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Quantum many-body systems with kinetic constraints exhibit intriguing relaxation dynamics.
Recent experimental progress in the field of cold atomic gases offers a handle for probing collective
behavior of such systems, in particular for understanding the interplay between constraints and dis-
order. Here we explore a spin chain with facilitation constraints — a feature which is often used to
model classical glass formers — together with disorder that originates from spin-spin interactions.
The specific model we study, which is realized in a natural fashion in Rydberg quantum simulators,
maps onto an XX-chain with non-local disorder. Our study shows that the combination of con-
straints and seemingly unconventional disorder may lead to interesting non-equilibrium behaviour
in experimentally relevant setups.

Introduction — Localization phenomena in many-body
quantum systems are currently under extensive investi-
gation. Initially, localization was discussed by Anderson
[1] for non-interacting quantum particles in disordered
potential landscapes. Since then the focus has increas-
ingly shifted to the many-body domain, partially fueled
by the development of refined techniques to experimen-
tally engineer and probe many-body systems with cold
atoms [2]. By now, evidence has been found that in iso-
lated, one-dimensional, interacting systems the presence
of disorder induces a phase transition from a thermal to
a many-body localized one where ergodicity breaks down
[3–20]; for reviews see [21–23]. Experiments [20, 24–26]
have confirmed theoretical predictions, and signatures of
MBL have also been identified in two-dimensional sys-
tems [27]. Aspects of MBL are also present in systems
with weak periodic driving [28], in systems with disor-
dered interactions [29, 30] as well as in systems coupled
to an environment [31–36].

A second mechanism for interesting quantum relax-
ation is via constraints in the dynamics. In analogy with
what occurs in models of classical glasses [37], quantum
systems with kinetic constraints can display very slow
and complex relaxation [38–40] and can be used to probe
the emergence of MBL-like physics in the absence of dis-
order [41–51]. Hamiltonians with kinetic constraints can
display particular many-body eigenstates that generalize
the concept of quantum scars to interacting systems [52–
55]. Constraints can further impose restrictions on the
quantum dynamics either by removing states from the
Hilbert space and/or by cutting off transition pathways
between states. Supplemented by the presence of disor-
der, it is expected that constrained systems become very
prone to localisation [56].

Here we are interested in understanding localization
in disordered spin chains in the presence of facilitation
kinetic constraints. Such a scenario was recently real-
ized experimentally [57] within an optical lattice quan-
tum simulator consisting of individually trapped Rydberg
atoms [58–61]. Here atoms are excited in a way that

FIG. 1. Setup and basic principle. In a one-dimensional
lattice atoms in their electronic ground state, |↓〉, are coupled
to a highly-excited Rydberg state, |↑〉, with a laser of Rabi
frequency Ω and detuning ∆. The atomic positions in the lo-
cal traps are distributed according to a Gaussian distribution
with width σ. For small values of σ excitations, initially pre-
pared at time t = 0 in a state |↑↑↓↓↑↑↓↓〉, spread throughout
the chain. With increasing value of σ localization sets in and
the systems remains localized in a state close to the initial
configuration.

the excitation of a Rydberg atom is strongly enhanced
by an already excited neighbor. This results in a facili-
tation mechanism [62–65] by which an initial excitation
can “seed” the nucleation of an excitation cluster [66–68]
(for the classical origin of ideas about facilitation dy-
namics see [37, 69–71]). Disorder enters in this scenario
due to the fact that the position of each atom is ther-
mally distributed within its lattice site. We show that
in this situation the system maps onto a disordered and
interacting XX-spin chain, which is the typical starting
point for many MBL studies. However, in our case disor-
der and interactions are non-local and intertwined, which
makes the analysis of localization effects rather involved.
We characterize the localization properties via the imbal-
ance, the half-chain entanglement entropy and the energy
level statistics and find signatures of a crossover between
a delocalized and a localized phase. Our study demon-
strates a need to consider situations that differ from the
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standard settings for MBL (of local on-site disorder and
clean interactions) in order to study possible localization
in constrained systems realizable in experiments.

Rydberg lattice gas — Our setup consists of a one-
dimensional chain of N traps, such as optical tweezers,
each loaded with a single atom, and separated by the
nearest-neighbor distance r0 (see Fig. 1). The atoms are
described as effective two-level systems, where the elec-
tronic ground state |↓〉 is coupled to the Rydberg state |↑〉
via a laser with Rabi frequency Ω and detuning ∆. The
many-body Hamiltonian is given, in the rotating wave
approximation (RWA) and in natural units (~ = 1), by

Ĥ = Ω
N∑
j

σ̂xj + ∆
N∑
j

n̂j + C6

2

N∑
j=1
k 6=j

n̂k n̂j
|rj − rk|6

, (1)

where C6 is the so-called dispersion coefficient of the
van-der-Waals interaction and rk are the atomic po-
sitions [72]. The spin-operators are defined through
σ̂xj = |↑〉j 〈↓|j + |↓〉j 〈↑|j and n̂j = |↑〉j 〈↑|j = 1

2
(
1 + σ̂zj

)
with σ̂zj = |↑〉j 〈↑|j − |↓〉j 〈↓|j .

Constrained spin chain — The facilitation (anti-
blockade) condition [62–66, 73–76] is imposed by set-
ting the laser detuning such that it cancels exactly the
nearest-neighbor interaction: ∆ = −V0 ≡ − C6

r06 . In other
words, ∆ is chosen so that the so-called facilitation ra-
dius is r0 (see Fig. 1). Furthermore, we assume that the
detuning is large, |∆| � Ω, so that unfacilitated transi-
tions are suppressed and can be neglected [57]. Under
these conditions, the dynamics is effectively constrained
to allow spin flips only on sites contiguous to already
present excitations.

Accounting for this constraint and neglecting interac-
tions beyond nearest-neighbors (justified by the rapid de-
cay of the van-der-Waals interaction), the Hamiltonian
can be approximated by

Ĥeff = Ω
N∑
j=1

P̂j σ̂xj , (2)

where the projector P̂j = 1
2
(
1− σ̂zj−1σ̂

z
j+1
)

implements
the constraint. To get rid of boundary terms we assume
that there are two fictitious down-spins at the ends of the
chain, so that n̂0 ≡ n̂N+1 ≡ 0.

Formally, Eq. (2) is derived by adopting
an interaction picture via the unitary Û =
exp

[
−it∆

∑N
j=1 n̂j(1− n̂j+1)

]
and subsequently

dropping all terms oscillating with frequency V0
(RWA). By construction, this renders the opera-
tor N̂cl =

∑N
j=1 n̂j(1 − n̂j+1) a conserved quantity,[

Ĥeff, N̂cl

]
= 0. N̂cl can be interpreted as the number

of clusters of uninterrupted domains of excitations
terminated by down spins, and its conservation makes it

possible to adopt a dual description in terms of domain
walls separating the clusters.

The derivation will be given in detail elsewhere [77].
Here we limit ourselves to the basic ingredients: through
a Kramers-Wannier transformation σ̂xj = µ̂xj µ̂

x
j+1, σ̂yj =

(−1)j+1∏j−1
l=1 µ̂

z
l µ̂

y
j µ̂

x
j+1 and σ̂zj = (−1)j+1∏j

l=1 µ̂
z
l . The

Hamiltonian (2) is then mapped to that of an XX-model
(equivalent to free fermions [78]):

ĤXX = Ω
2

N∑
j=1

(
µ̂xj µ̂

x
j+1 + µ̂yj µ̂

y
j+1

)
, (3)

where the µ̂αj are spin operators (α = x, y, z) living on
the j-th bond. Note, that in this domain wall picture the
index j runs from 1 to N + 1.

Constrained Rydberg gas with disorder — Disorder
emerges in our setting due to the finite temperature T of
the kinetic degrees of freedom of the atoms [57, 79]. The
atomic positions are statistically distributed and given by
rj = jr0 + δrj with r0 = (0, 0, r0) and δrj the displace-
ment from the center of the j-th trap. For low enough
temperatures — such that each atom is still well con-
fined within its trap — the displacements δrj obey an
approximately Gaussian distribution of vanishing mean
and width σ =

√
kBT/(mω2), with m the atomic mass,

ω the trapping frequency and kB Boltzmann’s constant.
For simplicity, we assume the traps to be isotropic.

From Hamiltonian (1) one recognizes that the random-
ness of the atomic positions affects the interaction term
through the distances |rk+l − rk| = |lr0 + δrk+l − δrk|.
In our approximation, where we neglect the tails of the
interaction and only retain the nearest-neighbor contri-
bution, disorder generates a random term of the form

V̂dis =
N−1∑
j=1

δVj n̂j n̂j+1 , (4)

where δVj = C6/|r0 +δrj−δrj+1|6−V0. Note that, while
the displacements δrj are independent random variables,
this is not true for the energy shifts δVj [57].

Transforming into the dual domain wall picture the
interaction becomes non-local

V̂dis = 1
4

N−1∑
j=1

δVj

([
(−1)j+1

j∏
l=1

µ̂zl

]
+ 1

)
(5)

×

([
(−1)j+2

j+1∏
k=1

µ̂zk

]
+ 1

)
,

i.e. includes strings of operators of arbitrary length (up
to the system size).

This last feature marks a difference with standard
MBL models, where the parameters that control disor-
der and interactions are typically independent. Yet, the
system we study is by no means exotic as it represents a
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FIG. 2. (a) Domain wall imbalance in the long-time limit
(Ωt = 105) for a chain of N = 8 (brown, solid line), N = 10
(blue, long dashes) and N = 12 (red, short dashes) atoms.
The shaded area delimits plus/minus the standard deviation
for 100 disorder realizations at Ωt = 105 for a chain of N = 8
atoms. (b) Imbalance as a function of time (up to Ωt =
103) for seven values of the trap width σ for N = 8 atoms;
in increasing order: σ = 0.0006 (purple, star), 0.0031 (dark
blue, pentagon), 0.0071 (light blue, rhombus), 0.0306 (green,
square), 0.0506 (dark green, circle), 0.08 (orange, triangle),
0.135 (red, cross). (c) Average local density of domain
walls 〈n̂(DW)

j 〉 in the initial state and at long times (Ωt = 105)
for all values of the disorder displayed on the left and N = 10.
A crossover from a quasi-uniform and delocalized average to
configurations more and more similar to the initial state is
observed as σ is increased.

standard spin problem [see Eqs. (2) and (4)], which not
only has a connection to Rydberg gases but more broadly
to disordered spin systems for example in the context of
nuclear magnetic resonance [80–82]. This suggests that
the study of non-local disorder may be more relevant than
it would seem at first glance.

Numerical results — In order to characterize localiza-
tion in our system, described by the combined Hamilto-
nian Ĥ = Ĥeff + V̂dis [see Eqs. (2) and (4)], we study
the following: (i) the imbalance I, defined further below,
which tracks the memory of the initial conditions at long
times; (ii) the time evolution of the half-chain entangle-
ment entropy (EE) S(t); and (iii) the level statistics ratio
(LSR) of the spectrum of the Hamiltonian. In our simula-
tions we measure all distances in units of the trap spacing
r0, and energy scales (time) in units of the (inverse) Rabi
frequency Ω. All quantities presented are averaged over
100 disorder realizations.

Unless stated otherwise, simulations start from an ini-
tial state with alternating pairs of up and down spins,

|Ψ(t = 0)〉spin = |↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ · · ·〉 (6)

which translates into a staggered configuration of do-
main walls [see Fig. 2(c)]. A reason for choosing this
initial state is that the system we study feature eigen-
states decoupled from the disorder. These are of the form
Φ̂Ncl |↓↓ . . . ↓〉, with Φ̂Ncl =

∑N
j=1(1− n̂j−1)σ+

j (1− n̂j+1).
They are linear combinations of configurations with iso-
lated excitations and remain eigenstates (at zero energy)
of the total Hamiltonian even after the introduction of

the interactions. That is, they have uniform densities and
therefore remain delocalized. There is one such state per
sector at fixed number of clusters, but our initial state
has no component on any of them, thus avoiding spurious
localization.
(i) Domain wall imbalance: Generally, an imbalance
measures the degree of spatial structure of the state of
the system. The comparison of its value at long times
with its initial value provides a measure of how much
memory the system retains of its initial state [25, 83],
and thus gives an indication of the non-ergodicity of the
dynamics. We define the imbalance as

Î = 1
N − 1

N−1∑
j=1

(−1)j [n̂j (1− n̂j+1) + (1− n̂j) n̂j+1] .

On the state (6) (with N even), it evaluates to (N −
2)/(2N − 2) and tends to 1/2 for N � 1. In the domain

wall representation it reads Î = 1
N−1

N−1∑
j=1

(−1)j+1n̂(DW)
j+1

with n̂(DW)
j = 1

2 [µ̂j + 1] being the domain wall density
operator.

In Fig. 2(a) we show the average expectation value of Î
at long times (Ωt = 105) and for different system sizes as
a function of the trap width σ. The latter parameterizes
the disorder strength, with σ = 0 being the disorder-free
limit. For small disorder, the excitations are able to move
and spread over the whole chain, as can be gleaned from
panel (c): at the smallest values of σ, a nearly homoge-
neous distribution of domain walls is reached, with the
residual negative value of the imbalance being a finite size
effect. With increasing disorder the imbalance becomes
slightly more negative, which might be an indication of
crossover to an ergodicity breaking phase [see later dis-
cussion of Fig. 3] due to Anderson localization. A this
point this is difficult to establish, though, due to finite
size effects. Finally, when the disorder is large the do-
main wall density at long times (Ωt = 105) remains close
to that of the initial configuration (t = 0), suggesting
that the system localizes.

It may be challenging to probe the very long times in-
vestigated here in an experimental setting. In Fig. 2(b)
we show a few instances of the average imbalance as
a function of time, highlighting that at shorter times
(Ωt ≈ 103) 〈Î〉 still displays oscillations for small dis-
order, and only becomes stationary from σ & 10−2 on-
wards. Experiments should thus in principle operate be-
yond a certain disorder threshold to avoid the strong os-
cillations in the early dynamics.
(ii) Half-chain entanglement entropy (HCEE): A pro-
totypical measure for detecting the spreading of quan-
tum correlations throughout the system is the entan-
glement entropy of a subsystem [9, 10, 84], which
tracks how much information about the chosen sub-
system is lost when the complement is traced away.
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FIG. 3. (a,b) Half-chain entanglement entropy as a func-
tion of time in a chain for various systems sizes N and trap
widths σ. The color code and the symbols correspond to the
ones in Fig. 2(a), i.e. σ = 0.0006 (purple) [only N = 10, 12
shown], 0.0071 (light blue), 0.0306 (green) and 0.135 (red)
[N = 10 and N = 12 overlap] . (b) The σ = 0.08 (orange)
case, is displayed on its own to highlight the progressive emer-
gence of a logarithmic growth of the HCEE as the system size
is increased (the straight black curve, indicating logarithmic
behavior, is a guide to the eye). (c) Level statistic ra-
tio (LSR) of the combined Hamiltonian Ĥ in the restricted
Hilbert space containing Ncl = 2 clusters. The LSR is given
as a function of the trap width σ for different system sizes N .
Symbols correspond to the σ-values of the curves displayed
in panel (a). The LSR is compatible with a Poissonian distri-
bution of level spacings at very low and large disorder; in the
former case, the system is close to being integrable, whereas
in the latter this is due to the effects of the disorder and the
phase is MBL-like. In between there is a crossover regime in
which the LSR shows GOE statistics, suggesting the presence
of an ergodic, thermalizing window at intermediate values of
σ ≈ 10−2. Shaded areas: plus/minus the standard deviation
for 100 disorder realizations for N = 8 atoms.

For an initial pure state |Ψ(t = 0)〉 evolving under Ĥ
it is defined as S(t) = −tr{ρ̂1/2(t) ln ρ̂1/2(t)}, where
ρ̂1/2(t) = trN/2,...,N {|Ψ(t)〉 〈Ψ(t)|} denotes the trace over
the Hilbert subspace corresponding to the right half of
the chain (in the spin picture).

Fig. 3(a) shows the evolution of the HCEE as a func-
tion of time for some of the trap widths chosen in Fig. 2.
For very small values of σ, excitations can hop and
spread entanglement over the entire system, causing a
substantial increase in entropy. For intermediate disor-
der σ = 0.0071 the average over different realizations
becomes sufficient to dampen the oscillations, but the

entropy still saturates at long times at a value compa-
rable to the smaller-disorder cases, suggesting extensive
spread of entanglement. As the disorder strength is in-
creased further, the long time value of the HCEE mono-
tonically decreases, suggesting localization of excitations
close to their initial position, and therefore limited spread
of information from one half of the chain to the other. In
this regime the growth of the entropy is visibly slower
and, within the addressed range of timescales, appears
to be logarithmic in nature. To highlight this, we show
in Fig. 3(b) three curves (for N = 8, 10, 12) at σ = 0.08
which display how, increasing the system size, the HCEE
growth tends to acquire an apparently linear behavior in
log-linear scale. A logarithmic growth of the HCEE to-
wards its stationary value is a characteristic feature of
MBL systems [9], suggesting the presence, for σ & 0.01,
of an MBL phase, although it is not straightforward in
our case to disentangle the effects of interactions and dis-
order, and we are restricted to rather small system sizes.
(iii) Level statistic ratio: A further measure often used
in the context of both MBL and integrable systems is
the level statistic ratio (LSR) [6, 85], which characterizes
the statistical distribution of energy gaps in the spec-
trum of the Hamiltonian [86, 87] and is therefore basis
independent. In the presence of interactions, one expects
the system to show signs of thermalization, with distri-
bution similar to the one found for the so-called Gaus-
sian orthogonal ensemble (GOE). Conversely, in an MBL
phase the system cannot redistribute energy effectively,
the level repulsion of the GOE is absent and the distri-
bution of levels is closer to Poissonian. This difference is
typically quantified via the dimensionless ratio

rn = min{∆n,∆n+1}
max{∆n,∆n+1}

, (7)

where ∆n = |En−En+1| is the spacing between adjacent
eigenenergies of the Hamiltonian, listed in ascending or-
der (En ≥ En−1). To get the LSR 〈r〉, one then takes
the arithmetic mean of the rns (n = 1, 2, 3, . . .) and then
averages over the disorder distribution. The predictions
for GOE and Poissonian ensembles are 〈r〉GOE w 0.5307
and 〈r〉Poisson w 2 ln(2)− 1 w 0.386, respectively.

Fig. 3(c) shows the LSR of the model discussed here
(2) with Ncl = 2 as a function of the trap width σ. For
very small disorder σ . 10−3, the system is in the regime
dominated by the hopping term (2), is still close to its in-
tegrable regime (free fermions), and the LSR approaches
a Poissonian value, deviations from which are a finite
size effect. In the opposite regime, 〈r〉 also approaches
a Poissonian value, presumably entering an MBL phase.
Between these two regimes, 〈r〉 rises to “GOE-like” val-
ues, suggesting that in this crossover window — for the
system sizes studied here — ergodic behavior and (effec-
tive) thermalization are present.

Conclusion — We analyzed the effects of disorder on
an interacting Rydberg chain under the facilitation con-
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straint. Within a dual domain wall picture the systems
is described by an XX-spin model and randomness in the
atomic positions translates into a non-local disordered
interaction potential. This unconventional disordered
many-body system shows signatures of a crossover be-
tween an ergodic, thermalizing phase and what appears
to be a many-body localized one. The model studied here
differs from a more standard MBL one in that non-local
interactions and disorder are naturally interconnected, a
feature that nevertheless appears rather relevant for ex-
perimental realizations.
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ers. Coherent versus incoherent excitation dynamics in
dissipative many-body rydberg systems. Phys. Rev. A,
89(3):033421, 2014.

[75] H. Schempp, G. Günter, M. Robert-de Saint-Vincent,
C. S. Hofmann, D. Breyel, A. Komnik, D. W. Schönleber,
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[83] Henrik P. Lüschen, Pranjal Bordia, Sebastian Scherg, Fa-
bien Alet, Ehud Altman, Ulrich Schneider, and Immanuel
Bloch. Observation of slow dynamics near the many-body
localization transition in one-dimensional quasiperiodic
systems. Phys. Rev. Lett., 119:260401, Dec 2017.

[84] Fabien Alet and Nicolas Laflorencie. Many-body local-
ization: An introduction and selected topics. Comptes
Rendus Physique, 2018.

[85] Vedika Khemani, S.P. Lim, D.N. Sheng, and David A.
Huse. Critical Properties of the Many Body Localization
Transition. Phys. Rev. X., 7, 2017.

[86] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrian-
ides, and H. B. Shore. Statistics of spectra of disordered
systems near the metal-insulator transition. Phys. Rev.
B, 47:11487–11490, May 1993.

[87] Maksym Serbyn and Joel E. Moore. Spectral statistics
across the many-body localization transition. Phys. Rev.
B, 93:041424, Jan 2016.


	Localization in spin chains with facilitation constraints and disordered interactions
	Abstract
	Acknowledgments
	References


