 5 exhibit very different elastic and plastic behaviours, yet the coefficient of variation 

between P-h curves is expected to be less than 0.5% [41]. Details of the constitutive parameters 

that define the stress-strain curves are included in Table 2. The capability of the proposed 

optimisation model to distinguish between mystical materials has been tested by forcing a 

condition of best fit between the target and predicted curve, such that the initial point is a local 

minimum; therefore, the inverse analysis is run using a (FE simulated) target P-h curve that 

corresponds to the mechanical properties of material A, i.e. here the target properties, whereas 

the initial guess vector corresponds to the properties of material B, as detailed in Table 2.  

 

 

Figure 5. Different elastic-plastic materials that yield 

indistinguishable P-h curves, i.e. mystical materials [41]. 

 

Table 2. Sets of dissimilar mechanical properties that 

exhibit identical indentation response, i.e. mystical 

materials. 

Material 
Parameter 

E σy n 

A 200000 2000 0.1 

B 212900 1245 0.3 

C 192570 2340 0 

 

As shown in Figure 6a, the single-objective function (SOF) model was incapable of converging 

to the target properties since the information provided solely by the P-h curve is limited. On 

the other hand, the non-uniqueness issue of the inverse analysis of indentation was positively 

addressed by the multi-objective function (MOF) model as the additional information 

regarding surface topography is linked with the plastic behaviour of the material. The 

enrichment of the model allowed the optimisation algorithm to circumvent the local minimum 

and converge to the target properties as seen in Figure 6b. The same positive outcome was 



 

 

observed using the properties of material C (Table 2) as the initial guess vector. The results of 

the optimisations concerning the SOF and MOF models, presented in Table 3, highlights the 

superior performance of the proposed approach over the more conventional SOF. The P-h 

curve is insensitive to the plastic properties, in particular to the strain-hardening exponent, and 

hence the SOF model, which lacked information to search for a better solution, resulted in 

errors of 5.2, 38.9 and 200% in E, σy and n respectively, while the MOF model reduced the 

errors to 0.14% in E, 0.15% in σy and 0% in n as shown in Table 3.  

 

a) 

 

b) 

 

Figure 6. Iteration history through a a) SOF and b) MOF 

optimisation model using material B as the initial guess 

parameters. 

 



 

 

Table 3. Set up and results for optimisation of mystical materials 

Model Parameter 
Target 

properties 

Initial 

guess 

Bound 

constraints 

Optimised 

properties 

Error 

[%] 

SOF 

E [MPa] 200000 212900 ≥ 0 210468 5.2 

σy [MPa] 2000 1245 ≥ 0 1223 38.9 

n 0.1 0.3 0 – 1 0.3 200 

MOF 

E [MPa] 200000 212900 ≥ 0 200287 0.14 

σy [MPa] 2000 1245 ≥ 0 1997 0.15 

n 0.1 0.3 0 - 1 0.1 0 

MOF 

E [MPa] 200000 192570 ≥ 0 199968 0.02 

σy [MPa] 2000 2340 ≥ 0 2001 0.05 

n 0.1 0 0 - 1 0.1 0 

 

4.2 Determination of elastic-plastic material properties from P-h curves extracted 

experimentally from depth-sensing indentation test and surface profiles 

4.2.1 Input data and model set-up 

 

Figure 7 includes the highest- (HS) and lowest-stiffness (LS) P-h curves for the set of 

indentations performed on CrMoV steel, C110 copper and Ti-6Al-4V. As previously 

mentioned, the displacement measured by the depth-sensing indentation instrument has been 

corrected for frame compliance in order to ensure that the contact stiffness is that of the 

specimen only; furthermore, P-h curves from the tests on CrMoV have been corrected for 

thermal drift. 

 



 

 

a) 

 

b) 

 

c) 

 

Figure 7. P-h curves selected for recovering the mechanical properties 

of a) CrMoV steel, b) C110 copper and c) Ti-6Al-4V. 

 

Table 4 presents the value of maximum indentation depth as measured by both the AFM (h0) 

and depth-sensing indentation instrument (hr). The difference can be associated with the 

contribution of calibration errors in both the depth sensing indentation and AFM instruments. 

Due a significant difference in the residual depth h0 in relation with hr measured in the Ti-6Al-

4V specimen, only the data above the free surface was used in the inverse analysis in order to 

avoid convergence issues.  

 



 

 

Table 4. Residual indentation depth as measured 

by the indentation instrument (hr) and AFM (h0). 

Specimen h0_Exp [µm]  h0_Exp/hr_Exp 

CrMoV 1.08 0.97 

C110 1.57 1.02 

Ti-6Al-4V 1.22 0.89 

 

For each material, the space of possible solutions for the Young´s modulus and strain hardening 

exponent has been limited by bound constraints taking as a guide the work of Waterman and 

Ashby [42] and Altan et al. [43], respectively. In the spirit of Tabor [44], the stress at 8% plastic 

strain of C110, CrMoV and Ti-6Al-4V, computed from the HM of the P-h curve that exhibited 

the stiffer response, was calculated as 486, 1832 and 1268 MPa, respectively; therefore, in 

order to allow a wider range of material properties so as to account for ISE, the optimisation 

model is subject to the bound constraints specified in Table 5. 

 

Table 5. Bound constraints imposed to the optimisation procedures 

of CrMoV steel, C110 copper and Ti-6Al-4V. 

Material E (GPa) σy (MPa) n 

CrMoV 150 – 260 1000 - 2500 0 – 0.25 

C110 50 – 150 300 - 600 0 – 0.25 

Ti-6Al-4V 50 - 200 1000 - 1800 0 – 0.25 

 

As introduced in Table 6, four sets of constitutive parameters, arbitrarily selected to cover the 

range of material properties delimited by the bound constraints, have been defined as the initial 

guess in order to assess the convergence power of the model. 

 



 

 

Table 6. Initial guess parameters selected to initialise the optimisations of CrMoV, Ti-6Al-4V and C110 

using single- and multiple-objective functions. 

Material Parameter R1 R2 R3 R4 

CrMoV 

E0 [MPa] 150000 220000 250000 190000 

σy0 [MPa] 1400 2000 2500 1000 

n0 0.05 0.15 0.25 0 

C110 

E0 [MPa] 95000 70000 80000 150000 

σy0 [MPa] 600 300 350 500 

n0 0.25 0 0.05 0.15 

Ti-6Al-4V 

E0 [MPa] 90000 200000 100000 150000 

σy0 [MPa] 1000 1800 1100 1500 

n0 0 0.25 0.05 0.15 

 

4.2.2 Enhancement in convergence properties attained with the MOF model 

 

Figure 8, Figure 9 and Figure 10 present the iteration history through the optimisations of the 

CrMoV steel, C110 copper and Ti6Al4V materials respectively. In general, the MOF model 

converged faster than the SOF model.   

 

In Figure 8, it can be seen that the MOF model converged to consistent solutions regardless of 

the initial guess parameters, while the SOF model showed a weaker convergence capability. In 

fact, for the optimisation with initial guess parameters of x0 = [250000, 2500, 0.25] the SOF 

model was incapable of recovering from a local solution. Interestingly, during the first 2 

iterations both the MOF and SOF passed through similar values, but during the proceeding 

iterations, the SOF remained trapped in the local solution for σy and n. As can be noticed in 

Table 7, the MOF tends to converge at higher E and lower σy compared to the SOF model. The 

reason for this trend can be attributed to the known dependency of the pile-up/sink-in 

phenomenon to both the ratio of E/σy and n [2] and thus the pile-up profile is effectively adding 

more constraint to the model. This could also explain the capability of the MOF model to 

recover from the local solution previously mentioned (compare iteration i = 4 in both Figure 

8a and b). Overall, a less scattered set of solutions was achieved using the MOF model, 

compared with that of the SOF model, with a variability, measured as the relative difference 

between the mean value and one standard deviation, of 1.00% for E, 1.67% for σy and 7.80% 

for n as reported in Table 7. In contrast, the SOF achieved solutions to E, σy and n with one 



 

 

standard deviation of up to 1.27, 5.63 and 27.94% for the corresponding parameters; therefore, 

the convergence of the optimisation model was enhanced by the addition of a second objective.  

 

  

a) b) 

  

c) d) 

  

e) f) 

Figure 8. Iteration history through the minimisation problem of a), c), e) single objective and b), d), f) 

multiple objectives for the determination of elastic-plastic properties of CrMoV steel. 

 

 



 

 

Table 7. Characterised properties of CrMoV after single- and multi-objective function optimisation. 

Initial guess 
Single-objective function  Multi-objective function 

E [MPa] σy [MPa] n  E [MPa] σy [MPa] n 

R1 233950 1431 0.1131  224551 1560 0.0823 

R2 234248 1407 0.1203  227019 1507 0.0977 

R3 240095 1616 0.0515  224546 1510 0.0977 

R4 232138 1441 0.1121  220753 1560 0.0851 

Mean 235108 1474 0.0993  224217 1534 0.0907 

Std. Dev. [%]  1.27 5.63 27.94  1.00 1.67 7.80 

 

Likewise, the MOF model reached more consistent solutions to the constitutive parameters of 

C110 copper as observed in Figure 9a-f, presenting a superior convergence performance of the 

MOF over the SOF as highlighted by the reduced variability in the solution as reported in Table 

8. In contrast, as presented in Table 8, the SOF model converged to dissimilar sets of material 

properties. Surprisingly, the iteration history throughout the MOF model (Figure 9b, d and f) 

reveals that convergence was reached after the second iteration in the majority of the 

optimisation trials, despite the significant variation of at least 100% between the upper and 

lower parameter (E, σy and n) selected to initialise the optimisation. A trend similar to the 

optimisation history of CrMoV steel can be observed in Figure 9 and Table 8 with the solutions 

provided by the MOF model reaching a lower E and higher σy value, respectively, compared 

with those of the SOF.  

 



 

 

  

a) b) 

  

c) d) 

  

e) f) 

Figure 9. Iteration history through the minimisation problem of a), c), e) single objective and b), d), f) 

multiple objectives for the determination of elastic-plastic properties of C110 copper. 

 

Table 8. Characterised properties of C110 copper after single- and multi-objective function optimisation. 

Iteration 
Single-objective function  Multi-objective function 

E [MPa] σy [MPa] n  E [MPa] σy [MPa] n 

R1 130109 343 0.1095  92610 386 0.0699 

R2 128474 332 0.1213  95511 395 0.0530 

R3 103843 427 0.0513  97147 398 0.0549 

R4 134154 392 0.0607  92413 387 0.0684 

Mean 124145 374 0.0857  94420 392 0.0616 

Std. Dev. [%] 9.6 10.2 35.2  2.1 1.4 12.5 

 



 

 

For the case of Ti-6Al-4V, the indentation response is a result of the material behaviour of 

grains of both the α and β phases and their interaction with neighbouring grains, which is 

beyond the capabilities of the conventional continuum plasticity approach used in the FE 

formulation. Error is therefore inherent in the MOF algorithm and hence, the consistency in the 

optimised n is slightly affected as reported in Figure 10 and Table 9. Notwithstanding, the MOF 

model achieved a reduced variability in the converged solution for all three parameters, 

compared with that of the SOF model, as reported in Table 9. Furthermore, the SOF model was 

susceptible to converge on a local solution as was the case for the optimisation R1; as observed 

in Figure 10a, c and d, the model reached an apparent local solution for σy and n at the sixth 

iteration as a result of the lack of information in the P-h curve to describe the plastic behaviour 

of the indented material. It is to be noted through the iteration history followed by the SOF 

optimisation, that the lower bound constraint imposed on the model (σy > 1000 MPa) prevented 

a further reduction in the value of σy as shown in Figure 10c, which otherwise would result in 

a larger error.  

 



 

 

  

a) b) 

  

c) d) 

  

e) f) 

Figure 10. Iteration history through the minimization problem of a), c), e) single objective and b), d), f) 

multiple objectives for the determination of elastic-plastic properties of Ti-6Al-4V. 

 



 

 

Table 9. Characterised properties of Ti-6Al-4V after single- and multi-objective function optimisation. 

Initial guess 
Single-objective function  Multi-objective function 

E [MPa] σy [MPa] n  E [GPa] σy [MPa] n 

R1 116568 1099 0.0432  106468 1179 0.0276 

R2 116083 1000 0.0935  110912 1117 0.0504 

R3 107029 1117 0.0534  108822 1144 0.0407 

R4 118139 1070 0.0552  112476 1113 0.0490 

Mean 114455 1071 0.0613  109669 1138 0.0419 

Std. Dev. [%]  3.80 4.14 31.14  2.06 2.31 21.70 

 

4.2.3 Mechanical response to indentation as predicted by the optimisation model 

 

The trust-region-reflective algorithm is a highly regarded method for its strong fitting 

capabilities [35] and thus, as evidenced in Figure 11, the recovered properties using both the 

SOF and MOF model led to remarkably consistent P-h curves, in very good agreement with 

the corresponding experimental curves. Therefore, for clarity, Figure 11 compares the 

experimental P-h curve with that of the indentation response of only one of the optimised sets 

of material properties provided by the SOF and MOF model. The maximum indentation depth 

(hmax) measured by the indentation instrument in specimens of CrMoV steel, C110 copper and 

Ti-6Al-4V was predicted by the SOF model with a 2.5, 2.7 and 1.4% error, respectively; the 

MOF model slightly reduced the corresponding errors to 2.4, 1.5 and 1.4%. Similarly, the depth 

after the load has completely removed (hr) in specimens of CrMoV steel, C110 copper and Ti-

6Al-4V, respectively, was predicted with errors of 5.6, 6.6 and 8.4% by the SOF and 5.0, 11.0 

and 7.4% by the MOF. The main concern with the SOF model is that the nearly 

indistinguishable P-h curves represent the indentation response of a variety of material 

properties as reported in Table 7 to Table 9, i.e. the solution was not unique.  

 

 



 

 

a) 

 

b) 

 

c) 

 

Figure 11. Fitting of optimised curve to experimental curve 

via the single- and multiple- objective function optimisation 

model for the corresponding material: a) CrMoV steel, b) 

C110 copper and c) Ti-6Al-4V. 

 

The MOF optimisation model proved to be a step forward to the characterisation of the near-

surface properties as, in contrast to the P-h curve, the residual imprint is strongly linked to the 

plastic behaviour of the indented material; therefore, the physics of the indentation problem 

was better represented as can be demonstrated by studying the volume of displaced material 

predicted by the MOF model, compared with experimental measurements taken via AFM 

(Figure 12). After convergence, the FE model approximated the area of the residual imprint 

extracted from the AFM scans for CrMoV steel, C110 copper and Ti-6Al-4V with an error of 

5.1, 10.8 and 12.4%, respectively, as reported in Table 10. Moreover, the convex shape of the 

sides of the triangular area of indentation in CrMoV and Ti-6Al-4V, resulting from the recovery 

of displacements upon unloading, was very well predicted by the FE model, as can be seen by 

comparing Figure 12a with b and Figure 12e with f. In addition, the straight sides of the residual 



 

 

imprint predicted from the recovered properties of C110 copper (Figure 12d) were consistent 

with the experimental measurements (Figure 12c). 

 

Table 10. Imprint area of indentation measured via AFM (A) 

compared with predicted area by the FE model after convergence 

(AFE). 

Material A [µm2] AFE [µm2] ΔA/A [%] 

CrMoV 39.0 37.0 5.1 

C110 79.9 71.3 10.8 

Ti-6Al-4V 46.1 51.8 12.4 

 

Circles A, B and C were drawn on the displacement contour plots produced by the optimised 

FE model (Figure 12b and d) and are intended to characterise the three main regions where 

material displaced plastically during indentation. Radii A, B and C are measured, respectively, 

from the centre of indentation to the point of maximum pile up, the intersection of the imprint 

edges and the far-field where the piled-up material meets the original indentation surface. In 

order to prove the strong capabilities of the MOF model to represent the elastic-plastic 

deformation history experienced by the indented material, the size of regions A, B and C has 

been superimposed on the corresponding top view provided by the AFM (Figure 12a and c). 

Referring to Figure 12a and b, both the AFM measurement and FE prediction showed that the 

volume of plastically displaced material was confined to a region adjacent to the indenter-

material interface, identified as region C, and reached a maximum pile-up height within region 

A. Accordingly, the pile-up height decreased away from the indenter centreline and towards 

the intersections of the indenter edges, i.e. the corners of the triangle. Also, in agreement with 

experimental measurements, the FE model provided evidence that in the neighbourhood of the 

corners of the triangle, the material does not show a dominant plastic flow behaviour, i.e. 

piling-up or sinking-in. This behaviour was consistently delimited by region B in both the real 

and predicted residual imprint. Examining the predicted plastic flow of material in Figure 12d, 

it was observed that C110 copper piled-up predominantly towards the bisector of the side of 

the triangular impression within region A. Moving away from the centreline of the indenter, 

the height decreased until the free surface was reached beyond region C. It was also noticeable 

a steeper decrease in height, compared with the imprint in CrMoV, as the corners of the triangle 

are approached. These trends and the regions where they occurred were highly consistent with 

the experimentally measured residual imprint as can be demonstrated by tracing the drawings 

of regions A, B and C of Figure 12d on Figure 12c. In contrast, it was evident that the complex 



 

 

plastic deformation behaviour of the dual-phase microstructure of Ti-6Al-4V was beyond the 

capabilities of an FE model based on the continuum mechanics approach; however, the height 

measurements in the direction in which the pile-up profile was extracted (direction e in Figure 

12), was represented accordingly by the FE model as discussed below.  

 

AFM measurements Optimised FE prediction 

 

a) b) 

.

 

c) d) 

 

e) f) 

Figure 12. Top views of the residual imprints on specimens of a) CrMoV steel, b) 

C110 copper and c) Ti-6Al-4V. The left column presents the height measurements 

provided by the AFM and the right column the FE predictions using the optimised 

properties.   

 



 

 

A more detailed assessment was conducted by studying the pile-up profiles extracted from the 

height measurements provided by the AFM as presented in Figure 13. To facilitate 

interpretation, Table 11 includes the quantitative information concerning the fitting of the SOF 

and MOF model to the experimental residual profile. Figure 13a, c and e show that despite the 

very consistent P-h curves, which are governed mostly by the E and σy parameters, the SOF 

model lacks the capability to recognise the significantly different behaviour of the plasticised 

material beneath the indenter, which is strongly linked to the parameter n. As a matter of fact, 

the material properties determined by the SOF model as presented in Table 7 to Table 9 are, 

correspondingly, ‘siblings’ to one another, i.e. their indentation response is nearly identical 

regardless of the dissimilar material properties that define their constitutive behaviour. For 

instance, the coefficient of variation between the P-h curves R2 and R3 shown in Figure 13c, 

which represent the indentation response of the material properties identified in Table 8, was 

less than 1% regardless of the significant deviation between the constitutive parameters of R2 

in relation to R3, i.e. -23.7% in E, -22.2% in σy and 136% for n. Notwithstanding, the maximum 

pile-up height differed by more than 30%; therefore, the risk of the non-uniqueness issue of the 

inverse analysis of indentation poses a threat to the reliability of the inverse analysis purely 

based on P-h curves. Conversely, Figure 13b, d and f show the consistency achieved in the 

prediction of the plastic response of the indented material with the MOF model. 

Notwithstanding, comparing Figure 13e and f, the MOF model attempted to provide a best fit 

between experimental and predicted data and hence the recovered material properties yielded 

to a mean error in hpeak = 3.9%, which was lower than the error of 7.6% incurred by the SOF 

model. Surprisingly, although the information beneath the free surface was not included in the 

optimisation of Ti-6Al-4V, the predicted h0 by the SOF and MOF model closely approached 

the residual depth measured by the indentation instrument (hr) to a relative deviation of less 

than 7.9% and 6.8% respectively. Therefore, rather than a failure of the MOF model, the 

variation in the optimised n for Ti-6Al-4V is attributable to the incompatibility between the 

macroscale approximation included in the FE model and the microscale plasticity behaviour of 

polycrystalline materials.  

 

 

 

 



 

 

  

a) b) 

  

c) d) 

  

e) f) 

Figure 13. Experimental pile-up profile in indentations of a), b) CrMoV steel, c), d), C110 copper and e), f) 

Ti-6Al-4V fitted by the single- (left) and multiple- (right) objective function optimisation model   

 

Table 11. Mean values of the peak pile-up height (hpeak) and residual depth (h0) as predicted by 

the SOF and MOF. 

 Single-objective function  Multi-objective function 

Material Δhpeak/hpeak_Exp Δh0/h0_Exp  Δhpeak/hpeak_Exp Δh0/h0_Exp 

CrMoV 19.9 8.7  11.0 8.1 

Ti-6Al-4V 7.6 7.9 (1)   3.9 6.8 (1) 

C110 19.7 0.7  31.3 3.6 

(1) Δh0/hr_Exp 

 



 

 

5 Discussion 

In order to assess the variation in derived properties using the pile-up data, additional runs were 

performed using the other two pile-up profiles extracted from each indentation. It was observed 

that the largest difference among optimised properties for all three materials was seen in the 

strain-hardening exponent, this can be explained due to the known relationship between the 

strain-hardening and the pile-up of material during indentation [2]. For all three materials, the 

greater the pile-up above the free surface, the lower the recovered strain-hardening exponent. 

The recovered Young’s modulus also showed considerable sensitivity to the direction of the 

pile-up profile, with coefficients of variation of 6.0, 16.9 and 32.1% for CrMoV, C110 and Ti-

6Al-4V, respectively. On the other hand, the optimised value of yield stress was found to be 

very consistent, regardless of the direction of the pile-up profile with a coefficient of variation 

of 3.1, 4.4 and 4.8% for CrMoV, C110 and Ti-6Al-4V, respectively. In order to account for the 

uncertainty arising from the effect of the direction of the pile-up profile on the recovered 

properties, an additional optimisation was carried out for each material using the average of 

the three pile-up profile directions and the recovered properties compared with those obtained 

from uniaxial test data, as presented in Figure 14. It can be seen that the stress-strain 

relationships of the material at the micro- and macro-scale differ, which can be attributed to: 

(i) the macroscale properties measured by the uniaxial tensile test describe the average of the 

mechanical response of the microstructure to external stimuli, i.e. the bulk properties; and (ii) 

a uniaxial stress-strain curve represents an incomplete description of plastic deformation as it 

reduces a six-dimensional yield surface and its change upon loading to a one-dimensional 

(scalar) yield curve [45]. On the other hand, the optimised properties were recovered from the 

indentation response of the microstructure, which includes multiple phenomena neglected at 

macroscale, e.g. the heterogeneity of crystalline matter, the orientation dependence of the 

activation of the crystallographic deformation mechanisms, the extent of the mis-orientation 

between grains, the anisotropy of crystals and the strain gradient plasticity at low loads.  

 

The significant difference in the predicted properties for the case of C110 copper, as reported 

in Table 12, can, therefore, be attributed in part to the lack of a length parameter (required to 

account for ISE) in the continuum mechanics approach used in FE modelling. As the grain size 

in relation to indentation size is smaller in CrMoV steel and Ti-6Al-4V, microstructural effects 

are diminished and consequently a better prediction was achieved. Notwithstanding, the 

difference between the micro- and macro-scale Young’s modulus measured on Ti-6Al-4V can 



 

 

be also attributed to the interaction between the α- and β-grains with the Berkovich tip during 

indentation. On the other hand,  a very good agreement between the predicted and measured 

elastic-plastic properties can be noted in Table 12 for the case of CrMoV, where the ratio of 

grain size to indentation size is significantly below unity. 

 

 

Figure 14. Constitutive relationship as determined 

by the multiple-objective function optimisation 

model (dashed lines). The engineering stress-

engineering strain extracted from the tensile test has 

been superimposed (solid lines). 

 

Table 12. Constitutive parameters as determined by the uniaxial tensile test and inverse analysis of 

depth-sensing indentation data via the MOF model using the average of the pile-up profiles. 

Param. 
CrMoV  C110  Ti-6Al-4V 

Uniaxial MOF  Uniaxial MOF  Uniaxial MOF 

E [MPa] 204233 207679  99543 136072  103116 120966 

σy [MPa] 1325 1600  249 428  839 1091 

n 0.1055 0.0865  0.0090 0.0035  0.0315 0.0412 

 

 

Additionally, the fit of a model including the pile-up profile is highly sensitive to the 

mechanism of plastic deformation of the microstructure. Tempered martensite grains are 

relatively fine (2-3 μm) compared to the area of indentation reached at Pmax = 0.24 N, A = 39 

μm2 as reported in Table 10, and hence the plastic deformation approximates, to some extent, 

that of a continuum homogeneous material; the result was a well-predicted pile-up profile 

(Figure 13b) with a mean error for the value of the peak pile-up height (hpeak) of less than 11% 

as included in Table 11. In contrast, the mean hpeak predicted by the SOF deviated by up to 20% 

as illustrated in Figure 13a. Furthermore, the residual depth, h0, measured in CrMoV steel was 

better predicted by the MOF as detailed in Table 11. The significantly coarser grains of C110 

copper, which reach sizes of up to 100 μm, mean that indentations were likely to fall within a 



 

 

single grain as A = 79.9 μm2 at Pmax = 0.12 N. Therefore, the largest error in hpeak and h0 for the 

case of C110 copper reported in Table 11 and shown in Figure 13d was not surprising as the 

continuum mechanics approach used was unsuitable to represent the anisotropic behaviour of 

single crystals of copper. Lastly, grains of Ti-6Al-4V were not only of an equivalent size to the 

indented area, i.e. an α-grain size of 20-30 μm and A ~ 46.1 μm2 at Pmax = 0.24 N (Table 10), 

but the changing material properties from grain to grain resulted in a highly distorted pile-up 

profile as observed in Figure 12e, which is understood by the optimisation algorithm as error 

in the form of noise and outliers.  

 

A load-time sequence in experimental depth-sensing indentation test is typically designed to 

assess the repeatability of the test in a specific material and to avoid capturing anything other 

than elastic displacements during the (final) unloading stage [20]. It is common practice to 

include hold periods, e.g. at maximum load (Pmax) to ensure stable material response before 

unloading. As can be seen in Figure 7a, time-dependent deformation was recorded by the 

indentation instrument over the dwell period defined at Pmax; however, in the absence of a time-

dependent parameter in the material model, the FE simulation will be incapable of resolving 

the displacements taking place during the load holding periods for the indentation experiment 

in CrMoV. In contrast, not including a dwell period in the indentation experiment, or a very 

short hold period succeeded by a slow unloading rate, may result in an initial increase of 

indentation depth upon unloading due to creep [46] as illustrated in Figure 7b. The foregoing 

presents a further challenge to the researcher as a critical decision shall be made to avoid the 

discrepancy between the continuum mechanics solution and the experimental P-h curve results 

in a detriment to the optimisation procedure.  

 

6 Conclusions 

The strong dependency of the residual imprint left by the indenter to the plastic behaviour of 

the indented material was exploited to complement the information provided by the P-h curve 

and so address the non-uniqueness issue of the inverse analysis of indentation. The superior 

performance of the proposed MOF optimisation model, compared with a single-objective 

function model, was highlighted by its capability to distinguish between materials showing 

similar indentation responses, referred to in the literature as ‘mystical’ materials. While the 

single-objective function model was trapped on a local solution, in excess of 5.2, 38.9 and 

66.7% away from the (global) target E, σy and n respectively, the multi-objective function 
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optimisation converged to the target properties within an error of less than 0.15% in all three 

parameters. 

 

The second objective introduced in the multi-objective function optimisation model proposed 

in this study, provided valuable information concerning the plastic behaviour of the indented 

material and thus the robustness of the optimisation model was seen to be enhanced. The model 

provided very consistent results and proved to be capable of recovering from an apparent local 

solution. Furthermore, the complementary constraint added by the second objective was 

directly reflected in the capability of the model to distinguish between ‘sibling’ materials and 

thus the MOF model effectively addressed the non-uniqueness issue of the inverse analysis of 

indentation. Overall, the MOF model resulted in a faster convergence and in a reduced 

variability in the solution. A great fitting power provided by the trust-region algorithm resulted 

in experimental P-h curves extracted from all three materials fitted by the set of material 

properties to within an error of less than 2.4% and 8.4% the maximum (hmax) and residual (hr) 

depth, respectively.  

 

Of great interest was the remarkably well predicted topography of indentation by the MOF 

model provided that grain sizes are small enough in relation with the area covered by the 

indenter at full load. Both the shape of the edges and the area of the triangular residual imprint 

were in very good agreement with experimental data. The predicted indentation area deviated 

5.1, 10.8 and 12.4% from the area measurements taken in indentations of CrMoV steel, C110 

copper and Ti-6Al-4V, respectively. The validity of the predictions of the plastic flow of 

material beneath the indenter was supported by the strong consistency achieved by the MOF 

model with the AFM measurements. The error between the experimental and predicted 

maximum pile-up height (hpeak) was an average of 11% for indentations in CrMoV steel and 

6.8% for Ti-6Al-4V. The variation in the pile-up profile predicted for C110 was attributed to 

the crystalline anisotropy of copper. Therefore, further developments are encouraged to include 

a more sophisticated crystal plasticity FE model in order provide a better approximation to the 

crystallographic deformation beneath the indenter. 

 

Further conclusions can be drawn from the outcomes of this study concerned with the inverse 

analysis of experimental data by means of an optimisation procedure coupled with a 

conventional continuum mechanics FE model: 

 



 

 

 A single loading and unloading sequence is preferred for the optimisation procedure, 

i.e. without load-holding periods, so as to allow the comparison with the time-

independent solution provided by the FE model.  The shortcoming is the risk of 

capturing significant displacements due to plastic recovery in the experimental P-h 

curves and consequently the optimisation model finding difficulties with fitting the 

experimental data. Furthermore, the dwell period at Pmax results in an intrinsic error in 

the model due to the mismatch with the load-independent FE solution. Furthermore, it 

is recommended to leave the system over night to thermally stabilise to reduce thermal 

drift effects during measurements as typical FE models assume isothermal conditions. 

 

 It is recommended to consider the possible challenges a significant time-dependent 

deformation may pose to the inverse analysis coupled with an FE model not provided 

with a time-dependent material model. Therefore, it is ideal to conduct a reference 

indentation experiment with a load-time sequence, i.e. dwell period and thermal drift, 

in order to establish the degree of error it may introduce to the optimisation model.  

 

 Attempting to recover the mechanical properties of a material using a significantly 

deviated residual depth h0 in relation with hr may result in convergence issues. 

However, it was observed that satisfactory results can be obtained by including only 

the above surface topography of the residual imprint. 
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