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Abstract— Static friction modelling is a critical task to have an 

accurate robot model. In this paper, a neural network separation 

approach to include nonlinear static friction in models of 

industrial robots is proposed. For this purpose, the terms 

corresponding to static friction within the overall robot 

mathematical model are separable terms treated independently 

from the rest of the model. The separation modelling process is 

accomplished by first determining the mathematical model for the 

system by excluding the friction terms and estimating its 

parameter values. This part of the model corresponds to 

gravitational terms only. Because persistency of excitation is 

required to maintain high accuracy and avoid singularity in the 

estimations, data with large variations across multiple joint angles 

are gathered for estimation purposes and a weighted least-squares 

approach is used. This estimation results in a highly accurate static 

mathematical model for industrial robots. Results from the 

weighted least-squares estimation are compared to the original 

least-squares estimation, ridge regression, a least absolute 

shrinkage and selection operator, and an elastic net to show 

superior performance. After modelling the gravitational terms of 

the model, a multilayer perceptron neural network is used to 

identify static friction forces in the model from experimental data. 

This is required in the case of a robot with multiple degrees of 

freedom because the friction of each joint is a function of several 

other joint angles acting upon it; making the solution complex and 

difficult to be obtained through other friction modelling methods. 

Experimental results obtained from a Universal Robots-UR5 

demonstrate the high accuracy of the proposed modelling 

methodology under static conditions, and future work will 

consider the implementation of dynamic terms to integrate friction 

forces during movement. 

 
Index Terms— Estimation, friction, mathematical model, 

modeling, neural network model, robot  

 

I. INTRODUCTION 

NDUSTRY 4.0 requires increasing levels of accuracy, and 

reliability of industrial robots to accomplish highly accurate 

production [1, 2]. To develop reliable control strategies and 

increase precision, it is required to have a robot model [3-6] that 

avoids excess rated torques and forces, predicts wear and tear, 

and avoids premature failures [7]. Friction [8], which inherently 

exists in the robot structure, is of high importance to maintain 

modelling accuracy and its inclusion in static robot models can 

reduce uncertainty resulting in more accurate overall motion.  

Kinesthetic teaching mode which may be referred to as lead 

through programming mode is a very flexible teaching mode to 

program industrial robot motion [9]. This mode allows us to 

retrain robots on the factory floor with minimal operator 

knowledge about programming [10, 11], as the user simply 

guides the robot with their hand to record the required motions. 

Such teaching mode which exists in most cobots [12] - robots 

that can operate with humans collaboratively - are increasing 

their use in Industry 4.0 environments for handling and 

manipulating materials, packaging purposes [13] and 

teleoperation tasks [14]. These teaching modes are mostly 

utilized in Industry 4.0 environments where dynamic reskilling 

of robots on the factory floor is required to meet highly 

customizable products. Although, the inherent design 

characteristics of these teaching modes enable safe use, and 

generally increase compliance, it increases static friction effects 

in controlled joints.  

To control industrial robots precisely and easily in 

kinesthetic teaching modes, it is required to determine the force 

to compensate for gravity and friction forces. For the 

kinesthetic modes of operation for an Effort ER20 C10, a 

heavy-duty industrial robot with 20 kg of mass, a force 

following controller was used to allow the robot to follow 

external forces applied by a human teacher [11]. These force 

following controllers relied highly on the mathematical model 

of the robot and its parameter values need to be precise. Even a 

small mismatch between the model and the robot may result in 

controller overcompensations, and consequently in unwanted 

motion [15]. Some industrial robots benefit from gravitational 

force and torque compensation by adding mechanical parts such 

as counterweights and springs [16]. However, such elements do 

not usually exist on most industrial robots, as they necessitate 
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the use of software for nonlinear gravity compensation and 

mechanical hardware, adding unwanted complexity and cost. A 

software feedback control loop based on dynamic models is, 

therefore, the preferable choice to improve position control 

[17]. To have an efficient and high-performance software 

antigravity control in industrial robots, it is required to have a 

precise separation approach to improve the industrial robot 

models in their static condition to better include static friction. 

When a force is applied to a moving object, there is a 

Coulomb friction, proportional to the perpendicular force 

applied to the contact plane, and acting against the movement 

of the object [18]. An object can move in three states: adhesion 

or stick state, stick to slip state, and slip state. In the adhesion 

or stick state, the applied force is weaker than the Coulomb 

friction and the object remains still. During the stick to slip 

transition, the time dependent static friction avoids object 

movement [8]. However, when the object starts moving (slip 

state), the friction is a function of angular velocity. The 

Karnopp friction model considers friction for the system for all 

three states of stick, stick to slip transition and slip state [8]. 

Although Karnopp model has the advantage of using ordinary 

differential equations, it suffers from numerical instability in 

the stick mode. To overcome the numerical instability problem 

of a Karnopp friction model in stick mode, switch models may 

be used [8]. In the switch model, at each time instance, system 

states are inspected, and appropriate time derivatives of the 

states are chosen from the differential equations corresponding 

to stick phase, stick to slip phase or slip phase of operation. The 

seven-parameter friction model [19], the Dahl model [20], the 

LuGre model [21], the Leuven integrated friction model [22], 

and the generalized Maxwell slip model [23] are among the 

most popular ones used in the literature for friction modelling 

[24]. One issue is that such models are often concerned with 

low, typically single degree of freedom robots, while industrial 

robots tend to have many degrees of freedom (DoF) of motion. 

The focus of this paper is, therefore, on the static friction of 

industrial robots in their stick mode of operation, considering 

multiple joint angles and their interactions. 

While dynamic friction is usually a function of angular 

velocities [25-30], static friction mostly relies on robot joint 

angles. The calculation of the static friction is especially 

important when operating using the kinesthetic mode. In 

general, to calculate the static friction of an industrial robot in 

[25], its speed is kept constant. For the kinesthetic mode of 

operation for an Effort ER20 C10, a heavy-duty industrial robot 

with 20 kg of mass, a force following controller is used to make 

the robot follow external forces applied by a human teacher 

[11]. These force following controllers rely heavily on the 

mathematical model of the robot and its estimated parameters. 

Due to unknown mathematical relationships between static 

friction and joint angles, artificial neural networks (ANNs) are 

used to model this relationship. 

ANNs offer a solution to static friction modelling as they are 

general function approximators capable of picking up static 

friction as a smooth nonlinear function of joint angles, even 

though the real mathematical model is unknown. ANNs have 

already been used in a variety of friction modelling applications 

for sliding surfaces and hydraulic actuators [31-34]. In the case 

of friction models in robotic applications, a neural network 

structure optimized by a genetic algorithm is used in [35] to 

model the joint friction for a single joint of a HSR JR605-C 

robot. It is observed that relatively large errors exist in the 

Stribeck model at low speeds [35]. To overcome large error in 

Stribeck models at low speeds due to static friction, a neural 

network optimized by a genetic algorithm was used leading to 

small mean squared errors for position tracking [35]. The 

robotic system investigated in [36] is a typical planar 1-degree 

of freedom rotating link robot with encoder feedback driven by 

a DC motor and a gear box. A support vector machine network 

approach is used to model friction in this robot [36]. Despite the 

existence of different friction models, a static friction model 

that considers systems with high DoF has not been studied.  

In this paper, motivated by the fact that static friction for 

robots with high DoF has not been investigated, a separation 

approach is presented for the modelling of an industrial robot, 

in our case a Universal Robots-UR5, in its static state. First, the 

nonlinear gravity terms of the UR5 are modelled 

mathematically without considering static friction. 

Mathematical modelling that achieves results traceable to 

physical parameters of the robot is the preferred method for 

nonlinear gravity terms compared to fuzzy approaches [37] or 

neural network methods [33]. This provides more in-depth 

information about an industrial robot’s dynamics that can be 

used in model-based control systems with greater 

accountability to what is occurring. Previous attempts to model 

this robot require simplification of its structure to calculate the 

inertia tensors of the robot links and centres of gravity. 

However, because of irregularities in the shapes of the robot 

links and manufacturing tolerances, such a mathematical model 

includes uncertainty. For instance in [38], the shapes of the 

robot links are considered completely cylindrical to extract the 

inertia tensor as well as centres of gravity. Because the 

proposed approach in this paper deals with real data gathered 

from the robot, it does not include the simplifications 

previously used in [38]. Euler-Lagrange method is the preferred 

approach in this paper to obtain industrial robot dynamic 

motion. The angular velocity and acceleration terms are taken 

as equal to zero during the mathematical modelling formulation 

process to find the static robot model. The parameter values of 

the robot static model are estimated from the real data, rather 

than a simplified robot structure, which makes them more 

precise.  

Sparse identification of nonlinear dynamics (SINDY) is a 

system identification approach to reduce the modelling 

complexity and make it suitable for model-based control and 

simulation [39]. Inspired by its successful implementation, the 

regression methods used within this approach, including 

weighted least-squares (WLS) [7, 40], LASSO, ElasticNet and 

ridge regression, are used for parameter estimation of a 

gravitational model within the static robot model. Motivated by 

the fact that the aforementioned algorithms are used for 

dynamic system identification [39], this work uses these 

regression algorithms to estimate the parameters of the 

regression part of the robot static model. It is shown in the paper 
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that using the WLS technique results in a more accurate model 

than LASSO, ElasticNet and ridge regression.  

Because of the high interaction between multiple robot links, 

the static friction terms corresponding to each joint are found to 

be dependent upon more than one joint. Therefore, the static 

friction terms are estimated using an appropriate neural network 

model as a function of joint angles 𝐽2, 𝐽3 and 𝐽4 (see Fig. 1). It 

is shown that the combination of the mathematical model for 

gravitational terms and the neural networks for friction models 

contributes to a precise and reliable model with negligible error. 

The systematic friction model developed in this study is 

assumed to account for the stick mode of the robot, which to the 

best of our knowledge has not been conducted before on these 

many joints. In summary the contributions of this paper are as 

summarized below. 

• Introduction of a new “separation approach” to include 

static friction terms for the stick state of a robot static 

model. The separation approach introduced in the paper 

makes it possible to treat the static friction terms 

completely independent from the mathematical 

industrial robot model. Therefore, not only the 

developed model is capable of modelling static behavior 

of the robot with high accuracy as a result of using ANN 

in its structure, but also it provides mathematical model 

of gravitational force which are minimal and provides 

detailed physical static robot model. 

• Use of WLS for the estimation of the gravitational term 

parameters to obtain a simple and accurate mathematical 

model. WLS algorithm is a successful estimation 

algorithm to deal with noise and uncertainties which 

exist in industrial robot data. 

• Modelling the static friction terms using a neural 

network to increase accuracy in a multi-joint system. To 

the best of the author’s knowledge, static friction 

modelling for multiple robot joints does not exist in 

literature. 

This paper is organized as follows. A dynamic model for 

industrial robots is presented in Section II. The model is then 

reduced to a static one to perform the parameter estimation. 

Estimation algorithms of ridge regression, LASSO, ElasticNet 

and WLS are explained in Section III, where the overall 

separation approach is given. Section IV presents the estimation 

results using the proposed approach and validates them 

experimentally. Concluding remarks are given in Section V.  

II. INDUSTRIAL ROBOT DYNAMIC MODEL 

The process of industrial robot model identification from 

data requires data acquisition, signal conditioning, structural 

identification, parameter estimation and finally model 

verification [41]. The data gathered for identification purposes 

needs to be in a persistently excited signal to avoid singularities 

in the estimation process. To maintain high excitation for the 

signal, large variations on multiple robot joint angles are 

considered. Another reason for having large variations in the 

signal is to have a precise model across a larger number of 

operational points [42]. In this work, the ordinary differential 

equations that govern robot motion are obtained using Euler-

Lagrange method. This Euler-Lagrange method uses the 

principle of “virtual work” to derive a mathematical model of 

the robot in terms of second order differential equations 

corresponding to each link [43].  

Figure 1 illustrates the UR5 robot as a typical 6-DOF 

industrial robot, with six links connected to each other by 

revolute joints. The joint labels are presented using 𝐽𝑖, 𝑖 =

1,… ,6, where 𝐽1 is the shoulder pan joint, 𝐽2 is the shoulder lift 

joint, 𝐽3 is the shoulder elbow joint,  𝐽4 is wrist joint 1, 𝐽5 is 

wrist joint 2 and 𝐽6is wrist joint 3. The 𝑑𝑖, 𝑖 = 1, 4, 5, 6 and 𝑎𝑖, 𝑖 =

 2, 3 parameters in Fig. 1, refer to the Denavit–Hartenberg (DH) 

parameters of UR5. 

A. Physical Characteristics of Industrial Robot 

The symbolic representation of inertia matrices and the 

centre of gravity for each link of the UR5 are as follows 

 𝐼k = diag(𝐼1,1
k 𝐼2,2

k 𝐼3,3
k ), 𝑘 = 1,… ,6 () 

where 𝐼1, … , 𝐼6 represent the inertia matrixes of link 1, …, 6, 

respectively. During the modelling process in this paper, the 

off-diagonal terms in 𝐼k are considered as equal to zero. The 

centre of mass corresponding to each link is represented by 𝑟𝑀k
k , 

k=1, …, 6 and can be written as 

 𝑟𝑀𝑘
𝑘 = [0        ,    𝑟𝑀𝑘,2

𝑘 , 𝑟𝑀𝑘,3
𝑘       ]

𝑇
, 𝑘 = 1,4, 5,   

 𝑟𝑀k
k = [𝑟𝑀k,1

k         ,    0, 𝑟𝑀k,3
k       ]

𝑇
, 𝑘 = 2, 3,  

 𝑟𝑀6
6 = [0        ,   0, 𝑟𝑀6,3

6       ]
𝑇
. () 

rotation matrices for its joints as a function of joint angles 

[42, 44]. The parameters 𝑟𝑀𝑘,1
𝑘 , 𝑘 = 1,4, 5, 𝑟𝑀k,3

k 𝑘 = 2, 3, and 

𝑟𝑀6,1
6 , and 𝑟𝑀6,2

6  are taken as equal to zero during the modelling 

process. In other words, it is assumed that the center of the mass 

in certain directions is exactly in the middle of the axis and its 

uncertainty is ignorable. 

 𝑥 = 𝑇6
0 = 𝑇1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5 = [𝑅6

0 𝑜6
0

𝟎 1
] () 

where, 

 𝑇i
i−1 = [

𝑐𝑞𝑖 −𝑠𝑞𝑖𝑐𝛼𝑖
𝑠𝑞𝑖  𝑐𝑞𝑖𝑐𝛼𝑖

𝑠𝑞𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝑞𝑖
−𝑐𝑞𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝑞𝑖

0     𝑠𝛼𝑖    
0 0

𝑐𝛼𝑖       𝑑𝑖
0      1

], () 

and 𝑥 represents the translation and rotation matrix relative to 

the base coordinate, 𝑞i’s represent the joint angles, 𝛼i’s and 𝑑i’s 

represent the Denavit-Hartenberg (DH) parameters of the robot 

[45, 46]. The terms 𝑠𝑞𝑖 , 𝑠𝛼𝑖 , 𝑐𝑞𝑖  and 𝑐𝛼𝑖 refer to 𝑠𝑖𝑛 (𝑞𝑖), 
𝑠𝑖𝑛 (𝛼𝑖), 𝑐𝑜𝑠(𝑞𝑖) and 𝑐𝑜𝑠(𝛼𝑖) terms, respectively; these are the 

simplified representations of 𝑠𝑖𝑛 (. ) and cos(.) functions 

throughout the paper. The positions of each link can be obtained 
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using the coordinate of the previous link using the rotation  

 

Fig. 1. Typical industrial robot (UR5) schematics (𝑑𝑖 , 𝑖 = 1, 4, 5, 6 and 𝑎𝑖 , 𝑖 =
2, 3 parameters refer to the DH parameters of the UR5) 

 

matrix 𝑅j−1
i  

 𝑑j
i = 𝑑j−1

i + 𝑅j−1
i 𝑑j

j−1
 () 

The linear and angular velocities of the end effector are 

related to the joint velocities and include the Jacobian of the 

forward kinematics of the robot as follows 

 �̇� = [
�̇�𝑛
0(𝑞)

�̇�𝑛
0(𝑞)

] = [
𝑉𝑛
0(𝑞)

�̇�𝑛
0(𝑞)

] = 𝐽𝑎(𝑞)�̇� () 

where 𝑂𝑛
0(𝑞) is the vector from the base frame origin to the end 

effector frame origin and 𝛽𝑛
0(𝑞) = [𝜑, 𝜗, 𝜓]𝑇  denotes a 

representation for the orientation of the end effector frame 

relative to the base frame, and 𝐽𝑎(𝑞) is the Jacobian of the 

forward kinematics of the robot. 

The total kinetic energy of the robot includes the angular 

velocity energy terms and the linear velocity terms and is given 

by: 𝐾 =
1

2
𝑚𝑣𝑇𝑣 +

1

2
𝑚𝜔𝑇ℐ𝜔, where ℐ = 𝑅𝐼𝑅𝑇 . The kinetic 

energy of the system can then be modified as [19] 

 𝐾 =
1

2
�̇�𝑇𝑀(𝑞)�̇�        =  

1

2
�̇�𝑇 ∑ {𝑚𝑖𝐽𝑣𝑚𝑖

𝑇 (𝑞)𝐽𝑣𝑚𝑖(𝑞)  +
𝑛
𝑖=1

 𝐽𝜔𝑚𝑖
𝑇 (𝑞)𝑅𝑖(𝑞)𝐼𝑚𝑖(𝑞)𝑅𝑖

𝑇(𝑞)𝐽𝜔𝑚𝑖(𝑞)} �̇� () 

where 𝑅𝑖(𝑞) ∈ ℝ
3×3 is the rotation matrix from the inertia 

frame to the body frame, 𝐼𝑚𝑖(𝑞) ∈ ℝ
3×3 is the inertia tensor 

expressed in the body frame, 𝑚𝑖 is the mass of link 𝑙𝑖, 𝐼𝑚𝑖 ∈
ℝ3×3 is the inertia tensor expressed in the body frame of link 𝑙𝑖, 
and 𝑀(𝑞) ∈ ℝ6×6 is the positive definite inertia matrix of the 

manipulator. 

To determine the potential energy of the robot, it is required 

to calculate the centre of gravity positions of the UR5 links in 

the frame attached to the base of UR5 as [43] 

 [
𝑝𝑐1
1
] = 𝑇1

0 [
𝑟𝑀1
1

1
] , [
𝑝𝑐2
1
] = 𝑇1

0𝑇2
1 [
𝑟𝑀2
2

1
]  

 [
𝑝𝑐(k+1)
1

] = 𝑇1
0…𝑇k+1

k [
𝑟𝑀k+1
k+1

1
] , 𝑘 = 2,… , 5 () 

where the potential energy function of the UR5 is obtained from 

 𝑃 = ∑ 𝑚𝑖𝑔
𝑇𝑝𝑐𝑖

6
𝑖=1  () 

and 𝑝𝑐𝑖  is defined in equation (8). The Euler-Lagrange approach 

is used to model the dynamics of this system, where the 

dynamic equations governing the UR5 are obtained through the 

calculation of the partial derivative terms as  
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
= 𝜏 

where 𝜏 presents the motor torque applied to each of industrial 

robot joints. Using the Lagrange function 𝐿 = 𝐾 − 𝑃 and 

considering that the potential energy depends on joint angles, 

but not joint speeds as this is static behavior, the Lagrange 

function can be written as 

 
𝑑

𝑑𝑡
(
𝜕𝐾

𝜕�̇�
) −

𝜕𝐾

𝜕�̇�⏟        
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

+
𝜕𝑃

𝜕𝑞⏟
𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟

= 𝜏 − 𝜏𝑓 . () 

Equation (10) can be further modified to obtain the vectoral 

second order dynamic equation governing the system 

 𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�) + 𝐺(𝑞) = 𝜏 − 𝜏𝑓  (11) 

where 𝑀(𝑞) is a positive definite inertia matrix of the 

manipulator defined previously in equation (7) and 𝜏𝑓 ∈ ℝ
6×1 

presents the static friction vector on all joints of the industrial 

robot. The matrix 𝑉(𝑞, �̇�) represents the centrifugal and 

Coriolis forces, which include the angular velocities, partial 

derivatives of 𝑀(𝑞) with respect to angular positions and the 

time derivative of 𝑀(𝑞), using the following 

 𝑉(𝑞, �̇�) = �̇��̇� −
1

2
[�̇�𝑇

𝜕𝑀

𝜕𝑞1
�̇� ⋯ �̇�𝑇

𝜕𝑀

𝜕𝑞𝑛
�̇�]
𝑇

. (12) 

𝐺(𝑞) is obtained using the partial derivatives of the potential 

energy 𝑃(𝑞) with respect to joint angles represented by 𝐺(𝑞) =
𝜕𝑃(𝑞)

𝜕𝑞
. Using equation (9), the term 𝐺(𝑞) can be manipulated to 

𝑎2 

𝑑1 

𝑎3 

𝑑5 𝑑4 

𝑑6 

𝐽1 

𝐽2 

𝐽3 

𝐽4 
𝐽5 

𝐽6 
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give 

 𝐺(𝑞) =
𝜕𝑃

𝜕𝑞
= ∑ 𝑚𝑖𝑔

𝑇 𝜕𝑝𝑐𝑖

𝜕𝑞

6
𝑖=1  () 

III. METHODOLOGY 

In this paper, we are considering a static model of industrial 

robots; for this reason, the angular velocities of the robot are 

considered negligible. Industrial robot static friction terms are 

separable from its mathematical model representing 

gravitational terms. Therefore, a separation approach is used to 

find the static friction terms. First, the parameters of the 

mathematical model of the robot are estimated. For this 

purpose, the static model of the system, excluding static 

friction, is formulated as a linear regression problem. After 

estimating the linear regression parameters, the remaining 

terms, related to the static friction, are identified as a function 

of joint angles using a neural network approach. Each step is 

explained in detail in the next sections.  

A. Problem statement 

The problem which is investigated in this paper is to model 

static motion behavior of industrial robot to maximize the 

advantage of using mathematics in the modelling. To this end, 

a mathematical formulation is used to identify gravity terms. 

Linear regression is then used to estimate parameters of the 

gravity terms. Because of the high level of interaction between 

different links and joints, the static friction acting on each joint 

will depend on multiple joint angles. Therefore, in this paper, 

multiple layer perceptron neural network (MLPNN) is used as 

a strong function approximator for static friction terms [47, 48]. 

With this approach the static friction function acting on each 

joint, in relation to the other joints, is identified. 

B. Construct the regressor functions: the gravitational force 

term. 

This section shows the procedure to determine the regressor 

functions which include gravitational force terms. We have the 

following equation for the gravitational force terms matrix 

𝐺(𝑞) 

 𝐺(𝑞) = [𝐺1(𝑞) 𝐺2(𝑞) … 𝐺6(𝑞)]
𝑇  (14) 

where 𝐺1(𝑞) = 0,  𝐺2(𝑞) = 𝜑2(𝑞)𝜃2,  𝐺4(𝑞) = 𝜑4(𝑞)𝜃4,   

𝐺5(𝑞) = 𝜑5(𝑞)𝜃5, 𝐺6(𝑞) = 0,  𝜃2 ∈ 𝑅
5×1, 𝜃3 ∈ 𝑅

4×1, 𝜃4 ∈
𝑅3×1, 𝜃5 ∈ 𝑅

2×1 are the unknown parameters of the system. 

 𝜑2(𝑞), … , 𝜑5(𝑞)  are then the known regressor values used for 

the regression algorithm to estimate system parameters 

calculated as 

𝜑
2
= [𝑐𝑜𝑠(𝑞

2
+ 𝑞

3
)𝑐𝑜𝑠(𝑞

4
)𝑠𝑖𝑛(𝑞

5
), 𝑐𝑜𝑠(𝑞

2
+

𝑞
3
)𝑠𝑖𝑛(𝑞

4
), 𝑐𝑜𝑠(𝑞

2
+ 𝑞

3
), 𝑐𝑜𝑠(𝑞

2
), 𝑠𝑖𝑛(𝑞

2
+

𝑞
3
)𝑠𝑖𝑛(𝑞

4
)𝑠𝑖𝑛(𝑞

5
), 𝑠𝑖𝑛(𝑞

2
+ 𝑞

3
)𝑐𝑜𝑠(𝑞

4
)]  

𝜑
3
= [𝑠𝑖𝑛(𝑞

2
+ 𝑞

3
+ 𝑞

4
), 𝑐𝑜𝑠(𝑞

2
+ 𝑞

3
), 𝑐𝑜𝑠(𝑞

2
+ 𝑞

3

+ 𝑞
4
)𝑠𝑖𝑛(𝑞

5
)], 

𝜑
4
= [𝑠𝑖𝑛(𝑞

2
+ 𝑞

3
+ 𝑞

4
), 𝑐𝑜𝑠(𝑞

2
+ 𝑞

3
+ 𝑞

4
)𝑠𝑖𝑛(𝑞

5
)], 

 𝜑
5
= [𝑠𝑖𝑛(𝑞

2
+ 𝑞

3
+ 𝑞

4
)𝑐𝑜𝑠(𝑞

5
)].  () 

Motor torque 𝜏 is considered in [38] and [49] as a linear 

function of motor current. However, in this paper the motor 

torque is considered as a polynomial function of motor current 

as nonlinear relationships were observed in the data. The motor 

torque-current relationship is, therefore, considered as 

 𝜏𝑖 = 𝐾2𝑖𝑖𝑖
2𝑠𝑖𝑔𝑛(𝑖𝑖) + 𝐾1𝑖𝑖𝑖 + 𝐾0𝑖 () 

where 𝐾0𝑖 , 𝐾1𝑖  and  𝐾2𝑖 are the unknown parameters of UR5 

motors. As the robot is operating in static mode, equation (11) 

can be simplified as follows 

 [𝜑2(𝑞)𝜃2 𝜑3(𝑞)𝜃3 … 𝜑5(𝑞)𝜃5]
𝑇 = 

                      [𝜏2 − 𝜏𝑓2 𝜏3 − 𝜏𝑓3 … 𝜏5 − 𝜏𝑓5]𝑇 () 

To estimate the robot regression parameters that appear in 

equation (16) initially the friction terms are not considered. 

After estimating the system parameters, excluding friction 

terms, using the linear regression approach, a neural network is 

used to identify the remaining terms related to the static friction 

terms. Each of the vector elements in equation (17) can be 

treated separately using the current-torque relationship as in 

equation (16) 

 𝜑𝑖(𝑞)𝜃𝑖 = 𝐾2𝑖𝑖𝑖
2𝑠𝑖𝑔𝑛(𝑖𝑖) + 𝐾1𝑖𝑖𝑖 + 𝐾0𝑖 () 

Since the parameters of the motors 𝐾0𝑖 , 𝐾1𝑖 and 𝐾2𝑖 are 

unknown, it is required to modify equation (18) to estimate 

them. Thus, equation (18) is modified as follows 
 

𝜑𝑖(𝑞)𝜃𝑖/𝐾1𝑖 − 𝐾2𝑖𝑖𝑖
2𝑠𝑖𝑔𝑛(𝑖𝑖)/𝐾1𝑖 − 𝐾0𝑖/𝐾1𝑖 = 𝑖𝑖 . (19) 

 

Regression estimation methods are then applied to the 

augmented regressor vectors as follows 

 𝑅𝑖(𝑞) = [𝜑𝑖(𝑞) 𝑖𝑖
2𝑠𝑖𝑔𝑛(𝑖𝑖) 1]   (20) 

Using equation (19), the regression problem in equation (17) 

can be rewritten as 𝑅𝑖(𝑞)𝛩𝑖 = 𝑖𝑖 , where 𝛩𝑖𝑠 are vectors of the 

unknown parameters for the i-th joint as  𝛩𝑖 =
[𝜃𝑖
𝑇 −𝐾2𝑖/𝐾1𝑖 −𝐾0𝑖/𝐾1𝑖].   

B. Solving the regression problem: Estimation Methods 

Different estimation algorithms including least squares, ridge 

regression, LASSO, elastic-net and WLS are discussed and are 

compared in terms of accuracy and the modelling complexity. 

The comparison criteria used for this work are the accuracy and 

speed of the algorithms. These methods are briefly presented in 

this section. 

1) Least-squares method 

The least-squares regression problem is frequently met in 

engineering applications and its cost function is expressed as 

[50, 51] 
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  𝐸𝑖(𝛩𝑖) = ‖𝑅𝑖(𝑞)𝛩𝑖 − 𝑖𝑖‖
2   (21) 

The solution to this problem is a Moore-Penrose pseudo 

inverse solution as 𝛩𝑖,𝐿𝑆 = (𝑅𝑖
𝑇𝑅𝑖)

−1
𝑅𝑖
𝑇𝑖𝑖. Although the 

pseudo inverse solution is the optimal solution to 𝐿2-norm of 

approximation error, reformulating the problem in the form of 

a ridge regression problem results in decreasing modelling 

complexity and avoids singularities.  

2) Ridge Regression 

Ridge regression benefits from a penalty term which tends to 

push the parameters of the system towards zero decreasing the 

modelling complexity. The cost function associated with this 

algorithm is 

 𝐸𝑖(𝛩𝑖) = ‖𝑅𝑖(𝑞)𝛩𝑖 − 𝑖𝑖‖
2 +

𝛼1

2
‖𝛩𝑖‖

2 () 

and its solution is 𝛩𝑖𝑅𝑅 = (𝑅𝑖
𝑇𝑅𝑖 + 𝛼1𝐼)

−1
𝑅𝑖
𝑇𝑖𝑖 [50, 51]. The 

solution to ridge regression is biased with respect to optimal 𝐿2 
norm of approximation error. The value of the bias term is 

𝜃𝐿𝑆 − 𝜃𝑅𝑅 = 𝛼1(𝑅𝑖
𝑇𝑅𝑖)

−1(𝑅𝑖
𝑇𝑅𝑖 + 𝛼1𝐼)

−1𝑅𝑖
𝑇
𝑖𝑖. Since the 

bias value generally increases as 𝛼1 increases, values for 𝛼1 that 

are too large should be avoided. Appropriate values for this 

parameter after a trial and error are found to be equal to 0.001.  

3) LASSO 

The cost function associated with LASSO includes 𝐿1-norm 

of system parameters as its penalty term is defined as [52], thus 

 𝐸𝑖(𝛩𝑖) = ‖𝑅𝑖(𝑞)𝛩𝑖 − 𝑖𝑖‖
2 +

𝛼2

2
‖𝛩𝑖‖1

2. () 

The 𝐿1-penalty term in the LASSO approach contributes to 

the reduction of the modelling complexity.  

4) Elastic Net 

The cost function associated with Elastic net is defined as 

follows [53] 

 𝐸𝑖(𝛩𝑖) = ‖𝑅𝑖(𝑞)𝛩𝑖 − 𝑖𝑖‖
2 +

𝛼3

2
‖𝛩𝑖‖1

2 +
1−𝛼3

2
‖𝛩𝑖‖

2 () 

This model benefits from a penalty term which is a convex sum 

of the penalty terms previously presented under LASSO and 

ridge regression. 

 

5) Weighted Least Squares 

The cost function for WLS benefits from a weight for each 

individual sample which may differ from each other as 

𝐸𝑖(𝛩𝑖) = ‖𝑊𝑖
1/2(𝑅𝑖(𝑞)𝛩𝑖 − 𝑖𝑖)‖

2
,  where 𝑊𝑖 is selected as 

𝑊𝑖 = [1/𝜎1
2 1/𝜎2

2 … 1/𝜎𝑁
2] and 𝜎𝑗

2, 𝑗 = 1, … , 𝑁 is the 

variance value associated with j-th sample [50, 51]. Therefore, 

estimation of the sample variances is required using orthogonal 

least squares, which is then used in a WLS algorithm.  

 
1 https://github.com/UniversalRobots/Universal_Robots_ROS_Driver 

(visited 17/05/2022) 

C. Use MLP Neural Networks for Modelling Friction Terms 

The neural network model used in this paper is a multilayer 

perceptron neural network (MLPNN), which is a popular type 

of neural network [54] as it is a general function approximator 

capable of dealing with a wide class of smooth functions. This 

network structure is composed of several units that perform 

mathematical tasks to calculate nonlinear function of the 

weighted sum of their inputs. In this paper, a hyperbolic tangent 

function is preferred because of its more frequent use and strong 

general function approximation capabilities for hidden layer 

activation functions [54]. The structure is a layered structure 

whose size can be increased by adding more layers and adding 

more neurons to each layer. This layered structure makes it 

possible to apply a gradient descent algorithm to train the 

network.  

The residual of the regression analysis remaining after 

modelling the gravitational terms is the static friction terms 

which are a function of the four robot joints including: 𝐽2: 

shoulder lift joint, 𝐽3: shoulder elbow joint,  𝐽4: wrist joint 1, 𝐽5: 

wrist joint 2. Since the static friction function is unknown, 

MLPNN is used to estimate it. The residual terms remaining 

from the regression analysis are used as the target values for 

MLPNN which is implemented upon its input values. The 

training method for neural network model is a Levenberg-

Marquardt method [55]. 

IV. RESULTS 

To show the capability of the proposed approach to model 

industrial robots, the Universal Robots-UR5 is selected. The 

DH convention for UR5 uses four parameters to fully identify 

the motion coordinate of each link with respect to the previous 

link coordinates. The separation approach includes applying 

WLS to identify the gravity terms and then using MLPNN to 

identify static friction terms acting on industrial robot joints. 

The Regressors are generated using (20) which are then used to 

estimate gravity term parameters in a WLS algorithm. MLPNN 

is applied to the residual terms to identify static friction. The 

DH parameters of the robot appear within static industrial robot 

model which is identified within the static modelling process. 

However, according to the UR5 specifications provided by 

manufacturer [56] their nominal values are as presented in 

Table 1. 

A. Experimental System Components  

The experimental setup to test the proposed separation 

approach and estimate static friction in stick mode consists of 

the UR5 (see Fig. 2) with its teaching pendant and a PC running 

Ubuntu 18.04 connected to it via a LAN interface. The interface 

between the Ubuntu and the UR5 is realized through robot 

operating system (ROS) Melodic software1. The specifications 

of the PC providing this connection are Intel Xeon CPU running 

at 3.5 GHz and 32 GB of RAM. The sampling frequency for 

gathering data using the ROS from the UR5 onboard sensors is 

125 Hz. The ROS software can log the robot movements 

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
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directly to a comma- separated values (CSV) file structure 

readable through spreadsheet software, while the robot is 

performing different movements defined by the user on the 

teaching pendant. Data is available through a public research 

data webpage of the University of Nottingham [57]. 

For estimation purposes, numerous step movements to span 

whole wide range of working volume are required, affecting  
TABLE 1  

DH PARAMETERS AS WELL AS LINK WEIGHTS OF UR5 

P
aram

eter 

V
alu

e (K
g

) 

P
aram

eter 

V
alu

e (m
m

) 

P
aram

eter 

V
alu

e (m
m

) 

P
aram

eter 

V
alu

e (rad
) 

𝑀1 3.7 𝑎1 0 𝑑1 89.16 𝛼1 𝜋/2 

𝑀2 8.393 𝑎2 -425 𝑑2 0 𝛼2 0 

𝑀3 2.275 𝑎3 -392 𝑑3 0 𝛼3 0 

𝑀4 1.219 𝑎4 0 𝑑4 109.15 𝛼4 𝜋/2 

𝑀5 1.219 𝑎5 0 𝑑5 94.65 𝛼5 -𝜋/2 

𝑀6 0.1879 𝑎6 0 𝑑6 82.3 𝛼6 0 

 

 
Fig. 2 UR5 robot  

 

several robot joints simultaneously to maintain high degrees of 

persistency of excitation. This is because a signal with a low 

degree of persistency of excitation may result in poor quality or 

even singularities in the estimation process. To ensure 

persistency of excitation in the data, large variations across 

multiple joints are considered. For measurement purposes, the 

UR5 is guided using its teaching pendant and measurements are 

performed in terms of joint angles, joint angular velocities, and 

joint currents using built-in sensors for the UR5 robot. ROS 

Melodic under Linux 18.04 is used for data collection purposes. 

Joint movements are assigned in a UR5 program with teaching 

pendant using 650 waypoints at maximum angular speed of 

60°𝑠𝑒𝑐−1 and maximum angular acceleration of 80°𝑠𝑒𝑐−2. 
There is at least a 95ms time delay between the movement 

commands which is required to have ten samples corresponding 

to static movements to perform static system identification. The 

total time it takes for the UR5 to travel all these waypoints is 

4782 s. Figure 3 illustrates the raw data gathered from the UR5 

in terms of joint angle data versus time.  

B. Regression Results 

In this paper, least-squares, ridge regression, Elastic Net, 

LASSO and WLS are used to estimate the model parameters for 

the system. The general structure of the model is obtained using 

the mathematical formulation presented in Section II-A. 

Because the model is investigated in steady state, when the 

angular velocities and accelerations are equal to zero, it is the 

steady state part of the signal needs to be determined. Then, ten 

consecutive samples from the steady state for each pose are 

used for estimation purposes. Least-squares, ridge regression, 

LASSO, Elastic Net, and WLS available under Python package 

sklearn.linear_model are used for the parameter 

estimation. Similar comparison between linear regression 

techniques has previously done in [58]. The software 

implementations are carried out under Spyder IDE. The 

 
Fig. 3. Joint angle data gathered from UR5. 

 

regressors used for estimation are those presented in 

equations (15) to (19). The targets considered for the six joints 

of the UR5 are the values of currents 𝑖1to 𝑖6, and correspond to 

motor torque values. The results obtained using WLS for 𝜃2 

parameters are depicted in Fig. 4. The uncertainties associated with 

each individual estimated parameter are presented in the figure. 

Other than superior performance for WLS over other regression 

algorithms, it is easy to perform individual uncertainty analysis for 

each of the parameters in the model. This feature makes WLS a 

superior choice over other regression approaches studied in this 

paper. 

Performance comparisons for the five algorithms are 

presented in Table 2. The parameter 𝛼𝑖 , with 𝑖 = 1, 2, 3, used in 

these estimations is selected as equal to 0.001. The tolerance of 

the calculations associated with Python IDE used in this paper 

is equal to 1e-8. As can be seen from Table 1, the WLS method 

is the most accurate model among all estimation approaches.  

Overall fitness results using the three algorithms when 

𝛼𝑖 , 𝑖 = 1, 2, 3, are equal to 0.001 are presented in Figure 5, 

where it is shown that using the mathematical model of the 

robot without the friction terms in the first stage results in 

modelling error (see Table 2). In the following section, the 

modelling residual is analyzed to find an appropriate MLPNN 

for the static friction. 
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C. Static Friction Modelling 

The resulting residual of mathematical model for gravity 

terms is mainly due to static friction whose mathematical 

formulation is unknown. MLPNN is used to identify the friction 

force corresponding to each joint. The static friction term is not 

simply a function of joint angle 3, but of multiple joints. This is 

because the UR5 robot has multiple links and there is a 

significant interaction between them. Hence, a MLPNN is 

required to completely model the static friction terms of an UR5 

robot model from the recorded data. The activation functions 

used for the layers in the MLPNN are linear, hyperbolic tangent 

sigmoid (TanSig), TanSig and linear for the four layers, 

respectively. For each friction function on a joint, a MLPNN is 

considered. To find the best MLPNN structure, several tests are 

performed. 75% of data is selected for training, 20% for testing, 

and 5% of data for validation 

 
Figure 4 parameters associated with gravity terms for joint angle #2 (𝜃2) 

estimated using WLS and their associated uncertainty analysis 

 
TABLE 2  

PERFORMANCE OF THE FIVE ESTIMATION METHODS 

METHOD LEAST 

SQUARES 

RIDGE 

REGRESSION 

LASSO ELASTIC 

NET 

WLS 

RMSE 0.086 0.086 0.090 0.094 0.086 

 

Figure 5. Estimated motor currents versus real motor currents collected from 

data for shoulder pan joint. 
 

purposes. The input values to these MLPNNs are joint angles 

#2-#5 and the output values are each of the friction functions 

corresponding to each joint. A Levenberg-Marquardt 

estimation method is used to estimate the parameters of 

MLPNN with 1,000 epochs. The software package used for the 

MLPNN training purposes is pyrenn available under Python. 

train_LM attribute under this software package is used to 

apply Levenberg-Marquardt (LM) to MLPNN. The adaptive 

parameter within LM is decreased after each successful step and 

is only increased after a tentative step would increase the 

training cost function [59]. In this way, the performance 

function is always reduced at each iteration resulting in its 

convergence [42]. Table 3 summarizes MLPNN structure 

selection test results. Using this analysis, the optimal number of 

hidden layers is selected as equal to 3, and the optimal number 

of neurons in layers is selected as equal to 4-20-20-10-1. The 

RMSE for the validation data for this structure is equal to 0.008 

which validates the whole identification process.  

The regression analysis for identification in the third joint is 

illustrated in Fig. 7. The target value for this regression analysis 

shown on the abscissa is 𝐼3, the third joint motor current, and its 

approximate value appears on the ordinate. As can be seen in 

Fig. 7, the R-number is very close to unity for both train and 

test datasets. The overall identification performance of the 

proposed approach, which benefits from the mathematical 

model plus MLPNN for all joints, is presented in Table 4. The 

results show that the proposed approach successfully models 

the industrial robot in its static behaviour. The training RMSEs 

for the first two joints 𝐽1 and 𝐽2 are slightly higher than for the 

remaining joints. This is mainly because they are acting as the 

main lifting joints and are therefore affected more by other 

joints forces and torques. The overall RMSEs are relatively low 

and thus accuracy is maintained.  

The output of the proposed model for all friction terms are 

depicted in Fig. 8. As can be seen from this figure, the overall 

static system model, including the mathematical terms and 

MLPNN for the system, demonstrates high accuracy. Hence, 

the separation approach proposed in this study can be used as a 

mathematical modelling approach to include friction terms in 

industrial robot static models such as that of the UR5. 

 

                   (a)                                                (b) 

Figure 7. Regression analysis for overall static friction in 𝐽3 for a) train data b) 

test data 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, a neural network separation approach is 
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developed to find the static model of an industrial robot, where 

the resulting model has friction terms in addition to the 

gravitational force terms. The gravitational force terms are 

formulated as a regression problem. To solve this regression 

problem, comparison results of several estimation algorithms 

including least-squares, ridge regression, elastic net, LASSO 

and WLS are presented. The WLS approach is found to be the 

preferred method to estimate gravitational terms as it results in 

an accurate mathematical model for the static motion of 

 
TABLE 3  

IDENTIFICATION ERRORS CORRESPONDING TO DIFFERENT MLPNNS 

Number of 

neurons in 

layers 

Number of 

hidden 

layers 

Train Test 

4,20,10,10,1 3 0.0337 0.0314 

4,10,10,1 2 0.1068 0.0694 

4,20,10,1 2 0.0546 0.0524 

4,15,10,1 2 0.0610 0.0586 

4,20,15,10,1 3 0.0162 0.0140 

4,15,15,10,1 3 0.0266 0.0228 

4,10,10,10,1 3 0.0550 0.0521 

4,20,20,10,1 3 0.0084 0.0073 
 

 

(a) 

 

(b) 

  

(c) 

 

(d) 

      

(e) (f) 
Figure 8. Modelling performance of static model for (a) shoulder pan joint (b) 

shoulder lift joint (b) shoulder elbow joint (c) shoulder pan joint (d) wrist 1 joint 
(e) wrist 2 joint (f) wrist 3 joint. 

 
2 https://blog.robotiq.com/whats-the-best-position-to-store-

your-robot-overnight 

TABLE 4  

IDENTIFICATION ERRORS OF THE PROPOSED APPROACH ON EACH JOINT 

 RMSE value 

Joint name / number Train data Test data 

shoulder pan joint / #1 0.009 0.010 

shoulder lift joint / #2 0.009 0.010 

shoulder elbow joint / #3 0.003 0.003 

wrist 1 joint / #4 0.008 0.011 

wrist 2 joint / #5 0.006 0.007 

wrist 3 joint / #6 0.007 0.007 
 

industrial robots. Once the regression part of the static model, 

excluding static friction, had been derived, we further 

determined the static friction terms using a MLPNN. The 

overall combination of the gravitational terms model and the 

neural network model for the friction term is shown to result in 

an accurate model for the system. Results from this work will 

enable increased accuracy of industrial robot systems operating 

at static conditions, with future work seeking to consider the 

inclusion of dynamic motion behavior for industrial robots 

using the separation approach investigated in this paper. 

As a future work dynamic modelling [52] of industrial robots 

will be investigated where different dynamic identification 

techniques such as deep learning [60], and state transition 

algorithm [61] may be utilized. The static robot model can be 

used to guide the robot to the desired position, disturbance 

rejection is added through the dynamic controller to maintain 

the robot position. Moreover, calculating the optimal rest 

position of industrial robots will be considered as future work. 

There exist two types of mechanisms to stop robots in their rest 

state: permanent magnet brakes and spring-set brakes2. To find 

out the optimal rest position of an industrial robot to decrease 

its joint brakes wears, it is required to study the full static model 

of an industrial robot including its gravitational force terms and 

static friction model. As a future work using the proposed 

industrial robot static model in this paper, optimal rest position 

of the robot to minimize the torque applied to the joint brakes 

will be considered.  
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