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A B S T R A C T

Digital twins and artificial intelligence have shown promise for improving the robustness, responsiveness, and
productivity of industrial systems. However, traditional digital twin approaches are often only employed to
augment single, static systems to optimise a particular process. This article presents a paradigm for combining
digital twins and modular artificial intelligence algorithms to dynamically reconfigure manufacturing systems,
including the layout, process parameters, and operation times of numerous assets to allow system decision-
making in response to changing customer or market needs. A knowledge graph has been used as the
enabler for this system-level decision-making. A simulation environment has been constructed to replicate
the manufacturing process, with the example here of an industrial robotic manufacturing cell. The simulation
environment is connected to a data pipeline and an application programming interface to assist the integration
of multiple artificial intelligence methods. These methods are used to improve system decision-making
and optimise the configuration of a manufacturing system to maximise user-selectable key performance
indicators. In contrast to previous research, this framework incorporates artificial intelligence for decision-
making and production line optimisation to provide a framework that can be used for a wide variety of
manufacturing applications. The framework has been applied and validated in a real use case, with the
automatic reconfiguration resulting in a process time improvement of approximately 10%.
1. Introduction

The application of industrial digital technologies and the increasing
use of digitalisation in manufacturing processes have reduced manu-
facturing costs and are revolutionising the design, manufacture, usage,
and maintenance of products, as well as the operations, procedures, and
energy footprint of companies and supply networks [1]. Digitalising
the value chain has made it possible for the end-user to establish a
new, closer relationship with the producers [2], potentially directly
involving the customer in the design process to achieve high levels of
product customisation [3]. Mass customisation can require system con-
figuration changes and the ability for systems to change configuration
on the fly and handle product variations through the implementation
of reconfigurable manufacturing systems [4]. Manufacturing systems
reconfiguration is now evolving to embrace the Industry 4.0 paradigm,
driven by the enablers described by Mabkhot et al. [5].

There is a need for a reconfigurable manufacturing framework that
reacts to sudden changes and is able to quickly and seamlessly recon-
figure and adapt, as highlighted by the COVID-19 pandemic. Standard
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manufacturing practices have been challenged by these extraordinary
circumstances, and supply chains have been subject to extreme disrup-
tion [6,7], with the need to react to the surge in demand for healthcare
products [8], sudden changes in production requirements, and with
limitations in distribution and supply [9].

In this context, there are some enablers that will help move towards
dynamic manufacturing reconfigurability. The first is the digital twin
(DT), which is a virtual representation of a physical asset, dynamically
exchanging data with the ‘‘physical twin’’. The difference between
DTs and simulation models is the real-time bi-directional connectivity,
enabling automated updating of the model to reflect the real pro-
cess [10,11]. DTs are used to plan and optimise processes [12], and
given the large volumes of data generated, smart data analytics are
often used to analyse them and let managers take responsible, rapid
decisions to regulate the process and improve productivity [13].

The second enabler is artificial intelligence, a broad domain with
a variety of methods, including Machine Learning (ML) algorithms
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that provide computationally valuable solutions for processing large
volumes of data, e.g., processing and making predictions with sensor
signals [14], natural language processing to extract useful manufac-
turing data from documents [15], and the construction and embed-
ding of knowledge graphs of manufacturing resource data in cloud
manufacturing environments [16].

To help relate information coming from data streams to physical
entities, the concept of a knowledge graph (KG) can be used [17]. Util-
ising the graph-based query language, it is possible to infer additional
knowledge from data gathered from a production line to improve the
management of manufacturing processes [18]. The main applications
of KGs are recommendation systems and exploratory search, but in the
industrial sector, they are considered a potential enabler to building
‘‘semantic’’ digital twins [19]. Reconfigurable manufacturing dynamic
KGs have been developed to tackle the challenge of making the best
possible suggestion in different manufacturing scenarios [20]. Other
KG architectures have also been used to enhance intelligent DTs by
offering capabilities such as internal information references, knowledge
completion, error detection, and semantic querying [21].

The reconfiguration of production processes in response to external
changes is a difficult challenge because system reconfiguration requires
varied and disparate information on system layout, process parameters,
operation times of multiple assets, the sequence of the operations, ma-
terial handling systems, and other relevant aspects in combination [12].
However, implementing digital twin and artificial intelligence solutions
makes it realistic to achieve reconfigurable systems and customised
demand-based production by allowing this information to be connected
and related. The application of artificial intelligence and knowledge
graph concepts to the digital twin-based streams of data would allow
companies to analyse and better react to sudden changes in demand or
disruptions.

This paper proposes a new framework to enable manufacturing
system reconfiguration through the application of artificial intelligence
algorithms such as genetic algorithms (GA), particle swarm optimisa-
tion (PSO), and simulated annealing algorithms (SA). This approach
is designed such that newly developed algorithms can be rapidly ap-
plied. With this framework, the manufacturing data gathered from the
physical environment – such as information about machines, work-
ers, sensors, raw materials, work-pieces, products, and other physical
entities, as well as the workshop production activities and workshop
– can be integrated into the digital twin through the information
fusion [22], updating the information in the virtual environment. The
results of the iterative optimisation can then be transferred to the actual
production plant. A simulation environment that simulates a manu-
facturing process with multiple industrial robots performing multiple
tasks is developed. The real equipment data can also be used to im-
prove the performance of the simulation environment, which achieves
the function of the digital twin. A data pipeline with an application
programming interface (API) that integrates artificial intelligence is
built in the simulation environment to facilitate the bidirectional in-
formation exchange required of DTs. The data is stored in a data
model utilising the knowledge graph concept. With the help of artificial
intelligence and DT, the performance of the decision-making process
and the reconfiguration process are improved.

Section 2 presents a brief overview of works related to this topic.
Section 3 introduces the framework for manufacturing system recon-
figuration and a description of the decision-making engine and the
reconfiguration engine. Section 4 describes a validation use case with
multiple robots, which applies the previously mentioned reconfigu-
ration framework. Section 5 presents the conclusion and suggestions
for future research. A shorter conference version of this paper ap-
peared [23] at the FAIM 2022 conference. Our initial conference paper
did not elaborate on the related work, the reconfiguration framework
(Reconfiguration stages 1, 2, and 3) or the candidate devices selection
process and the reconfiguration optimisation process. This manuscript
addresses these issues, provides a more comprehensive introduction
and explanation of the reconfiguration framework, and thoroughly
2

demonstrates the results.
2. Background

This section introduces the relevant literature for manufacturing
system reconfiguration based on artificial intelligence, digital twins,
and knowledge graphs. It collects and highlights the main features
described in the related literature and summarises the content.

2.1. Rationale

Rapid manufacturing reconfiguration capabilities are required be-
cause of the increasing market need for mass customisation and in-
creased variability in supply and demand. This calls for a potentially
sudden change of system configuration whilst maintaining full system
effectiveness in the event of unpredictable customer demands, line
failures, supply disruption, or a need for maintenance [4].

Reconfigurable Manufacturing Systems (RMSs) are considered a
solution to the presented problems in next-generation systems. RMSs
are dynamic and have the capacity to follow market changes and
allow a higher spread in product variants and customisation of the
product [4].

RMSs still have barriers and challenges to overcome, e.g., the in-
ability to identify long-term requirements in terms of product and
demand changes [24] - they are a primarily physical approach for
streamlining reconfigurability rather than a holistic system. Few exam-
ples are already applied in industry, but the limitation in adoption is
mostly due to the high investment needed [25], and more commonly,
individual features and elements of the concept are applied to existing
systems [25]. In order to create an RMS, the knowledge to guide
the reconfiguration in a structured design methodology is needed, but
support for reconfigurability in the production system design process is
still lacking [26].

The advent of Industry 4.0 and the definition of the enabling
technologies and elements [5] is significantly changing how RMS are
implemented, with multi-agent systems (MAS) and the concept of
cyber–physical systems (CPS) becoming key contributors to research in
the reconfiguration of manufacturing environments [27–29].

However, with the ever-increasing complexity of manufactured
products, research on manufacturing reconfiguration has encountered
some challenges in managing its scalability and flexibility. For example,
some research on manufacturing reconfiguration is only focused on one
specific topic, such as scheduling [30], planning [31], or layout [32].
The utilisation of digital twins for achieving reconfigurability is limited
because of a lack of knowledge in the simulation environment and
compatibility between different simulation environments [33].

2.2. Digital twins

The volume of data generated by manufacturing systems (and par-
ticularly reconfigurable ones) is a challenge to handle but also repre-
sents an opportunity exploitable by utilising the DT concept, a virtual
representation of a physical asset where both counterparts are au-
tonomously connected to each other and are dynamically evolving
through the whole system life cycle [34].

A digital twin comprises a physical resource and its virtual counter-
part, the two being connected and exchanging data and information
in real-time [35,36]. The concept raises important questions on the
future of data gathering, interaction, mining, merging, and optimisa-
tion [37,38]. This approach is typically applied towards improving
simulations and the optimisation of equipment [35,39], but the concept
is evolving towards being an instrument used as a novel approach
for the reconfiguration of automated systems [40], and prognostics on
complex equipment [41].

DTs can be used to model the real world and exchange data back
and forth with a manufacturing environment’s various assets to affect
the system’s decisions and behaviour [42]. They can represent the base
on which to build smart, fast and responsive manufacturing systems
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Fig. 1. Flowchart of GA.
Fig. 2. Flowchart of PSO algorithm.
based on robotics assets [43,44], and can be used in parallel with
artificial intelligence approaches to reconfiguring human–robot collab-
orative assembly lines [45,46]. Novel digital twin-driven approaches
that achieve rapid reconfiguration can be developed for automated
manufacturing systems that use open-architecture machine tools to
achieve the desired reconfiguration [40] by integrating customisable
process planning.

The DT approach is used in the present study to simulate manu-
facturing processes involving numerous industrial robots that simulta-
neously perform different tasks. Embedded in the DT is an artificial
intelligence-driven data pipeline that allows the asset model, and con-
sequently the real one, to improve the decision-making capabilities of
the system and the related performances.

Despite the definition of a digital twin requiring autonomous bi-
directional information exchange between the physical and digital
aspects, changing a manufacturing set-up may still require manual
data entry new equipment is deployed, often requiring re-measuring
with laser measurements, 3D point cloud scans or similar systems to
accurately position items in the virtual space [47]. This manual data
entry approach is prone to human errors and to the risk of variation
between virtual and physical environments. The need for an automatic
and consistent pairing approach to combine virtual and physical twins
was recently addressed with an objective evaluation of the connection
between physical and digital counterparts [48].

2.3. Intelligent systems and intelligent decision making

To meet fluctuating customer and market demands, production sys-
tems must be as responsive as possible, and intelligent system architec-
tures such as multi-agent systems allow for ‘‘on the fly’’ reconfiguration
of manufacturing system control, exploiting asset flexibility and control
to change the behaviour of the manufacturing system [49]. These
capabilities can be enhanced through an ontology-based architecture,
which increases the system’s intelligence by allowing it to reason about
concepts, and has been applied to increase productivity while reducing
energy consumption [50].

Human–machine collaboration is an increasingly important concept
in flexible and reconfigurable manufacturing systems, but consider-
ations of safety in such environments are needed [32]. Another re-
lated topic where decision-making based on data is important is the
self-repair ability of smart systems; an artificial intelligence approach
selects the best strategy, based on product and module swapping,
operation rescheduling, and reconfiguration, to significantly reduce
the capacity loss [51]. The reconfigurability of a manufacturing sys-
tem can be achieved by applying hybrid agent-based and discrete-
event simulation modelling techniques [52], bringing benefits such
as decentralised control and collaborative decision-making, enabling
a system to react to system variability and faults. Intelligent systems
3

have been used to evaluate the priorities of production and redistribute
tasks and jobs between agents with a negotiation approach; these
distributed artificial intelligence systems are proving competitive in
dynamic environments [53].

These intelligent systems approach offer frameworks for integrat-
ing decision-making into the manufacturing process. Many different
decision-making methods can be used for a variety of goals, includ-
ing achieving the reconfigurability of the manufacturing system. Here
we focus on three algorithms that are later used as validation for
the reconfiguration framework. They are the Genetic Algorithm (GA),
the Particle Swarm Optimisation Algorithm (PSO) and the Simulated
annealing algorithm (SA).

2.3.1. Genetic algorithm
A genetic algorithm (GA) is a search heuristic that is inspired by

Charles Darwin’s theory of natural selection. These algorithms reflect
the process of natural selection, where the fittest algorithms are se-
lected for reproduction and mutation to produce offspring of the next
generation [54]. The generic flowchart of these genetic algorithms is
listed in Fig. 1.

A challenge of using GA is when the number of elements exposed
to mutation is large, there is often an exponential increase in search
space size. The complexity of evaluating the fitness of solutions is also
a problem, making it difficult to apply to complex problems with large
search spaces [55].

Genetic algorithms have been applied frequently in the manufac-
turing industry. Zhou et al. [56] propose a cloud-forging resource
service optimisation strategy based on a genetic algorithm. Bensmaine
et al. [57] proposed a new technique based on a genetic algorithm to
solve the problem of machine selection in reconfigurable manufactur-
ing systems design.

2.3.2. Particle swarm optimisation algorithm
Kennedy and Eberhart suggested PSO in 1995, inspired by schools

of fish or flocks of birds moving in a group. While a bird may seemingly
fly about looking for food at random, all of the birds in the flock will
share information indirectly and assist the flock as a whole [58].

PSO’s answer is often close to the best global solution [59]. The
generic flowchart of the typical PSO algorithm is shown in Fig. 2.
Each particle has its own velocity and position, which are randomly
initialized at the start. Each particle maintains a record of its positions
𝑃𝑏𝑒𝑠𝑡 (the local best position) and 𝐺𝑏𝑒𝑠𝑡 (the global best position among
all the particles). The main challenge of the PSO algorithm is that it is
easy to fall into local optimum in high-dimensional space and has a low
convergence rate in the iterative process.

PSO algorithms have been applied successfully as optimisation tools
in the manufacturing industry. PSO integrated with Memetic Algo-
rithms (called Modified Memetic Particle Swarm optimisation Algo-
rithm or MMPSO) is applied to yield initial feasible solutions for
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Fig. 3. Flowchart of SA.
the scheduling of multi-load automated ground vehicles (AGVs) for
minimum travel and waiting time in flexible manufacturing systems
(FMSs) [60]. Han et al. [61] propose an effective hybrid particle swarm
optimisation algorithm to solve the deadlock-free scheduling problem
of FMSs that are characterised by lot sizes, resource capacities, and
routing flexibility.

2.3.3. Simulated annealing algorithm
The simulated annealing (SA) algorithm is one of the most preferred

heuristic methods for solving the optimisation problems [62]. The
annealing process refers to cooling metals gradually after being exposed
to high heat and defines the ideal molecular configurations of metal
particles where the mass’s potential energy is reduced. These SA al-
gorithms typically adopt an iterative movement based on a changeable
temperature parameter that mimics the metals’ annealing process [63].
The generic flowchart is listed in Fig. 3.

The challenge of using SA is that if the cooling process is slow,
then the convergence speed is slow, and the algorithm performance is
highly related to the initial value. Besides, the parameters are sensitive.
If the cooling process is too fast, the optimal global solution may not
be obtained [64].

SA has also been applied successfully in the manufacturing industry.
Wang et al. [65] formulate a model solving both inter-cell and intra-
cell facility layout problems for cellular manufacturing systems. While
these methods can give an optimal solution to small-scale problems,
they are often inefficient when applied to larger-scale problems. Ko-
ren et al. [66] explore how to model reconfigurable manufacturing
activities from an optimisation perspective and how to develop and
select appropriate non-conventional optimisation techniques for recon-
figurable process planning with the help of a simulated annealing
algorithm.

2.4. Knowledge graph storage

In 2012, Google introduced its Knowledge Graph(KG) project and
used it to improve query result relevancy and users’ search experience.
Due to the increasing amount of internet resources and the release
of linked open data (LOD) projects, many knowledge graphs have
been constructed. KG consist of two layers: the schema layer which
represents the abstract concepts, and the entity layer which represents
the specific entities that are instantiated from ontological concepts from
the schema layer. KG can be applied to many applications, such as
question-answering systems [67,68], recommendation systems [69–
71], and information retrieval [72–74].

There are two main types of storage for knowledge graphs. One
is Resource Description Framework (RDF)-based storage; the other is
graph database-based storage. RDF approaches allow for ease of data
distribution and sharing, while graph databases focus on efficient graph
queries and search. RDF approaches also store data in triples and does
not contain attribute information, but graph databases generally use
4

attribute graphs as the basic representation, so entities and relation-
ships can contain attributes, which means it is easier to express realistic
business scenarios [75]. Among them, the Neo4j system is a widely used
graph database [76].

Tang et al. [77] compare the storage and query performance be-
tween the general storage format of RDF and graph database based
on a constructed power equipment management knowledge graph. Ma
et al. [78] propose a method of knowledge graph-based manufacturing
capability service optimal selection for ICRs. Different families of data
management methods of RDF graphs and property graphs have been
separately developed in each community for over a decade, which
hinders the interoperability in managing large knowledge graph data.

3. Methodology - Reconfiguration framework

Motivated by the literature review and the current limitations of
the techniques therein, including challenges of manufacturing recon-
figuration in managing its scalability and flexibility and difficulties
in collecting data for the manufacturing reconfiguration, this section
proposes a framework for managing manufacturing system reconfigu-
ration optimisation which provides a general methodology to achieve
reconfiguration in different cases and utilises the benefit of digital twins
to increase the performance and the accuracy of the reconfiguration.
Furthermore, this framework enables the system to select the most
suitable modular AI optimisation method based on the required key
performance indicator(s) (KPIs).

This reconfiguration framework covers two levels of the automa-
tion pyramid [79]: the manufacturing execution system level and the
controller level. The manufacturing execution system level interacts in
real-time with the controller level to deal with changing demands on
the manufacturing system and makes decisions. The controller level
will receive the information from the manufacturing execution level
and send the related control signals to the physical asset.

The reconfiguration optimisation process consists of three stages.
Reconfiguration stage 1 is capability matching and resource selection,
a matching process between the current system configuration and the
product requirements to determine if the current system is capable of
meeting the needs and, if not, what available assets could be used
instead. All the related information for this selection process must be
made available to the algorithm; in our case, a knowledge graph is
used to store this data [80]. Reconfiguration stage 2 is the trade-off
and optimisation process, which takes the selected assets from stage
1 and determines their best locations and parameters. Reconfiguration
stage 3 is the configuration update required to instantiate the recon-
figuration, which can include Programmable Logic Controller (PLC)
and robot controller code updates. Below is a detailed description of
the framework components, and Fig. 4 describes the flowchart of our
proposed framework:

A Experience data bank: The experience data bank is a database
for storing data both from the current system configuration
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Fig. 4. An overview of the system reconfiguration framework.
and from previous system configurations. The current system
configuration consists of information about the current produc-
tion line, including process information, equipment information,
layout information, machine runtime condition, and value-chain
information. Industry-standard models for these are used to
represent the current system configuration information [81]. The
assets in the production line will be digitalised and represented
by using the digital model [82,83], and a knowledge graph is
flexible enough to store the information and the relationships be-
tween them. The experience data bank also contains the digital
twin for the current configuration, digital twins and simulation
results from the previous system configurations, optimisation
algorithms, and libraries of PLC code for updating the control
programs. The offline data of the digital twin, the simulation
model, the interfaces to access data in the live physical system,
and other information such as asset information, operation in-
formation, and signal information are all stored in the database
for future use. What data is stored will depend on the simulation
tool being used.

B Product requirements: The product requirements specify the
operations the system must perform and include the bill of
process, which specifies the processes and their order to create
the product. The source of the bill of process depends on the
use case and could be the customer specifying the bill of process
themselves, the manufacturer creating the bill of process in
response to customer requests, or utilising a semantic model and
5

matching algorithm to generate these automatically. We assume
for the purposes of this framework, that the bill of process
is provided to us by an existing manufacturing execution or
product life-cycle management system. To ensure the generalisa-
tion of our proposed framework, different manufacturing process
models can be utilised to represent the bill of process, based on
the customer requirement, such as AutomationML [84], process-
oriented information model (PIM) [85], Petri Nets [86], or Core
Product Model (CPM) [87].

C Decision-making engine (Reconfiguration stage 1): The deci-
sion-making engine decides the level of reconfiguration required.
It performs a capability matching process and the candidate
resource selection process. The needs of the bill of process will
be compared with the current system configuration to determine
if any reconfiguration is required at all. If yes, the system will
recommend adding or updating assets to meet the requirements,
generating the bill of resources. The incurred extra cost will
be updated in the experience data bank. The decision-making
engine will also provide further reconfiguration suggestions to
the reconfiguration optimisation engine. In the decision-making
engine, other decision criteria such as cost, operation time,
energy consumption, and capacity are not yet considered and
will be addressed in later stages of reconfiguration.

D Reconfiguration optimisation engine (Reconfiguration stage
2): The reconfiguration optimisation engine is introduced to per-
form the second stage of reconfiguration, which is optimisation
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Fig. 5. A flow chart of the decision-making process for reconfiguration.
based on different KPIs set by the user or customer. Additionally,
the optimised information and the reconfiguration use case will
also be stored in the data bank for future reference.

E Configuration & control reconfiguration (Reconfiguration
stage 3): Once the optimisation in the simulation environment
is finished, as well as a physical layout, the reconfiguration
optimisation engine will recommend a corresponding software
and control reconfiguration based on the optimised setup. For
example, if the position and operation sequence of the robots
have changed, the PLC and robot control code should also be
updated, ideally automatically. The optimised solution and the
updated configuration information will first be tested with the
simulation environment and then sent to the orchestrator.

F Orchestrator: The orchestrator is a system of software and hard-
ware elements that allows industrial organisations to control
industrial processes. Depending on context and application, it
can correspond to the manufacturing execution system (MES),
enterprise resource planning system (ERP), a human–machine
interface, or a combination. It will receive information from
the decision-making engine and the reconfiguration optimisation
engine. Then it will send the corresponding reconfiguration
information to the equipment controllers and then to the real
equipment.

The following subsection will discuss the decision-making engine
(reconfiguration stage 1) and reconfiguration optimisation engine (re-
configuration stage 2) in detail.

3.1. Reconfiguration stage 1 - Decision-making engine

The execution of the decision-making engine utilises a Manufac-
turing Reconfiguration Knowledge Graph (MRKG) established in the
experience data bank step (step A) of the framework and will deter-
mine the assets required to enable the creation of the product (or
6

the decision that creation of the product is not possible). At this
stage, the product requirements in the form of the bill of process have
been decomposed into sub-product requirements. The core procedures
of product requirement decomposition include rule-based methods,
semantic-based methods, and semantic-embedding-based methods, and
they are performed in the product requirements step (step B) of the
framework. The decision engine will begin by searching the MRKG to
discover any existing bill of resources that could be used, either for the
whole product or sub-product requirements.

If no suitable existing bill of resources can be found (or gaps exist),
then the MRKG is used to conduct capability matching between the
current system configuration and the required processes to determine
the bill of resources. For the capability matching, the required system
configuration node will query from the current system configuration
node to check if there are capabilities that can fulfil the product require-
ment. If there are more assets, which fulfil the capability requirement at
the same time, the next process is to select the most suitable candidate
devices. Algorithm 1 and Fig. 5 show detailed information about the
decision-making process with the help of the evaluation method and
the knowledge graph. A graph neural network-based embedding algo-
rithm [88] is proposed based on the established MRKG, to achieve the
decision-making process in a methodical way. The final decisions can
be:

1. The current system is able to produce the product. In this
case, either one combination of the assets or more than one
combination of the assets can be selected during the capability
matching process. If more than one combination of the assets
can be applied to produce the product, the selection of the most
suitable assets will be executed.

2. The current system is not able to produce the product. In this
case, the decisions will be adding or updating assets to match the
product requirement. Information about other potential assets to
be added to the MRKG will be suggested to the user.
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Algorithm 1: Stage 1 - Decision-making process for reconfiguration
Input: Initialized knowledge graph as MRKG, New Task as NT
Output: Decisions at the reconfiguration stage 1 as D
1: Load MRKG and NT
2: ProductRequirement (PR)=Find_requirement(NT )
3: SubProductRequirement (SPR)=Divide_ProductRequirement(PR)
4: Initialize bill of process set (BoPs)
5: for each SPR ∈ PR do
6: BillofProcess (BoP)=Process_search_rule(SPR)
7: if BoP ! = Null then
8: BoPs.add(BoP)
9: Continue

10: else BoP = Process_search_semantic(SPR)
11: if BoP ! = Null then
12: BoPs.add(BoP)
13: Continue
14: else BoP = Process_search_semanticEmbedding(SPR)
15: BoPs.add(BoP)
16: Continue
17: end if
18: end if
9: end for
0: Initialize decisions (D) and score set (ScS)
1: for each Process ∈ BoPs do
2: Required system configuration (RSC) =
Find_required_configuration(Process)

3: Resources (Rs) = Matching_capability(RSC, MRKG)
4: if Rs ! = Null then
5: for each Ri ∈ Rs do
6: Score (Sc) = Evaluation(Ri)
7: ScS.add(Sc)
8: end for
9: Rh = DeviceSelection(ScS), ⊳ where Rh has the highest score
0: D.add(Rh)
1: Continue
2: else D.add(ReconfigurationSuggestions)

33: end if
34: end for
35: return D

Fig. 6 shows the resource selection process in the decision-making
ngine. The assumption is that there are in total j process (𝑝1, 𝑝2,… , 𝑝𝑗)
hich are potential candidates to be used to perform a process. Below

s how to describe the number of candidate assets 𝐷 for each process.
or process m (m is the numbering of the process, 𝑚 = [1, 𝑗] ∩Z) where
is the integer set, there are in total 𝑘𝑚 candidate resources. 𝐶𝑚 is

the candidate device sets at the process m which can be described in
(1). In this way, the potential candidate assets for each process can be
expressed.

𝐶𝑚 = [𝐷𝑚1
, 𝐷𝑚2

,… , 𝐷𝑚𝑘𝑚 ], (where 𝑚 = [1, 𝑗] ∩ Z) (1)

The weights of each candidate device at every process can be
calculated in (2). 𝑤𝑖𝑚𝑑 describes the weights of the candidate device
sets with the numbering d about evaluator i at process m. h is the total
number of evaluators. Evaluators are different in different candidate
device sets. For example, if the candidate devices are robots, then
features to differentiate them include gripper type, capability model,
reachability, and repeatability. These features are used in our proposed
approach as the evaluators. The evaluators can be described in the
form of the vectors [89,90] or defined in the form of numbers with
the criteria designed by the engineer according to the experience [91].
𝜎 is the deviation between evaluator set i and the corresponding
7

𝑚𝑑_𝑒𝑣𝑎_𝑖
features of the device with the numbering d at process m.

𝑤𝑖𝑚𝑑 =
𝜎𝑚𝑑_𝑒𝑣𝑎_𝑖

∑𝑘𝑚
𝑛=1 𝜎𝑚𝑛_𝑒𝑣𝑎_𝑖

,

(where 𝑑 = [1, 𝑘𝑚] ∩ Z, 𝑘𝑚 = [𝑘1, 𝑘𝑗 ] ∩ Z, 𝑚 = [1, 𝑗] ∩ Z, 𝑖 = [1, ℎ] ∩ Z)
(2)

If the candidate device matches more closely to the evaluators, the
deviation will be smaller, which means the weights of this candidate
device should also be smaller. And according to the Algorithm 1, the
most suitable candidate device will have the highest score, so the
reciprocal of 𝑤𝑖𝑚𝑑 will be used for further evaluation. The updated
weights can be described below in (3).

𝑊𝑖𝑚𝑑 = 1
𝑤𝑖𝑚𝑑

=
∑𝑘𝑚

𝑛=1 𝜎𝑚𝑛_𝑒𝑣𝑎_𝑖

𝜎𝑚𝑑_𝑒𝑣𝑎_𝑖
,

(where 𝑑 = [1, 𝑘𝑚] ∩ Z, 𝑘𝑚 = [𝑘1, 𝑘𝑗 ] ∩ Z, 𝑚 = [1, 𝑗] ∩ Z, 𝑖 = [1, ℎ] ∩ Z)
(3)

The weights sets 𝑊𝑚𝑑 of the device with the numbering d at process
m can be described in (4).

𝑊𝑚𝑑 = [𝑊1𝑚𝑑 ,… ,𝑊ℎ𝑚𝑑 ], (4)

Take process 𝑝1 as an example, there are in total 𝑘1 candidate sets
and the weights of the candidate sets will be calculated. 𝑊111 describes
the weights of evaluator 1 of the candidate device 𝐷11 at process
1. 𝜎11_𝑒𝑣𝑎_1 is the deviation between evaluator set 1 and the device
accuracy information of the above-mentioned device.

After the weights of different devices at each process are calculated,
the scores 𝑆𝑖

𝑑 of the candidate devices under the evaluator 𝑈𝑖 should
e calculated, where 𝑑 = [1, 𝑘𝑚] ∩ Z and 𝑖 = [1, ℎ]∩ Z. This score aims
o show the matching ability of the candidate devices under a single
valuator. The score can be defined in many different ways, as long as
t shows the matching ability of the candidate devices.

Taking the consistent fuzzy matrix as an example, the scores can
e calculated in the following way [92]. Considering that there is a
uestion of the selection of the most suitable devices from 𝑘𝑚 can-
idate devices under ℎ evaluators. Under this condition, ℎ ∩ Z of
ingle-evaluator fuzzy priority relations can be built.

𝑖 = (𝑏𝑖𝑒𝑓 )𝑘𝑚×𝑘𝑚 , (where 𝑘𝑚 = [𝑘1, 𝑘𝑗 ] ∩ Z, 𝑖 = [1, ℎ] ∩ Z) (5)

here 𝑏𝑖𝑒𝑓 is called the coefficient of the preferred relationship of device
𝑚𝑒 to device 𝐷𝑚𝑓 under the evaluator 𝑈𝑖. The value of 𝑏𝑖𝑒𝑓 is listed in

6).

𝑖
𝑒𝑓 =

⎧

⎪

⎨

⎪

⎩

0, if 𝐷𝑚𝑒 is worse than 𝐷𝑚𝑓 under the factor 𝑈𝑖

0.5, if 𝐷𝑚𝑒 is equal to 𝐷𝑚𝑓 under the factor 𝑈𝑖

1, if 𝐷𝑚𝑒 is better than 𝐷𝑚𝑓 under the factor 𝑈𝑖

(6)

Then 𝐵𝑖(𝑖 = [1, ℎ] ∩ Z) will be converted to the consistent fuzzy
atrix as listed in (7) below.

𝑖 = (𝑟𝑖𝑒𝑓 )𝑘𝑚×𝑘𝑚 (7)

here

𝑖
𝑒𝑓 =

𝑟𝑖𝑒 − 𝑟𝑖𝑓
2𝑘𝑚

+ 0.5; 𝑟𝑖𝑒 =
𝑘𝑚
∑

𝑙=1
𝑏𝑖𝑒𝑙 (8)

Because for ∀𝑙 = 1, 2,… , 𝑘𝑚,

𝑟𝑖𝑒𝑙−𝑟𝑖𝑓 𝑙+0.5 =
𝑟𝑖𝑒 − 𝑟𝑖𝑙
2𝑘𝑚

+0.5−(
𝑟𝑖𝑓 − 𝑟𝑖𝑙
2𝑘𝑚

+0.5)+0.5 =
𝑟𝑖𝑒 − 𝑟𝑖𝑓
2𝑘𝑚

+0.5 = 𝑟𝑖𝑒𝑓 (9)

So the 𝑅𝑖(𝑖 = [1, ℎ]∩Z) is the consistent fuzzy matrix [91]. The score
𝑖
𝑑 of the candidate device 𝐷𝑚𝑖 under evaluator 𝑈𝑖 can be calculated in
10):

𝑖
𝑑 =

𝑠𝑑
∑𝑘𝑚

, (where 𝑠𝑑 = (
𝑘𝑚
∏

𝑟𝑖𝑒𝑙)
1
𝑘𝑚 and 𝑑 = [1, 𝑘𝑚] ∩ Z) (10)
𝑙=1 𝑠𝑙 𝑙=1
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Fig. 6. Capability matching and device selection process.
After that, the fuzzy set of the weights of each evaluator factor
should be calculated [93]. This information comes from the rich re-
latedness information of the generated knowledge graph and also from
the engineer’s experience. A is the weight set of each evaluator in the
fuzzy evaluation.

𝐴 = [𝑎1, 𝑎2,… , 𝑎ℎ] (11)

Then the evaluation matrix should be calculated. There are many
methods to define the evaluation matrix, such as using the weights sets
𝑊𝑚𝑑 , consistent fuzzy matrix [91], the definition of the membership
degree function based on the experts’ knowledge [94], use of historical
data, and the help of the knowledge graph [95]. The fuzzy matrix, in
general, can be described in :

𝑅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑟11 𝑟12 ⋯ 𝑟1𝑔
𝑟21 𝑟22 ⋯ 𝑟2𝑔
𝑟31 𝑟32 ⋯ 𝑟3𝑔
⋮ ⋮ ⋱ ⋮
𝑟ℎ1 𝑟ℎ2 ⋯ 𝑟ℎ𝑔

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(12)

Where h is the total number of evaluator sets, and g is the total number
of evaluation criteria. In terms of utilising a consistent fuzzy matrix
to select the most suitable devices from 𝑘𝑚 candidate devices under ℎ
evaluators, the evaluation criteria can be understood as the candidate
devices, then the fuzzy matrix can be described in (13):

𝑅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆1
1 𝑆1

2 ⋯ 𝑆1
𝑘𝑚

𝑆2
1 𝑆2

2 ⋯ 𝑆2
𝑘𝑚

𝑆3
1 𝑆3

2 ⋯ 𝑆3
𝑘𝑚

⋮ ⋮ ⋱ ⋮
𝑆ℎ
1 𝑆ℎ

2 ⋯ 𝑆ℎ
𝑘𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

The total score of each candidate device 𝑆𝑑 can be calculated in
(14):

𝑆𝑑 =
ℎ
∑

𝑘=1
𝐴𝑘 ⋅ 𝑠

𝑖
𝑑 ,

(where 𝑑 = [1, 𝑘𝑚] ∩ Z, and 𝐴 is the evaluator weights set) (14)

The ranking of the candidate devices in order of 𝑆𝑑(𝑑 = 1, 2,… , 𝑘𝑚)
from largest to smallest can be obtained by combining the influence
of h factors. The most suitable device will have the highest score
8

Table 1
Membership degree defined by the engineer.

Device 1 Device 2 Device 3

Evaluator 1 0.4 0.6 0.7
Evaluator 2 0.3 0.7 0.2

according to Algorithm 1. If no suitable device is available, the system
will recommend the addition of new devices to the user.

As an example, assume that there is a situation where there are three
candidate devices (device 1, device 2 and device 3) and two evaluators
in the use case. The membership degree for each evaluator can be
defined by the engineer or be defined from the knowledge graph with
the help of weights sets 𝑊𝑚𝑑 . In this use case, the membership degree
is shown in Table 1.

Then the fuzzy matrix can be defined in (15).

𝑅 =
[

0.4 0.6 0.7
0.3 0.7 0.2

]

(15)

The weight sets of each evaluator are assumed and listed in (16).

𝐴 = [0.3, 0.7] (16)

So the result according to (14) are:

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐴 ⋅ 𝑅 = [0.33, 0.67, 0.35] (17)

Thus the most suitable device is device 2, as it has the highest score.

3.2. Reconfiguration stage 2 - reconfiguration optimisation engine

In the first stage of reconfiguration, the assets to use have been se-
lected, but their layout and process parameters have not been selected.
In the second stage of reconfiguration, a simulation environment will be
utilised for process optimisation and reconfiguration. The system will
be optimised based on user-selected KPIs such as operation time, energy
consumption, and cost. In addition, there may be some constraints, such
as the total reconfiguration cost not exceeding a given budget. The
system will find the best solutions based on the KPIs and constraints
by selecting one or more modular optimisation algorithms, and the
optimised scenario will then be updated in the MRKG. The MRKG
will store the selected algorithm(s), the algorithm’s result, and the
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Fig. 7. Workflow of utilising the reconfiguration optimisation engine.
Fig. 8. Details of utilising the reconfiguration optimisation engine.
related simulation environment information used in the optimisation.
The reconfiguration optimisation engine can select multiple algorithms
to determine the system configuration for a given product and select
the results to utilise based on which algorithm performed best. Optimi-
sation algorithms are (currently manually) stored and labelled in the
MRKG. A common method for optimisation is based on discrete event
simulation, such as resource allocation optimisation [31]. However, in
complex manufacturing use cases, many types of optimisation decisions
are needed to specify the reconfiguration. These include asset locations,
asset programs, and the operation sequence.

Fig. 7 details the process of utilising the reconfiguration optimisa-
tion engine. From this figure, we can see that, at first, a simulation
environment should be generated based on the bill of process from
the product requirement and the bill of resources from reconfiguration
stage 1, either automatically or manually. The target of the optimi-
sation in the reconfiguration optimisation engine will be set by the
customer or the engineer based on the product requirement and the
9

historical data. At the same time, the experience data bank (which,
in our case: MRKG) will be queried to provide KPI sets and modular
optimisation algorithms based on the customer requirement and the
previous experience data. Once the KPIs are selected, the reconfigura-
tion optimisation engine will execute the optimisation process. Based
on the desired outputs, one or more modular optimisation algorithms
will be selected. After the optimisation process, the desired outputs
will be given, such as the optimised layout, control parameters, cost,
or another related optimisation target.

The detailed information on the reconfiguration optimisation engine
is shown in Fig. 8. The reconfiguration optimisation engine consists
of four parts: the simulation environment, the optimisation environ-
ment, KPI sets, and modular optimisation algorithms. The optimisation
environment will get information about the KPI sets and modular
optimisation algorithms from the experience data bank and execute
them, and the simulation environment is used to test the results. Below
is a detailed description of these four parts.
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(1) Simulation environment
Digital twins are introduced as a combination of three primary
components: a virtual twin, a physical twin that corresponds to
it, and the data flow component. The data flow component is
used to feed data from a physical twin to its virtual twin and
returns information from the virtual twin. In a more compli-
cated use case, many types of data representations are needed,
such as device location, robot path, operation sequence, cycle
time, collision status, and utilisation of the devices. A simu-
lation environment is needed to simulate the process. Besides,
the simulation environment should be compatible and powerful
enough to simulate the manufacturing process. The simulation
environment is created based on the information stored in the
MRKG from the real equipment. The entities in the simulation
environment are mapped with the entity on the real equipment.

(2) Optimisation environment
The optimisation environment is a software library which can
process the data from the simulation environment. This op-
timisation environment can be either deployed on the cloud
or locally, depending on customer requirements. Cloud-based
optimisation is recommended in this system because it facilitates
the modularity of the pipeline components. As for the cloud
platform, the KPIs are sent to the cloud data lake. And it will
be updated in every iteration. There exists a trigger script that
continuously listens for the event of the data lake population.
As the data lake becomes populated with the data from the
simulation environment, it instantiates another script that vali-
dates the input data against the schema (for valid requirements).
The model endpoint is queried in terms of input data to get
optimised values. These values are sent back to the simulation
environment. Then the process will be repeated. An enabler is
needed to enable the communication between the cloud platform
(optimisation environment) and the simulation environment,
such as REST API [96]. The optimisation process is an iterative
process with the simulation environment. The iteration time is
dependent on the customer requirement and the experience data.

(3) Modular optimisation algorithms
The experience data bank will provide a modular optimisation
algorithm to fulfil the optimisation targets. In the optimisation
environment, different modular artificial intelligence algorithms
and approaches are used to optimise the simulation environment
to meet the different optimisation targets. The selection process
will utilise the same evaluation methods proposed in Section 3.1,
but for matching algorithms to problems. For example, the eval-
uators for evaluating different methods can be the best results
they can reach, the efficiency and the cost. The information
on the desired outputs and the results of the selection of the
modular optimisation algorithm will be stored in the experi-
ence data bank as proposed at the beginning of Section 3. For
example, if the optimisation target is multi-objective optimisa-
tion, then algorithms such as NSGA-II (non-domination-based
genetic algorithm for multi-objective optimisation) [97] and
MOGA (Multi-Objective Genetic Algorithm) [98] are selected. If
the manufacturing system looks to optimise a single parameter
with the new product – such as faster operation or lower cost
– then reinforcement learning can be used in the optimisation
environment. For highly complex or difficult problems, deep
reinforcement learning will be suggested by the decision engine.

(4) KPI sets
KPIs in production are common ways to assess the performances
of manufacturing systems. They provide manufacturing systems
with the ability to define targets, evaluate performance and
make operational decisions. Being directly connected to the
automation level, they allow timely control and quantification
10

of production related to a specific system input, such as the
Fig. 9. The reconfigurable floor of the Omnifactory at the University of Nottingham.

utilisation of the devices, the cost, the cycle time and the en-
ergy consumption. In our proposed reconfiguration optimisation
engine, the KPI sets the specific optimisation target as defined
by the information from the experience data bank and the
knowledge from the engineer.

Once the reconfiguration stage 2 is finished, the optimised result is
found and evaluated successfully in the simulation environment. The
optimised result (such as the optimised robot path or the structure of
the production line) should be applied to the physical device via the
orchestrator. Any updated information from reconfiguration stage 2
will be utilised to update the configuration and control code, which
in our proposed framework is reconfiguration stage 3. The orchestrator
may make direct changes to PLC code or robot controllers to instantiate
the change or make recommendations to human operators to make the
changes manually. Then the real equipment will receive the updated
configuration information. The corresponding changes will also happen
in the real equipment, such as relocation of the robots and sequence
change of the operations. The real equipment data can also be used to
improve the performance of the simulation environment.

The simulation environment, the optimisation environment and the
real equipment can be connected via different communication methods.
The communication methods can be sockets, OPC-UA, MQTT, TCP/IP
(to connect to external systems such as a PLC simulator), or other
communication protocols depending on the application domain and
can be dynamically chosen by the reconfiguration optimisation en-
gine. This communication method will be suggested to be used as the
middleware between the simulation environment and the optimisation
environment. And it can also be used as the communication channel
between different devices in the simulation environment and the real
devices. For instance: if a cloud-based environment is needed, then the
MQTT approach is the better approach to enable communication. If
PLC controls the real physical system, then a PLC simulator is a good
solution to optimise the system because it can simulate the process
of PLC control. If the workstations in the manufacturing system use
different operating systems, then OPC UA is a better solution.

4. Validation

This section describes a demonstrator used to verify the effective-
ness of the proposed approach in achieving optimised system reconfig-
uration. We begin by describing the use case, describe how the steps
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Fig. 10. Layout of the simulation environment.
of the reconfiguration optimisation methodology are implemented, and
then describe the results of the optimisation process.

4.1. Use case description

The methodology proposed in this paper can be used to determine
the optimum locations for robots in simulation before they are per-
manently located. However, the presented use case here applies to a
modern reconfigurable manufacturing systems approach that allows
the robot to be relocated rapidly, either with a reconfigurable flooring
solution (which can be seen in Fig. 9), or with a robot placed on
an AGV that can be moved to the new position after it receives the
optimised location. KUKA matrix production is one example of a highly
reconfigurable robotic manufacturing solution [99].

The following example illustrates a use case based on a multi-
purpose robotic manufacturing cell, using Siemens Tecnomatix Process
Simulate as the digital twin enabler alongside a knowledge graph to
store data. As illustrated in Fig. 10, a simulation environment is built
in Siemens Tecnomatix Process Simulate, which consists of two KUKA
KR 270 R2700 ultra robots, one FANUC M-900iB/360 robot, one ABB
IRB 6700-150 robot, one conveyor to transport the product from the
previous step in the manufacturing process, one welding station, one
work table to store parts after welding, one tool stand to store the end
effectors, and three Automated Ground Vehicles (AGVs) to transport
the robots to new locations. The end effectors are one pick-and-place
end effector and one welding end effector, with both initially put on
the tool stand. This scenario is based on a real reconfigurable robotic
manufacturing cell at the University of Nottingham.

The goal of this use case is to have new tasks assigned to a man-
ufacturing cell, and for the system to determine if a reconfiguration
is necessary and what the optimum reconfiguration should be. In our
use case, it is assumed that the customer proposes a new task, and
the task is that the customer wants a welded rod product with a
specific dimension. The tasks that will be assigned are pick-and-place
and welding. There will be a selection process between one of the
11
Fig. 11. The baseline of the total cycle time which needs to be improved.

KUKA KR270 ultra robots, the FANUC M-900iB/360 robot and the ABB
IRB 6700-150 robot for executing the pick-and-place task. The selected
robot will be named robot 1. The other KUKA KR270 ultra robot is
already selected as the welding robot with the name of robot 2. The
locations of robot 1 and robot 2 should then be optimised. The baseline
of the optimisation target is listed and set with the condition of the
product requirement. Robot 1 and robot 2 are at the customer-defined
position initially where robot 1 stays in the middle between robot 2 and
the welding station. At these positions, robot 1 and robot 2 can execute
all the operations required. As depicted in Fig. 11, the baseline of the
total operation time is 35.40 s.

The bill of process to achieve this is listed below:

(1) AGV transport: An AGV will transport the selected robot to the
initial position.
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Fig. 12. Reconfiguration Process for the specific use case.
(2) Mounting end effector: The robot will mount the pick-and-
place end effector.

(3) Pick-and-place: The product is placed on the conveyor by the
previous process in the production line.

(4) Transport: The part will be transported by conveyor to robot 1
for picking.

(5) Pick-and-place: Robot 1 will pick the part up and move it to
the welding station.

(6) Arc welding: After the part is successfully put on the welding
station, robot 2 will perform arc welding on the product.

(7) Pick-and-place: After welding, robot 1 will pick up the product,
put it on the work table, and return to the home position.

As with the proposed framework described in Fig. 12, there are
three stages to intelligent reconfiguration. In reconfiguration stage 1,
the decision-making engine should decide if the currently available
capability of the production line can meet the production requirement.
There will also be an asset selection process if there is more than one
candidate asset. For reconfiguration stage 1, it is necessary to build the
initial knowledge graph, understand the product requirement, and find
the bill of process and bill of the resources to produce the expected
product from the customer.

For reconfiguration stage 2, the reconfiguration optimisation engine
will receive the decision from stage 1 and optimise the configuration to
maximise (or minimise) user-selected KPIs. As described in Section 3.2,
the corresponding optimisations are done with the help of the simula-
tion environment and modular optimisation algorithms, such as PSO,
GA and SA algorithms. Here, total operation time and collision status
are used as the KPIs to minimise. An additional constraint in this use
case is to ensure that neither robot collides with other parts during
operations and that the robots can reach the required parts.

Stage 3 of the intelligent reconfiguration process is for the corre-
sponding control code (e.g. the PLC code and robot programs) to be au-
tomatically reconfigured and updated on the hardware controllers, thus
enabling the reconfiguration process to be as automated as possible.
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After the three stages of reconfiguration optimisation are finished,
the physical reconfiguration begins. Both robots need to relocate to
their optimal locations (based on optimal locations from the recon-
figuration optimisation engine). Lastly, the results from the simulation
environment and the real equipment will be stored and updated in the
original knowledge graph for future reference as shown in Fig. 13 .

In our framework, the first step is to build the MRKG to enable
the decision-making engine. As depicted in Fig. 13, the generated
knowledge graph is stored as a graph format in Neo4j. We will now
detail the implementation of stage 1 and stage 2 of the intelligent
reconfiguration process.

4.2. Decision-making engine implementation (reconfiguration stage 1)

The decision-making engine will take information from the MRKG.
As described in Section 4.1, the product’s required system configuration
(i.e. the capabilities which must be available) is ‘‘Pick’’, ‘‘Transport’’,
‘‘Arc welding’’, and ‘‘Place’’. All the manufacturing data (current system
configuration and historical data) is stored in graph format in Neo4j as
the experience data bank in our proposed framework. With the "match"
function of Neo4j or via the semantic search, the available resources
which have the required capability can be selected [100]. If the process
is new and unknown, a semantic search method will be utilised [101].
After the candidate assets are selected (i.e. those which could perform
the task), there will be a process to select the most suitable asset. As
shown in Section 3.1, evaluators are used to choose the most suitable
assets.

Based on the MRKG and the engineer’s experience, evaluators are
defined and used to select the most suitable assets for our applica-
tions. Our research uses fuzzy evaluation to select the optimal re-
sources [102].

The implementation of our proposed method for this specific use
case is divided into the following steps. (1) An evaluation matrix
𝑅 is defined by the engineer at first. In future cases, the matrix 𝑅
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Fig. 13. Data stored in graph format.
Table 2
Requirements.

Repeatability > 0.05
Asset utilisation > 50%
Payload > 140
Reachability > 2600

could be generated with the combination of the human experience and
experience from the knowledge graph. In our use case, there are four
types of evaluators: repeatability, current asset utilisation, payload,
and reachability. The product requirement in our use case is listed in
Table 2.
13
The deviation between the evaluators and the features from the
candidate assets (KUKA KR 270 R2700 ultra robot, ABB IRB 6700-150
robot, FANUC M-900iB/360 robot) will be calculated. Based on the
method proposed in Section 3.1, Table 3 shows the detailed information
of the candidate assets from the experience data bank.

As mentioned in Section 3.1, an evaluation matrix will be defined to
evaluate the candidate assets. In our validation case, we have utilised
the consistent fuzzy matrix.

In our case, the fuzzy priority relations based on (5) will be built
at first. We define that the closer of features of the evaluators of
the candidate assets to the evaluators, the higher the score will be.
Taking ‘Repeatability’ as an example, the matrix will be defined in (18)
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Fig. 14. Utilisation of the reconfiguration optimisation engine in the application.
Table 3
Candidate asset information.

Evaluators KUKA KR 270
R2700 ultra

ABB IRB
6700-150

FANUC M-
900iB/360

Evaluator 1 - Repeatability 0.06 0.06 0.3
Evaluator 2 - Asset utilisation 80% 60% 70%
Evaluator 3 - Payload 270 150 700
Evaluator 4 - Reachability 2696 3200 2832

according to (5).

𝐵1 =
⎡

⎢

⎢

⎣

0.5 0.5 1
0.5 0.5 1
0 0 0.5

⎤

⎥

⎥

⎦

(18)

The consistent fuzzy matrix can be calculated in (19) according to
(10) and (13).

𝑅1 =
⎡

⎢

⎢

⎣

0.5 0.5 0.75
0.5 0.5 0.75
0.25 0.25 0.5

⎤

⎥

⎥

⎦

(19)

The score 𝑠1𝑑 (𝑑 = 1, 2, 3) of the three candidate assets under factor
‘Repeatability’ can be calculated in (20) according to (10).

𝑠11 = 0.392, 𝑠12 = 0.392, 𝑠13 = 0.216 (20)

With the same approach, the score of the three candidate assets
under other evaluators can be calculated according to (10). Table 4
shows the scores that each candidate asset got under different single
evaluators.
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Table 4
Score of each candidate asset under single evaluators.

KUKA KR 270
R2700 ultra

ABB IRB
6700-150

FANUC M-
900iB/360

Repeatability 0.392 0.392 0.216
Asset utilisation 0.431 0.22 0.349
Payload 0.335 0.454 0.211
Reachability 0.454 0.211 0.335

Table 5
Total scores of each candidate asset.

KUKA KR 270
R2700 ultra

ABB IRB
6700-150

FANUC M-
900iB/360

Total score 0.403 0.319 0.278

In this application, we assign equal importance to each evaluator,
which means the weight of each evaluator is 0.25. The score of the
candidate assets can be calculated by (14). Table 5 shows the total
scores for each candidate asset. So in our validation use case, the KUKA
KR270 ultra robot is selected as robot 1.

4.3. Reconfiguration optimisation engine implementation (reconfiguration
stage 2)

After the asset is selected, the reconfiguration optimisation engine
in our proposed framework will be executed. The framework of the re-
configuration optimisation engine for this use case is shown in Fig. 14.
The simulation environment is created based on the result from the
reconfiguration stage 1 and the information from the real equipment.
The simulation environment will send information to the optimisation
environment through a socket based on the Tecnomatix .NET API.
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Fig. 15. Detailed flowchart of the optimisation process based on these three algorithms.
This API is connected to the Tecnomatix Process Simulate simulation
environment with Tecnomatix .NET viewers.

In our use case, the operation time and collision status are the
‘‘user-defined’’ KPIs that the customer wants to improve. To evaluate
the results of the modular algorithm, the number of iterations and
improvements compared to the baselines are KPIs that were stored in
the experience databank. The reconfiguration optimisation engine will
use these criteria to select the optimisation algorithm which has the
best performance.

In the reconfiguration optimisation engine, there is a loop of the
optimisation process in the optimisation environment. After one opti-
misation via the selected artificial intelligence approach completes, the
updated robot parameter will be sent to the simulation environment to
get a new operation time and then check for collisions. The CEE (Cyclic
Event Evaluator) simulation mode in Tecnomatix Process Simulate is
used in this example. CEE, which functions as a PLC, is used to control
how a typical robotics simulation progresses using logic. Once the
start signal is true, the simulation will start. Originally, there were no
robot move relocation functions defined. With Tecnomatix .NET API,
the move operation can be generated in each simulation. In the first
iteration, the optimisation environment will send random coordinates
of both robots to the simulation environment, and then two object flow
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operations for relocating the robots in Tecnomatix Process Simulate will
be generated and linked with other operations.

This application uses three algorithms to determine an optimal
setup based on the framework proposed in Section 3.2. These three
algorithms are recommended algorithms from the experience databank.
They are the global PSO, GA, and SA approaches. The flowchart for
the optimisation process based on the GA, PSO and SA is illustrated
below in Fig. 15. The potential condition describes the range of the
initial locations of the robots. Table 6 describes the details of the initial
conditions.

The initial coordinates of the robots will be randomly selected
within the preset range. After the initial coordinates are sent to the
simulation environment, the output value generated from the simula-
tion environment is the process time for the operation or a high failure
value (in this case, 60), which means there is either a collision in
the simulation environment or objects or not reachable by the robots.
As mentioned before, the KPIs in our use case are total operation
time and collision status. In more complicated optimisation scenarios,
more KPIs can be implemented. The KPIs are progressively optimised
in our reconfiguration optimisation engine. Fig. 16 shows the results
we receive from the three different algorithms in the reconfiguration
optimisation engine. The final optimised robot locations will be sent to
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Table 6
The range of the coordinates of the two robots.
Range of the coordinates of pick-and-place robot Range of the coordinates of welding robot

([−2200, 2200], [−2200, 2200], [0, 0]) ([−500, 500], [−500, 500], [0, 0])
Fig. 16. Comparison between different approaches.
-

Table 7
Reconfiguration improvement under condition 1.

Algorithm Reconfiguration efficiency
(Iterations needed to find
the potential solution)

Improvement compared to
baseline

PSO 7 9.58%
GA 3 9.58%
SA 11 9.52%

the orchestrator, and stage 3 of the reconfiguration process will be used
to update the controllers with the new configuration.

From Fig. 16 and Table 7, we find that the GA algorithm converges
faster than the PSO algorithm approach and the SA approach. The
optimised process time found by the GA, PSO and SA is almost the
same: 32.01 s for the GA and PSO algorithms and 32.03 s for the SA
algorithm. Compared with the baseline (35.40 s), they have reduced
the time by 9.58%, 9.58% and 9.52%, respectively. Based on this
information, an evaluation will be executed to select the best approach.
It can save this information in the experience data bank as described in
Fig. 12, to suggest GA as the modular optimisation algorithm for similar
future problems because GA found the best time and converged fastest.

There are some limitations to the approach. For instance, if the
initial position of the robot is too far from the work-piece where they
cannot execute the operations, the result will not easily converge—if
the robots cannot execute the operations, the optimisation environment
will always receive a penalty (bigger than the operation time) instead
of the valid operation time. Convergence speed is also highly dependent
on the chosen penalty value.

4.4. Configuration & control code update implementation (reconfiguration
stage 3)

Configuration & control code updates will be executed as the last
stage of our proposed reconfiguration framework. In our current use
case, Siemens TIA Openness API was used to implement the automatic
configuration update stage [103].

5. Conclusions and future work

Complex and flexible manufacturing systems are increasingly change
able as the markets require quicker responses to new products, supply
disruptions, and volume demands. Reconfiguring and optimising the
production process in response to external changes is a difficult chal-
lenge for complex and flexible systems. This paper proposes a novel
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reconfiguration framework to enable the system to find the most
suitable devices and find the optimised configurations with different
criteria. A knowledge graph-based approach has been used for decision-
making in response to changing customer or market needs. With this
framework, the manufacturing system reconfiguration can be enabled
at first in the simulation environment and deployed to the physical sys-
tem. A use case with multiple robots and multiple tasks has been used
to validate our approach. Compared with the baseline, the optimised
KPI has increased by about 10%.

For future work, more key performance indicators will be intro-
duced as optimisation criteria for this framework. Furthermore, more
complicated use cases will be considered, including applications where
manufacturing is not limited to one workstation. Manufacturing stan-
dards will be integrated into this framework, including using the RAMI
architecture to describe manufacturing knowledge [104]. Our pro-
posed reconfiguration knowledge graph can be applied to more spe-
cific manufacturing domains, such as aerospace, pharmaceuticals, and
automotive. Finally, we aim to publish a comprehensive dataset of
manufacturing reconfiguration scenarios; with this dataset, further re-
search can be carried out into knowledge graphs, link prediction [105],
recommendation systems [106], and reinforcement learning method for
knowledge graph reasoning [107].
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