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 10 

Gas-liquid flows are affected strongly by both the liquid and gas properties and the pipe 11 

diameter, which control features and the stability of flow patterns and their transitions. For this 12 

reason, empirical models describing the flow dynamics can be applied only to limited range of 13 

conditions. Experiments were carried out to study the behaviour of air passing through silicone 14 

oil (360 Pa.s) in 240 mm diameter bubble column using Electrical Capacitance Tomography 15 

and pressure transducers mounted on the wall. These experiments are aimed at reproducing 16 

expected conditions for flows including (but not limited to) crude oils, bitumen, and magmatic 17 

flows in volcanic conduits. The paper presents observation and quantification of the flow 18 

patterns present.  It particularly provides the characteristics of gas-liquid slug flows such as: 19 

void fraction; Taylor bubble velocity; frequency of periodic structures; lengths of liquid slugs 20 

and Taylor bubbles. An additional flow pattern, churn flow, has been identified. The transition 21 

between slug and churn has been quantified and the mechanism causing it are elucidated with 22 

the assistance of a model for the draining of the liquid film surrounding the Taylor bubble once 23 

this has burst through the top surface of the aerated column of gas-liquid mixture. It is noted 24 

that the transition from slug to churn is gradual.  25 

 26 
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1. Introduction  30 

The flow in many pieces of equipment from the hydrocarbon production, power 31 

generation and chemical industries such as heat exchangers, chemical reactors, pipelines, 32 

distillation and absorption columns, phase separators and the pipes connecting them as well as 33 

natural systems such as volcanoes, involve gas/liquid flows. An understanding of the flow 34 

dynamics is vital for the design of safe and environmentally friendly equipment, as well as for 35 

its construction at minimum capital cost and for its efficient operation as well as for hazard 36 

quantification in the natural environment (Azzopardi, 2006)  37 

The majority of studies on gas/liquid flows have been carried out with liquids with 38 

viscosities around that of water at ambient conditions and within small diameter (i.e. <70 mm) 39 

columns (Azzopardi, 2006). For those, the steady state and dynamic behaviour of the flow is 40 

usually described through flow patterns, descriptions which cover reasonable ranges of flow 41 

rates.  In vertical pipes, these are usually identified as: bubbly; slug; churn and annular. As its 42 

name implies, bubbly flow consists of separate bubbles dispersed within a liquid continuum.  43 

As the gas flow rate increases, so does the concentration and packing of the bubbles.  44 

Consequently, the bubbles coalesce and grow in size. In pipes with diameters larger than 100 45 

mm, spherical cap bubbles can be formed and in both larger and smaller diameter pipes, the 46 

bubble size reaches nearly the pipe diameter. It is observed that depending on the viscosity of 47 

the continuous phase, bullet shaped bubbles could be formed.  The flow is now called slug flow 48 

and the liquid slugs are interspersed between the large bubbles.  The slugs can contain 49 

significant quantities of small bubbles in them. Further increase in gas flow rate results in, first 50 

the churn flow and then the annular flow where the liquid is divided between a wall film and 51 

droplets which are atomised from disturbance waves travelling on the film interface and 52 

subsequently redeposit on to the film.  The volume fraction of the liquid flowing as drops can 53 

vary from 0 to nearly 1. 54 
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However, the dynamics of gas-liquid flows is affected strongly by both the liquid and 55 

gas properties and the pipe diameter; more specifically, not only the specific features and the 56 

stability of bubbly, slug, churn and annular flow are expected to be significantly different, but 57 

also the mechanisms controlling their transitions.  58 

For example, Shah et al. (1982) noted that slug flow in the classic form described here 59 

does not occur in larger diameter pipes; no slug flow is predicted in water-air flow, in pipes or 60 

columns with diameters larger than 100 mm because of instability of the liquid/gas interface.  61 

Sharaf et al. (2016) reported that the gas volume fraction of the pipe cross-section in the large 62 

bubble and liquid slug parts of the flow approach the same value and these two parts become 63 

indistinguishable using void fraction measurements. Further increase in the gas velocity causes 64 

slug flow to break down to a flow which can involve vertically oscillating or churning motion, 65 

churn flow.  Mori et al. (1996) identified huge waves on the film interface as the characterising 66 

feature of churn flow. Sharaf et al. (2016) showed that there could be large structures present 67 

in the gas core of churn flow and attributed these to being incomplete atomisation of liquid 68 

from the wall film. 69 

 For low viscosity liquids, the transition between slug and churn flows is associated with 70 

the phenomenon of flooding, or counter-current flow limitation, of the liquid surrounding the 71 

Taylor bubbles in slug flow.  Flooding has been studied by introducing a liquid film part way 72 

up a pipe and passing a gas upwards (Govan et al., 1991). Increasing the velocity of the gas 73 

causes large amplitude waves on the film interface.  At a critical gas flow rate, the liquid film 74 

is held up.  Any subsequent increase of the gas flow rate results in upward flow of the liquid.  75 

The most revealing experiments, by McQuillan et al. (1985), show that the holding up process 76 

occurs by one wave being brought to a standstill.  Subsequent waves are not sheltered and flow 77 

into the stationary wave causing its amplitude to increase.  The several studies on this topic, 78 

which have been reviewed by Azzopardi (2006), show that below a pipe diameter of ~70 mm 79 
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the critical gas velocity depends on the liquid (down) flow rate, the pipe diameter and the 80 

physical properties of the liquid (density, viscosity and surface tension).  It can also depend on 81 

the arrangements for introducing and exiting of the liquid.  Some of these might encourage the 82 

premature formation and growth of waves and hence the critical gas velocity will be lower than 83 

otherwise.  A number of (usually empirical) equations have been proposed for the critical or 84 

flooding velocity.  From testing against banks of experimental data, the ones proposed by 85 

McQuillan and Whalley (1985) and (Zapke and Kröger, 2000) emerged as the most accurate. 86 

Though most of the models developed for flow pattern transitions are deterministic, i.e., 87 

they assume the transition occurs at very specific conditions.  However, there is increasing 88 

evidence that there can be broad transition regions where the characteristic structures for more 89 

than one flow pattern can co-exist.  This is exemplified in the results of experiments by Mori 90 

et al. (1996) who studied air-water in a 25.8 mm diameter pipe.  An example at a liquid 91 

superficial velocity = 0.1 m/s is illustrated in Figure 1.   92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 Where there is no net liquid flow, as in bubble columns, flow patterns are also invoked 106 

in describing the flow.  For liquid with properties close to water, the graphical delineation 107 

proposed by Shah et al. (1982) in the form of a plot of gas superficial velocity against column 108 

Figure 1: Structure velocities for slug and churn flow measured by Mori et al. (1996) for 

air-water in a 25.8 mm diameter pipe.  Liquid superficial velocity = 0.1 m/s.  Line shows 

values from equation (4.4) with C0 = 1.2 and Fr = 0.35. 
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diameter, identifies three patterns, homogeneous flow, slug flow and heterogeneous flow.  The 109 

last is also called churn-turbulent flow. 110 

In addition, the more limited work on pipes >70 mm shows that the flooding velocity 111 

is independent of pipe diameter.  However, the experiments in this area are almost exclusively 112 

based on water.   113 

 Little information is available in the literature about the behaviour of gas/high viscous 114 

liquid flows. This requires rectification for two reasons.  The first is that the more of the oils 115 

being extracted from the ground and processed are now, what is termed, heavy oils, i.e., of 116 

higher viscosity.  Values of 3 to >1000 Pa.s for Orinoco belt crude oils, and 2000 Pa.s for 117 

Athabasca bitumen,  have been reported by (Chirinos et al., 1983) and  Shu (1984), 118 

respectively.  The second arises from the natural environment, specifically in volcanoes. 119 

Silicatic magmas rise in volcanic conduits as multiphase flow mixtures of silica-rich liquid, 120 

crystals and gas. The surface tension of the liquid is ~0.08 N/m (Gardner et al., 2013) and the 121 

viscosity varies with their chemical composition (mostly silica and water content in the range 122 

101-109 Pa.s, (Giordano et al., 2008). The explosivity and style of volcanic eruptions depend, 123 

fundamentally, on magma rheology, gas content and flow dynamics within the volcanic 124 

conduit. Conditions for separated two-phase flow are met in low viscosity magmas, i.e., 125 

viscosities comprised between 10 to 103 Pa s, where gas bubbles rise controls magma 126 

outgassing and mild-explosivity (i.e., Hawaiian, Strombolian) eruptive styles.  The knowledge 127 

of conduit flow dynamics and conditions required for flow pattern stability are fundamental for 128 

the correct interpretation of geophysical (seismic, thermal and geochemical) monitoring data, 129 

quantification and forecasting of eruptions and studies of volcanic hazard. 130 

The aim of the work presented in this paper is to study and quantify the behaviour and 131 

characteristics of gas-liquid flows through a large diameter (240 mm) bubble column using a 132 
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very viscous liquid. These experiments are designed and conducted to improve our knowledge 133 

on flow pattern stability in vertical gas- liquid flows as the liquid has a very high viscosity. The 134 

viscosity of the liquid (silicone oil) is in fact 360 Pa s, two orders of magnitude larger than the 135 

highest viscosity liquid employed in constructing empirical equations describing flow pattern 136 

transitions. The experiments quantify and monitor the flow structures for a large range of gas 137 

superficial velocity, ugs with the aim of identifying the flow patterns, their characteristics, 138 

stability and transition mechanisms. 139 

2. Experimental arrangements  140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 Experiments were carried out in a flow facility that consists of a 240 mm inner diameter, 149 

7.6 m long vertical column, which is made mainly of acrylic pipe. The first 0.6 m is made of 150 

steel whilst the section where the Electrical Capacitance Tomographic (ECT) probe is mounted 151 

is made of PVC. The ECT probe is mounted 3.06 m above the gas injection point which is 152 

equivalent to 12D. This is a fairly sufficient length for fully developed flow in such viscous 153 

Figure 2: Details of column employed in this work showing positions of instruments 

and method of gas injection 
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oil. There is no published work, up to date, that address the flow development in high viscous 154 

oil (>100 Pa.s). Mohammed, S. K. (2017) who studied the behaviour of silicone oil (360 Pa.s) 155 

in a gas bubble column (using the same facilities and dimensions used in the current study)  156 

and found that the bubble velocity measured upstream the ECT by a high speed camera was in 157 

good agreement with that measured by an ECT (where the maximum error was 1.2%). Ibrahim 158 

et al. (2018) who investigated flow development of four different silicone oil viscosities 159 

(ranged from 4 cP to 104.6 cP) found that the flow develops faster with increasing liquid 160 

viscosity. They showed that at high void fraction (>0.6), the mean void fraction of a silicone 161 

oil (with a viscosity above 25.4 cp) measured at two different axial locations (15D and 62D) 162 

are in good agreement. The position of the ECT probes, the pressure transducers and the 163 

thermocouple are shown in Figure 2.  The compressed air from the laboratory compressor (at 164 

6 bar) is divided into 5 lines that are metered using variable area flow meters. A manifold with 165 

five tube connections is fitted to the outlet of each flow meter. The tubes then feed the 25 166 

nozzles mounted at the bottom of the vertical pipe section. This arrangement allows the control 167 

of flow through each nozzle while allowing a reasonably accurate measurement of the flow 168 

rate especially when a fewer number of nozzles are in operation.  In the experiments reported 169 

here, the column was filled to an initial liquid height of 3.27 m. 170 

 Absolute pressure was monitored using three sealed gauge pressure transmitters 171 

installed along the column at 1.02, 2.47 and 4.17 m from the air injection point.  These had 172 

sensitivities of 0.1, 0.1 and 0.02 bar/volt respectively.  They were sampled via a LabView 173 

programme at frequencies of 50 Hz.  Reference pressures for each were determined when the 174 

column was initially filled with oil.  In some of the runs the top transmitter was above the static 175 

liquid level and therefore at atmospheric pressure, the pressures for the other two were obtained 176 

from the height of liquid above them.  177 
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The main measurement instrument employed in this work is a twin-plane Electrical 178 

Capacitance Tomography (ECT) sensor. ECT is a non-intrusive technique which provides 179 

phase distribution, velocity measurements and phase volume fraction in a conduit containing 180 

non-conducting materials. The technique has the capability to capture the data up to 5000 181 

frames per second. The equipment consists of a sensor, a data acquisition unit (TFL R5000) 182 

and a computer for data storage and image reconstruction. For the experiments presented in 183 

this paper, twin plane, 8 electrode sensors (with inter-plane spacing of 36 mm) were used to 184 

capture data at different gas superficial velocities. An array of electrodes was arranged around 185 

the outside of the non-conducting pipe wall and all unique capacitance pairs were measured 186 

using a TFL-R5000 flow imaging and analysis system. The TFLR5000 Capacitance 187 

Measurement Unit (CMU) contains 16 (i.e. twin, 8 electrodes) identical measurement channels 188 

and 16 identical driven guard channels. In the experiments reported here the frame rate was 189 

typically 50 Hz.  An excitation signal was used in the form of a 15V peak to peak square wave 190 

with a frequency of 1 MHz. For more details on how the measured capacitances from ECT 191 

electrodes are converted into the permittivity (or concentration) distribution, see for example,  192 

(Byars, 2001). The validation of the ECT technique is described in more details by Mohammed 193 

et al. (2018).  194 

The physical properties of the silicone oil were used in the present work are; density = 195 

950 kg/m3; viscosity = 360 Pa.s; surface tension = 0.02 N/m. The viscosity of the silicone oil 196 

used in the current study was also verified under the bench test by exerting a specific shear 197 

rates using a viscometer with a rotating spindle. It was found that, the oil viscosity was 198 

independent of the applied shear force and it was changed only with temperature, 199 

(Papanastasiou et al., 1999).   30 experiments were conducted with the ECT at gas superficial 200 

velocities in the range of 0.003-0.223 m/s.  A separate campaign, in which the pressure 201 
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measurements were made, involved 10 gas flow rates with gas superficial velocities in the 202 

range of 0.0008-0.43 m/s. 203 

3. Results  204 

3.1 Flow regimes  205 

The time series of void fraction for silicone oil at different gas superficial velocities is shown 206 

inFigure 3.  These data can also be examined via the Probability Density Function (PDF), 207 

Figure 5, which presents the fractional number of times that each void fraction occurs.  Khatib 208 

and Richardson (1984) and Costigan and Whalley (1997) showed that the PDF of the cross-209 

sectional averaged void fraction time series for slug flow can be characterised by two peaks as 210 

shown in Figure 5.  211 

 212 

Figure 3: Time series of void fraction for silicone oil-air experiments. Numbers refer to 213 

gas superficial velocity (m/s). Photos (right) are for the large bubbles rising upward in 214 

the column at different gas superficial velocities.   215 

 216 

It is seen from Figure 3 that at a low gas superficial velocity (0.003 m/s) regular large 217 

bubbles with a range of sizes were formed. It should be mentioned that at low gas flow 218 
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rates (i.e. bubbly flow), the visual observation showed that the bubbles are large and 219 

spherical. When the gas flow rates increased, the liquid becomes milky which obscures the 220 

vision of the naked eyes.  Their existence can be inferred in the corresponding PDF, Figure 221 

5, with a strong peak at low void fractions, the liquid regions between bubbles, together 222 

with a broad peak at higher void fractions – the breadth being a product of the range of 223 

bubble sizes.  If the gas superficial velocity is increased to 0.012m/s, a larger number of 224 

elongated ellipsoidal bubbles was formed, i.e., slug flow. The abrupt decrease and increase 225 

of void fraction seen at the passage of the Taylor bubbles suggest that they changed in 226 

shape getting flatter base and top. The PDF (see Figure 5) now has the stronger peak at the 227 

higher void fraction.  Further increase of gas superficial velocity to 0.079 m/s results in 228 

fewer, longer bubbles and shorter, intervening, liquid slugs.  There is evidence of 229 

coalescence of Taylor bubbles, i.e., at ~200 and 310 seconds (Figure 3, at ugs=0.079 m/s).  230 

The corresponding PDF shows an even more pronounced peak at higher void fractions.  231 

The peak at low void fractions can be seen to be moving away from the liquid-only value 232 

of 0.0.  This is due to accumulation of small/tiny bubbles (~μm-mm)  which are mainly 233 

created by the bursting of Taylor bubbles at the top surface of the aerated column and 234 

which, because of their small size combined with the high viscosity of the liquid, are 235 

accumulated throughout the runs at successively increasing gas velocity (see the photo in 236 

Figure 3 at ugs=0.079 m/s, where small/tiny bubbles are clearly present).  Also important 237 

here are the longer periods for which the ECT is seeing high void fraction, e.g., for a gas 238 

superficial velocity of 0.223 m/s these are, approximately, at 40-109, 170-230, 269-340, 239 

400-445 second and other intervals (see Figure 3).  Given that the velocity of the Taylor 240 

bubble/liquid slugs is 0.3 m/s this implies Taylor bubble lengths of 13-20m, larger than the 241 

height of the column.  This is due to the fact that, when a bubble has burst at the top there 242 

are periods when the flow consists of a core open to atmosphere surrounded by a draining 243 
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layer of liquid on the wall.  The draining liquid accumulates at the bottom and another 244 

liquid slug/Taylor bubble then moves up the column.  This behaviour is continues at the 245 

higher gas velocities.  The mechanism of bubbles bursting at high gas flowrates was studied 246 

in detailed by Mohammed et al. (2018).  Figure 4 shows a schematic drawing of flow 247 

structure at high gas flowrate (churn flow regime). The gas build up and push the liquid to 248 

create a very long bubble which appear as an open core after the bubble bursts this is shown 249 

in column (B). 250 

 251 

Figure 4: Schematic drawing showing the mechanism of large bubbles bursting in 252 

columns of viscous liquids at high gas flowrates. The arrows in the figure correspond to 253 

the direction of the liquid flow, the numbers at the top section of the column 254 

corresponding to the liquid levels in the column. D and E are the more common structure 255 

for this flow regime. A–C occur when the liquid accumulates at the bottom of the column 256 

and the gas build up and rise as one long bubble and carry the whole liquid up to drain 257 

again as a falling film. The gas superficial velocity is 0.566 m/s (Mohammed et al., 2018). 258 

 259 

  In addition, in the examples at the three higher gas superficial velocities illustrated in 260 

Figure 3and Figure 5, another type of behaviour can be seen.  This takes the form of a 261 
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higher frequency oscillation where the void fraction fluctuates around a value of 0.2.  From 262 

studies of other similar two-phase flows, it shows many of the characteristics of churn flow.  263 

The PDF of the entire time series is similar to those at lower gas flows.  However, if the 264 

PDF from the data of these churn flow regions is calculated separately, it does not show 265 

the two characteristic peaks but a broad single peak.  For a gas superficial velocity of 0.21 266 

m/s, this is the data from between 100 and 160 seconds (see Figure 3). For 0.223 m/s, it is 267 

from110 to 170 seconds.  Also shown on these PDFs (Figure 5) are the data for the 268 

succeeding core flows, i.e. for 160-390 (at ugs=0.210 m/s) and 170-340 (at ugs=0.223 m/s) 269 

seconds (Figure 3) respectively.  270 

 271 

Figure 5: PDFs of void fraction at different gas superficial velocities, values in m/s 272 

indicated on the individual plots. ▬▬▬ overall data (black); ….. churn flow; ▬▬ slug 273 

flow (red). The number on the top of each graph indicates superficial gas velocities (m/s). 274 

 275 

As shown by the tomography data, and confirmed by visual observations, for many of 276 

the flow conditions employed, the gas (in the form of Taylor bubbles) occupies a substantial 277 

part of the column cross section. These bubbles are interspersed with packets of liquid.  In these 278 
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very-viscous liquid experiments, the lower end of the Taylor bubbles are rounded.  There is 279 

neither recirculation at their rear nor gas entrainment creating millimetre-sized bubbles from 280 

this region.  However, there are small bubbles dispersed in the liquid phase whose sizes are 281 

400μm – 3 mm.  Azzopardi et al. (2014) also reported small bubbles in their study of glucose 282 

syrup behaviour in the column employed in the present experiments.  They reported smaller 283 

bubble sizes (~100 μm).  284 

At the top free surface of the column, the viscous liquid stretches as the Taylor bubble 285 

rises forming a thinning film that bursts when the film drains until it cannot hold the pressure 286 

of the bubble. The viscous liquid film folds entrapping gas forming bubbles as reported by  287 

Pandit et al. (1987),  (1987), Philip et al. (1990) and Bird et al. (2010). Continuous stretching 288 

and folding due to the train of Taylor bubbles create tiny bubbles.  A bubbly liquid forms the 289 

top of the liquid column, and progressively extend downward by flow-induced gas stirring. As 290 

a result, silicone oil becomes milky in appearance. The mechanism of the Taylor bubble 291 

bursting and rupturing/retracting of the liquid is shown in Figure 6.  292 
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 293 

Figure 6: Mechanism of the Taylor bubble bursting and rupturing/retracting of the liquid 294 

at the top surface; (a) bubble is just covered by a thin film of liquid (Taylor bubble just 295 

to burst), (b) bursting of a Taylor bubble, (c) falling down of the liquid film entrapping 296 

gas bubbles, (d) retracting of the liquid, (e) next Taylor bubble to arrive, (f) liquid level 297 

is rising up again (milkiness is obvious). 298 

 It was also observed that, as the gas flow rate increases the probability of coalescence 299 

between successive Taylor bubbles increases. The gas Reynolds number of the flow (𝑅𝑒𝑠𝑙𝑢𝑔 =300 

𝜌𝑙∙𝑢𝑔∙𝐷

𝜇𝑙
) ranged from 10-2 to 101 in the experiments, suggesting that the flow is laminar in all the 301 

cases. In addition, the buoyancy Reynolds number (see equation 4.2) suggests that the 302 

Reynolds number of the flow is of the order 1.  The flow around the Taylor bubble is more 303 

streamlined leading to the formation of elliptical rear end. 304 

 305 

3.2 Average properties of the flow 306 

Figure 7shows the variation of time-averaged void fraction obtained from the two ECT planes. 307 

The trend shows a good agreement between the two planes. The void fraction increases with 308 
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increasing gas flow as expected. In addition, mean void fraction can be estimated by monitoring 309 

the top surface of the column using the following equation; (Lx-L0)/Lx, where L0 is the original 310 

reference (static) height of the liquid (3.27 m) and Lx is the mean height of the top surface of 311 

the aerated liquid. There is good agreement between the two methods at low-to-moderate gas 312 

superficial velocities. At higher gas flows, it is more difficult to determine the position of the 313 

top surface because of the oscillations which occur. In addition, sheared bubbles which 314 

remained on the wall, which drained away slowly, and the liquid milkiness effects make 315 

recording of the mean top surface height, Lx difficult. A further set of values of void fraction 316 

can be obtained from the pressure measurements. For the lower gas flow rates, where the flow 317 

is bubbly, the pressure difference between the two lowest stations is essentially the 318 

gravitational head. Void fraction can be calculated from the difference in mean pressures by: 319 

𝜀𝑔 = 1 − 
𝑝1− 𝑝2

𝜌𝐿𝑔(𝐻2− 𝐻1)
        (3.1) 320 

A good agreement can be seen in Figure 7with the values obtained from ECT and level swell 321 

at gas velocities in the range 0.0008 to 0.0155 m/s, i.e., in bubbly flow.  Values of void fraction 322 

have also been calculated using (3.1) for the runs with higher gas velocity, i.e., in slug and 323 

churn flow (Figure 7).  For higher gas flowrates, the values predicted using pressure (open 324 

diamonds) deviates widely. However, this is not unexpected and will be discussed further 325 

below. It should be noted that, the points marked as slug and churn flow in Figure 7are specific 326 

to the regions identified in last three graphs presented in Figure 3(where the slug and churn 327 

features are extracted simultaneously for each graph or flow condition). 328 

 329 

 330 

 331 

 332 
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 333 

Figure 7: Variation of the void fraction obtained from the two ECT planes, level swell 334 

and pressure measurements, showing the standard error which was calculated from the 335 

mean void fraction and the square root of the samples number. 336 

 337 

 338 

The pressure gradient (pressure difference divided by distance between tappings) has 339 

been obtained for tappings 1 and 2.  It was not possible to obtain that for tappings 2 and 3 as 340 

the top tapping was not always below the top surface of the aerated liquid column.  The results 341 

are illustrated in Figure 8, as pressure gradient non-dimensionalised by the liquid only pressure 342 

gradient, and show that the values initially fall in the bubbly and slug flow patterns.  For bubbly 343 

flow, the pressure gradient is essentially the two-phase head which, because the void fraction 344 

is increasing with increasing gas superficial velocity, will decrease.  In slug flow this approach 345 

is not be valid.  Here, the pressure drop is essentially the head across the liquid slug portions 346 

of the flow and the frictional pressure drops for the liquids slugs. As the liquid portion of the 347 

unit slug (a Taylor bubble and a liquid slug) decreases with increasing gas superficial velocity, 348 

the pressure gradient is expected to decrease.  Pioli et al. (2012) applied a slug flow model to 349 
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a liquid of viscosity similar to that in the present work and obtained good agreement with 350 

experiment.  351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

A powerful way to calculate void fraction is the Drift Flux approach proposed by Zuber and 370 

Findlay (1965) who identified that the gas velocity (gas superficial velocity divided by void 371 

fraction) was proportional to the flow rate (gas superficial velocity): 372 

𝑢𝑔𝑠

𝜀𝑔
=  𝐶0𝑢𝑚𝑖𝑥 +  𝑢𝑑        (3.2) 373 

where 𝐶0 is the constant called distribution coefficient,  𝑢𝑚𝑖𝑥 is the mixture velocity and ud is 374 

a drift velocity, in slug flow (in a bubble column), this might be equated to the rise velocity of 375 

a single Taylor bubble.  Zuber and Findlay noted that if the range of flow rates covered by a 376 

data set extended over more than two flow patterns, there could be two versions of (3.2), with 377 

different constants for bubble/slug and churn/annular flow.  The two line fit has been recently 378 

reported by Sharaf et al. (2016).  Re-examination of the fluidized bed data of Makkawi and 379 

Wright (2002), Saayman et al. (2013) and Qiu et al. (2014), shows that their data also exhibits 380 

Figure 8: Mean pressure gradient between tappings 1 and 2 made non-dimensionless by the 

pressure gradient for liquid only 
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this two straight line characteristic. The data from the present experiments has plotted in this 381 

way and is shown in Figure 9.  It is seen that there are indeed two lines of slightly different 382 

slopes.  For lower gas flow rates, C0 = 2.03 and ud = 0.0123 m/s whilst for higher gas flow rates 383 

the corresponding values are 2.23 and -0.0172 m/s.  The regression coefficients, indicating the 384 

goodness of fit to the straight lines are 0.9996 and 0.9981 respectively.  It might be considered 385 

that the transition between the two regions could be determined from the intersection of the 386 

two straight lines.  From the values of C0 and ud above; the transition gas superficial velocity 387 

is 0.11 m/s. 388 

 389 

 390 

 391 

 392 

 393 

 394 
 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

3.3 Dynamic properties of the flow: Pressure variations and velocity of inner 407 

structures 408 

Pressure oscillations within the column increase in amplitude with increasing gas superficial 409 

velocity.  Time traces of pressure show specific patterns which can be associated to each flow 410 

regime. 411 

Figure 9: Drift flux plot for present data.  Closed symbols – lower gas flow rates; open 

symbols – higher gas flow rates. 
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Examples of the output from the pressure transducers, converted from voltages to pressure, are 412 

shown in Figure 10. 413 

 414 

 415 

 416 

 417 

 418 

The observations from Figure 10can be summarised as below. 419 

1. At the low gas superficial velocity of 0.0047 m/s, the trends show almost constant pressure 420 

drop from the low to middle stations.  However, for velocities of 0.0008 to 0.0096 m/s, the 421 

pressure at the upper station is atmospheric indicating that the aerated liquid level has not 422 

reached this point.  Reference to the void fraction traces at the velocity within this range 423 

Figure 10: Time series of wall pressure at different axial positions (1.02 m, 2.47m and 4.17 m, 

respectively, from the gas inlet at the bottom of the column). Gas velocities: (a) 0.0049 m/s –

bubbly flow; (b) 0.061 m/s – slug flow; (c) 0.43 m/s transition to churn flow. 
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in Figure 3, as well as observations through the transparent wall of the column, indicates 424 

that the flow consists of bubbles which are smaller than the pipe diameter. 425 

2. Very clear oscillations in the pressure traces from all three transducers can be seen in the 426 

example from the next gas velocity.  From Figure 3, and direct observation, this is 427 

identified as slug flow where the bubbles occupy a significant part of the pipe cross-section 428 

and are of cylindrical shape with hemispherical ends. This occurs over gas superficial 429 

velocities of 0.0155 to ~0.1 m/s. 430 

3. At the highest gas velocity shown in Figure 10there are synchronous oscillations at the 431 

three measuring points, suggesting that the structure in the flow are as long as the pipe and 432 

that liquid level occasionally rise beyond the upper station. The lower station show more 433 

complex patterns which could be associated with entrance phenomena (i.e formation of 434 

gas bubbles at the nozzles).  435 

Taylor bubble velocities were obtained from the cross correlation of the time series of 436 

void fraction from the two planes of the ECT.  This gives a delay time which can be combined 437 

with the spacing between the two planes to give a mean velocity of the structures in the flow.  438 

A cross-correlation can be expressed mathematically as; 𝑅𝑥𝑦(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡 − 𝜏)𝑦(𝑡)𝑑𝑡

𝑇

0
. 439 

(where 𝑅𝑥𝑦(𝜏) is the cross-correlation function, x(t) and y(t) are the void fraction data from 440 

upstream sensor and downstream sensor of the ECT respectively and T is the total time of the 441 

acquired data. If the structures of the flow are coherent over the length of the sensor, then there 442 

will be a strong discernible peak in the resulting correlogram.  The time delay (𝜏𝑚𝑎𝑥) 443 

corresponding to this peak (i.e. when the cross-correlation function, 𝑅𝑥𝑦(𝜏) is maximum) 444 

represents the transit time of the flow structures between upstream sensor of the ECT and the 445 

downstream sensor. The structure velocity (which is defined as 𝐿/𝜏𝑚𝑎𝑥, where L is the distance 446 

between two ECT planes) can be then easily obtained.  447 
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For lower gas flow rates, these are velocities of Taylor bubbles.  Error! Reference 448 

source not found.a shows the variation of the structure velocities with gas superficial velocity. 449 

The trend shows a linear relationship over the gas flow rates covering slug flow.  Similarly, the 450 

velocities of the dominant structures of other flow patterns can similarly be obtained from delay 451 

times extracted from the cross-correlation of the times series from the two ECT planes which 452 

is combined with the inter plane spacing. Curve fitting of the cross-correlation function is used 453 

to obtain most accurate values of time delay. The values obtained are shown in Error! 454 

Reference source not found.a. The dominant frequencies of the oscillations in void fraction 455 

have been extracted using power spectrum analysis as described by Kaji et al. (2009).  Here, 456 

Power Spectrum Densities (PSDs) have been obtained by using the Fourier transform of the 457 

auto-covariance functions. Because the auto-covariance function has no phase lag, a discrete 458 

cosine transform can be applied. The trends of the dominant frequencies with gas superficial 459 

velocity are presented in Error! Reference source not found.b.  Also plotted are the 460 

frequencies obtained by counting the number of Taylor bubbles per unit time from both the 461 

time series of void fraction and those for wall pressure.  There is good agreement between all 462 

three except at the highest gas velocities.  In addition, the frequency for those portions showing 463 

churn flow characteristics has been extracted using a modification of the approach suggested 464 

by Luo et al. (2004).  The PSD was obtained from which the average frequency, fn, was 465 

determined from:  466 

𝑓𝑛 = ∑ 𝑓𝑗𝐸𝑗
𝑁−1
𝑗=0          (3.3) 467 

where 𝐸𝑗 =  
𝐺(𝑓𝑗)

∑ 𝐺(𝑓𝑗)𝑁−1
𝑗=0

 with G(fj) is the PSD 468 

Error! Reference source not found.b shows that for gas superficial velocity less than 469 

0.02 m/s, frequencies increase with increasing gas superficial velocity. Beyond this gas 470 

velocity, frequency is unchanging until the transition point identified from Figure 9occurred.  471 

Beyond this point, the frequency of Taylor bubbles/slugs decreases with increasing gas flow 472 
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rate. Beyond the transition to churn flow, the slug flow frequency remains constant, at 473 

minimum value. The corresponding frequencies for the churn region were much higher (nearly 474 

two orders of magnitude) but also appear independent of gas superficial velocity.  The first 475 

change in trend might be linked to the bubbles not filling the greater part of the cross-section 476 

of the column at these low velocities. 477 

  478 

 479 

3.4 Regime transitions 480 

 Experimental results confirm that transitions are not deterministic but probabilistic.  481 

It is instructive to investigate this further.  This duality can best seen in the time trace of void 482 

fraction shown in Figure 3for the highest gas superficial velocity presented there, 0.223 m/s.  At 483 

this higher gas superficial velocity, the time traces (Figure 3) showed clear slug flow during the 484 

times 0-110, 164-343 and 400-600 seconds.  There is different type of flow at the other times. 485 

These show fluctuations more akin to churn flow. This is supported by the PDFs shown in Figure 486 

5. For slug flow period, the PDF in Figure 5shows the characteristic two peak signature of slug 487 

Figure 11. (a) Variation of the structure velocity with gas superficial velocity; ▲ 

experimental data, line is (3.2) with C0 = 3.55 and ud = 0.022 m/s;  velocity from slug 

regions of the flow;  velocity from churn region of the flow. (b) Variation of frequency of 

periodic structures with gas superficial velocity; ▲ Overall from - ECT/PSD; ○ Slugs from 

counting - ECT;  Slugs from counting – wall pressure;  Churn from PSD –wall pressure; 

 Churn from PSD - ECT 
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flow.  However, the peak at low void fraction is not strong. The 110-160 second PDF (i.e. dotted 488 

trend in Figure 5, at Ugs=0.223 m/s) has the single broad peak characteristic of churn flow. From 489 

the time series (Figure 3), it can be estimated that the flow is 22% of the time in churn flow at 490 

this highest gas superficial velocity (0.223 m/s).  Similar information can be extracted from the 491 

wall pressure time series such as those presented in Figure 10.  The variation of this parameter 492 

with gas superficial velocity can be seen in Figure 12and illustrates the decrease of relative 493 

slugging time with increasing gas superficial velocity.  Another notable feature of the time series 494 

plots is the rising void fraction seen just before the arrival of the next liquid slug.  This indicates 495 

thinning of the film of liquid on the walls.  It occurs, most likely but not exclusively, for longer 496 

intervals between slugs.   497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

4. Discussion 517 

 518 

4.1 Bubbly flow 519 

Figure 11: Fraction of time the flow is in churn flow.  The closed symbol indicates the 

transition between the two lines in the drift flux plot. 
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The stability of the bubbly flow pattern is limited to very low gas superficial velocities and 520 

low average void fractions (about 20 vol. %) when compared with gas-low viscosity liquid 521 

flows. Even at the lowest gas velocities studied, the bubbles formed by the gas emerging from 522 

individual nozzle very quickly coalesce to create a stream of spherical bubbles.  They differ 523 

considerably from the many small, ellipsoidal bubbles and slightly larger spherical cap bubbles 524 

which occur with low viscosity liquids.  These bubbles are of diameters 140-180 mm, i.e., not 525 

yet large enough to fill the entire pipe.  Similar large bubbles have been reported in fluidized 526 

beds.  The reason for this peculiar characteristic is due to the high viscosity of the liquid, (and 527 

the very low Reynolds numbers of the flow) which is suppressing bubble breakup due to 528 

turbulence. This means that the bubbles grow by coalescence, whose efficiency is controlled 529 

by void fraction.  The viscous dominated version of the equation of Gaddis and Vogelpohl 530 

(1986) has been used to determine the size of bubbles formed at the nozzles.  These were 531 

compared with the sizes measured in the flow.  This gave bubble sizes from 35 to 72 mm for 532 

gas superficial velocities of 0.0008 to 0.0155 m/s and ratios of bubble size to inter-nozzle 533 

spacing of 0.48 to 0.96.  These are 2-3 times smaller than those extracted from the ECT output, 534 

e.g., 135 to 185 mm at a gas superficial velocity of 0.003 m/s, confirming the efficiency of 535 

coalescence processes.   536 

The bubble velocity is calculated by modifying the original approach by Allahwala and Potter 537 

(1979). The modification proposed here used a Froude number more relevant to the present 538 

conditions than the original value of 0.35 suggested by these authors.  It also uses a value of 539 

C0 of 3.55 found for the slug flow data instead of the original value of 1.0.  The equation has 540 

the form: 541 

𝑈𝑏

√𝑔𝐷
= 𝐹𝑟[𝑡𝑎𝑛ℎ(3.6𝜀𝑔𝑝

0.45)]
0.55

+ 
𝐶0𝑢𝑔𝑠

√𝑔𝐷
      (4.1) 542 
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The data extracted from the present experiment at the lowest gas velocity studied are scattered 543 

around the line for equation (4.1) as shown in Figure 13. 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

4.2 Slug Flow 564 

For low viscosity, the model of slug flow consists of large bubbles interspersed between 565 

liquid slugs.  There is a transfer of gas from the larger bubbles (formed just above the gas inlet) 566 

to small bubbles dispersed in the liquid slug.  The quantity of these small bubbles decreases 567 

with decreasing pipe diameter and increasing liquid viscosity (Philip et al., 1990, Kuncová and 568 

Zahradník, 1995). Pure slug flow was stable until gas superficial velocity of 0.11 m/s.  569 

The rise velocity of the large bubbles was first studied analytically by Dumitrescu 570 

(1943) and experimentally by Davies and Taylor (1950) for flow in stagnant liquids. They 571 

expressed the rise velocity, Ub as; gDFrUb 1  (where Fr1 is the Froude number, D is the 572 

pipe diameter and g is the acceleration of gravity). They proposed values for Froude number 573 

of 0.351 and 0.328 respectively. 574 

Figure 12: 

with equation (4.1) modified from Allahwala and Potter (1979) ▬▬. 
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Viana et al. (2003) studied the effects of liquid viscosity, surface tension and pipe 575 

diameter on the bubble velocity. They proposed a new expression for the Froude number, Fr, 576 

based on Eötvös number, Eo, and a dimensionless inverse viscosity, also known as the 577 

buoyancy Reynolds number, Reb. These are defined as: 578 

Eo =  
𝑔𝜌𝑙𝐷2

𝜎
 and 𝑅𝑒𝑏 =  

√𝐷3𝑔(𝜌𝑙− 𝜌𝑔)𝜌𝑙

𝜇𝑙
      (4.2) 579 

Where l is the liquid density, g is the gas density, l is the liquid dynamic viscosity and 580 

is the surface tension.   581 

Viana et al. (2003) developed an expression for the Froude number Fr2 as a function of 582 

Eötvös number, Eo.  For small buoyancy Reynolds (Reb < 10), Fr2 is given by 583 

Fr2 =  
0.009494

(1+ 
6197

Eo2.561)

0.5793 Re𝑏
1.026        (4.3) 584 

The above work was conducted for isolated bubbles rising in stagnant liquids. In the 585 

case where there is finite gas and liquid flow rates, the work of Nicklin (1962) proposed a 586 

robust and predictive equation to predict Ub: 587 

𝑈𝑏 =  𝐶0(𝑢𝑔𝑠 +  𝑢𝑙𝑠) + Fr√𝑔𝐷       (4.4) 588 

where ugs is the gas superficial velocity, i.e., volumetric flow rate per column cross-sectional 589 

area, and uls is the corresponding parameter for liquid.  Obviously, in the present work uls = 0. 590 

Nicklin (1962) used 2.10 C  but noted that higher values were more appropriate as the flow 591 

rates diminished. The coefficient 0C  was studied by Collins et al. (1978), Fabre and Liné 592 

(1992) , Dukler and Fabre (1994) and Guet et al. (2004), the last of who suggested that C05 593 

for very high viscosity liquids, (Collins et al., 1978) obtained a value of 2.27 from their 594 

modelling work and Fabre and Liné (1992) who suggest 2.29.  Because of the uncertainty in the 595 
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value of C0 noted above, a different approach was taken here.  A linear fit was made to those 596 

data points at lower gas velocities which showed this characteristic.  This gave values of C0 = 597 

3.45 and ud = 0.022 m/s.  The former is in between the values of 2.27 and 5 cited above whilst 598 

the latter is close to the value 0.015 m/s from equation (4.3).     599 

As shown in Figure 5, the first peak of the Probability Density Function of void fraction 600 

corresponds to the void fraction, gs in the liquid slug while the second peak is related to the 601 

void fraction of the Taylor bubble. These two peaks can be used to extract quantitative 602 

information about the lengths of the Taylor bubbles and slugs. Khatib and Richardson (1984), 603 

proposed an equation from which the average lengths of the Taylor bubbles and slugs, using 604 

information from the PDF, can be predicted. That is: 605 

𝐿𝑠

𝐿𝑢
=  

𝜀𝑔− 𝜀𝑔𝑇𝐵

𝜀𝑔𝑠− 𝜀𝑔𝑇𝐵
           (4.5) 606 

where Ls is the slug length, Lu is the unit slug length (Lu = Ls + LTB, where LTB is the length of 607 

the Taylor bubble), 𝜀𝑔𝑇𝐵 and 𝜀𝑔𝑠 are the void fractions in the Taylor bubble and liquid slug 608 

parts respectively and g is the mean void fraction (extracted from the time series obtained by 609 

an Electrical Capacitance Tomography (ECT) sensor). Lu can be obtained from the structure 610 

velocity ust and the frequency of the Taylor bubble, f (i.e. Lu=ust/f). 611 

 Mean lengths of Taylor bubbles and liquid slugs have be extracted using the 612 

method of Khatib and Richardson (1984) using (4.5). These mean lengths are plotted in Figure 613 

14, taking into consideration only those data which were fully in slug flow, i.e., those being 614 

below the transition gas velocity (0.11 m/s) identified in Figure 9.  615 
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 616 

 617 

 618 

 619 

 620 

 621 

During slug flow, the film thickness around a Taylor bubble will be constant except for 622 

a region around the nose and tail of the bubble.  This is because there is a constant flow of 623 

liquid downwards.  Azzopardi et al. (2014) noted that the rate of flow is related to the liquid 624 

displaced by the Taylor bubble.  However, it is only in those experiments, such as Clanet et al. 625 

(2004) and Llewellin et al. (2012), which have a closed top, that all of liquid displaced by the 626 

Taylor bubble flows downwards.  For those cases, where the top of the column is open to 627 

atmosphere, the top surface of the liquid is pushed up and so only part of the displaced liquid 628 

flows down.  When the nose of the Taylor bubble reaches the top of the aerated column and 629 

bursts, the feed of liquid to flow downwards ceases and the film thins and drains down to the 630 

next liquid slug as considered by Rana et al. (2015). In the present experiments and those of 631 

Azzopardi et al. (2014), the length of the Taylor bubble can be at least at tall as the aerated 632 

column, i.e., there is complete gas core.  For those cases, the drainage of the film becomes 633 

particularly important as sufficient drainage of liquid is required for an accumulation at the 634 

bottom for the next liquid slug, and hence Taylor bubble, to form. 635 

4.3. Transition to churn flow 636 

Figure 13: Mean lengths of Taylor bubbles and liquid slugs in the slug flow 

region. 
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As noted above, the sequences in Figure 3of churning flow and of increase in void 637 

fraction with time merit closer investigation.  An example from the run at a gas superficial 638 

velocity of 0.223 m/s is shown in Figure 15as plots of the time series of film thicknesses from 639 

the two ECT measurement planes respectively.  Film thickness, , is obtained from void 640 

fraction using the geometric relationship,  = (D/2)(1-g).  In Figure 15, portions of the flow 641 

with film thickness decreasing with time and obvious waves on the surface can be identified.  642 

If the waves at 187 and 211 seconds are considered, the thickness from the upper probe arrives 643 

before that from the lower probe indicating that the waves are travelling downwards.  From the 644 

time delay between the two signals the wave velocities is determined as -0.061 and -0.049 m/s 645 

respectively. Benjamin (1957) determined the velocities of infinitesimally small waves from 646 

linear stability analysis. For film Reynolds number  0, his analysis gave a wave velocity as 647 

being equal to -3<uf>.  For the present physical properties and film thickness this yields a value 648 

of -0.034 m/s, i.e., lower than the values detailed above.  However, the waves are of much 649 

greater amplitude than what is considered in linear stability analysis.  Reports in the literature 650 

of larger-amplitude, non-linear waves show that they velocities higher than -3<uf>.  For 651 

example, Meza and Balakotaiah (2008) have studied such waves over a range of physical 652 

properties and though they did not study viscosities as high as in the present work, their results 653 

point to higher wave velocities which would give better agreement with the experimental 654 

results above.  655 
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  656 

 657 

The velocities of these waves can be contrasted with the liquid slugs seen at ~170 (back) 658 

and ~ 230 (front) seconds where the increase in film thickness from the lower probe occurs 659 

before that from the upper probe indicating upward flow.  The velocity of the slugs extracted 660 

from the time delay are +0.75 and +0.49 m/s respectively.  Churn flow can be seen between 661 

~110-170 and 340-390 seconds.  Here the films are thicker than in in the Taylor bubble region.  662 

The fronts and backs of the waves can be travelling in different directions.  It is a very confused 663 

picture justifying the description of churning and hence the name: churn flow. 664 

 665 

 666 

 667 

 668 

 669 

Figure 14: Time series of film thickness from both ECT measurement planes showing 

waves on film around Taylor bubbles, churn regions and liquid slugs.  ▬▬ Lower plane; 

••••• upper plane.  Gas superficial velocity = 0.223 m/s 
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 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

Figure 16reproduces a void fraction time series from the glucose syrup experiments of 681 

Azzopardi et al. (2014).These particular data were obtained at a gas superficial velocity of 682 

0.675 m/s.  The parts which are in churn flow and the increase in void fraction are marked.  683 

The axial length of the electrodes in that work was 0.125 m compared to 0.036 m in the present 684 

experiments.  Not surprisingly, the features in Figure 16are less well resolved that those in 685 

Figure 15. 686 

For the draining of the liquid film following the rupture of the top “skin”  identified, 687 

the important forces to be: inertial, gravitational, viscous and surface tension.  They employed 688 

scaling of the terms of the Navier-Stokes equations for the draining film to obtain expressions 689 

for all these forces.  Using a balance of forces with appropriate signs according to the directions 690 

in which they were acting, they proposed an expression for the draining time.  For the present 691 

work, the surface tension force can be considered negligible.  A simplified version of their 692 

expression can be obtained, lL/lgd2.  Here, L is the height of column over which the film is 693 

draining.  Inserting appropriate value of these variables yields a drainage time of ~100 seconds 694 

for the present experiments.  For the experiments of Azzopardi et al. (2014) which employed 695 

Figure 15: . Film thickness time series for glucose syrup in a 240 mm diameter column.  

Gas superficial velocity = 0.675 m/s.  Positions marked A show rising void fraction 

resulting from a draining film.  Positions marked B show areas of churn flow. Data from 

Azz 
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glucose syrup the corresponding time was ~20 seconds.  It is noted that for the experiments of  696 

Rana et al. (2015) this simplified expression suggested a time of 0.25 seconds.  Their 697 

experimental times were an order of magnitude greater. 698 

Drainage of liquid films on vertical surfaces has been studied in the context of empting 699 

of tanks by, e.g., Van Rossum (1958) and OLOUGHLIN (1965).  However, what they were 700 

analysing differs significantly from the present problem.  Therefore, it is important to start from 701 

the unsteady balance over an annular ring of film.  This results, after some simplification, to: 702 

𝜕𝛿

𝜕𝑡
+  〈𝑢𝑓〉

𝜕𝛿

𝜕𝑥
= 0         (4.6) 703 

where <uf> is the mean film velocity.  This can be solved with the boundary condition  = o 704 

for all x at t = 0.  Now if the film flow is laminar and its thickness is very small compared to 705 

the pipe diameter, the mean film velocity can be determined from the analysis of Nusselt (1916) 706 

to be: 707 

〈𝑢𝑓〉 =  
𝜌𝑙𝑔𝛿2

3𝜇𝑙
          (4.7) 708 

 709 

 Using (4.7), (4.6) can be solved by the method of characteristics to yield: 710 

𝛿 =  √
𝑥𝛿𝑜

2

(𝐴𝛿𝑜
2𝑡+𝑥)

         711 

 (4.8) 712 

where A = Lg/L.   713 

Figure 17shows a comparison of the thinning of the film as predicted by (4.8). Also 714 

shown is the thickness extracted from the ECT data.  The initial time was obtained from an 715 

estimate of when the slug seen at 170 seconds reached the top of the aerated column.  The 716 

initial film thickness was calculated from the measured void fraction.  The agreement is 717 

reasonably good bearing in mind that waves were not considered in the analysis 718 
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Examination of the thickness of the film relative to the pipe diameter involved in the 719 

present work shows it to be ~15-20%. 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

This drainage analysis can be used to obtain the time when the next slug will arrive.  731 

The film thickness at the bottom of the column can be used to calculate the volumetric flow 732 

rate of liquid either from D<uf> where uf is given by (4.7).  The relationship between the 733 

height of the pool at the bottom of the column, as a function of the cumulated time, T. is then 734 

given by (4.9)  735 

∆𝐻 =  
4

𝜋𝐷2 ∫ 𝑄𝑑𝑡 
𝑇

0
          (4.9) 736 

The results are shown in Figure 18for both the present experiments and those, using 737 

glucose syrup, of Azzopardi et al. (2014). Though the gas velocities differ between the two 738 

cases, it is noted the initial film thicknesses only show a weak dependence on gas flow rate in 739 

the ranges considered.  It is clear that much longer times are necessary for the silicone oil than 740 

for the glucose syrup.  This is in the most part due to the difference in liquid density; that of 741 

glucose syrup is 50% greater than that for silicone oil.  Also plotted on the figure are drainage 742 

times extracted from initial film thicknesses extracted from Figure 15and Figure 16.  Here the 743 

Figure 16: Comparison of film thickness from ECT measurements (···) and predictions 

of drainage modelling (─).  Gas superficial velocity = 0.223 m/s. 
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time is corrected for the transit time for a slug to pass the length of the aerated column of liquid.  744 

The vertical extents of the lines are not significant. 745 

 746 

 747 

 748 

 749 

 750 

 751 

 If the mean void fraction in the churn flow portions can be assumed to apply over the 752 

entire height of the aerated column, then the expanded height will be ~4 m.  This is supported 753 

by the pressure output from pressure transducer 3 positioned at 4.17 m (see Figure 10) which 754 

indicates atmospheric pressure.  The top surface will then be lifted above this height when a 755 

slug/Taylor bubble passes. 756 

 From the observations and measurements reported above, it appears that the formation 757 

of churn flow is initiated by flooding of the draining film of the walls of the column, particularly 758 

when there is a continuous gas core.  The flooding process is known to hold up waves but not 759 

always successfully and hence the up and down churning motion.  This churning flow can be 760 

seen in the ECT output and can be inferred from the wall pressure data.  At gas velocities just 761 

above transition this churning cannot be maintained and the liquid collapses to the bottom of 762 

the column to form a liquid slug.  The gas builds up underneath it and pushes the slug up until 763 

it loses all its liquid by drainage down the Taylor bubble and the residual thin liquid layer 764 

Figure 17: Time dependence for the growth of the height of pool of liquid at the bottom 

of the column. In both cases column diameter = 240 mm.  Silicone oil: gas superficial 

velocity = 0.223 m/s; glucose syrup: gas superficial velocity = 0.675 m/s. 
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bursts.  The passage of the slug can be seen in the output of the ECT and all three pressure 765 

transducers.  The higher the gas superficial velocity, the longer churn flow can persist.  766 

Attempts have been made to calculate the critical gas velocity for the occurrence of flooding 767 

using the equations of McQuillan et al. (1985) and Zapke and Kröger (2000). Though these are 768 

presented in terms of dimensionless groups, e.g., Froude, Bond/Eötvös, Ohnesorge numbers, 769 

they can be reduced to the form:(𝑥𝑖
𝑛𝑖), where xi is the variable and ni is the power to which it 770 

is raised.  These powers are remarkably similar -0.22/-0.2 for liquid superficial velocity, 771 

0.78/0.75 for pipe diameter, 0.345/0.65 for liquid density and -0.18/-0.15 for liquid viscosity.  772 

These gave gas velocities larger than those at which the transition to churn flow was observed.  773 

Examination of the paper of McQuillan and Whalley (1985) shows that they introduced the 774 

effect of liquid viscosity via a term (1 + l/w)n.  For viscosities > 0.1 Pa s this can be expressed 775 

as Kl
n and the resulting differences are <1%.  However, it is noted that the equations are 776 

empirical correlations which should only be used for interpolation.  The current liquid viscosity 777 

is two orders of magnitude larger than the largest values employed in the data base used in 778 

derivation of the equations. In most work on flooding the thickness of the liquid film is much 779 

less than the pipe diameter and so the core velocity is well approximated by the gas superficial 780 

velocity. In contrast in the present experiments, because of the thicker films, the core velocity 781 

can be twice to five times the gas superficial velocity. 782 

5. Conclusions 783 

From the above, it can be concluded that:  784 

1. Three flow patterns can be identified in the experiments reported.  At the lowest gas 785 

flow rate the pattern is bubbly.  However, these bubbles are fewer and larger than found 786 

with lower viscosity liquids. As the gas flow rate is increased, the flow is clearly in slug 787 

flow with characteristic Taylor bubbles interspersed with liquid slugs.  At even higher 788 
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gas velocities there is a transition region, a combination of alternating slug and churn 789 

flows.  These have different mean void fractions and structure velocities. 790 

2. The bubble velocities for bubbly flow are well predicted by a modified form of the 791 

equation proposed by Allahwala and Potter (1979). Those for the slug flow pattern are 792 

well predicted by a two-part equation, (4.1).  However, as there is no clear method to 793 

predict C0, this parameter was fitted to the data by linear regression.  A value of C0 = 794 

3.45 was obtained which lies between those proposed by Collins et al. (1978) and Guet 795 

et al. (2004).  Beyond the transition velocity, velocities lie below the straight line of 796 

(4.7).  When data for those portions of time traces that are clearly is churn flow are 797 

considered, they are even further below the line. 798 

3. The dominant frequencies for these flows were seen to at first rise with increasing gas 799 

superficial velocity in the bubbly flow region, i.e., more bubbles are being formed.  In 800 

the slug flow region, frequency first falls with increasing gas superficial velocity – 801 

evidence of coalescence between Taylor bubbles.  The frequency then reaches a steady 802 

value. 803 

4. The transition to churn flow occurs because of flooding of the film around Taylor 804 

bubbles, particularly when a Taylor bubble fills the entire column and the preceding 805 

liquid slug burst at the top leaving a continuous gas core.  It is characterised by up and 806 

down movement of very large waves.  This wavy arrangement occasionally breaks 807 

down, liquid falls to the bottom to form a slug and the gas collected under it forms a 808 

Taylor bubble which pushes it to the top of the column where it bursts.  The cycle then 809 

starts again. 810 
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 816 

7. List of Symbols  817 

Symbol Description   Unit 

Cd* Average drag coefficient  

Co Distribution coefficient   

D Pipe diameter m 

Eo Eötvös number  

fn Average frequency  s-1 

Fr Froude number  

g Gravitational acceleration m/s2 

LS Liquid slug length m 

LTB Taylor bubble length m 

Lu Unit slug length m 

Lx Height of the gas-liquid mixture m 

L0 Initial height of the liquid m 

Reb Buoyancy Reynolds number  

Ub Rise velocity of Taylor bubble m/s 

Ust Structure velocity  m/s 

uf
 Liquid film velocity m/s 

ugs Gas superficial velocity  m/s 

uls Liquid superficial velocity  m/s 

ud Draft velocity m/s 

   

 
Greek Symbols   

δ Film thickness m 

εg Mean void fraction   

εgTB Void fraction in Taylor bubble  

εgs Void fraction in liquid slug  

μl Liquid dynamic viscosity Pa.s 

ρg Gas density Kg/m3 

ρl Liquid density Kg/m3 

σ Surface tension of the liquid N/m 

 
Abbreviations   

ECT Electrical Capacitance Tomography  

PDF Probability Density Function  

PSD  Power Spectrum density  
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