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a b s t r a c t

Blow up in a one-dimensional semilinear heat equation is studied using a combination of numerical
and analytical tools. The focus is on problems periodic in the space variable and starting out from a
nearly flat, positive initial condition. Novel results include asymptotic approximations of the solution
on different timescales that are, in combination, valid over the entire space and time interval right up
to and including the blow-up time. Both the asymptotic analysis and the numerical methods benefit
from a well-known reciprocal substitution that transforms the problem into one that does not blow up
but remains bounded. This allows for highly accurate computations of blow-up times and the solution
profile at the critical time, which are then used to confirm the asymptotics. The approach also makes it
possible to continue a solution numerically beyond the singularity. The specific post-blow-up dynamics
are believed to be presented here for the first time.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The blow-up phenomenon in nonlinear diffusion equations
as been studied extensively in the literature. Some studies fo-
us on physical applications, such as singularity formation in
luids [1–3], runaway in thermal processes [4–6], and biological
pplications [7]. Others deal with numerical aspects such as the
omputation of blow-up profiles, estimation of blow-up times,
nd singularity tracking [8–14]. For general reviews, see [15–17].
The present paper can be viewed as a continuation of [11,14].

he equation considered in these papers is the nonlinear heat
quation

t = uxx + u2 (1)

(although more general nonlinearities and more than one space
dimension were also considered in [11]). In this paper we con-
sider the initial condition

u(x, 0) =
1

α − ϵ cos x
, 0 < ϵ ≪ α, (2)

i.e. periodic, positive and nearly flat with a single maximum on
the interval at x = 0, leading to a point blow up at x = 0, as
shown in Fig. 1. This illustrates the well-known strong instability
of the spatially uniform solution leading to point blow up. (A
broader class of nearly flat initial data that lead to blow up at
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Fig. 1. Typical solution profiles of Eq. (1), in the case of a nearly flat initial
condition such as (2). The solution stays almost flat for a long while until a
transition to a point blow-up occurs over a relatively short period of time.

the origin is analysed in Appendix A. Initial data with more than
one maximum in a period includes the possibility of non-generic
blow up, which will be revisited in [18].)

In [14], it was shown by numerical computation that the
approach to blow up is not necessarily uniform. That is, there
may be times when the diffusive term dominates, leading to a
flattening of the solution profile. At other times, particularly near
blow up, the nonlinearity dominates, leading to a steepening of
the profile. By numerically continuing the solution into the com-
plex plane, it was shown that this behaviour can be associated
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ith the dynamics of the complex singularities of the solution.
hen diffusion dominates, they typically move farther from the

eal axis while the opposite is true when nonlinearity dominates.
point blow up occurs when the singularities reach the real

xis. For the nearly flat initial conditions considered in this
aper, however, we will show that before the blow-up time is ap-
roached there is no simple correspondence between the height
f the peak at x = 0 and the proximity of the nearest singularity.
hat is, before the blow-up time, the solution either (depending
n the value of α) (i) becomes more steep on [−π, π] while the
ingularity is moving away from the real axis or (ii) becomes less
teep while the singularity is moving closer to the real axis. Of
ourse, close to the blow-up time, the steepening solution profile
s associated with the impingement of singularities onto the real
xis at x = 0.
In [11], the focus was not on complex singularities but on

symptotic estimation of the blow-up time and the solution pro-
ile near blow up. The starting point in that paper was the sub-
titution u = 1/v, which transforms (1) into

t = vxx − 1 − 2(vx)2/v. (3)

his transformation has advantages for both analysis and com-
utation. Advantages for analysis are spelled out in [4]. For nu-
erical computation, it is easier to deal with solutions tending to
ero than to infinity. This avoids the need for specialised rescaling
lgorithms or moving mesh methods [9,10]. The downside is
hat the simple polynomial nonlinearity in (1) has been replaced
y the more complicated nonlinearity in (3). While this can
e ameliorated by multiplication by v, it raises the red flag of
ivision by zero as v becomes small. However, it was shown
n [11] and reaffirmed in Section 3 of the present paper that
he nonlinear term remains bounded as v approaches zero. This
urther suggests the possibility of integration through the zero of
, i.e. through the singularity of u, but [11] reported a failed effort.
e continued those investigations and announce our findings
ere.
In [14] periodic boundary conditions were considered while

11] looked at the pure initial value problem on the entire real
ine. In this paper we continue with the periodic case, as this gives
s access to highly accurate Fourier spectral methods (which
an also be applied to problems on the infinite line, but with
substantial penalty in accuracy). One contribution here is a

onversion of the analysis of [11] to the periodic situation, which
s not just a triviality but contributes significant new results as
e shall discuss.
For the numerical computations of this paper, a full spectral

ethod based on a Fourier series

(x, t) =

∞∑
k=−∞

ck(t)eikx, −π ≤ x < π, (4)

as used. The derivatives on the right-hand side of (3) are com-
uted by analytical differentiation of this series, and the nonlinear
erms by convolution and de-convolution. The result is an infinite
ystem of ODEs for the evolution of the Fourier coefficients ck,
which gets truncated at |k| = N , with N ≫ 1. The procedure
for choosing N was the standard one of increasing its value until
the results have converged to the required number of digits (for
tabulated values) or to visual accuracy (for figures). In all cases,
a value of N = 128 was sufficient. We check the validity of our
numerical error estimates by comparing it to an estimate of the
truncation error derived using our asymptotic approximations.

To integrate the system of ODEs we used ode45, MATLAB’s
standard ODE solver, as well as ode15s, its stiff solver [19].
The latter solver executes faster for larger N because the sys-
tem is mildly stiff, but accuracy and not speed was the primary
2

concern here. The main value of these solvers is the adaptive
time stepping that aims to maintain accuracy at a prescribed
level. The tolerance parameters for this were set to a strin-
gent 10−12. At these levels the results of ode45 and ode15s were
indistinguishable.

In order to compute the time t = tc at which the numerical
olution blows up (i.e. v = 0 is attained), we used the fact that the
initial conditions considered here lead to blow up at x = 0 and
hence we check when the sum of the ck equals zero. Both of the
ODE solvers alluded to above can be called with the ‘event’ option,
which offers rootfinding capabilities that allowed us to solve for
tc from

∑
ck(t) = 0. The accuracy tolerance for the rootfinding is

the same as the set tolerance for the ODE solver.
We use this numerical solution as reference solution for the

purposes of checking the various asymptotic estimates. Because
of the relatively smooth nature of v, even at the critical time (as
will be discussed), we believe it is sufficiently close to the true
solution for all verification purposes.

The three main sections of the paper can be summarised in
a nutshell as: before blow up, at blow up, and after blow up.
More specifically, in Section 2 we present a perturbation analysis
that approximates the solution to (3) accurately to O(ϵ2) on the
ntire periodic space domain and the whole time interval until
time that is O(ϵ) close to blow up. Beyond that time up to the
low-up point it has to be modified and this is done by matched
symptotic expansions, the details of which are contained in
ppendix A. In this appendix we also analyse the dynamics of
he singularities of the solution and in Appendix B the relation
etween the proximity of the singularities to the real axis and
he steepness of the solution profile on [−π, π] is clarified. In
ections 2 and 3, the analyses in the appendices are confirmed by
umerical experiments. In Appendix C, we derive an estimate of
he spatial truncation error of the numerical method that is valid
p to the blow-up time. Section 4 is a first report on integrating
hrough the singularity at the blow-up time and the subsequent
volution.

. Two-mode perturbation analysis

The analysis of [11] was based on the truncated Taylor expan-
ion

≈ a(t) + b(t)x2. (5)

y substituting into (3) and dropping powers of x4 the problem
as reduced to a dynamical system in the variables a and b;

see (18). Here we follow an analogous procedure, but consider
instead a truncated Fourier expansion

v ≈ a(t) − b(t) cos x. (6)

Under the assumption of strictly positive solutions, i.e., 0 <
(t) < a(t), both of these approximations blow up (in the variable
= 1/v) in finite time at x = 0.
Substitution of (6) into (3) and neglecting cos 2x contributions

gives the system

a
da
dt

+
1
2
b
db
dt

= −a −
3
2
b2, b

da
dt

+ a
db
dt

= −ab − b, (7)

or, in explicit form,

da
dt

=
2ab2 + 2a2 − b2

b2 − 2a2
,

db
dt

=
b(2a2 − 3b2)
b2 − 2a2

. (8)

(Note that the assumption 0 < b < a precludes the vanishing
of the denominators.) The phase plane of this system is shown
in Fig. 2.

Consider solution curves in Fig. 2 that originate near b = 0,
say

a(0) = α, b(0) = ϵ, 0 < ϵ ≪ α. (9)
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Fig. 2. Phase plane of the system (8) in the domain 0 < b < a. The analysis of
his section approximates solution curves close to b = 0. Blow up at x = 0 in
he u-equation (1) corresponds to solution trajectories intersecting the dashed
ine b = a.

s an explicit solution of the system (7) appears not to exist, we
ettle for a perturbation analysis, by expanding

= a0(t) + ϵa1(t) + O(ϵ2), b = ϵb1(t) + O(ϵ2) (10)

here a0(0) = α, b1(0) = 1, a1(0) = 0. Substitution into (7) gives,
o zeroth order

0
da0
dt

= −a0 ⇒ a0 = α − t. (11)

t O(ϵ),
da1
dt

= 0,
db1
dt

= −b1 ⇒ a1 = 0, b1 = e−t . (12)

This gives, to O(ϵ2), the approximate solution

v = α − t − ϵ e−t cos x. (13)

Plugging this expression into (3) gives

v
(̃
vt − ṽxx + 1 + 2(̃vx)2/̃v

)
= 2 ϵ2e−2t sin2 x, (14)

which confirms that the v-equation is satisfied to O(ϵ2) uniformly
in x, for all ṽ bounded away from zero. Fig. 3 illustrates that the
perturbation approximation (13) and the (numerically computed)
solution to the two-mode system (8) are good approximations to
the numerical reference solution of (3) on most of the interval
[0, tc), where tc is the critical time at which blow up occurs. As
t → tc , the assumption underlying the perturbation analysis and
the two-mode approximation, b(t) ≪ a(t), is no longer valid,
however, and the approximations lose accuracy, an issue that we
address in Appendix A.

Various estimates can be obtained from the perturbation so-
lution (13). By setting ṽ = 0 at x = 0 and excluding O(ϵ2) terms,
for example, one obtains the following estimate for the blow-up
time

tc ≈ t̂c := α − e−αϵ. (15)

In Appendix A, using the method of matched asymptotic expan-
sions, a higher-order estimate of tc is derived (see (43) and (67)):

tc ≈ t̃c := α − e−αϵ − (2C1 + C2 + C3)ϵ2, (16)

the constants Ci being defined in (66). The accuracy of these
estimates is verified in Table 1. (The values of tc listed in the table
were computed by the method described in Section 1, and are
believed to be correct to all digits shown.)

The singularity dynamics mentioned in the introduction can be
estimated as follows. The complex singularity in the u-equation
corresponds to a complex zero of the v-equation. This is located
at x = iy with y real, and setting ṽ = 0 gives

y = cosh−1((α − t)et/ϵ
)
. (17)

For reasons implicit in the analysis of Appendix A, this approx-
imation is valid, however, only for small values of y, i.e., near
(but not too near) blow up. This follows from the fact that the
3

Table 1
Blow-up times for various parameter choices in the initial condition (2): tc is
the blow-up time as computed from the reference solution, t ′c is the blow-up
time as estimated from a numerical solution of the two-mode system (7) and
tc and t̃c denote the estimates (15) and (16), respectively.
ϵ α = 0.25

tc t ′c − tc t̂c − tc t̃c − tc
0.1 0.161963 −3.6e−04 1.0e−02 2.6e−02
0.01 0.242093 1.8e−03 1.2e−04 2.8e−04
0.001 0.249220 2.2e−04 1.2e−06 2.8e−06

α = 1

0.1 0.955542 2.1e−03 7.7e−03 4.5e−03
0.01 0.996241 9.5e−04 8.1e−05 4.9e−05
0.001 0.999631 1.1e−04 8.1e−07 4.9e−07

α = 4

0.1 3.996685 5.0e−04 1.5e−03 1.4e−05
0.01 3.999802 5.3e−05 1.5e−05 1.2e−07
0.001 3.999982 5.4e−06 1.5e−07 1.2e−09

remainder term on the right-hand side of (14) grows exponen-
tially with y. In Fig. 4, the asymptotic estimate (17) is compared
o a numerical estimate of the singularity location obtained via
he method of [12], which is essentially an estimation of the
idth of the strip of analyticity of the solution, by examining
he rate of decay of its Fourier coefficients. To apply the method
f [12], we use the fact that, to leading order and away from
he blow-up time, singularities of solutions to the u-equation
re second-order poles.1 Fig. 4 also shows asymptotic estimates
f the singularity location that are derived in Appendix A.4 by
he method of matched asymptotic expansions. The estimates
re valid in the limits t → 0+ and t → t−c but in between,
or t = O(1), the singularity location of the original PDE (3) is
escribed by the singularity location of a more difficult nonlinear
nitial value problem (68)–(70) which is not analytically solvable.
he asymptotics nonetheless correctly indicate the initial move-
ent of the singularity away from the real axis (at a speed that
ecomes infinite as t → 0+) and the final motion shortly before
he singularity collides with the real axis at t = tc .

In Appendix B we investigate the relationship between the
osition of the complex singularity and the height of the peak of
he solution profile in the u-variable (which is located at x = 0;
ee Fig. 1) relative to the solution value at x = ±π .
Returning to the analysis of [11], which was based on the

runcated Taylor approximation (5), we note that the focus in that
aper was on the behaviour at t = tc , not the evolution on [0, tc)

as is the focus in this section. It is therefore instructive to adapt
that analysis here and compare results to (13) and (14).

The dynamical system analogous to (7)–(8) is now

da
dt

= 2b − 1, a
db
dt

= −8b2. (18)

This is a much simpler system, and in fact admits a first integral
2 log b + 1/b + b log a = constant, although we shall not make
use of this result and neither was it used in [11]. (No such first
integral could be found for (7)–(8).)

Proceeding with a perturbation analysis based on (9)–(10) give
a0 = α − t , a1(t) = 2, and b1(t) = 1. Therefore, excluding O(ϵ2)

1 In [18] we show that these singularities are in fact logarithmic branch
oints, however the branch point singularity appears in the fourth-order term
n the local expansion about the singularity. Therefore, for the purpose of
stimating the position of the singularity, we only use its leading-order, second-
rder pole behaviour. We shall find in Section 3 that in the limit t → tc , the

leading order behaviour of the singularity at x = 0, which results from the
coalescence of two singularities, is of a more complicated form than that of a
second-order pole.
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terms, v is approximately

v = α − t + ϵ(2t + x2) (19)

in analogy with (13). Plugging into (3) gives

v
(̃
vt − ṽxx + 1 + 2(̃vx)2/̃v

)
= 8 ϵ2x2. (20)

Comparing with (14) shows an advantage of the periodic analysis,
namely that its right-hand side is O(ϵ2) uniformly in x, whereas
the right-hand side of (20) is O(ϵ2) only if x2 = O(1). That
is, with ṽ bounded away from zero (13) can provide a valid
approximation over the entire (periodic) domain, while (19) is
valid only near x = 0. On the other hand, the advantage of the
analysis of [11] is that it gives a valid description of the structure
of the solution close to blow up, as discussed in Appendix A.

3. Solution in the blow-up limit

Appendix A is devoted to an asymptotic analysis of the solu-
tion on three time scales (labelled (I), (II) and (III) in the appendix)
that are progressively closer to the blow-up time, namely t =

(1), T = (t − tc)/ϵ = O(1) and τ = −ϵ log(−T ) = −ϵ log((tc −

)/ϵ) = O(1). The analysis is performed using the method of
atched asymptotics and the results on the first time scale are

he same as the those obtained in Section 2 via a regular pertur-
ation analysis (in particular, recall the approximation (13) and
ts failure close to the blow-up time, as seen in Fig. 3).
 a

4

On the second time scale, T = O(1), the following asymptotic
pproximation is derived for x = O(1):

∼ tc − t + 2ϵ e−α sin2(x/2)

+ 2ϵ2 log ϵ e−2α sin2 x + ϵ(t − tc)e−α cos x

+ 2ϵ2 sin2 x
(
e−2α log

(
tc − t

ϵ
+ 2e−α sin2(x/2)

)
+ C1 + C3

)
,

(21)

hich is obtained by combining (44)–(46) and (65)–(67). As
hown in Appendix A.3, we can set t = tc in (21) to obtain
representation of the solution that is valid on the third time

cale for x = O(1), noting that τ = O(1) corresponds to t being
xponentially close to tc . Thus, as t → t−c , ϵ → 0 with x = O(1),
e have

∼ 2ϵ e−α sin2(x/2)

+ 2ϵ2 sin2 x
(
e−2α log

(
2ϵ e−α sin2(x/2)

)
+ C1 + C3

)
. (22)

ig. 5 verifies the accuracy of the asymptotic approximations (13)
away from the blow-up time) and (21)–(22) (close to and at
he blow-up time). The left frame of Fig. 6 shows the numerical
olution at the blow-up time with the blow-up profile (22) super-
mposed on it. Hence, we have accurate asymptotic expressions
or the solution on the entire spatial interval x ∈ [−π, π] and
rom t = 0 all the way up to and including the blow-up time.
or x → 0 at t = tc , however, we shall need another asymptotic
pproximation, namely (24), to be discussed below.
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Fig. 5. Errors in the asymptotic approximations (13) (blue) and (21) (red) when
compared to the reference solution. The ODE solver returns approximations at
times t = tk , k = 0, 1, . . . ,M , where t0 = 0 and tM = tc . Here M = 1155 and
tc = 0.9996 (more digits are listed in Table 1). At each t = tk , the maximum
relative errors of (13) and (21) are calculated on the interval x ∈ [−π, π] and
plotted against the time step index k. Because of the adaptive time-stepping,
the tk values are not equidistant, but the spacing is much denser near t = tc .
As an indication of this, note that the two curves intersect at k = 372 and
t372 ≈ 0.973, which is already quite close to the critical time tc even though
roughly 800 more time steps are to be taken. From the asymptotic analysis, we
expect the approximation on the first time scale (13) (blue) to start to break
down and (21) (red) to be valid on the second time scale when (tc −t)/ϵ = O(1).
Here we have that at around k = 800, tc − tk ≈ ϵ = 0.001, which is indeed
when the error curves of the two approximations start to diverge noticeably.

The rate of decay of the Fourier coefficients of v will be of
relevance in the next section when we consider the possibility
of continuing the solution beyond blow-up. From (22) we deduce
that the ck decay as O(k−3) close to the blow-up time because

1
2π

∫ π

−π

sin2x log
(
sin2(x/2)

)
e−ikxdx =

2
k(k2 − 4)

hich implies that

k(tc) ∼
4ϵ2e−2α

k3
, k → ∞. (23)

he right frame of Fig. 6 confirms the accuracy of this estimate as
→ 0.
At the blow-up time, for x exponentially small with respect to

, (22) is no longer valid (see the discussion below (61)). Instead,

∼
ϵ e−αx2

2 − 8ϵ e−α log(x2)
∼ −

x2

16 log |x|
, (24)

hich follows from (62) and (67). Fig. 7 confirms that (24) has
etter accuracy than (22) for small2 x at the blow-up time.
Regarding the strength of the singularity at x = 0, it follows

rom (24) that v(n)
→ 0 as x → 0 for n = 0, 1, 2 but the

hird derivative blows up as v(3)
= O

(
1

x log2 |x|

)
, x → 0. A

singularity with two bounded derivatives is consistent with the
O(k−3) decay of the Fourier coefficients that was derived from
(22).3 In fact, the asymptotic approximation (24) suggests that the

2 Ideally, we would show the accuracy of (24) for even smaller values of x
than those in Fig. 7. However, this would require high-precision computations.
In standard double precision (with a machine precision of approximately 10−16)
we cannot compute the errors for smaller x because round-off errors prevent
the accurate evaluation of v from its numerically computed Fourier coefficients.
3 The ‘global’ blow-up profile (22) has a stronger singularity at x = 0 than

he ‘local’ blow-up profile (24) since the second derivative of the former blows
5

Fourier coefficients of the solution precisely at the blow-up time
decay slightly faster than the O(k−3) suggested by (23). To show
this, symmetry and integration by parts can be used to obtain

ck(tc) =
1
π

∫ π

0
v cos kx =

1
πk3

∫ π

0
v′′′ sin kx dx.

rom (24) it follows that v ∼ −x2/(8 log(x2)) v′′′
∼ 1/(8x log2(x)),

nd by making the change of variable x = µ/k with k ≫ µ, one
obtains,

ck(tc) ∼
1

8πk3 log2 k

∫
∞

0

sinµ

µ
dµ =

1
16k3 log2 k

. (25)

he solid line in Fig. 6 shows the estimate (25), which, unlike
he estimate (23), is independent of ϵ and α. The numerical
Fourier coefficients shown in Fig. 7 do not decay as fast as (25),
which suggests that one would need to perform computations of
extremely high precision to observe the rate of decay predicted
by (25).

For the possible continuation beyond blow-up one needs to
confirm that the nonlinear term in the v-equation (3), i.e., (vx)2/v,
emains bounded at x = 0 at the blow-up time. In fact, from
24) it follows that the nonlinear term vanishes, according to
(1/ log |x|), for x → 0.

. Integrating through the singularity

The fact that the nonlinear term in (3) remains bounded as
approaches zero raises the intriguing possibility of numeri-

ally integrating through the blow up. This was tried in [11],
ut the authors found ‘‘...the calculation actually continues the
olution slightly beyond the blow-up time of the original solution
. The method becomes unstable a short time after the blow-up
appens, however’’. We report here on renewed efforts in this
irection. (Details of how our numerical strategies differ from
hose of [11] are postponed to the end of the section.)

Fig. 8 shows a series of snapshots of the solution v at different
imes. First, observe that there is no sign of instability as the
olution passes smoothly through v = 0 (third frame). What
appens next might be unexpected, namely, the solution turns
omplex, which is consistent with the fact that real solutions
annot be continued past blow up [16]. In addition, uniqueness is
ost: By experimenting with different variations of our numerical
ethods (discussed below) we have observed a total of four solu-

ions post blow-up. The four are represented in Fig. 10. Surprising
s these results may be, both the non-uniqueness and the fact
hat the solution turns complex are consistent with theoretical
esults of [20].

Fig. 9 shows the u-solution that corresponds to the v-solution
n Fig. 8. After the solution turns complex at the critical time
third frame) the modulus of u shows wave-like behaviour, with
wo waves travelling in opposite directions from the origin until
hey reach the edge of the domain x = ±π . Because of periodicity
hey meet up with similar waves from adjacent intervals and a
econd blow up almost occurs, this time at x = ±π (seventh
rame). The modulus grows considerably and we conjecture that
y varying the parameters in the initial condition a proper sec-
ndary blow up may be found. Computing over a longer time
nterval suggests that u asymptotically approaches the constant
and real) solution u ∼ −1/t as t → ∞.

We present the results of Figs. 8 and 9 knowing full well that
e have little theory to present as validation. The theoretical re-
ults of [20] suggest the possibility of a complex and non-unique

up logarithmically at x = 0, while for the local profile v(2)
∼ 0 as x → 0.

The Fourier coefficients of the ‘global’ profile nevertheless decay at the correct
O(k−3) rate since its second derivative, though unbounded, is integrable.
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Fig. 6. Left: The solution to the v-equation (3), displayed on a semi-log-scale, at the blow-up time tc (solid curve) compared to the asymptotic estimate (22) (dashed
urve on top of the solid curve; the relative error of this approximation is shown in the right frame of Fig. 7). Here we would like to draw attention to the fact that,
t the origin and at the critical time, the values of v are computed to levels close to roundoff error (∼10−16), which translates into huge values in the u solution
ear blow up. (See for example the third frame in Fig. 9.) This is a consequence of solving equation (3) instead of (1). Right: The Fourier coefficients of the reference
umerical solution at the blow-up time (dots) compared to the coefficients of the global asymptotic blow-up profile (dashed lines), given in (23). The single solid
ine shows the asymptotic estimate of the decay of the Fourier coefficients of the local blow-up profile (see (25)).
Fig. 7. The relative error of the asymptotic approximations (22) (blue) and (24) (red) at the blow-up time for small x.
solution post blow-up, but does not allow for a quantitative
comparison. Nevertheless, the following heuristic observations
support the validity of the results shown here.

Firstly, the fact that the numerical solution approaches −1/t
as t → ∞ provides some confidence, as this solves (1) exactly.
Secondly, as noted before, the singularity in the v-equation at
the critical time is rather weak, leading to Fourier coefficients
that decay at the relatively rapid rate ck = O(1/(k3 log2 k)); recall
(25). While still much slower than the typical exponential decay
rate for analytic periodic functions, we conjecture that this decay
is nevertheless sufficiently rapid that the accuracy loss of the
spectral method at the critical time is not disastrous. Fig. 11
shows the Fourier coefficients near and at the critical time.

To get a quantitative sense of the accuracy of the numerical
solution at the critical time, we note that the results displayed
in Figs. 8 and 9 were computed with 2N + 1 terms in the
approximation series (4), with N = 128. When the number of
terms was increased to 4N + 1, the relative difference in the two
v-solutions, as measured in the 2-norm on [−π, π], was approxi-
mately 6×10−7. This agrees to within an order of magnitude with
the relative error estimate (82) derived in Appendix C, which for
the parameter values in Figs. 8 and 9 is 3 × 10−7. This suggests
that the displayed solution at the critical time has converged to
about six or seven significant decimal digits.

To the best of our knowledge, the only published results

that deal with numerical computations of post-blow-up solutions

6

are [21,22]. These authors based their computations on complex-
ification of the t-variable. Following this idea we integrated along
a path that contains a semi-circle in the complex t-plane, centred
at the estimated singularity. Using this approach we obtained
results to within 10−8 of those of Fig. 9 (after the critical time),
which lends further credibility to the results shown here.

It should be noted that the authors of [21,22] based their
methods on the u-equation, not the v-equation. Because u grows
without bound near the critical time, these methods cannot
compute blow-up solutions in the immediate neighbourhood of
the critical time accurately. For the same reason, estimates of
blow-up times are unreliable. Adapting these methods from the
u-equation to the v-equation should not be hard to do, however.

The observation of a complex solution after the critical time
has lead us to conjecture that the failure of the finite-difference
method of [11] was because it was almost surely coded as a real
system using real arithmetic. To allow for the possibility of a
complex solution we have explored the following two strategies.

The first was to use the complex form of the Fourier series
(4) (rather than the real form). In a software system such as
MATLAB that uses complex floating-point arithmetic by default,
this introduces an imaginary component at the level of roundoff
error. The second was to split the v-equation (3) into its real
and imaginary parts, and integrate this as a real, coupled system.
In this case the imaginary component was introduced manually
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Fig. 8. Solution to the v-equation (3) corresponding to the initial condition (2)
ith α = 0.25, ϵ = 0.1. (The corresponding u solution is shown in Fig. 9,
nd a movie of the dynamics can be seen in the supplementary material that
ccompanies this paper.) The two noteworthy times are t = tc (third frame)
nd t = 2tc (seventh frame), where tc = 0.162, approximately. At t = tc there
s a zero of v at x = 0, after which the solution turns complex: the real part is
hown in blue and the imaginary part in red. At t = 2tc there are approximate
eros of v near x = ±π . The solution shown is not unique (see Fig. 10). Changing
he values of α and ϵ to the other values listed in Table 1 gives pictures that
re qualitatively similar.

Fig. 9. Same as Fig. 8 but here the u-solution is shown. Note the blow up at
= tc and the near blow up at t = 2tc . The dashed curve is the modulus |u|
shown only after the first blow up). Note that the scales on the vertical axes
re different in each frame.

nto the initial condition.4 It was experiments based on these two
deas that lead us to the conjecture of four possible solutions after
low up, as shown in Fig. 10.
The same strategy worked for the related equations ut =

xx + um (with m an integer greater than 2) and ut = uxx + eu,
oth of which can be converted to more benign v-equations [11].
he results were qualitatively similar to those shown in Figs. 8–9.
owever, going from one space dimension to two poses a bigger
omputational challenge, one we have not yet taken up.

4 More specifically, we initialised the Fourier coefficients of the imaginary
art at t = 0 with values taken randomly from a uniform distribution on [−ε, ε],
here ε is machine epsilon in MATLAB (approximately 2.2 × 10−16).
7

One priority for future investigations is a better understanding
of the transition from a real to a complex solution and the asso-
ciated non-uniqueness. In our case the growth in the imaginary
part is triggered, precisely at the critical time, by noise at the
level of roundoff error. The randomness dictates whether the
continuation is with one solution or another.

5. Conclusions

We investigated, asymptotically and numerically, point blow-
up solutions to a periodic nonlinear heat Eq. (1) with nearly flat
initial data by considering the solution u in the reciprocal variable
v = 1/u. We derived asymptotic approximations for the solution
on the entire spatial interval and from t = 0 up to and including
at the blow-up time, for which we also derived a second-order
approximation. Due to the high accuracy of the Fourier spectral
method (including at the blow-up time at which the v-solution
has a weak singularity, unlike the u-solution), we were able to
check numerically the validity of the asymptotics. We believe it is
unusual for a single numerical method to confirm asymptotics in
multiple regimes since typically numerical methods are weak, or
highly inefficient, in most asymptotic limits unless they are highly
specialised. The key to the success of the numerical method
used here is the fact that it approximates the relatively well-
behaved v-equation (3) rather than the u-equation (1) whose
solution becomes unbounded. An additional and novel benefit of
this numerical method is that it is able to compute post-blow-up
solutions without requiring a deformation of the integration path
into the complex-time plane.

The investigations in this paper point to a number of topics for
future research, not least of which is the validity of the post-blow-
up solutions computed in Section 4. In addition, the dynamics
of complex singularities of blow-up solutions to (1) for a larger
class of initial conditions, including initial data leading to non-
generic forms of blow up, will be investigated in [18], also via
a combination of asymptotic and numerical methods. In [18]
we shall also explore the singularity structure of these blow-up
solutions on their Riemann surfaces in the complex x-plane.
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Fig. 10. Four conjectured solutions to (3) for the case t > tc . The first frame represents the solution shown in Fig. 8, while the others are produced by experimentation
ith our numerical method as described in the text.
Fig. 11. Modulus of the Fourier coefficients ck of the solution v shown in Fig. 8. The times are just prior to t = tc , at t = tc , and shortly after. (The value of tc is
given to more digits in Table 1.) In the first frame the coefficients decay exponentially, indicative of a function analytic in a neighbourhood of the real axis. At t = tc
the coefficients decay algebraically as given by (25), because of the influence of the singularity of v as it reaches the origin. In the third frame the rate of decay in
the coefficients is not immediately clear and warrants further investigation. However, the fact that the spectrum is no longer perfectly symmetric with respect to
k = 0 indicates that the solution has turned complex..
Appendix A. Analysis via the method of matched asymptotic
expansions

A.1. Truncated Fourier expansion

In this section we revisit and expand the analysis based on the
two-mode Fourier truncation outlined in Section 2. Recall that by
substituting (6) into the v-equation (3) and neglecting the cos 2x
term the system (7) was obtained. From this, one finds by a self
consistency argument5 that near blow-up, generically (i.e. even

5 a = b at t = tc is required for v = 0 at x = 0; that is, generically a non-
ero constant is confirmed by the expansions (26) that contain the requisite two
egrees of freedom, namely a and t .
c c

8

for ϵ = O(1))

a ∼ ac+(1+2ac)(tc−t), b ∼ ac−ac(tc−t), t → t−c , (26)

where ac and the blow up time tc are positive constants, so that
the blow-up behaviour associated with (6) takes the form

v ∼ (1+3ac)(tc −t)+
1
2
acx2, t → t−c , x = O

(
(tc − t)1/2

)
.

(27)

We emphasise that (26)–(27) describe the blow-up behaviour of
(7) rather than that of (3): (27) has features in common with, but
is not a valid representation of, the blow-up behaviour of the full
PDE (3), a key point to which we shall return.

In keeping with our goal of characterising the behaviour of (3)
for near-flat initial conditions, we now develop a fully analytic
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symptotic description of the behaviour of the two-mode system
7) for initial conditions (9) with α = O(1), ϵ → 0+. There are
wo timescales; the first coincides with (10), so that at leading
rder (11) and (12) follow.
On the second time scale, and near blow up, we set

= α + ϵT , b = ϵB, a = ϵA0(T ) + O(ϵ2), B = B0(T ) + O(ϵ),
(28)

ith T = O(1), so that

A0
dA0

dT
+

1
2
B0

dB0

dT
= −A0,

B0
dA0

dT
+ A0

dB0

dT
= −B0.

(29)

Since A0 ±
1

√
2
B0 each satisfy

Φ
dΦ
dT

= −Φ

e find on matching with (11)–(12) that

0 = −T , B0 = e−α (30)

a result that relies on the observation that a has no O(ϵ) contri-
bution for t = O(1), see (12)). Thus

tc ∼ α − ϵe−α, ac ∼ ϵe−α, ϵ → 0+

in (26)–(27). Moreover, while the rescaling (28) leads to a mod-
ified balance, i.e. (29) in place of (11) and (12), the result (30)
implies that the solution passes unscathed through T = O(1),
with (11)–(12) being recovered for t > α. Thus with the two-
mode approximation (6) and (8) continuation through blow up
seems to be straightforward, in contrast to that of the v-equation
(3), as we shall subsequently demonstrate.

A.2. Truncated Taylor expansion

Much of what follows in this subsection revisits results from
[11], which we derive using a different approach (namely,
matched asymptotic expansions).

As in Section 2, we also consider the truncated Taylor ap-
proximation (5), which gives rise to the system (18) whose
blow-up behaviour takes the form (again, by a self-consistency
argument)

a ∼ tc − t, b ∼
1

8(− log(tc − t) + bc)
, t → t−c (31)

for constants tc and bc . In contrast to the results of the previous
subsection, (18) does capture the blow-up behaviour of the full
PDE (3), a point to which we shall also come back.

We now return to initial conditions of the form (9), with the
scalings (10) applying for t = O(1), so expanding in the form

a ∼ a0 + ϵa1, b = ϵB, B ∼ B0 + ϵB1,

(18) implies

a0 = α − t, B0 = 1, a1 = 2t, B1 = 8 log ((α − t)/α) . (32)

Under the scalings (28) the leading-order balances do not
change and the results of relevance below read

A0 = 2α − T , B0 = 1, B1 = 8 log ((2α − T )/α) , (33)

the matching into a1 in (32) leading to the 2α contributions. The
final scale in this case is then more subtle than those above: we
set

a = (T − T )â(τ ), B = b̂(τ ), τ = −ϵ log(T − T ), (34)
c c

9

where

Tc ∼ 2α, tc ∼ α + 2ϵα, ϵ → 0+. (35)

The introduction of τ in (34) is associated with the expansion for
B in (33) disordering and (18) becomes

ϵ
dâ
dτ

− â = 2ϵb̂ − 1,

â
db̂
dτ

= −8b̂2,
(36)

o that, on matching with (33),

ˆ0 = 1, b̂0 =
1

1 + 8τ
, â1 = −

2
1 + 8τ

, (37)

so that bc ∼ 1/(8ϵ) in (31).
For reasons that will become apparent below, it is instructive

to record the implications of (37) under the scaling

x = ϵ1/2X (38)

whereby

v ∼ ϵ

(
Tc − T +

ϵ

1 + 8τ

(
X2

− 2(Tc − T )
))

;

this will reappear in the analysis below in describing the local
blow-up behaviour, but also confirms that (5) cannot describe the
spatial profile at blow up (since at T = Tc both terms in the ansatz
(5) should vanish).

A.3. More general near-flat initial data

We now turn to the derivation of the blow-up behaviour,
subjecting (3), the full PDE, to the initial data

v(x, 0) = α + ϵV (x)

with, again, 0 < ϵ ≪ 1. It is striking that this limit allows
a near complete analytical description of the transition to blow
up through the fully nonlinear regime. Three time scales are
required. (I) On the first time scale:

t = O(1), v ∼ v0(t) + ϵv1(x, t) + ϵ2v2(x, t). (I)

ll three terms in this expansion are required for what follows.
n immediate result is that

0 = α − t

leading to

∂v1

∂t
=

∂2v1

∂x2
, v1(x, 0) = V (x). (39)

We shall consider general V (x), but in the case of real-valued 2π-
periodic initial conditions (or zero Neumann boundary conditions
on a finite domain6), we can Fourier decompose in the usual way,
so that

v1(x, t) =

∞∑
k=−∞

akeikx−k2t .

We note this special case for two reasons — firstly for its rele-
vance to Appendix A.1 and secondly for the obvious observation
that the high-frequency modes are rapidly decaying, providing
additional motivation for the analysis of Sections 2 and A.1 but
being also in some respects counter-intuitive, given that point
blow up subsequently ensues.

6 This correspondence is worth emphasising with regard to the physical
applicability and interpretation of the results.
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We define

Φ1(x) = v1(x, α)

so that

v1(x, t) ∼ Φ1(x) − (α − t)Φ ′′

1 (x), t → α−. (40)

At next order we have

∂v2

∂t
−

∂2v2

∂x2
= −

2
α − t

(
∂v1

∂x

)2

, v2(x, 0) = 0, (41)

o that

2(x, t) ∼2
(
Φ ′

1(x)
)2 log(α − t) + Φ2(x)

− 2
[(

Φ ′

1

)2]′′

(α − t) log(α − t)

+

(
4
(
Φ ′′

1

)2
− Φ ′′

2

)
(α − t), t → α−,

(42)

where (42) serves to define Φ2(x).
(II) On the second time scale:

T = O(1), v = ϵw,

w ∼ w0(x, T ) + ϵ log(1/ϵ)w1(x, T ) + ϵw2(x, T ). (II)

Here t = tc(ϵ) + ϵT , with tc(0) = α and with correction terms to
tc identified below.7 We shall also need to consider the rescaling
(38). We have

w
∂w

∂T
= ϵ

(
w

∂2w

∂x2
− 2

(
∂w

∂x

)2
)

− w

o, matching with (40), (42), and defining β1 and β2 via

c(ϵ) ∼ α + ϵβ1 + ϵ2β2, ϵ → 0 (43)

t follows for x = O(1) that

0 = −T + Φ1(x) − β1, (44)

1 = −2
(
Φ ′

1(x)
)2 (45)

nd hence
∂w2

∂T
= Φ ′′

1 (x) −
2

−T + Φ1(x) − β1

(
Φ ′

1(x)
)2

,

implying

w2 = −(−T )Φ ′′

1 (x)+2
(
Φ ′

1(x)
)2 log (−T + Φ1(x) − β1)+Φ2(x)−β2.

(46)

We take blow up to occur at x = 0, requiring that Φ ′

1(0) =

Φ ′

2(0) = 0 and take

Φ1(x) ∼ β1 + γ1x2, Φ2(x) ∼ β2 + γ2x2, x → 0 (47)

for constants β1,2, γ1,2 with γ1 > 0,8 and where the requirement
that w = 0 at x = 0, T = 0 implies that β1,2 in (43) are specified
by (47) with Φ1,2 being determined by the linear problems (39)
and (41).

For X = O(1) (see (38)), we first generate the required
matching conditions from (40), (42) and (47), whereby

w ∼ − T +
(
ϵγ1 − 8ϵ2 log(1/ϵ)γ 2

1

+8ϵ2γ 2
1 log(−T ) + ϵ2γ2

) (
X2

− 2(−T )
)

+ 16ϵ2γ 2
1 (−T ),

(48)

7 The notation here differs somewhat from that of the previous subsections.
8 The case γ1 = 0 corresponds to non-generic forms of blow up — we shall

not pursue such matters here.
 a

10
wherein we have retained only the required terms in X0 and X2

— in general v1 will also lead to contributions of the form

ϵ3/2 (X3
− 6(−T )X

)
, ϵ2 (X4

− 12(−T )X2
+ 12(−T )2

)
in w but these can be neglected for our purposes, being sub-
dominant as T → 0− with X = O

(
(−T )1/2

)
.

We have

∂w

∂T
= w

∂2w

∂X2 − 2
(

∂w

∂X

)2

− w (49)

nd from this we find that the relevant terms for T = O(1)
simply reproduce the matching condition (48) obtained from the
expansion for t = O(1). Importantly, the expansion (48) disorders
for ϵ log(−T ) = O(1), as in Appendix A.2, leading us on to our
third and final time scale, as follows. (III) On this exponentially
short timescale9 with τ = −ϵ log((tc − t)/ϵ) the scalings are:

τ = O(1), w = (−T )g,

g ∼ 1 + ϵg1(ξ, τ ) + ϵ2 log(1/ϵ)g2(ξ, τ ) + ϵ2g3(ξ, τ ) (III)

where

ξ =
X

(−T )1/2
. (50)

We emphasise that much of what follows reconstructs known
blow-up behaviour (see the review of [16], for example.) The
novelty here lies in the focus on the near-flat initial data, which
allows a significantly more detailed characterisation of the full
spatial behaviour.

The near self-similar solution ansatz (50) transforms (49) to

ϵg
∂g
∂τ

− g2
+

1
2
ξg

∂g
∂ξ

= g
∂2g
∂ξ 2 − 2

(
∂g
∂ξ

)2

− g

so that

−g1 +
1
2
ξ
∂g1
∂ξ

=
∂2g1
∂ξ 2 , (51)

mplying that

1 = σ1(τ )
(
ξ 2

− 2
)
; (52)

imilarly

2 = σ2(τ )
(
ξ 2

− 2
)

(53)

ut g3 satisfies (following cancellation of a number of terms using
51))

dσ1

dτ

(
ξ 2

− 2
)
− g3 +

1
2
ξ
dg3
dξ

=
d2g3
dξ 2 − 8σ 2

1 ξ 2. (54)

Since we need to preclude exponential growth of g3 (i.e. to
exclude contributions with log g3 ∼ ξ 2/4 as ξ → ±∞), (54) both
requires that

g3 = −2
dσ1

dτ
+ σ3(τ )

(
ξ 2

− 2
)

(55)

nd generates the solvability condition
dσ1

dτ
= −8σ 2

1 ; (56)

that the O(ϵ) term in g is only fully determined via (54) necessi-
tates that the expansion be taken up to O(ϵ2). Matching with (48)
then requires that

σ1 =
γ1

1 + 8γ1τ
, −2

dσ1

dτ
=

16γ 2
1

(1 + 8γ1τ )2
, (57)

9 This feature makes the behaviour on this timescale exceptionally hard
o capture numerically, illustrating the well-known complementarity between
symptotic and numerical approaches.
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imultaneously confirming matching with the second, fourth and
inal terms in (48). The calculation of σ2 and σ3 requires solvabil-
ty conditions at yet higher orders (which we will not pursue),
ith (48) requiring that

2(0) = −8γ 2
1 , σ3(0) = γ2.

By analogy with the subdivision into x and X in (II), we need
lso to consider η = O(1), where

=
x

(−T )1/2
, η = ϵ1/2ξ,

hough a third scale (namely x = O(1)) will also require consid-
ration here. Since

g
∂g
∂τ

− g2
+

1
2
ηg

∂g
∂η

= ϵ

(
g
∂2g
∂η2 − 2

(
∂g
∂η

)2
)

− g,

etting

∼ G0(η, τ ) + ϵ log(1/ϵ)G1(η, τ ) + ϵG2(η, τ )

ives on matching into ξ = O(1)

0 = 1 + σ1(τ )η2, G1 = σ2(τ )η2 (58)

nd

1
2
η
dG2

dη
− G2 = 2σ1 −

dσ1

dτ
η2

−
8σ 2

1 η2

1 + σ1η2 ,

o that, again matching into ξ = O(1),

G2 = −2σ1(τ ) + 8σ 2
1 (τ )η

2 log
(
1 + σ1(τ )η2)

+ σ3(τ )η2
; (59)

were σ1 not a solution to (56), a term in log η would also be
present here, further clarifying the status of (56) as a solvability
condition.

Finally, we can simply set T = 0 in (44)–(46), noting that
τ = O(1) corresponds to exponentially small T , to obtain the
profile at blow up for x = O(1).10 Thus as t → t−c , ϵ → 0 with
x = O(1) we have

w ∼ Φ1(x) − β1 − 2ϵ log(1/ϵ)
(
Φ ′

1(x)
)2

+ ϵ

(
2
(
Φ ′

1(x)
)2 log(Φ1(x) − β1) + Φ2(x) − β2

)
.

(60)

The expression (60) has small-x behaviour

w ∼ γ1x2 − 8ϵ log(1/ϵ)γ 2
1 x

2
+ ϵ

(
8γ 2

1 x
2 log(γ1x2) + γ2x2

)
, (61)

The expressions (60)–(61) do not apply for exponentially small x,
however. Instead, we need to extract from (58)–(59) the terms
relevant for large η, namely

g ∼ σ1η
2
+ 16ϵσ 2

1 η2 log η,

these being of the same order for ϵ log η = O(1).
Reconstructing w from these using (57), we have

w ∼
γ1

1 + 8γ1τ
x2 +

16ϵγ 2
1 x

2

(1 + 8γ1τ )2
log η,

which, using

τ = −2ϵ log x + 2ϵ log η,

implies that

w ∼
γ1x2

1 − 16ϵγ1 log |x|
(62)

10 The evolution on the third timescale affects the exponentially small length-
cales x = O

(
(−T )1/2

)
and X = O

(
(−t)1/2

)
, the behaviour for x = O(1) being

etained from (II).
 o

11
escribes the profile at blow up for x exponentially small with
espect to ϵ (having taken the various limits in the appropriate
rder); (62) matches with the relevant terms in (61) for larger x.
We note that non-analytic (i.e. logarithmic) terms here occur

s a matter of course, in (tc−t) in (57) and in x in (61): these arise
constructively in the current analysis rather than being intro-
duced a priori as part of a solution ansatz. That the current limit
provides a detailed asymptotic characterisation of the profile (60)
at blow up for almost all x, not just close to blow-up point, is also
noteworthy.

A.3.1. Comparison with truncated expansions
The above systematic asymptotic analysis clarifies the ex-

tent of applicability of the ad-hoc approximations treated in
Appendices A.1 and A.2.

Starting with a comparison with the results of Appendix A.2,
we have already noted that the truncated Taylor expansion cor-
rectly captures the blow-up behaviour, as can be substantiated by
the following observations. For V (x) = x2 it follows that

v1 = x2 + 2t,

v2 = 8x2 log ((α − t)/α) − 16(α − t) log ((α − t)/α) − 16t,

Φ1 = x2 + 2α, Φ2 = −8x2 logα − 16α,

(63)

which imply (see (43) and (47))

β1 = 2α, γ1 = 1, β2 = −16α,

γ2 = −8 logα, tc ∼ α + 2αϵ − 16αϵ2. (64)

More importantly, (48), (52), (53), (55) and (58) are all quadratic
in x for general V (x), so the approximation in Appendix A.2
represents an attractor in that sense. As already noted, it cannot
capture the spatial blow-up profile, the first manifestation of this
being represented by the logarithmic term in (59); see also (61)
and (62). It is especially noteworthy that (55) is a quadratic in ξ ;
if the corresponding analysis is undertaken on (1) rather than on
(3), a ξ 4 term arises at that order. This represents a hidden benefit
of the v formulation.

Turning now to Appendix A.1, corresponding to V (x) = − cos x,
we can both exemplify the form of the profile (60) at blow up
and indicate where the analysis of Appendix A.1 breaks down in
describing the behaviour of the full PDE. In this case

v1 = −e−t cos x,

v2 = −

∫ t

0

e−2s

α − s
ds − e−4t

∫ t

0

e2s

α − s
ds cos(2x),

Φ1 = −e−α cos x, Φ2 = −C1 − C2 − (C1 + C3) cos 2x,

(65)

here

1 = e−2α logα, C2 =

∫ α

0

e−2t
− e−2α

α − t
dt,

C3 = e−4α
∫ α

0

e2t − e2α

α − t
dt, (66)

which imply (see (47))

β1 = −e−α, γ1 =
e−α

2
,

β2 = −2C1 − C2 − C3, γ2 = 2(C1 + C3). (67)

hat v2 and Φ2 contain cos 2x contributions is already indicative
f the failure of the truncated Fourier expansion close to the
low up; nevertheless, v1 and w0 (in (44)) provide the dominant
patial dependencies on the relevant scales and retain the form
f Appendix A.1 (and the O(ϵ) term in (48) can be viewed as
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eing associated with the latter’s Taylor expansion). The trunca-
ion is, however, entirely unable to reproduce the behaviour for
= O(1), manifesting nothing reflecting the solvability argument

eading to (56).
Notwithstanding their deficiencies, the simple approximations

f Appendices A.1 and A.2 are instructive both for familiar reasons
namely for the transparency and simplicity of their analysis) and
ecause they can immediately be analytically continued to assess
heir relevance to the evolution of singularities in the complex
lane; see Fig. 4 (in which the dashed line is derived from the
pproximation of Appendix A.1).

.4. Complex-singularity dynamics

The motion of the singularity necessarily breaks down into the
hree time scales of Appendix A.3 (labelled (I), (II) and (III)) and
ere we adopt the specific initial condition v = α − ϵ cos x. We
et x = iy and describe the location of the nearest singularity
corresponding to v = 0) on the positive imaginary axis.

On the first time scale (t = O(1)), we set y = log(1/ϵ) + Y in
3) and have the full balance

∂v

∂t
= −

(
v

∂2v

∂Y 2 − 2
(

∂v

∂Y

)2
)

− v, (68)

ow to be solved as an initial value problem subject to

t t = 0, v = α −
1
2
eY , (69)

s Y → −∞, v ∼ α − t −
1
2
eY−t . (70)

his not analytically solvable (and in effect a more difficult prob-
em than the original PDE with nearly flat initial data), but does
stablish that to leading order the singularity location is fixed:
∼ log(1/ϵ). This problem can, however, be solved analytically

in the limits t → 0+ and t → α−; using the techniques of [18],
e find

∼ log(2α/ϵ) + (2t log(1/t))1/2 , t → 0+, (71)
y ∼ log(2/ϵ) + α + log(α − t), t → α−, (72)

so the singularity moves away from the real axis at early times
(with unbounded speed as t → 0+) before reversing.

The results on the second and final time scales follow imme-
diately from the above real line results. On the second time scale
(t = tc + ϵT , T = O(1)), since (see (44) and (65)–(67))

w0 = −T − e−α (cosh y − 1)

the singularity location satisfies

cosh y ∼ 1 + eα(−T ) (73)

so that

y ∼ log
(
1 + eα(−T ) +

(
2eα(−T ) + e2α(−T )2

)1/2)
. (74)

If follows from (74) that

y ∼ log(−2T ) + α, T → −∞, (75)
y ∼ (2eα(−T ))1/2 , T → 0−, (76)

where (75) exhibits the necessary matching with (72).
On the final time scale (τ = −ϵ log(−T ), τ = O(1)), since (see

(58))

G0 = 1 − σ1y2/(−T ), σ1 =
γ1

1 + 8γ1τ
,

with γ1 = 1/(2eα) the singularity location satisfies

y ∼ 2eα(−T ) 1/2 (1 − 4ϵe−α log(−T )
)1/2

, (77)
( )

12
which matches with (76) for ϵ| log(−T )| ≪ 1, while

y ∼ (8(tc − t) log(1/(tc − t)))1/2 , t → t−c ,

accordingly describes impingement onto the real axis.

Appendix B. Flatness of the solution on the real line and prox-
imity of the nearest singularity

Note from Fig. 1 that the solutions to the u-equation (1) that
we consider attain their maximum at x = 0 and their minimum at
x = ±π . Therefore, as an indication of the ‘flatness’ of the solution
rofile, we consider the quantity u(0, t) − u(π, t) := f (t), which
s the relative height of the peak of the solution on [−π, π]. We
hall consider the relation between the flatness of the solution
rofile and the distance of the singularities to the real axis.
Let the ak(t) denote the Fourier coefficients of the solution in

he u variable. Since the solution is real (prior to blow up) and
ven, ak = a−k and thus the flatness of the solution is given by

f (t) =

∞∑
k=−∞

ak(t) −

∞∑
k=−∞

(−1)kak(t) = 4
∞∑
k=0

a2k+1(t). (78)

f f ′ < 0, the solution becomes more flat while if f ′ > 0 the
olution becomes steeper on x ∈ [−π, π]. Using the residue
heorem, it follows that

k(0) =
1
2π

∫ π

−π

e−ikx

α − ϵ cos x
dx

=

(
α
ϵ

+

√(
α
ϵ

)2
− 1

)−|k|

ϵ

√(
α
ϵ

)2
− 1

=
1
α

( ϵ

2α

)|k|
+ O(ϵ|k|+2), ϵ → 0. (79)

The coefficients satisfy

a′

k = −k2ak + bk, (80)

where bk is the kth Fourier coefficient of u2.
It follows from (79)–(80) that, to leading order, as ϵ → 0, and

way from the blow-up time,

0(t) ∼
1

α − t
, a1(t) ∼

ϵe−t

2(α − t)2
, (81)

therefore

f ′(t) ∼ 4a′

1 ∼
2ϵ e−t (t − (α − 2))

(α − t)3
.

Hence, on the real line, the solution switches from flattening to
steepening at t ∼ α − 2 if α > 2 and the minimal flatness
is f (α − 2) ∼ 4a1(α − 2) ∼ ϵ e2−α/2. If α < 2, the solution
does not flatten at all but steepens from t = 0 until the blow-up
time. Fig. 12 confirms the validity of the flatness approximation
f (t) ∼ 4a1(t) away from the blow-up time.

In the complex plane, we deduce from the asymptotic approx-
imation (71) that, regardless of the parameter values (provided
α ≪ ϵ), the singularities initially move away from the real axis
and turn around at t ∼ exp(−1) ≈ 0.37, which is consistent with
the numerical results in Fig. 4. This illustrates that there is not
a simple correspondence between the distance of the singularity
from the real axis and the flatness of the solution.

Indeed, it follows from (78) and the rapid decay of the Fourier
coefficients (away from the blow-up time) that the flatness of the
solution is determined by the behaviour of the low-order Fourier
coefficient a1. On the other hand, the distance of the singularity
from the real axis is determined by the behaviour of the high-
order Fourier modes. Hence, the discrepancy between the flatness
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I

Fig. 12. Left: The numerically computed flatness f (t) = u(0, t) − u(π, t) (solid blue curve) compared to the approximation f (t) ∼ 4a1 , with a1 given in (81) (red
dashed curve). Right: the relative error of the approximation f (t) ∼ 4a1 , which, as expected, ceases to be valid as blow up is approached.
4

A

o

R

of the solution and the proximity of the singularity is due to the
qualitatively different evolution of the lower and higher order
Fourier modes.

For the high-order modes, the diffusion term −k2ak dominates
the nonlinear term bk for small t (again, due to the rapid decay of
the Fourier coefficients). Therefore a′

k < 0, the high-order Fourier
coefficients decay for small t and therefore the singularity initially
moves away from the real axis, regardless of the parameter values
satisfying ϵ ≪ α. The high-order Fourier coefficients start in-
creasing as the singularity turns around, which occurs at t ∼ 0.37,
according to (71).

Appendix C. Asymptotic estimate of truncation error

Here we estimate the error that results from truncating the
Fourier series (4) at |k| = N in the numerical method.

Since for t ∈ [0, tc], the Fourier coefficients decay at their
slowest rate at t = tc , we can use the approximation (23) (whose
accuracy is examined in right frame of Fig. 6) to estimate an
upper bound on the spatial truncation error that is valid for t ∈

[0, tc]. Ignoring the error incurred by the time integration method
(whose tolerance we set to 10−12, which we assume is negligible
compared to the truncation error) and using the fact that the
solution is even for t ∈ [0, tc], we estimate the squared 2-norm
absolute truncation error to bev(x, t) −

N∑
k=−N

ck(t)eikx

2

2

≈ 2
∞∑

k=N+1

|ck(t)|2

Using (23), we have for t → tc , ϵ → 0 and N → ∞ that

2
∞∑

k=N+1

|ck(t)|2 ∼ 32ϵ4e−4α
∞∑

k=N+1

k−6
∼

32ϵ4e−4α

5N5 .

t follows from (22) that as t → tc and ϵ → 0

∥v(x, t)∥2
2 ∼ 4ϵ2e−2α

∫ π

−π

sin4(x/2)dx = 3πϵ2e−2α.

Hence, in the limits given above we estimate the relative spatial
truncation error to be

4

√
2 ϵ e−α

5/2 . (82)

15π N

13
For the numerical experiments reported in this paper we set
N = 128, in which case the error estimate is Cϵ e−α with C =

.45 × 10−6.

ppendix D. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.physd.2023.133660.
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