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Abstract
Solar energy is set to play a major role in decarbonising the
economy and creating a zero-emissions future. However, there
is a need to store this abundant energy and, in many in-
stances, supply that energy at a high rate. With large expense
and efficiency losses in integration through external circuits, a
monolithic two-electrode harvest storage device or photo-
supercapacitor with a high-power density and stable life cycles
is an exciting challenge. Here we review the most recent ad-
vancements in photo-supercapacitors and some approaches
to overcoming various challenges to delivering a marketable
device.
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Introduction
Recently the investigations into renewable energy sources
have increased due to the well-known problems associ-
ated with the reliance on finite fossil fuels. One of the
forerunning renewable energy sources is solar, which is not

surprising withw739kWm�2 incident on the Earth at the
surface from the Sun [1,2]. With the power conversion
efficiency (PCE) of solar cells rising year on to the point of
over 20% formany cell types, the technology has improved
greatly [3]. However, due to the intermittence of the Sun
storage solutions are necessary. While being possible to
couple harvest and storage devices via external circuitry,
this is expensive and inefficient. Thus, the investigation
into integrated photo-electrochemical energy storage
www.sciencedirect.com
technology has been extensive in the latter days [4e11].
Electrochemical energy storage devices (EESD) work via
Faradaic processes, in secondary batteries these processes
are slow, and diffusion controlled (minutes to hours),
while in supercapacitors (SC) the processes are surface
bound and fast (well under a second to a minute) or based
on the non-Faradaic electric double layer (EDL) at the
electrode electrolyte interface. It is possible to become

confused about where the battery/SC line is drawn and
sometimes an electrode material or device is reported as
an SC while displaying more battery like behaviour being
more suitable to the category of high-rate electrochemical
(HREC) or supercapattery electrode [12,13].Despite the
publication of excellent discourses on the correct way to
report [12,14,15], there are reports of so-called “pseudo-
capacitive” materials detailing high specific capacitance
and related energy and power while they display non-
linear Nernstian or battery like qualities [16e19].
Notwithstanding, itmust bepointed out, possibly inflated

energy capacity of these devices/materials, the fact re-
mains that the charge capacity increases with illumination
thus making them viable candidates as photoelectrode
material for high-rate photo-electrochemical storage de-
vices. For amaterial with a capacitive rectangularCVcurve
eq. (1) can be used to find specific capacitance (Cs) in F/g;
for a non-capacitive CV, specific charge (Qs) in C/g can be
found from eq. (2).

Cs ¼

ZV2

V1

IðV ÞdV

m$DV $n

eq.1

Qs ¼

ZV2

V1

IðV ÞdV

2$m$n

eq.2

Where
R
IðV ÞdV is the area enclosed by the CV curve, m is

the active mass of the electrode material, DV is the po-

tential window and n is the sweep rate [5,12,14,15,20e22].
Using the discharge of the GCD of a material can give Cs

(eq. (3) or Qs (eq. (4).

Cs ¼ I$Dt

m$DV
eq.3
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Qs ¼ I$
m

eq.4

Dt

Where m is the mass or area of active material (g); I is the
current; Dt is the time of discharge (s); and DV the po-

tential window (V). A good example of Faradaic capaci-

tance was reported by Chen et al. using Ni(HO)2 storage

material coupled with TiO2 that displayed a near linear

GCD and Cs of 22.9 mF/cm2, showing good “Pseudoca-

pacitance” [12,23].

The EESDs that include SCs and HRECs or “super-
capatteries” are possibly the most important energy
storage devices with advantages of high-power density
from fast charge/discharge rates, long and stable cycle
life from the absence of phase change of electrode ma-
terial, and often at relatively low cost, potentially using
“green” chemistry [12,24]. Herein we concentrate on
the most recent developments in the field of so-called

photo-supercapacitors (PSC) that lend themselves to
applications such as mobile devices, devices on the IOT,
wearable devices for fitness and medical sensors or in-
tegrated into zero emission buildings (ZEB) [25e32].

Architecture, mechanisms, and applications
There are several different architectures for fully
monolithic integrated devices. One of the main charac-
teristic distinctions is the number of current carrying
electrodes (CCE), generally two or three [4]. There will
be CCEs attached to a photoelectrode or photovoltaic
(PV) and counter electrode in a two-electrode device
with various charge storage mechanisms involving the
electrodes and electrolyte, Fig. 1 a. While in a three-
electrode device, there will be a bridging CCE (BCCE)

between the counter electrode of the harvesting device
and one of the storage element electrodes in either a
uniaxial Fig. 1 C or biaxial configuration, Fig. 1 b.

While a two-electrode device has benefits due to the
cost and weight of the electrode material being the
greatest expense, a three-electrode device is easier to
configure as existing technology can be used with a
suitable low-resistance BCCE. For the photo-energy
capture element, PV, dye-sensitised solar cell (DSSC)
and organic semiconductor solar cell (OSSC) can be

used; for the storage element the easy-to-configure and
fabricate, symmetric electric double layered capacitors
(EDLC) return favourable and low-cost results
[33e36]. However, the use of a symmetric Pseudoca-
pacitor reportedly returns higher capacitance (Table .1).
Das et al. in one instance used a polymer PAAQ as both
CE and SC electrodes. To increase charge transport in
CE they incorporated CoTe nano-rods while the SC
electrodes were naked and suffered from swelling via
redox reactions. Subsequently, they used a different
polymer PProDOT decorated with Bi nanoflakes and

carbon microspheres to prevent swelling and increase
charge transport [37,38]. To increase the stability and
reduce the mass of the device all devices reported of late
Current Opinion in Electrochemistry 2023, 38:101243
used gel electrolyte, this also negates the need for
separate packaging and removes the issues of liquid
electrolyte leakage. The BCCEs used, range from ITO
coated glass, FTO coated glass, carbon fabric, and
nickel-foam for devices in a biaxial configuration while
Berestok et al. used a conductive epoxy for devices in a
uniaxial configuration [33e38]. Using PET electrode/
substrate material coupled with flexible OSCs can

reduce mass and volume while creating a flexible device
with a thickness of as little as 43 microns. Liu et al. and
Qin et al. used different SC storage parts, polymer CNT
mix and MXene respectively. Qin reported massive
volumetric capacitance (Table .1) due to the thinness of
material; both devices showed great promise as the basis
of self-powering flexible wearables [39,40].

The greatest challenge with a two-electrode configu-
ration is finding a multifunctional electrode material
that efficiently harvests, separates, and stores charge.

In the search for a photo-sensitive capacitance elec-
trode material, several use a transition metal oxide
(TMO) as they show good stability, are relatively
cheap, abundant and pose few environmental issues in
comparison with e.g., lead containing hybrid perovskite
[41e44]. The investigation of hybrid materials and the
junctions within promises to offer an answer to the
challenge. Momeni et al. investigated the effectiveness
of a different TMO deposited to assist the already well-
performing WTiO2 nanotube arrays as a photo-assisted
supercapacitor. The metal oxides they chose were the

well reported alternatives to the problematic but high
performing RuO2; V2O5 and MnO2 [45,46]. The addi-
tion of TMO not only shifts the bandgap into the
visible spectrum but also reportedly increased surface
area and behaved as excellent charge storage sites [44].
The materials’ synthesis route affects the morphology
and thus its’ efficiency as shown by Chatterjee et al.
and Altaf et al. The latter found lower crystal dimen-
sion and fewer defects causing a greater increase in
Coulombic efficiency under illumination while the
former found a smaller particle size aided in transport
of ions for storage [42,47] Further to the use of tran-

sition metals within electrodes is the use of metal ion,
i.e. Zn or Mg, in PSC electrolyte explored by Boruah
et al. with either photocathode or photoanode storing
appropriate ions on charging [48e50]. Isaqu et al.
demonstrated the successful use of Bi2S3 as sensitizer
in DSSC, CE and storage element in a device finding
the addition of MWCNT gave better electrocatalytic
behaviour and reversibility, with reduced electrode/
electrolyte resistance, higher conductivity and faster
ion diffusion leading to superior catalytic activity [51].
Investigating the charge storage mechanism of

organometallic-halide perovskite PSC (methyl-
ammonium bismuth iodide) Popoola et al. using an
altered Dunn’s equation (eq. 5), to include light-
induced current in CV scan (eq. 6), found the light-
induced current fell from 99 to 78% at a rate of
www.sciencedirect.com
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0.01e0.50 V/s respectively showing very strong light-
induced energy storage mechanism [12,15,47,52].

IDðV Þ
.
n
1
2 ¼ c1

�
n
1
2

�
þ c2 eq.5

Where IDðV Þ is the current at a specific potential, n
1
2 is the

square root of the scan rate while, c1 (the surface-bound

current) and c2 (diffusion controlled current) can be
Figure 1

Various PSC device architectures (a) two-electrode planar uniaxial strategy b
route. Reproduced with permission from Ref. [43] Creative Commons. (b) A t
metric SC. Reproduced with permission from Ref. [38] Copyright Elsevier. Th
incorporating symmetric supercapacitor. Reproduced with permission from R
storage device utilising nanostructured WO2 as charge storage and light shadi
Copyright Elsevier. (e) Fibre type device with the counter electrode of the DS
Reproduced with permission from Ref. [26] Creative Commons.

www.sciencedirect.com
found, by plotting, as the intercept and gradient for that

potential at that scan rate.

ImDðV Þ ¼ IDðV Þ þ cðnÞ eq.6

Where ImDðV Þ is the light modified current and cðnÞ is the
light induced current. While this is illuminating, going

forward it may be interesting to probe the diffusion and

surface ratio of current around the max light induced
ased on a heterojunction PV and symmetric SC showing charge transfer
hree-electrode biaxial parallel planar strategy based on DSSC and sym-
e charge discharge path of a uniaxial 3 electrode device with p-n junction
ef. [34] Creative Commons (d) photo-chargeable electrochromic energy-
ng element in a smart window. Reproduced with permission from Ref. [31]
SC harvest element utilised as one of the storage element electrodes.
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Table 1

Storage capacity performance, harvesting and device efficiency with reported stability data of three-electrode devices.

Device
configuration

Photo active element Capacitor electrodes
and [electrolyte]

Capacitance Overall
device

efficiency (%)

Energy capacity Power capacity PCE (%) Cycle stability (%) Ref.

Biaxial DSSC (TiO2/CdS/RB
(Rose Bengal
dye))

PAAQ/carbon fabric
[LiClO4/PMMA
gel]

53 F/cm2 @
0.5 mA/cm2

4.68 5 × 10−6 Wh/cm2 0.4 × 10−3 W/cm2 8.25 [38]

Biaxial DSSC (SnO2

Kokum)
graphene (LASER

treated Kapton)
[BPE (PVP PVA)]

20 F/g 0.56 [35]

Uniaxial HOIP
(Formamadinium-
CsPb(IBr)3)

MPNCs/dense
carbon[PVA/
H2SO4/H2O (gel)]

400 F/g @ 0.5 A/g
(31-11 mF/cm2)

11.5 @
0.5 mA/cm2

13.8 Wh/kg
(10.41 mWh/cm )̂
@

117.64 W/kg
(88.23 mW/cm2)

12.5 [33]

Uniaxial SSC (Si p-p+ boron
doped)

MPNCs/dense
carbon[PVA/
H2SO4/H2O (gel)]

224 F/g @ 0.5 A/g
(47-18 mF/cm2)

11.80 7.7 Wh/kg @ 71 W/kg 20.5 Capacitance 94%
Coulombic 95%
after 5000 cycles

[34]

Biaxial OSC (ITO/SnO2/
Cs2CO3/
P3HT:PC60BM/
MoO3/Ag)

MWCNT[PVA/
H3PO4]

20 F/g @ 0.035 A/g 2.27 0.81 Wh/kg @ 125 W/kg 3.57 Nearly 100% for
4000 cycles

[36]

Biaxial DSSC TiO2/SNGP/
CdS: [S2−/S gel]:
PProDOT:CMS-
BiNF

PProDOT/CMS-
BiNF [Li+-gel]

104.6 mF/cm2 6.8 9 mWh/cm2 0.026 mW/cm2 9.4 Stable over 50 cycles [37]

Uniaxial
(flexible)

OSC (ZnO/
(PBDTTT-OFT)/
(PC71BM)/.MoOx)

PEDOT:PSS/CNT
[H2SO4:PVA(gel)]

273 mF/cm2 5.92 – – 9.73 96% efficiency after
100 cycles

[40]

Uniaxial
(flexible)

OSC (PM6:Y6) Ti3C2Tx [ionogel] 502 F/cm3 Storage 2.2 – – 2.5
(frontlit)
1.89
(backlit)

95% capacitance
after 10,000 cycles

[39]

Abbreviations: PAAQ – poly (1-aminoanthraquinone), PMMA – Poly(methyl methacrylate), BPE – blend polymer electrolyte, PVP – Polyvinyl pyrrolidone, PVA – Poly(vinyl alcohol).
HOIP – halide organic inorganic perovskite, MPNC – mesoporous nano-carbons, P3HT – poly (3-hexylthiophene-2,5-diyl), PC60BM – phenyl C60-butyric acid methyl, MWCNT – many walled carbon nano-
tubes, SNGP – Sulphur and nitrogen doped graphene particles, PProDOT – poly(3,4-propylenedioxythiophene), CMS – carbon micro-spheres, BiNF – bismuth nano-flakes.
PBDTTT-OFT – poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b; 4,5-b0]dithiophene-2,6-diyl-alt-(4-octyl-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl], PC71BM – [6,6]-phenyl-C71-butyric acid
methyl ester, PEDOT – Poly(3,4-ethylenedioxythiophene), PSS – polystyrene sulfonate, PM6 – Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(10,30-di-2-
thienyl-50,70-bis(2-ethylhexyl)benzo[10,20-c:40,50-c’]dithiophene-4,8-dione)], Y6 – Non fullerene acceptor Y6 (C82H86F4N8O2S5).
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current scan rate at various power densities of illumination.

It is also important to note this doesn’t discern between the

Faradaic and non-Faradaic processes at the surface.

To further improve device efficiency, internal resistance
on discharge due to junction or Schottky barriers needs
to be addressed [53,54]. Interrogation of charge separa-

tion, transport and storage mechanisms are important to
better understand devices and achieve higher effi-
ciencies. Wenjun et al. investigated and reported on the
concept of a Faradaic junction, a mechanism by which
there is an exchange of electrons and ions at a Faradaic
material (farador) electrolyte interface during a photo-
excitation within a semiconductor interfaced with a
farador. The charge carriers are therefore a mix of both
with the ionic charge being stored in the farador at or on
the surface. By blocking the short circuit between the
farador and the CCE by the judicious use of a semi-

conductor, capacitance is increased with a negligible
potential barrier between the farador and short-circuited
CCE but the potential window of the farador is affected
by the Fermi level of the semiconductor. This barrier
height can be controlled by the band position of the
semiconductor (Fig. 2 a) [54]. Two junctions in a planar
sandwich configuration were fabricated, one with WO3

and the other with MoO2.5, photo-electrodeposited on
nþp-Si substrate. Comparing the photo charge and dark
discharge activity of the junctions with that of the same
Figure 2

a. Band diagrams of the interfaces between current carrying electrode (CCE)
electrolyte under an applied potential. DV is the barrier height created by elim
semiconductor (band gap) and farador (redox potential) tuning the barrier [54].
a solar rechargeable device. V1 and V2 are a lower and upper limit of Faradaic
V1’ and V2’ are a lower and upper limit of Faradaic potential window of a cou
electrode. Voc is a photovoltage in a photoelectrode. To realize a photo-oxidiza
(EFp) in a semiconductor should be more positive than V1 and more negative
electrons from a semiconductor can reduce the Faradaic layer, not the electric
and more negative than V2’ (V1’<VE <V2’) Wang et al. 2022 [57].

www.sciencedirect.com
deposited on carbon substrates, it was shown, the po-
tential window can be shifted by a semiconductor while
maintaining the dis/charge behaviour. The first 2-
electrode photo-supercapacitor that can discharge
without an applied bias via the adjusting potential was
devised, evidenced by experimental CV plots [55]. They
used the theory of faradaic junction to explain greater
than theoretical open circuit potential (OCP) of semi-

conductor/semiconductor interfaces such as quantum
dot sensitised solar cells or perovskite solar cells and high
photovoltages. In situ techniques were used to support
the theory that the junction promotes photo-driven
surface Faradaic reactions within TiO2/CdS on the
TiO2 surface only, due to the potential window favouring
the Faradaic charge/discharge process on TiO2. This re-
action seemingly occurred only on the surface not in the
bulk and was promoted by the swift charge transfer be-
tween the TiO2 and the CdS [56]. Subsequently, a two-
electrode photo-rechargeable Faradaic junction device

was created, which exhibited a photovoltage memory
effect; the discharge voltage matching that of the
photovoltage which in turn promotes high performance.
This effect didn’t occur with all CEs while probing the
effect via a real-time OCP measurement method; the
OCP (between SCE and working electrode) for the
photoelectrode (PE) and the CE in a disconnected dark
stage, a connected dark stage, a connected light stage
and back to a disconnected dark stage. It was apparent
/Faradaic layer (farador)/electrolyte; and CCE/semiconductor/farador/
inating the short circuit between farador and CCE, with the choice of
b. Schematic of working prerequisite for the photovoltage memory effect in
potential window of a Faradaic material in a photoelectrode, respectively;
nter electrode, respectively; VE is an equilibrium potential of a counter
tion of a Faradaic material on a semiconductor, the hole quasi-Fermi level
than V2, that is, V1<VE + Voc<V2. On the other hand, if photo-generated
double layer of a counter electrode, VE should be more positive than V1’

Current Opinion in Electrochemistry 2023, 38:101243
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Table 2

Storage capacity performance, device efficiency and reported stability data of two-electrode devices.

Device
Configuration

Photo active element Counter electrode Electrolyte Capacitance Power capacity Maximum charging
voltage (V)

Cycle Stability Ref.

Planar ZnO/Ag2S/ZnS PEDOT PVP HEMIm/BF4

(ionic gel)
0.667 mF/cm2

– 0.33 ⁓98% after 1200
cycles

[43]

Planar Si/WO3 Carbon H2SO4 (aq) Capacity (8.6 mC/
cm2)

0.8 mW/cm2
– – [55]

Planar TiO2/Bi2S3 Bi2S3/MWCNT I3−/I- 133.6/g 1992/kg – >80% after 3000
cycles

[51]

Planar Methylamonium
Bismuth triodide

Methylamonium
Bismuth triodide

CPH-G gel (PVA
Chlorobenzene
H3PO4)

0.28 mF/cm2 0.35F/g
@ 0.01V/s

– – 94.79% after 5000
cycles

[52]

Planar g-C3N4@rGO/FTO Zn ZnSO4 11.4 F/g at 5.0 mA/g 1625W/kg@ 5mA/g
16,250 W/kg @
50 mA/g

0.85 90% after 1000
cycles

[48]

Planar Vanaduium
Pentoxide (V2O5)

Activated Carbon Zn(CF3SO3)2 138 F/g – 0.5 99% after 4000
cycles

[49]

Planar BiVO4/CoPi Carbon cloth Potassium
phosphate buffer
(KPi)

– – 0.88 – [59]

Planar WTiO2 NT MnO2/
V2O5/MnO2.V2O5

WTiO2 NT MnO2/
V2O5/MnO2.V2O5

1M LiCl 95 mF/cm2 at
0.12 mA/cm2

(237.6F/g at 6.0 A/
g)

39.96 mW/cm2

(360 W/kg)
0.5 94% and 93%

capacitance
retention in light
and dark
respectively after
5000 cycles

[44]

Planar BiVO4-rGo rGo Na2SO4 141.8 F/g @ 0.2 A/g – – 78% retention after
100 cycles

[60]

Fibre/Strip OSC (TCE/ZnO/
PTB7-
Th:PC71BM/
PEDOT:PSS/Ag)

rGO-PEDOT:PSS PVA/LiCl gel 52 mF/cm2
– – 96% capacitance

after 5000 GCD
cycles

95% capacitance
after 1000 bending
cycles

[32]

Fibre DSSC (TiO2 N719) CNTYarn (p {FeCl3}
doped)

Li-TFSI film 78.3 mF/cm2
– – 90% after 500

bending cycles
and 10 washing
cycles

[26]

Abbreviations: HEMIm/BF4 – 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, rGO – reduced graphene oxide, TCE – transparent conductive electrode, PTB7-Th – Poly[4,8-bis(5-(2-ethylhexyl)
thiophen-2-yl)benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)], CNTY – carbon nanotube yarn.
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“side reactions” occurring under zero bias were trivial
and lead to 100% Coulombic efficiency over 80 cycles
also proving excellent reversibility. Due to the photo-
voltage memory effect, a higher performance occurred
from “increased storage time and higher charge quantity
of the faradaic layer than the electric double layer”. With
the careful choice of semiconductor, farador and CE the
onset potential, photovoltage and discharge voltage can

be controlled (Fig. 2 b). The discovery of the mechanism
of tuning semiconductor band gap and Fermi level to
farador equilibrium potential and Faradaic potential
window along with the CE equilibrium potential and
Faradaic potential window is key to designing high
energy-dense two-electrode devices [57].

An important application of PSCs will be in zero
emission buildings (ZEB). There have been several
recent investigations into this application. Orozco-
Messana et al. investigated a heterojunction PV

coupled with a SC incorporated within a porous stone-
ware tile as near ZEB material [29]. They decided on a
TMO heterojunction PV as the “best compromise” be-
tween efficiency, simplicity and durability. The storage
element was a modified rGO with pseudocapacitive
Ni(OH)2 coupled with an electroless deposited
conductive layer of NieMoeP as an adherence agent to
the porous porcelain substrate. The conductive layer
showed good adhesion for the metal layer and low re-
sistivity of 7.2 MPa and 10.6 mU cm respectively. They
recorded good capacitive stability over 200 cycles [30].

Photo-electrochromic capacitors (PESC) as smart win-
dows to regulate a building’s temperature and light
ingress with solar energy capture/storage have been
investigated [25,28,29,31]. TiO2 based DSSC were
commonly used to charge with the redox action of
electrochromic WO3 to store energy as intercalated ions
balancing the negative excitons from the DSSC causing
the darkening (Fig. 1 d. [31]). Yin et al. successfully
overcame the limiting diffusion speed and electrolyte
driven corrosion of the electrode by incorporating WS2,
the further inclusion in the DSSC CE also increased
conductivity. Not only did the stored energy drive the

electrochromic action but could be used on discharge for
external load [25]. Liu et al. also produced a PESC
complimented with Prussian blue dye. The combination
of electrochromic chemicals gave a multimodal material
working in original, bright, cool and dark modes. As a
future development of this excellent technology the
driving potential to trigger the Dark mode, for total
blockage of light and heat, could be better supplied from
the stored photo-charge [28]. Zhang et al. reported on a
flexible PESC; the conductive contact substrate was
ITO-PET which shows low sheet resistance and high

transmittance. Its flexibility allows for smart windows of
all shapes and wearable applications [29]. An alternative
route to wearables is fibres; Jin et al. used an existing
printing technique to embed metal strips into a UV-
curable conducting polymer creating a stable, flexible
www.sciencedirect.com
OSC SC strip device that was then woven into a textile
[32]. Another investigation into a fibre style PSC came
from Kim et al. using a novel method of “floating cata-
lyst” CVD [58] to create threads of CNT that were
subsequently spun into yarn and then appropriately
doped. The device showed great stability even after 10
cycles of automatic washing (Table 2) [26]. These kinds
of application innovations certainly bring us one step

closer to marketable devices, a comparison of storage
capacity and stability of recent two-electrode devices
can be seen in Table 2.
Conclusion
In reviewing the most recent advancements in the area
of PSCs we covered the importance of standardisation of
characterisation parameters and definitions, with the
inclusion of standard characterisation methods CV, GCD
with appropriate analysis to avoid confusion. The effi-
ciency, capacity, stability and cost of materials and pro-
cesses need to be overcome before the commercial

viability of PSCs is realised. We have seen some of these
issues tackled by the reduction of device mass through
two electrode configurations, reduction of material mass
and volume and the use of more stable elements such as
gel electrolyte and TMO based electrodes. Using
existing fabrication techniques such as printing, and the
creation of new fabrication techniques move us closer to
achieving marketable products. By more fully under-
standing both the mechanisms of charge transfer and
storage through novel in-situ techniques and material
structure performance relationships, we can increase

device efficiency further.
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