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INTRODUCTION
The presence of biologically significant hypoxia in tumours 
has been known since the work of Thomlinson and Gray in 
the 1950’s.1 More recent studies show that the presence of 
oxygen concentrations below 10 mmHg in tumours results 
in significantly worse radiotherapy and chemotherapy 
treatment outcomes as well as increasing the risk of distant 
metastases.2,3 The accurate and reliable assessment of 
tumour hypoxia is important in identifying tumours more 
likely to respond to hypoxia modifying treatments and in 
monitoring the effect of such interventions. In addition, 
mapping the spatial distribution of hypoxic regions would 
allow targeting of treatment resistant areas with increased 
radiotherapy doses. Consequently, there has been signifi-
cant interest in hypoxia imaging.

An emerging MRI-based technique to map hypoxia is 
oxygen-enhanced MRI (OE-MRI) or tissue oxygen level 
dependent (TOLD) MRI which only requires routinely 
available healthcare equipment; namely an MRI scanner 
and oxygen delivery mechanism. OE-MRI relies on the 
weakly paramagnetic property of molecular oxygen due to 
the presence of unpaired electrons. Elevated tissue concen-
trations of dissolved oxygen increase tissue’s longitudinal 
relaxation rate (R1 = 1 /T1 where T1 is the longitudinal 
relaxation time).4,5 Following the delivery of supplemental 
oxygen (known as an oxygen challenge), initially well-
oxygenated regions where haemoglobin is well saturated 
develop an increase in dissolved molecular oxygen with 
consequential reduction in T1 times. However in perfused 
hypoxic regions where haemoglobin is less well saturated, 
administration of high concentration oxygen leads to an 
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Objective: Oxygen-enhanced MRI (OE-MRI) or tissue 
oxygen-level dependent (TOLD) MRI is an imaging tech-
nique under investigation for its ability to quantify and 
map oxygen distributions within tumours. The aim of this 
study was to identify and characterise the research into 
OE-MRI for characterising hypoxia in solid tumours.
Methods: A scoping review of published literature was 
performed on the PubMed and Web of Science data-
bases for articles published before 27 May 2022. Studies 
imaging solid tumours using proton-MRI to measure 
oxygen-induced T1/R1 relaxation time/rate changes were 
included. Grey literature was searched from conference 
abstracts and active clinical trials.
Results: 49 unique records met the inclusion criteria 
consisting of 34 journal articles and 15 conference 
abstracts. The majority of articles were pre-clinical 
studies (31 articles) with 15 human only studies. 

Pre-clinical studies in a range of tumour types demon-
strated consistent correlation of OE-MRI with alter-
native hypoxia measurements. No clear consensus on 
optimal acquisition technique or analysis methodology 
was found. No prospective, adequately powered, multi-
centre clinical studies relating OE-MRI hypoxia markers 
to patient outcomes were identified.
Conclusion: There is good pre-clinical evidence of 
the utility of OE-MRI in tumour hypoxia assessment; 
however, there are significant gaps in clinical research 
that need to be addressed to develop OE-MRI into a clin-
ically applicable tumour hypoxia imaging technique.
Advances in knowledge: The evidence base of OE-MRI 
in tumour hypoxia assessment is presented along with a 
summary of the research gaps to be addressed to trans-
form OE-MRI derived parameters into tumour hypoxia 
biomarkers.
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increase in oxyhaemoglobin over dissolved molecular oxygen 
meaning tissue T1 times do not shorten. By administering high 
concentration oxygen and performing T1 mapping, areas of 
hypoxia can be identified from a lack of decrease in T1 times 
(Figure 1).

The purpose of this scoping review is to review the current 
evidence for MRI of hypoxia in solid tumours using a supple-
mental oxygen challenge to induce changes in proton T1 relax-
ation rates and identify areas requiring further research in order 
to translate OE-MRI into a routinely used clinical technique.

METHODS
This scoping review follows the PRISMA extension for scoping 
reviews (PRISMA-ScR)6 but was not registered on an online 
database. The literature search was performed on 27 May 2022 
on the PubMed and Web of Science databases using identical 
search strategies (Appendix 1). There were no limits on publi-
cation dates.

Results from the searches were combined, duplicates removed 
and articles restricted to novel research. References from 
excluded review articles were manually examined for additional 
resources. Two independent reviewers screened the articles 
against the following inclusion criteria:

(1)	 Images solid tumours in animal models and/or human 
participants

(2)	 Uses proton-based MRI.
(3)	 Assesses changes in T1 relaxation times (or R1 relaxation 

rates, R1 = 1/T1) following a supplemental oxygen challenge

Discrepancies between reviewers were discussed and consensus 
reached. Grey literature was searched by interrogating abstracts 
from the International Society of Magnetic Resonance in Medi-
cine annual meeting from 2011 to 2022 and the ​ClinicalTrials.​
gov website for currently open trials satisfying the eligibility 
criteria.

To examine the full scope of OE-MRI in solid tumours, we 
included pre-clinical and clinical research and did not restrict 
our results to a particular tumour subtype. As such, we expected 
significant heterogeneity in the results and relatively few publi-
cations in any one tumour type. We therefore did not plan to 
perform any quantitative analysis and did not have pre-defined 
critical appraisal criteria as we did not want to reject studies at 
this stage. We planned to present our findings in the form of a 
descriptive review.

RESULTS
227 unique records were identified. Following screening, 49 
articles were identified for qualitative analysis consisting of 34 
journal articles and15 conference abstracts (Figure 2, full list of 
results in Appendix 2). The distribution of the journal articles 
and published conference abstracts by publication year is shown 
in Figure  3. Three trials satisfying the eligibility criteria that 
were listed as open to recruitment were identified on the ​Clini-
calTrials.​gov website.7–9 All of these studies have corresponding 
conference abstracts included in the final search results.10–12

Research focus
The majority of published studies involve animal only research 
(31 studies, 63.3%) with 15 being human only studies (30.6%) 
and 3 being mixed studies (6.1%). Of those involving human 

Figure 1. Example images from a patient with head and neck squamous cell carcinoma illustrating the difference between con-
ventional T1 weighted imaging, quantitative T1 mapping and oxygen induced quantitative ΔT1 maps. (A) T1 weighted anatomical 
image (3D SPGR, TR/TE = 10/1.27 ms, FA = 18°). (B) Corresponding quantitative T1 map derived using the variable flip angle meth-
odology from image A and a corresponding proton density weighted image (not shown, acquired with same parameters but FA 
= 2°). (C) Oxygen induced ΔT1 map obtained following a supplemental oxygen challenge administered using 15 L/min oxygen via 
a non-rebreather mask. Within the highlighted malignant nodal mass, regions of oxygen induced T1 shortening implying normoxia 
are clearly seen. Distinct oxygen refractory regions are also identifiable which imply either hypoxic or non-perfused areas. FA, flip 
angle; TE, echo time; TR, repetition time.

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20220624/suppl_file/ScopingReviewOE-MRI_Appendix1.docx
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participants, 4 image intracranial neoplasms and 4 scan head and 
neck malignancies (22.2% each). 2 references image colorectal 
cancer and hepatocellular cancer (11.1% each) with the 
remaining results divided between single studies in lung, anal, 
cervical, renal, prostate and mixed tumour sites.

Pre-clinical studies
Four main associations have been tested in pre-clinical models 
to validate the ability of OE-MRI in detecting tumour hypoxia:

(1)	 Validation against alternative oxygenation determining 
techniques including direct measurements and alternative 
imaging strategies such as hypoxia PET scanning.13–18

(2)	 Verification that the distribution of hypoxic and normoxic 
areas seen with OE-MRI display intratumoural heterogeneity 
but with spatially coherent regions in keeping with patterns 
known to occur biologically.5,17–35

(3)	 Correlation against histopathological hypoxia indicators 
such as pimonidazole staining, glucose transporter 1 
(GLUT-1) expression and hypoxia-inducible factor 1-α 
(HIF-1α) expression.17,29,31,32,34–38

(4)	 Verification of OE-MRI’s ability to predict tumours more 
likely to display hypoxia induced treatment resistance. 
16,31,39–41

One of the papers that helped establish the utility of OE-MRI 
in accurately mapping tumour hypoxia was based on renal and 
colorectal carcinoma cell lines implanted in mice.17 The authors 
correlated OE-MRI data with direct measurements of tissue 
oxygen concentration and established a correlation between 
OE-MRI quantified tumour hypoxic fraction and histopatholog-
ical staining with the hypoxia sensitive marker pimonidazole. The 
authors also demonstrated that OE-MRI could detect expected 
increases in tumour hypoxic fractions following administration 
of the vasodilator drug hydralazine.17 A separate study in human 
lung adenocarcinoma xenografts helped biologically validate the 

Figure 2. Flowchart showing the results of the search strategy.

Figure 3. Histogram of publication year for journal article arti-
cles and conference abstracts identified in the search.

http://birpublications.org/bjr
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OE-MRI technique by demonstrating its ability to detect changes 
in tumour hypoxic volumes following administration of a biore-
ductivecytotoxin (banoxantrone) and an oxygen consumption 
modifier (atovaquone).40

The original OE-MRI analysis method calculates the spatial 
average of T1/R1 changes with oxygen over the imaged tumour. 
However, a number of papers fail to show correlations of these 
spatially averaged values with reference hypoxia markers17,24,29,42 
or tumour radiosensitivity indicators25,31,43 possibly due to the 
heterogeneous distributions of oxygen within tumours resulting 
in hypoxic regions being masked by the T1/R1 changes induced 
in normoxic areas. O’Connor et al.proposed combining OE-MRI 
with a perfusion assessment thereby enabling voxels of interest 
to be identified as perfused oxygen-enhancing (normoxia), 
perfused oxygen-resistant (hypoxia) or nonperfused (necrosis).17 
The perfused oxygen-resistant biomarker is sensitive to spatial 
fluctuations in hypoxia and shows correlation with alterna-
tive hypoxic markers and clinically relevant tumour hypoxia 
outcomes in both pre-clinical17,29,31 and human studies.29,31,44,45 
Such perfusion masks have been generated using dynamic 
contrast-enhanced (DCE) MRI17,29,31,44,45 and ultrasmall super-
paramagnetic iron oxide (USPIO)-enhanced MRI derived frac-
tional blood volume measurements.32

An alternative OE-MRI approach combining R2* (Blood Oxygen 
Level Dependent (BOLD)) and R1-based oxygen-enhanced 
imaging aims to distinguish blood-based oxygen-induced 
changes from tissue-based ones. Although increased concentra-
tion of dissolved oxygen accelerates R1 relaxation rates, the net 
tissue R1 rate is affected by a number of other factors including 
being reduced by lower concentrations of deoxyhaemoglobin.46 
Although this influence is generally small compared to the influ-
ence of dissolved oxygen, the simultaneous measurement of R2* 
values may yield insights into the cause of observed oxygen-
induced tissue R1 decreases.20,25,36,47,48 In particular, Cao-Pham 
et al present a hypothesis based on their work on rhabdomyosar-
coma and glioma xenografts where they divide voxels into four 
classes dependent upon the relative changes in oxygen induced 
R1 and R2* rates25:

(1)	 Normoxia: Significantly increasing R1 (increased molecular 
oxygen) and stable or mildly increased R2* (stable deoxy/
oxyhaemoglobin ratio)

(2)	 Mild hypoxia: Slightly increasing R1 (increased molecular 
oxygen) with decreasing R2* (decreased deoxy/
oxyhaemoglobin ratio). Assumes unsaturated baseline 
haemoglobin changing to near complete saturation.

(3)	 Severe hypoxia: No/mild decreasing R1 and decreasing R2* 
(decreased deoxy/oxyhaemoglobin ratio)

(4)	 Vascular Steal: Decreasing R1 with increasing R2*. 
Hypothesised to be caused by dilatation of mature blood 
vessels shunting blood away from tumour regions served by 
immature vessels resulting in decreased blood volume and 
molecular oxygen.

The use of a cyclical oxygen challenge combined with inde-
pendent component analysis of the voxel-wise signal traces has 
been proposed as another method to improve the sensitivity 

of OE-MRI. Hypoxic regions derived using this approach have 
been correlated to pimonidazole stained areas in murine squa-
mous cell carcinomas38 and shown capable of detecting oxygen-
ation changes in murine tumours following treatment with 
vascular growth factor inhibition.30 However, poor correlation 
with human colorectal xenografts was noted possibly due to the 
lack of a perfusion assessment meaning that regions of necrosis 
may have confounded the imaging assessment.38

Regarding correlations of OE-MRI parameters with pre-
clinical treatment outcomes, 3 studies in prostate cancer found 
oxygen-induced R1 changes correlated with outcomes following 
radiotherapy16,39,41 but 1 paper found no association between 
OE-MRI parameters and local tumour control probability.43 
This study used tumour mean oxygen-induced R1 changes 
rather than the perfused fraction biomarker. Salem et al found 
that OE-MRI determined biomarkers detected therapy-induced 
changes in hypoxia in glioma xenografts and non-small cell lung 
cancer (NSCLC)31 but all studies that have looked at correlating 
OE-MRI biomarkers with treatment outcomes have been with 
relatively small study sizes.

Human studies
OE-MRI studies on human participants have been performed 
on all major anatomical regions with no significant difficulties 
reported with patient tolerability. The principle research foci of 
the human studies are shown in Table 1 categorised by domains 
derived from the Cancer Research UK and European Organisa-
tion for Research and Treatment of Cancer consensus statement 
on the clinical translation of imaging biomarkers.49

Three studies performed OE-MRI assessments in both pre-
clinical and clinical settings and all demonstrate similar patterns 
between animal and human scans.29,31,36 The studies investi-
gating changes of OE-MRI biomarkers with treatment in patients 
have been performed in glioblastoma, 57 brain metastases,53 head 

Table 1. Summary of principle research focus of tumour 
OE-MRI studies in humans categorised by domains derived 
from the CRUK and EORTC consensus statement on the clin-
ical translation of imaging biomarkers49

Clinical research focus
Number 
of studies References

Proof of principle including safety, 
feasibility and tolerability

15 5,10–12,21,31,36,44,45,50–

55

Repeatability and reproducibility 5 31,44,50,54,55

Correlation with histopathology 2 29,56

Changes of biomarkers with treatment 7 11,31,45,52,53,55,57

Initial correlation of biomarkers to 
clinical outcomes

1 52

Prospective, adequately powered studies 
linking biomarkers to clinical outcomes

0 N/A

Analysis techniques 7 5,21,28,29,31,36,58

Multicentre studies 0 N/A

Health economic considerations 0 N/A

CRUK, Cancer Research UK; EORTC, European Organisation for Research 
and Treatment of Cancer.

http://birpublications.org/bjr
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and neck cancer,55 NSCLC,31 cervical cancer,11 rectal cancer45 
and anal cancer.52

Salem et al used the perfused hypoxic fraction metric in patients 
with NSCLC to distinguish tumours that have persistent hypoxia 
from those that demonstrate hypoxia modification with chemo-
radiotherapy.31 Similarly, Little et al scanned patients with rectal 
cancer immediately prior to chemoradiotherapy and again at 
day 7 or day 14 of treatment and found measurable changes 
in tumour hypoxic burden with treatment using the perfused 
Oxy-R metric. Reduction in tumour hypoxia was only apparent 
by day 14 though and not at day 7.45 Reduction in hypoxic frac-
tions with treatment is also found in the anal, cervical and head 
and neck cancer studies with the latter additionally demon-
strating the feasibility of performing OE-MRI on the MR-Linac 
(hybrid MRI scanner and radiotherapy linear accelerator).11,52,55

Technical considerations
A range of methodologies have been used in clinical OE-MRI 
research (Tables 2 and 3). Human studies show a preference for 1.5 
T (11 studies, 61.1%) over 3 T (9 studies, 50.0%) imaging systems 
(2 studies utilised both field strengths). The most frequently used 
T1 measurement technique in human OE-MRI is the variable flip 
angle (VFA) method, used by 50% of studies, closely followed by 
inversion recovery-based techniques. An alternative T1 mapping 
technique called MOBILE (mapping of oxygen by imaging lipids 
relaxation enhancement) that exploits the increased solubility of 
oxygen in lipids over water has also been investigated.14 Studies 
in tumour models found that oxygen induced changes in lipid 
R1 rates were of greater magnitude than changes in water R1 and 
global R1rates.14,15 This approach however might be sensitive to 
the amount of lipid present within tumours.42

OE-MRI can be performed statically with T1 mapping performed 
before and after oxygen or dynamically during the switch from 
air to oxygen (Tables 2 and 3). The duration of hyperoxia deliv-
ered before repeat imaging in human studies ranges from 2 to 15 
min. For the 6 human studies that provide a dynamic scan dura-
tion, the median OE-MRI acquisition time was 22.5 min (range 
7–32 min).

Oxygen delivery
The oxygen challenge was delivered in the form of 100% oxygen 
in 35 studies (71.4%) and carbogen (mixture of oxygen and 
carbon dioxide) in 9 studies (18.4%) with 2 studies using both 
and 3 unstated. In the human studies, the majority use 100% 
oxygen (15 studies, 83.3%) with 2 using carbogen (11.1%) and 
1 using both. Carbogen has been investigated as an alterna-
tive to 100% oxygen with the aim of mitigating the vasocon-
strictive effect of hyperoxia with the vasodilative influence of 
carbon dioxide.15,16,19,20,22,23,25,33 However, Winter et al found 
that varying the carbon dioxide concentration in administered 
carbogen had no significant effect on altering blood flow during 
OE-MRI19 and Hallac et al found similar OE-MRI responses in 
prostate cancer xenografts with carbogen and 100% oxygen.16 It 
should be noted that in animal experiments,high concentration 
oxygen is also a crucial component of the anaesthetic process, 

therefore potentially affecting baseline oxygenation levels 
compared to awake animals.

The use of an internal quality control point to provide a quanti-
tative assessment of adequate oxygen delivery has been proposed 
because inadequate oxygen delivery during an OE-MRI scan 
could result in inappropriate labelling of regions as oxygen 
challenge refractory. Such control regions have been located in 
skeletal muscle,5 renal cortices,29 descending thoracic aorta,31, 
uterine body11 and nasal conchae.55

DISCUSSION
Overall, there is strong pre-clinical evidence that OE-MRI can 
accurately and reliably detect hypoxic regions of solid tumours 
and monitor how such regions change with anticancer therapies. 
The evidence base for OE-MRI from clinical studies is, however, 
much less advanced. Initial results from human trials are prom-
ising for the utility of OE-MRI in tumour hypoxia imaging, 
however, due to the early stage nature of this research all of 
these studies are single institute trials without prospective power 
calculations and without standardised data acquisition or anal-
ysis methodologies. Further work is required on specific tumour 
sites in patients to optimise and standardise OE-MRI protocols 
as well as establish the optimum timing to correlate OE-MRI 
data to clinically relevant outcomes before validating OE-MRI 
biomarkers in larger multicentre trials.

Currently, there is no consensus on the optimal imaging 
sequence to use in OE-MRI. Given the heterogeneous nature 
of oxygenation within tumours, it is unsurprising that most 
researchers have opted for three-dimensional acquisitions in 
order to map the entire tumour volume. Indeed those clinical 
studies that opted for single slice acquisitions have struggled with 
co-registering images acquired during treatment with baseline 
data.10,52 The accuracy and precision of T1 determination is not 
equivalent between different methodologies though; VFA, e.g. 
consistently overestimates T1 values in the brain.59,60 However, as 
it is the change in T1 times that is relevant in OE-MRI, this may 
mitigate somewhat systematic errors in T1 measurement. Work 
to develop a consensus guideline, such as exists in DCE MRI,61 
balancing the competing demands of acquisition time, spatial 
coverage, temporal resolution and measurement accuracy is crit-
ical in standardising tumour OE-MRI imaging and allowing for 
comparison of studies.

If OE-MRI were to be added to routine clinical diagnostic proto-
cols, the duration of the OE-MRI sequence is critical with respect 
to health resources, patient tolerability and the risk of move-
ment and image quality degradation. The extent and nature of 
movement during OE-MRI scans will vary depending upon the 
anatomical area of interest; however, it is clear that appropriate 
image co-registration techniques are required for robust data 
analysis.10,12,31 Currently, there is a large range in the duration of 
clinical OE-MRI scans and variations between dynamic imaging 
and static acquisitions. The optimal duration of the oxygen 
challenge in patients is not yet proven and the potential bene-
fits of delivering multiple oxygen challenges during one imaging 
session thus facilitating independent component data analysis 

http://birpublications.org/bjr
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techniques has not been proven to outweigh the difficulties of 
increased scan time.

With regards to the delivery of the oxygen challenge, although 
there are legitimate concerns regarding the vasoconstric-
tive effects of hyperoxia confounding the OE-MRI signal, the 
evidence presented suggests that in practice this is not a signif-
icant issue. In addition, inhalation of carbogen gas has been 
shown to induce unpredictable responses in different organs62 
as well as not always being well tolerated in humans due to its 
potential to cause dyspnoea. It therefore seems reasonable for 
future human studies to use 100% oxygen rather than carbogen, 
however, the risk of hyperoxic vasoconstriction should be consid-
ered. In addition, future studies should continue to use quality 

control points to provide quantitative evidence of adequate tissue 
oxygen delivery. The location of such points will depend on the 
anatomical area imaged, the field of view used and the imaging 
sequence. Standardisation of such markers will be helpful for 
future multicentre trials.

Novel methods of OE-MRI data analysis continue to be devel-
oped and offer the potential to increase the accuracy of OE-MRI 
in differentiating regions of tumour hypoxia. Although the use 
of the perfused hypoxic fraction metric has been successfully 
applied in clinical OE-MRI studies, it does require a co-regis-
tered perfusion assessment which may limit its clinical utility. 
Alternative approaches such as synchronous BOLD and OE-MRI 
measurements, independent or principle component data 

Table 3. Imaging parameters and setup details for the T1 based oxygen-enhanced MR scans for the conference abstracts of human 
studies

Panek et al. 
201844

Little et al. 
201945

Datta et al. 
202211 Dubec et al. 202254

McCabe et al. 
202212

Prezzi 
et al. 
2022 a53

Prezzi et 
al. 2022 
b53

Area Head and neck Rectum Cervix Head and neck Head and neck Rectum Rectum

B0 3T 1.5T 1.5T 1.5T 1.5T 3T 3T

Sequence 3D SPGR 3D SPGR IR prepared 3D 
SPGR

IR prepared 3D SPGR Dixon 3D SPGR MOLLI

TR / TE 
(ms)

4.5/2.3 12/0.74 2.2/0.66 2.8 to 3.0/0.9 to 1.0 7.3/2.39 & 
4.77 ms

4.56/2.04 280.56/1.12

TI (ms) - - 100, 500, 1100 
(dynamic), 2000, 

4300

100, 500, 800, 1100 
(dynamic), 4300

- - 180

Flip angles 
(°)

3, 16 3, 13, 18 4 6 2, 12 2, 13 35

No. slices 24 25 - - 72 72 1

Slice (mm) 2.5 4 6 5 2.5 3 8

FoV (mm) 240 375 384 384 200 380 × 309 360 × 307

Resolution 
(mm)

1.5 2.34 3 3 1.6 1.2 1.4

Dynamic / 
Static

Dynamic Dynamic Dynamic Dynamic Static Static Static

Temp res. 
(s)

3 13.9 12 12 - - -

Hyperoxia 100% 100% 100% 100% 100% for ≥ 
7 mins

100% for 
≥ 3 mins

100% for ≥ 
3 mins

Oxygen 
delivery 
device

Non-
rebreathing 

mask

Non-
rebreathing 

mask

Non-rebreathing 
mask

Non-rebreathing mask Non-rebreathing 
mask

- -

Coils Head and neck - - - Posterior head / 
anterior flex

- -

Duration 
baseline

20 readings 14 readings 25 readings 25 readings 5 readings 6 readings 6 readings

Duration 
oxygen

210 readings - 45 readings 45 readings 5 readings 6 readings 6 readings

OE-MRI 
duration

- - 19 mins 19 mins 8.6 s per reading 40 s per 
reading

8.5 s per 
reading

IR, Inversion Recovery; MOLLI, Modified Look-Locker Inversion Recovery;SPGR, Spoiled gradient recalled acquisition in the steady state.
No imaging parameters were provided for one abstract.56
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analysis and novel data clustering techniques may ultimately 
prove to be more effective hypoxia categorisation tools. Further 
work is required to correlate data clustering approaches to clini-
cally relevant outcomes and to optimise OE-MRI data processing 
approaches.

The optimal timing of when to perform OE-MRI assessments 
of tumours in patients undergoing treatment is not yet clear. 
Baseline metrics of hypoxic fraction may provide a stratification 
methodology for the utilisation of novel hypoxia activated drugs 
or novel radiosensitisers in patients more likely to respond to 
them but the more sensitive application of OE-MRI biomarkers 
may be in identifying regional hypoxia that is invariant to treat-
ment. The initial patient studies looking at such repeat scans in 
OE-MRI show that the timing of the reassessments is crucial but 
this may also be dependent on tumour type and therapy modality 
and requires further evaluation. In addition, the clinical implica-
tion of chronic tumour hypoxia vs transient or cycling hypoxia 
and the potential for OE-MRI to distinguish between these has 
not been fully explored as yet. Dynamic or repeated oxygen chal-
lenge imaging may allow rapid frequency cycling tumour hypoxia 
characteristics to be elucidated with OE-MRI, whereas repeat 
assessment on different days is more likely to reveal changes in 
chronic hypoxia levels.63 Separating out these two components 
of hypoxia may provide a more powerful OE-MRI metric and 
requires further research.

There are some limitations with this scoping review. Firstly, 
due to the relatively novel nature of OE-MRI in solid tumours 

just over 30% of the published articles identified are conference 
abstracts rather than journal articles. These abstracts have not 
been through the same level of peer review that journal articles 
are subject to; however, we felt that it was important to include 
this grey literature in order to present the full scope of research 
being performed in this area. Secondly, our inclusion criteria 
explicitly states that we are interested in studies that quantify 
oxygen induced T1 or R1 changes, however, this means at least 
three studies that assessed changes in T1 weighted signal inten-
sity were excluded from the analysis.64–66 Finally, we did not 
search all available medical or scientific databases but focussed 
on two that we felt were most likely to yield the greatest number 
of results. Future reviews may benefit from using alternative data-
bases in order to obtain the most comprehensive search results.

In conclusion, there is strong pre-clinical evidence of the utility 
of OE-MRI in assessing and monitoring tumour hypoxia, 
however, significant clinical work remains to be completed 
before OE-MRI-derived biomarkers can be utilised as a routine 
component of cancer imaging.
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