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A Thermoresponsive Three-Dimensional Fibrous Cell Culture 

Platform for Enzyme-Free Expansion of Mammalian Cells  

 

Abstract 

A three-dimensional thermoresponsive fibrous scaffold system for the subsequent extended culture and enzyme-free 

passaging of a range of mammalian cell types is presented. Poly(PEGMA188) was incorporated with poly(ethylene 

terephthalate) (PET) via blend-electrospinning to render the fibre thermoresponsive. Using primary human corneal 

stromal stem cells as an therapeutically relevant exemplar, cell adhesion, viability, proliferation and phenotype on 

this fibrous culture system over numerous thermal enzyme-free passages is described. We also illustrate the 

versatility of this system with respect to fabricating thermoresponsive fibres from biodegradable polymers and for the 

culture of diverse mammalian cell types including mesenchymal stem cells, colon adenocarcinoma cells, and NIH-

3T3 fibroblasts. This thermoresponsive scaffold system combines the advantages of providing a physiologically 

relevant environment to maintain a desirable cell phenotype, allowing routine enzyme-free passaging and expansion 

of cultured cells, whilst offering mechanical support for cell growth. The system described in this study presents a 

versatile platform for biomedical applications and more specfically for the expansion of mammalian cells destined for 

the clinic. 

Keywords: 3D cell culture, corneal stem cells, electrospinning, thermoresponsive, tissue engineering 

 

1. Introduction 

The application of cells within a clinical setting is dependent on meeting regulatory requirements and 

developing techniques that are approved by the regulatory authorities remains a challenge. Such techniques 

include optimal culture systems for the expansion of cell populations whilst maintaining a desired cell 

phenotype and without the use of exogenous factors that may pose a risk of contamination. Conventional 

cell passaging requires the use of proteolytic enzymes to digest cell membrane proteins, primarily integrins, 

which are responsible for cell-cell and cell-substrate interactions. This process can affect cell adhesion to 

further substrates, impact proliferative ability, and influence cell metabolism and quality.[1-3] There is a 

pressing need to develop alternative culture environments that do not require the use of proteolytic enzymes. 
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Synthetic 'smart' biomaterials, on which the bio-adhesive properties of the surface can be modulated by 

external stimuli without the need for enzyme treatment, are therefore of interest. By utilising the thermally-

modulated properties of these surfaces, cells can be cultured at temperatures above the lower critical 

solution temperature (LCST) of the thermoresponsive polymer (hydrophobic surface), then harvested by 

lowering the culture temperature below the LCST (hydrophilic surface).[4] Such a system eliminates the 

need for proteolytic enzymes.  

 

Two-dimensional (2D) thermoresponsive substrates have been studied for applications in cell sheet 

engineering[1, 5, 6] and as tuneable artificial extracellular matrices for different cell types, such as hMSCs.[7] 

However, the lack of a 3D culture environment significantly impacts cell morphology, proliferation and 

phenotype.[8-10] Moreover, difficulties in using enzymatic treatment to extract cells from 3D culture systems 

highlight the need for thermoresponsive scaffolds for long-term culture and passaging of clinically-relevant 

cell types. Electrospinning is an efficient method for the fabrication of nano- or micro-fibrous scaffolds with 

controlled morphology, porosity and composition.[11] PEG-based polymers are widely used for drug delivery 

and biological applications, and possess a reversible phase transition.[2, 12] In contrast, PNIPAAm-based 

polymers possess both strong hydrogen bond donors as well as H-bond acceptors in their structure, which 

can lead to irreversible inter-and intra-chain associations and entanglement.[13] This makes switchable 

PEG-based substrates for cell culture applications desirable, as the process of cell attachment/detachment 

is unhindered by irreversible dehydration.[13] 

 

This study presents novel 3D thermoresponsive co-electrospun fibrous materials that can be used for the 

extended maintenance and enzyme-free passaging of anchorage-dependent mammalian cells at 

physiological conditions. This 3D system is versatile due to the thermoresponsive fibres being generated 

from polymer blends and is therefore amenable to any polymer being blended with the thermoresponsive 

component. These fibres present a 3D environment that supports cell growth in addition to mild and efficient 

cell harvesting by cooling. Since tissue regeneration in vivo is characterised by dynamic 

attachment/detachment of various cell populations, this study can also inform the design of advanced 

scaffolds for tissue engineering. Comprehensive cell culture and passaging experiments were performed 

using primary human corneal stromal stem cells (hCSSCs) to investigate the effects of extended culture and 

seven enzyme-free thermal passages on the phenotype of a therapeutically relevant cell phenotype. 

Extended two-dimensional culture of hCSSCs in vitro results in their dedifferentiation from a quiescent, 
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dendritic cell phenotype into an undesirable fibroblastic/myofibroblast repair phenotype, which in vivo leads 

to scarring and blindness.[14-16] Three-dimensional culture environments have been reported to promote 

the reversion of activated corneal stromal cells to a quiescent keratocyte phenotype.[16,17,36]  Diverse 

exemplar cell types, such as mesenchymal stem cells (ihMSCs; stem cell type), colon adenocarcinoma cells 

(Caco2; carcinoma cell type) and NIH-3T3 fibroblasts (differentiated cell type) were used to illustrate the 

biocompatibility of these electrospun substrates across different mammalian cell types whilst confirming that 

the thermoresponsive phenomenon is not cell line-specific. Cells were evaluated for adhesion, viability, and 

subsequent proliferation on the scaffolds over numerous thermal enzyme-free passages.  Electrospun 

thermoresponsive fibres offers a robust cell culture platform for a range of potential applications, including 

large-scale cell expansion and 3D culture systems that allow dynamic control over the cell adhesive 

environment. 

2. Materials and methods 

2.1. Materials 

Poly(PEGMA188) was prepared by free radical polymerization following a published method [18] as detailed 

in Supporting Information (section 1.1; Mw [gel permeation chromatography [GPC] = 50.8 kDa, Ð = 1.8). 

While commercial PET contains stabilisers, such as glass, PET from drinks bottles is food-grade and 

contains only PET, making it a purer source of PET.  PET collected from commercial grade drinks bottles 

(bottles were ground and pooled into a single batch and stored at -20oC until required). NMR spectra (1H 

and 13C) showed the expected resonances with no impurities above the instrumental level of detection; 

Figure S2) and PLGA (lactide/glycolide ratio 75:25, Mn [GPC] = 68 kDa, Ð = 1.7) purchased from Sigma-

Aldrich were used. Solvents were HPLC grade (Sigma-Aldrich) and used without further purification. 

2.2. Polymer solutions and electrospinning 

PET polymer (30% w/v) was dissolved in a mixture of 3 mL of TFA/3 mL of DCM, and PLGA was dissolved 

in 6 mL of DCM. For co-polymer solutions, 4% (w/v) of the thermoresponsive poly(PEGMA188) was added to 

the PET or PLGA polymer solutions. A 4% (w/v) poly(PEGMA188) polymer was then added to the mixture. 

The same concentration of poly(PEGMA188) was prepared with 18.5% (w/v) PLGA polymer (Sigma-Aldrich, 

lactide/glycolide ratio 75/25, Mn [gel permeation chromatography, GPC] = 68 kDa, Ð = 1.7) in 6 mL of DCM. 
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Mixtures were stirred at RT for 24 h to ensure complete solvation. Three different batches were prepared for 

each concentration on different days. 

 

For electrospinning, 6 mL of the polymer solution prepared were taken into a 10 mL plastic syringe fitted with 

an 18-gauge blunt needle (Figure 1). The loaded syringe was then mounted onto a syringe pump (Harvard) 

and the polymer solution was pumped through the needle at different rates until regular dripping occurred. 

A voltage was then applied to the needle tip (positive electrode) using a high-voltage unit (Glassman High 

Voltage Inc.). The solution was spun onto a rectangular stainless-steel collector plate (6 cm2), which was 

grounded via an earthed electrode. The working distance between the needle and the collector plate was 

set to approximately 15 cm. The entire polymer solution was spun (parameters detailed in Table 1), and the 

plate was rotated at 90° every 20 minutes at RT (25°C). The resultant non-woven mats were air-dried for 48 

h at RT, and then peeled off the collector plate manually prior to storage at 25°C.  Fibre morphology (100 

measurements per scaffold) and scaffold thickness (20 measurements per scaffold) were measured 

following sputter-coating in gold (4 minutes) on a JEOL SM 1100 scanning electron microscope (accelerating 

voltages 10–30 kV; working distances 15 to 35 cm) using the SEM-associated SMiles Image processing 

software.  The static WCAs of the scaffolds (three scaffolds of each batch) were determined from sessile 

WCA measurements (taken at five different 1 cm2 areas, total scaffold area = 6 cm2) taken using distilled 

water and a CAM 200 sessile drop video capture apparatus from which the average and standard deviation 

were calculated. 

 

Table 1: Co-electrospinning parameters of different polymer solutions. 

Polymer solutions Flow rate Working distance Voltage 

PET-poly (PEGMA188)  
4 mL/h 15 cm 19 KV 

PLGA-poly (PEGMA188) 

PET 0.5 mL/h 15 cm 14 KV 

PLGA 4 mL/h 15 cm 19 KV 

 

2.3. Cell culture and maintenance 

Human donor tissue was used with approval by the local ethics research committee and in accordance with 

the tenets of the declaration of Helsinki, following consent obtained from the donors and/or their relatives. 
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Corneoscleral rims were obtained under an MTA from Nottingham University Hospitals Trust and all work 

performed in accordance with the Human Tissue Authority. Corneoscleral rims arrived fully anonymised, 

thus age, gender and health status is unknown. Primary human corneal stromal stem cells (hCSSCs) were 

isolated from corneoscleral rims of three donors using a modification of a previously described method.[19] 

Cells were cultured in medium-199 supplemented with 20% (v/v) foetal calf serum (FCS), 100 units/mL 

penicillin, 100 μg/mL streptomycin and 1% (v/v) L-glutamine. Green fluorescent protein (GFP)-expressing 

immortalised human mesenchymal stem cells (ihMSCs; generated in-house), human colon adenocarcinoma 

cells (Caco2) and RFP-expressing NIH-3T3 fibroblasts were cultured in Dulbecco’s modified Eagle’s medium 

supplemented with 10% (v/v) FCS, 100 units/mL penicillin, 100 μg/mL streptomycin and non-essential amino 

acids. All cells were maintained in a humidified incubator at 37°C and 5% CO2 in air, with medium changes 

every 2 days. 

2.4. Scaffold sterilization and cell seeding  

Fibrous scaffolds were cut into discs (1 cm2) using a trephine (stainless steel cylinders, 1 cm diameter) and 

placed in non-tissue culture treated 6 well plates. Scaffolds were sterilised by UV radiation (254 nm) for 20 

minutes on each side then incubated at 37°C with 2 mL of PBS containing 100 µg/mL of 

gentamicin/amphotericin (AB/AM), (10 mL of PBS: 100 μL of AB/AM) for 24 h. Scaffolds and control surfaces 

(tissue culture polystyrene; TCPS) were washed with PBS and pre-incubated in culture media for 24 h. Cells 

were seeded on scaffolds at a density of 1 × 105 cells/mL and cultured at 37°C in 5% CO2 in air. 

2.5. Determination of hCSSCs confluence using Cellstain™ double-staining kit  

CellstainTM double staining kit is utilised for simultaneous fluorescence staining of viable (calcein-AM) and 

dead (propidium iodide) cells and was used as an endpoint assay. The assay solution was prepared by 

adding 10 μL of solution A (acetoxymethyl ester of calcein) and 5 μL of solution B (propidium iodide) to 5 mL 

of PBS. Cell-seeded scaffolds and TCPS control surfaces were incubated with 500 μL of the assay solution 

for 15 minutes at 37°C. 

2.6. Effect of poly(PEGMA188) on hCSSCs viability assessed using Alamar Blue® (AB) assay 

Alamar Blue® is a resazurin dye-based assay used as a cell viability indicator. It is non-fluorescent in its 

oxidised state. However, viable cells have the ability to reduce resazurin to resorufin, a highly fluorescent 
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pink dye.  Cultured hCSSC viability experiments were conducted over 10 days, with fresh solutions prepared 

on each day of the assay. On day 0, the assay was conducted 6 h after seeding the scaffolds. Scaffolds 

were transferred to a new 6 non-tissue culture well plate and washed 3 times with warm PBS to remove 

unattached cells. Aliquots (1 mL) of AB working solution (10% (v/v) AB stock solution (Invitrogen) in Hanks 

Balanced Salts Solution (HBSS) without phenol red and serum (Sigma)) was added to each scaffold before 

incubation at 37°C for 90 minutes. After incubation, 200 µL aliquots of AB solution was transferred to 96 

well-plates and fluorescence was measured at an excitation/emission wavelength of 560/590 nm. Scaffolds 

were washed with warm PBS then returned to the same cell culture media and incubated at 37°C for day 3 

and day 5 readings. Detachment on day 5 (passage 1) was carried out by lowering the temperature to 17°C 

for 7 minutes, with gentle agitation, for both test (thermoresponsive PET or PLGA) and control (PET and 

PLGA alone) scaffolds. On day 5 post-passaging, new scaffolds were used and re-seeded with 1×105 

cells/mL for AB measurements. Cell detachment was conducted again on the scaffolds (passage 2). Three 

independent experiments were carried out in triplicate (n=9, three scaffolds from three batches). 

2.7. Prolonged (seven) thermal and enzymatic passages of hCSSCs on thermoresponsive PET-

poly(PEGMA188) scaffolds and TCPS respectively  

The starting passage number of hCSSCs was 2; cells were grown to 80% confluency and removed from the 

TCPS culture surface using TrypLE™. Cells were pelleted by centrifugation at 200xg for 5 min, washed and 

re-suspended in medium. They were then seeded on 1 cm2 co-electrospun thermoresponsive PET scaffolds 

and 12 well TCPS at a density of 1 × 105 cells/mL in a total of 1 mL of medium, then cultured at 37°C. The 

medium was changed the next day. Thermal detachment studies from PET-poly(PEGMA188) scaffolds were 

carried out after 120 h of culture (every five days for seven passages, on new scaffolds for each passage; 

total = 35 days), where temperature was lowered from 37°C to 17°C (RT) for 7 minutes (with gentle agitation). 

Enzymatic detachment of cells from TCPS and scaffolds fabricated from PET-alone was carried out via 

enzymatic TrypLE™ treatment for 5 minutes at 37°C. Cells detached from the scaffolds were gently pipetted 

to ensure a single cell suspension was obtained. Cells were counted after each passage using a Neubauer 

haemocytometer chamber. Population doublings (PDs) at each passage were calculated using Equation (1):  

 

PDs = [logl0 (total cell counts/cells seeded) / log10 2]                          (1) 
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where the initial cell number seeded was 1 × 105 cells/mL. Proliferation rates were calculated as cumulative 

population doublings (CPDs) as a function of time (n = 9 total, three scaffolds from three different batches). 

2.8. RNA extraction, cDNA synthesis and quantitative reverse transcription-polymerase chain reaction 

(RT-qPCR) 

Total RNA was extracted from hCSSCs cultured on scaffolds and TCPS (n=3 each) using RNeasy Mini Kit 

(Qiagen). Samples from non-thermoresponsive scaffolds (PET and PLGA) were chopped into small pieces 

using a scalpel before treatment. Total RNA for each sample (300 ng) was reverse-transcribed into single-

stranded cDNA using Superscript III reverse transcriptase (Life Technologies, UK) with random hexamer 

primers, according to the manufacturer’s protocol. PCR reactions were conducted using the prepared cDNA 

(2 μL) with inventoried Taqman assays (Applied Biosystems, Life Technologies) to detect (GAPDH; 

Hs99999905_m1), CD34 (Hs00990732_m1), THY1 (CD90; Hs00174816_m1), ACTA2 (Hs00426835_g1) 

and ALDH3A1 (Hs00964880_m1). Amplification was performed on an Mx3005P multicolour 96-well PCR 

system (Stratagene, Agilent Technologies, UK). Mixtures were cycled as follows: 50°C for 2 minutes for one 

cycle (initial denaturation), one cycle at 95°C for 10 minutes (denaturing), then 50 cycles at 95°C for 15 

seconds (annealing) and 60°C for 1 minute (extension). RT-qPCR reactions were analysed using Real Time 

PCR Miner algorithm[20] which calculates efficiency and threshold cycle. All experimental values were 

normalised to readings of the endogenous reference gene, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). GAPDH as an endogenous reference gene for the hCSSC has been confirmed previously by our 

group. [25, 27] 

2.9. Immunocytochemical staining  

Cells on PET-4% poly(PEGMA188) and TCPS surfaces were fixed using 4% (w/v) paraformaldehyde for 10 

minutes and permeabilised in 100% (v/v) methanol for 10 minutes. Blocking was performed for 1 hour at RT 

in PBS with 1% (v/v) bovine serum albumin (BSA), 0.3 M glycine and 3% (v/v) donkey serum. Samples were 

incubated with mouse monoclonal primary antibodies at 4°C overnight (CD34, 1:200 and α-SMA, 1:200). 

After washing, samples were incubated with secondary Alexa Fluor 488 donkey anti-mouse IgG (1:300) for 

1 h. Samples were counterstained with 1 mg/mL propidium iodide. Samples were mounted in fluorescence 

mounting medium (Dako, UK) before imaging. Images were obtained using a Nikon Eclipse TS 100 

microscope and a DS-L3 Nikon capture unit. 
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2.10. Statistical analysis  

Statistical analyses were performed using GraphPad Prism 6 software (San Diego, CA) following 

confirmation of normal data distribution. Two groups were compared using unpaired Student’s t-test and 

multiple groups were compared using one- or two-way ANOVA with post-hoc Dunnett’s test. A value of p ≤ 

0.05 was considered significant. 

3. Results 

Beadless fibres with an average diameter of ~840 ± 170 nm and 3 ± 0.8 µm were prepared from 30% (w/v) 

PET and 18.5% (w/v) PLGA, respectively. This was achieved by altering various electrospinning parameters 

such as polymer solution concentration, voltage and flow rate (Table 1). Surface wettability of the scaffolds 

was determined by WCA measurements at 20°C. The average wettability (θw) of the PET and PLGA 

scaffolds alone was low (105 ± 5° and 131 ± 10°, respectively), indicating a hydrophobic surface (Figure 2). 

Next, a dodecane-thioether terminated poly(poly(ethylene glycol)methacrylate) (poly(PEGMA188)) polymer 

was synthesized by free radical polymerization following a published method.[18] 1H NMR and 13C NMR 

were conducted to confirm the successful preparation and purification of poly(PEGMA188) (Figure S1a and 

b). Gel permeation chromatography (GPC) confirmed the molar mass of the polymer (Mw (GPC) = 51 kDa, 

Ð = 1.8, Figure S1d). The synthesised polymer solution transparency changed from clear to turbid at 26°C. 

Spectrophotometry was also used to determine the cloud point temperature of poly(PEGMA188), which was 

found to be between 22.5°C and 25.2°C (Figure S1c). 

 

The second step involved the incorporation of 4% (w/v) poly(PEGMA188) with either the PET or PLGA 

polymer solutions for co-electrospinning (blend-electrospinning) to form the 3D thermoresponsive co-

electrospun scaffolds. Scanning electron microscopy (SEM) analysis of the resultant scaffolds (Figure 2) 

showed that the addition of the thermoresponsive polymer did not affect fibre morphology or bead formation. 

The average fibre diameters of the co-electrospun scaffolds of PET-poly(PEGMA188) and PLGA-

poly(PEGMA188) did increase to 870 ± 195 nm and 3.8 ± 0.45 µm respectively, compared to PET or PLGA 

scaffolds alone.  The thickness of all scaffolds was on average 43.4 ± 2.45 µm (as measured by SEM). The 

density of the fibres were consistent between scaffolds within a batch and from one batch to another because 

all of the electrospun scaffolds were prepared under the same electrospinning conditions. 
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WCA measurements were conducted on co-electrospun fibres at 37oC, 20oC and 17oC, as shown in Figure 

2 and Table 2, with WCAs at 20°C displaying a change from the hydrophobic nature of the PET and PLGA 

fibres (105 ± 5° and 131 ± 10°, respectively) to a more hydrophilic surface (74 ± 12° and 75 ± 13°, 

respectively). 1H-NMR analysis of the dissolved co-electrospun fibres was conducted to investigate the 

elemental composition of these surfaces and confirm the presence of poly(PEGMA188) in the fibres. Peaks 

attributable to poly(PEGMA188) were observed between 3.4-4.3 ppm, as shown in Figures S2 and S3 for co-

electrospun PET-poly(PEGMA188) and PLGA-poly(PEGMA188), respectively.  

 

Table 2: WCA analysis on the different polymers under investigation, carried out at various temperatures (n=3 batches of scaffolds in triplicate). 

Scaffold Composition At 37 °C At 20 °C At 17 °C 

30% PET: 0% Poly(PEGMA188) 110 ± 4° 105 ± 5° 107 ± 3° 

30% PET: 4% Poly(PEGMA188) 112 ± 10° 74 ± 12° 62 ± 7° 

18.5% PLGA: 0% Poly(PEGMA188) 132.5 ± 9° 131 ± 10° 129 ± 10° 

18.5% PLGA: 4% Poly(PEGMA188) 129 ± 3° 75 ± 13° 72 ± 14° 

 

Following synthesis and characterisation, the ability to culture cells within the 3D thermoresponsive 

electrospun scaffolds was evaluated.  The application of this novel thermoresponsive system for the culture 

of primary human CSSCs was assessed; these cells were chosen as an exemplar therapeutically relevant 

cell type. These experiments were carried out on both the PET and PLGA scaffold systems and findings 

were comparable.  For simplicity we describe the results from the PET scaffolds here and present the data 

from the PLGA scaffolds in supplementary information (Figure S7).  Staining of hCSSCs cultured on PET 

and PET-poly(PEGMA188) scaffolds and tissue culture polystyrene (TCPS) with Cellstain™ double-staining 

kit was carried out. The cells required almost five days to become 70% confluent, then were detached at 

17°C (RT) without the use of trypsin (Figure 3a). Notably, hCSSCs remained viable on the thermoresponsive 

polymer poly(PEGMA188) scaffolds with no cytotoxicity evident, and proliferated in a similar manner to those 

cultured on TCPS surfaces. There was a high degree of cell-cell contact on PET-containing scaffolds (Figure 

3a) and the dendritic morphology of hCSSCs was maintained. 

 

The viability of hCSSCs was assessed over five days in culture. A significant increase in fluorescence 

intensity (p ≤ 0.0001) was observed from day 0 to 3 and from days 3 to 5 at 37°C on all electrospun scaffolds 
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and on TCPS (Figure 3b). These results indicate that hCSSCs were viable over five days in culture and 

confirm the biocompatibility of the scaffolds, as they supported cell proliferation in a similar manner to TCPS. 

The AB assay was also conducted to determine the thermoresponsive behaviour of co-electrospun scaffolds 

by detecting change in fluorescence intensity while changing the culture temperature periodically over a total 

of 10 days in culture (2 passages every 5 days using new scaffolds at each passage; Figure 3c). A significant 

decrease in fluorescence intensity was observed following a change of culture temperature of the PET-4% 

poly(PEGMA) scaffolds, which indicated that detachment of cells from the culture surface had occurred.  

Post-passage 1, there was a significant decrease in the fluorescence intensity (p ≤ 0.0001) generated by 

the cells when the poly(PEGMA188)-containing scaffolds were incubated at 17°C, while the fluorescence 

intensity generated by cells on the PET scaffolds alone and TCPS at day 5 (pre-passage 1 before 

detachment) and post-passage 1 were not significantly different (p > 0.05). On day 5 post-passage 1, a set 

of new scaffolds were used, reseeded with 1 × 105 cells/mL and cultured for 5 days at 37°C for the Alamar 

Blue® measurements. Cell detachment was conducted again on the scaffolds (Passage 2).  After five days 

of culture of the re-seeded scaffolds, detachment occurred after 7 minutes at 17°C with gentle agitation / 

passage 1 and passage 2 (mean ± SD; n = 9).  The fluorescence intensity on PET scaffolds and TCPS at 

day 5 and passage 1, or at day 5 post-passage and passage 2 were not significantly different as the cells 

remained adherent at the reduced temperature. 

 

Cells harvested from thermoresponsive PET-poly(PEGMA188) scaffolds and TCPS, via reducing the culture 

temperature or trypsin digestion, respectively, were counted using a haemocytometer at each passage (total 

of nine passages), as shown in Figure 4a. Statistically significant differences in cell numbers between the 

thermoresponsive scaffolds and TCPS were observed at passages 1 and 3 only suggesting a lag phase as 

cells adjusted to the 3D environment.  At passages 2, 4, 5, 6, 7, 8 and 9 there was no significant difference 

between cell numbers harvested from TCPS when compared with thermal detachment from the 3D scaffolds. 

Population doublings (PDs) were also calculated at each passage Figure 4b. The average PD interval on 

TCPS was 2.8 ± 0.75 days and on PET-poly(PEGMA188) was 3.6 ± 1.2 days. No significant difference in 

CPDs was observed up to 20 days in culture, but there were significant differences in the CPDs observed 

on days 25 and 30 (p ≤ 0.01), day 35 (p ≤ 0.001) and days 40 and 45 (p ≤ 0.0001) in culture between 

scaffolds and TCPS. This indicates that the growth and proliferation of hCSSCs on the thermoresponsive 

co-electrospun scaffolds was similar to that on 2D TCPS but slowed during the latter phases of the culture 

period. 
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RT-qPCR was carried out for CD34, ALDH3A1, TYH1(CD90) and ACTA2 to evaluate the effect of the 3D 

environment provided by the thermoresponsive scaffold on cell phenotype in comparison with those cultured 

on 2D surfaces (Figure 4c). There were no significant differences in mRNA levels of CD34, ALDH3A1, THY1 

and ACTA2 expressed by cells cultured on either of the thermoresponsive scaffolds when compared with 

the non-thermoresponsive electrospun scaffolds (PET alone). This indicates that the thermoresponsive 

poly(PEGMA188) did not elicit a negative effect on the cultured hCSSC phenotype. Moreover, data showed 

that mRNA levels of CD34 and ALDH3A1 were significantly higher (p ≤ 0.05) when cells were cultured on 

all 3D electrospun scaffolds relative to those cultured on 2D TCPS, with the complete absence of CD34 

expression in cells cultured on TCPS from passage 3. For ACTA2, mRNA levels were significantly lower 

(p ≤ 0.05) when cells were cultured on all electrospun scaffolds relative to those cultured on TCPS. For THY1 

(CD90), there were no significant differences in mRNA levels between cells cultured on all electrospun 

scaffolds relative to those cultured on TCPS.  

 

Prolonged cell culture and serial passaging experiments were conducted to evaluate the impact of extended 

culture of hCSSCs on the 3D thermoresponsive scaffolds and to assess effects on gene expression of 

corneal stromal stem cells in comparison with 2D TCPS. hCSSCs were seeded at passage 2 on TCPS (2D) 

and on PET-poly(PEGMA188) scaffolds (3D) and cultured for a total of 35 days. During this period, cells were 

passaged seven times using either thermal (3D scaffolds) or enzymatic (2D TCPS) methods. RT-qPCR was 

performed on hCSSCs at passages 3, 6 and 9 to determine relative differences in mRNA levels of CD34, 

ALDH3A1, THY1 and ACTA2. Cells from three different human donors were used for this study, with cells 

from each donor cultured on both 3D and 2D substrates (i.e. matched donors).  

 

Significant differences in mRNA levels were seen in cells cultured on 2D surfaces when compared with those 

cultured on 3D scaffolds (Figure 5a). CD34 and ALDH3A mRNA expression levels were significantly higher 

(p ≤ 0.05 and p ≤ 0.01 respectively) in cells cultured on 3D thermoresponsive scaffolds than those cultured 

on 2D TCPS for all passages (3, 6 and 9) and for all three donors. CD34 gene expression was detected in 

cells from two donors only at passage 6 and 9 when cultured on 2D surfaces, in comparison with 3D scaffolds 

where CD34 gene expression was maintained in all donors. For THY1 (CD90), there were no significant 

differences in mRNA levels between cells cultured on 3D scaffolds and 2D TCPS over all passages. For 

ACTA2, there was a significant decrease in gene expression when cells were cultured on 3D scaffolds when 
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compared with 2D at passages 6 and 9 (p ≤ 0.01 and p ≤ 0.001 respectively), with no significant difference 

observed at passage 3.  

 

Immunocytochemistry was conducted in parallel to RT-qPCR at passages 3, 6 and 9 for cells cultured on 

TCPS and PET-poly(PEGMA188) to identify the expression of key markers associated with quiescent 

keratocytes (CD34) and activated myofibroblasts (α-SMA). Results of RT-qPCR studies were confirmed by 

immunocytochemistry (Figure 5b). CD34-positive staining was observed in all cells at all passages when 

cultured on 3D thermoresponsive scaffolds, while this expression was lost after passage 3 when cultured on 

2D TCPS. The myofibroblast protein, α-SMA, is visible in individual cells cultured on TCPS at all passages 

but not in cells cultured on 3D scaffolds. 

 

Data for prolonged culture of hCSSCs on 2D TCPS and 3D scaffolds are also presented relative to TCPS at 

passage 3 to explore any change in phenotypic marker expression with increasing passage number (Figure 

6).  CD34 and ALDH3A1 mRNA levels were significantly lower (p ≤ 0.05 and p ≤ 0.0001, respectively) at 

passage 6 and 9 (compared with levels expressed at passage 3). No significant difference was observed 

between levels expressed at passage 3 in comparison to passage 6 and 9 in cells cultured on both 2D TCPS 

and 3D electrospun scaffolds. However, CD34 expression was completely lost in one of the donor hCSSCs 

cultured on TCPS after passage 3. For THY1 (CD90), mRNA levels were significantly higher (p ≤ 0.0001) at 

passage 9 than earlier cell passages. However, THY1 is expressed by cells throughout this in vitro study 

regardless of the culture environment, and expression was not lost during their 2D culture. For ACTA2, 

mRNA levels were significantly decreased (p ≤ 0.05) from passage 3 to passage 6 and from passage 6 to 

passage 9 in cells cultured on both 2D TCPS and 3D scaffolds.

 

These scaffolds were then tested with other cell types to illustrate that this thermoresponsive system can be 

used for the expansion of various mammalian cell types (Figure S4 – S6).  The attachment, spreading and 

proliferation of NIH-3T3 fibroblasts was similar when compared to those cultured on non-thermoresponsive 

scaffolds. Moreover, detachment of the cultured cells from thermoresponsive scaffolds was achieved after 

reducing the culture temperature to 17°C (RT) over 7 minutes (with gentle agitation; Figure S4).  Prolonged 

culture and passaging of NIH-3T3 cells (over 10 passage cycles) was conducted illustrating similar growth 

curve profiles on the 3D scaffolds compared with TCPS (Figure S4c and d). Further experiments with 
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human colon adenocarcinoma cells (Caco2; Figure S5) and human mesenchymal stem cells (Figure S6) 

showed attachment, proliferation and detachment over ten days in culture for both cell types. Both cell types 

were viable over the time-course of the experiment, as confirmed by the Alamar blue (AB) assay.   

4. Discussion 

The aim of this study was to develop a 3D culture system that can be used for the extended maintenance 

and enzyme-free passaging of anchorage-dependent mammalian cells at physiological conditions.  The first 

step in this study involved the electrospinning and characterization of PET and PLGA fibre-based scaffolds 

chosen as the 3D environment.  Beadless fibres were prepared from 30% (w/v) PET and 18.5% (w/v) PLGA. 

poly(PEGMA188) was chosen as the thermoresponsive polymer due to its history of use in drug delivery and 

known biocompatibility.  In addition, process of cell attachment/detachment is unhindered from PEG-based 

substrates by irreversible dehydration.  The synthesised polymer showed thermoresponsive properties, as 

shown by the cloud point temperature (as a proxy for the LCST) of poly(PEGMA188), which was found to be 

between 22.5°C and 25.2°C. Surface wettability is an important factor for cell adhesion and subsequent 

recovery from the culture surface.[21, 22] WCA measurements showed a change from the hydrophobic 

nature of the PET and PLGA fibres to a more hydrophilic surface.  

 

Following synthesis and characterisation, the ability to culture cells within the 3D thermoresponsive 

electrospun scaffolds was evaluated. Poly(PEGMA188)-containing scaffolds exhibit a porous structure 

(Figure 2), which provides a fibrous tissue-like extracellular environment for cells to interact. These scaffolds 

provided a 3D culture system in comparison with TCPS, which is planar and non-porous.  The detachment 

of the cells from the scaffold is thought to be controlled via the surface hydration of the temperature-

responsive electrospun scaffolds as the temperature is decreased from 37°C to 17°C. This surface hydration 

can be explained in relation to the thermo-responsive polymer chain extension and contraction that 

accompanies the change in temperature. Increasing the culture temperature above the polymer’s LCST, 

collapses the poly(PEGMA188) chains, generating a strong hydrophobic surface that is supportive of cell 

attachment. Below its LCST, poly(PEGMA188) is water-soluble with an amphiphilic character, due to its 

hydrophobic methacrylate backbone and hydrophilic pendant PEG side chains. This leads to the formation 

of a hydration layer between the scaffold fibre surface and the cultured cells, which results in cell detachment 

from the thermo-responsive scaffolds. The hydrophilicity of the same surface can be reversed by increasing 
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the temperature above the LCST, which results in dehydration of the poly(PEGMA188) chains, leading to their 

collapse. Cells adhered to the thermoresponsive substrates under investigation at 37°C, since these 

thermoresponsive cell culture systems are hydrophobic at this temperature (> LCST). Detachment of cells 

was induced at ambient temperatures (17ºC) as the substrate becomes hydrophilic, inhibiting cell adhesion 

(Figure 1). 

 

Clinically relevant human corneal stromal stem cells (hCSSCs) have been investigated for use in stromal 

wound healing and regeneration.[23-25] Their phenotype has been well characterised and it is known that 

they undergo (myo)fibroblastic differentiation when expanded on 2D surfaces in serum-containing 

media.[27]  Moreover, difficulties have been reported in extracting these cells from PLGA electrospun 

scaffolds;[17] all these aspects led to us investigating the application of this novel thermoresponsive system 

for the culture of hCSSCs. Cells were cultured in M199 medium supplemented with 20% (v/v) serum, which 

has been proven to support hCSSC proliferation.[27] Staining of hCSSCs cultured on PET, PET-

poly(PEGMA188), PLGA, PLGA-poly(PEGMA188) scaffolds and tissue culture polystyrene (TCPS) with 

Cellstain™ double-staining kit was carried out to confirm cell confluency on the scaffolds. Notably, hCSSCs 

remained viable on the thermoresponsive polymer poly(PEGMA188) with no cytotoxicity evident, and 

proliferated in a similar manner to those cultured on TCPS surfaces.  

 

Further work demonstrated that hCSSCs were viable over five days in culture and confirmed the 

biocompatibility of the scaffolds, as they supported cell proliferation in a similar manner to TCPS. The AB 

assay also confirmed the thermoresponsive behaviour of co-electrospun scaffolds, depicted by the change 

in fluorescence intensity while changing the culture temperature periodically over a total of 10 days in culture. 

Statistically significant differences in cell numbers between thermoresponsive scaffolds and TCPS were 

observed at passages 1 and 3 only, which suggests the incomplete recovery of attached hCSSCs cells from 

the scaffolds. However, there was no significant difference between cell numbers harvested from TCPS 

when compared with thermal detachment from the 3D scaffolds at passages 2, 4, 5, 6, 7, 8 and 9. No 

significant difference in CPDs was observed up to 20 days in culture, but there were significant differences 

in the CPDs observed afterwards between scaffolds and TCPS. This indicates that the growth and 

proliferation of hCSSCs on the thermoresponsive co-electrospun scaffolds was similar to that on 2D TCPS 

but slowed down during the latter phases of the culture period.  This is indicative of the maintenance of a 

more quiescent phenotype of these cells when cultured in 3D associated with a slower proliferation rate. 
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The maintenance of the keratocyte phenotype of hCSSCs is an important step towards their use in cell -

based clinical applications and research.[28, 29] Therefore, RT-qPCR was carried out for CD34 and 

ALDH3A1 as quiescent keratocyte markers,[19, 30-32] TYH1(CD90) as a MSC/fibroblast marker[33] and 

ACTA2 as a myofibroblast marker[34]  to evaluate the effect of the 3D environment provided by the 

thermoresponsive scaffold on cell phenotype in comparison with culture on 2D surfaces. There were no 

significant differences in mRNA levels of CD34, ALDH3A1, THY1 and ACTA2 expressed by cells cultured 

on either of the thermoresponsive scaffolds (PET or PLGA) when compared with the non-thermoresponsive 

electrospun scaffolds. This indicates that the thermoresponsive poly(PEGMA188) itself did not elicit a 

negative effect on the cultured hCSSC phenotype. The results obtained suggest that cell culture on the 3D 

scaffolds promoted the quiescent keratocyte phenotype, with increased expression of CD34 and ALDH 

markers, and decreased expression of ACTA2 markers in comparison to conventional 2D culture. Moreover, 

cells were cultured in 20% (v/v) serum, which supports a highly proliferative phenotype and loss of 

quiescence as observed in 2D; in contrast, the quiescent phenotype is maintained when cultured in 3D (even 

in the presence of 20% (v/v) serum). 

 

Prolonged cell culture and serial passaging experiments were conducted to evaluate the impact of extended 

culture of hCSSCs on the 3D thermoresponsive PET-poly(PEGMA188) scaffolds and to assess effects on 

gene expression of hCSSC in comparison with 2D TCPS.  RT-qPCR was performed on hCSSCs at passages 

3, 6 and 9 to determine relative differences in mRNA levels of CD34, ALDH3A1, THY1 and ACTA2. 

Significant differences in mRNA levels were seen in cells cultured on 2D surfaces when compared with those 

cultured on 3D scaffolds. CD34 and ALDH3A mRNA expression levels were significantly higher (p ≤ 0.05 

and p ≤ 0.01 respectively) in cells cultured on 3D thermoresponsive scaffolds than those cultured on 2D 

TCPS for all passages (3, 6 and 9) and for all three donors. CD34 gene expression was detected in cells 

from two donors only at passage 6 and 9 when cultured on 2D surfaces, in comparison with 3D scaffolds 

where CD34 gene expression was maintained in all donors. These results indicate that the quiescent 

keratocyte phenotype was maintained on PET-poly(PEGMA188) scaffolds over 35 days of cell culture. For 

THY1 (CD90), there were no significant differences in mRNA levels between cells cultured on 3D scaffolds 

and 2D TCPS over all passages. For ACTA2, there was a significant decrease in gene expression when 

cells were cultured on 3D scaffolds when compared with 2D at passages 6 and 9 (p ≤ 0.01 and p ≤ 0.001 

respectively), with no significant difference observed at passage 3.  
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Immunocytochemistry was conducted in parallel to RT-qPCR at passages 3, 6 and 9 for cells cultured on 

TCPS and PET-poly(PEGMA188) to identify the expression of key markers associated with quiescent 

keratocytes (CD34) [30] and activated myofibroblasts (α-SMA).[28, 35] Results of RT-qPCR studies were 

confirmed by immunocytochemistry. CD34-positive staining was observed in all cells at all passages when 

cultured on 3D scaffolds, while this expression was lost after passage 3 when cultured on 2D surfaces. The 

myofibroblast protein, α -SMA, is visible in individual cells cultured on TCPS at all passages, but not in cells 

cultured on 3D scaffolds. These results suggest that the 3D thermoresponsive electrospun scaffolds may be 

advantageous for the expansion of clinically-relevant cell types without loss of a therapeutically desirable 

phenotype. 

 

Data for prolonged culture of hCSSCs on 2D TCPS and 3D scaffolds were also presented relative to TCPS 

at passage 3 to explore any change in phenotypic marker expression with increasing passage number. No 

significant difference was observed between levels expressed at passage 3 in comparison to passages 6 

and 9 in cells cultured on both 2D TCPS and 3D scaffolds, suggesting that the overall population of cells 

expressing these markers reduces over time. THY1 was expressed by cells throughout this in vitro study 

regardless of the culture environment, and expression was not lost during their 2D culture as has been 

observed previously.[25] Downregulation of the expression of ACTA2 over different passages is a promising 

finding, as ACTA2 gene expression is related to the undesirable activated corneal myofibroblast phenotype, 

and this phenomenon has not been previously reported. 

 

These scaffolds were then tested with other cell types to illustrate that this thermoresponsive system can be 

used for the expansion of various mammalian cells. These scaffolds were able to support the attachment, 

spreading and proliferation of NIH-3T3 fibroblasts in a similar manner to those cultured on non-

thermoresponsive scaffolds. Assessment of integrin and FAK expression (involved in cell adhesion) will be 

explored in future studies.  In addition, the fibrous structure and pore size of the scaffolds can be changed 

by altering the electrospinning parameters to allow further penetration of the cells into the fibrous structure.  

Moreover, detachment of the cultured cells from thermoresponsive scaffolds was achieved after reducing 

the culture temperature to 17°C over 7 minutes. Results also demonstrated attachment, proliferation and 

detachment over ten days in culture for human mesenchymal stem cells (maintenance of the differentiation 

potential will be a focus in future work) and human colonic adenocarcinoma cells. These data illustrate the 



18 
 

versatile nature of this culture system as any mammalian cell type can be cultured and expanded on these 

materials. Further optimisation of the system is a focus of our future work to maximise the fibrous nature of 

the scaffold in terms of its influence on cell phenotype and scope to provide a high surface area for cell 

culture. 

5. Conclusions 

This study has demonstrated that blend electrospinning (co-electrospinning) of poly(PEGMA188) with PET or 

PLGA provides fibres with thermoresponsive surfaces.  This method is versatile due to the thermoresponsive 

fibres being generated from polymer blends rather than being reliant on covalent linkage of the 

thermoresponsive component to the bulk polymer.  This means that thermoresponsive fibres can be 

generated from any polymer amenable to electrospinning.  These scaffolds were able to support mammalian 

cell adhesion and proliferation at 37°C in a similar manner to those cultured on control surfaces. Moreover, 

this study demonstrated that the thermoresponsive 3D scaffolds supported the culture and detachment of 

the clinically relevant primary human cells (hCSSC), and other mammalian cell types, without the use of 

proteolytic enzymes, while promoting a desirable quiescent keratocyte phenotype over multiple passages. 

This culture system therefore presents a flexible platform for biomedical applications and in particular for 

expansion of cell types destined for clinical applications. 
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