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SUMMARY

Experimental procedures for preparing RNA-seq and
single-cell (sc) RNA-seq libraries are based on as-
sumptions regarding their underlying enzymatic re-
actions. Here, we show that the fairness of these
assumptions varies within libraries: coverage by
sequencing reads along and between transcripts ex-
hibits characteristic, protocol-dependent biases. To
understand the mechanistic basis of this bias, we
present an integratedmodeling framework that infers
the relationship between enzyme reactions during li-
brary preparation and the characteristic coverage
patterns observed for different protocols. Analysis
of new and existing (sc)RNA-seq data from six
different library preparation protocols reveals that
polymerase processivity is the mechanistic origin
of coverage biases. We apply our framework to
demonstrate that lowering incubation temperature
increases processivity, yield, and (sc)RNA-seq sensi-
tivity in all protocols. We also provide correction fac-
tors based on our model for increasing accuracy of
transcript quantification in existing samples pre-
pared at standard temperatures. In total, our findings
improve our ability to accurately reflect in vivo tran-
script abundances in (sc)RNA-seq libraries.

INTRODUCTION

RNA sequencing (RNA-seq) has quickly become the standard

method for transcriptomics (Wang et al., 2009) and has been

further developed into a number of modified protocols that allow

detection from single cells (single-cell RNA-seq [scRNA-seq])

(Tang et al., 2011). The power of scRNA-seq to reveal cell pop-

ulation heterogeneity in transcriptome-wide fashion has made

it the focus of intense recent research activity aimed at its further

development and on analysis techniques (e.g., Gr€un et al., 2014;

Kim and Marioni, 2013; Nakamura et al., 2015).

The typical workflow of an RNA-seq assay involves the extrac-

tion (and often further purification) of mRNA from cells, the prep-

aration of a sequencing library including fragmentation, linear
Cell Systems 3, 467–479, Novem
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(Hashimshony et al., 2012) or PCR amplification, next-generation

sequencing, and computational processing and analysis of the

resulting data. Although a great variety of different RNA-seq pro-

tocols have been developed, virtually all (except for direct RNA

sequencing [Ozsolak and Milos, 2011]) include the basic cDNA

production steps of reverse transcription (often referred to as

first-strand synthesis) and second-strand synthesis, which often

corresponds to an extended first cycle of the subsequent PCR

amplification (Figure 1A). The cDNA replaces the less robust

RNA with DNA and is required for the introduction of adapters

to enable next-generation sequencing, unless special adaptions

are used (Gansauge and Meyer, 2013). The enzymes used in

cDNA production are processive (Von Hippel et al., 1994) and

thus incorporate many nucleotides before the reaction stops.

The exact syntheses starting and stopping points are unclear

and introduce complex positional dependencies, which are

crucial for the resulting RNA-seq coverage (Figure 1B).

Several steps in the library preparation procedures lead to

over- and/or under-representation of sequences with regards

to the starting material, introducing biases in the RNA-seq quan-

tification. This can be partially experimentally corrected by em-

ploying molecular barcodes (Islam et al., 2014), although these

have other disadvantages, such as PCR and sequencing errors

that bias results (Macosko et al., 2015). Some types of bias,

such as non-uniform primer binding (Hansen et al., 2010) or frag-

mentation efficiency (Griebel et al., 2012; Quail et al., 2008),

affect the local coverage within transcripts and can be computa-

tionally corrected to a degree. However, the vast majority of (sc)

RNA-seq datasets show peculiar global shapes, that is an overall

pattern concerning transcript coverages that depends on the

transcripts’ lengths (see below, Results, and glossary for terms

we use in Box 1). It was noted before that this is probably due

to cDNA production (see below) (Mortazavi et al., 2008). How-

ever, the effect remains uncorrected by analysis tools (Stegle

et al., 2015) and is not understood, and the systematic bias it in-

troduces is potentially much stronger than local variation.

Since the major goal of RNA-seq is to accurately infer (relative)

expression levels or sequence structure of the original mRNAs,

these biases are problematic and need to be taken into account.

This issue is particularly relevant for scRNA-seq, where absolute

transcript quantification is desired and where the bias in

coverage by sequencing reads can affect sensitivity. While los-

ses at each step of a standard RNA-seq protocol are uncritical

due to a sufficient supply of starting material, they limit chances
ber 23, 2016 ª 2016 The Author(s). Published by Elsevier Inc. 467
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Figure 1. cDNA Conversion Yields Biases of

RNA-Seq Coverage

(A) Library preparation for next-generation se-

quencing involves reverse transcription and sec-

ond-strand synthesis, followed by fragmentation.

Depending on the protocol, reverse-transcription

starts and ends at certain points for first-strand

synthesis (s1 and e1, respectively) and second-

strand synthesis (s2 and e2).

(B) The original mRNA (olive) is thus often non-

uniformly represented by double-stranded cDNA

(orange), which biases detection by RNA-seq

(blue).

(C) RNA-seq coverage along transcripts for

different datasets. Sequencing reads were map-

ped to murine, non-overlapping RefSeq tran-

scripts without isoforms. All detected transcripts

(�10,000) were ordered from shortest (top) to

longest (bottom), were adjusted to have identical

length, and were divided into 20 bins each. The

percentage of reads in each bin is color coded for

each transcript (see legend). The distribution of

transcript lengths is shown on log scale on the left.

This distribution corresponds to the Wold dataset

but is representative of the others, subject to minor

variations due to different numbers of detected

transcripts. Details of the datasets shown are listed

in Table 1. Unbiased coverage within transcripts

would result in uniformly orange rectangles. More

datasets are shown in Figure S1.

(D) Simplified models/scenarios of RNA-seq library

preparation outcomes based on priming strategy

and synthesis success.
of transcript detection and absolute quantification in scRNA-

seq. Ideally, the mass of every single original mRNA should be

harnessed as completely as possible for the next-generation

sequencing step at the end of an scRNA-seq protocol. To do

that, one must understand systematic non-uniformities in

scRNA-seq coverage.

In the present work, we introduce an analytical and computa-

tional framework that allows ‘‘reverse engineering’’ of reactions
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and enzyme kinetics during RNA-seq li-

brary preparation. Applying this frame-

work, we are able to identify polymerase

processivities as the main determinants

for the global coverage shapes. Our

models also yield correction factors for

quantification, which demonstrate that

currently used measures are inadequate.

The insights into molecular reactions

that our framework allows can be further

exploited to improve RNA-seq protocols,

as we demonstrate experimentally.

RESULTS

Below, wewill analyze a selection of RNA-

seq strategies, mostly for scRNA-seq, but

covering virtually all widely used proto-

cols, and focus on the coverage by
sequencing reads along transcripts. The main variation between

these protocols concerns the first- and second-strand priming

strategies.

The first published scRNA-seq strategy (Tang et al., 2009),

which we term the poly-A-tagging protocol, is designed to

ligate a second-strand primer to an adenine stretch that is added

by terminal transferase to the end of the poly-A tail-primed first-

strand. Thus, coverage critically depends on where reverse



Box 1. Glossary

cDNA Single- or double-stranded DNA obtained from reverse transcription of mRNA, followed by second-strand

synthesis (if double stranded).

Conditional probability P(x j y) is the probability of event ‘‘x’’ under the condition that ‘‘y’’ has occurred.

Coverage The density of sequencing reads aligning to known bases, usually along exons within gene bodies.

First-strand synthesis Same as reverse transcription. Polymerization of a complementary DNA (cDNA) strand along an mRNA by

reverse transcriptase.

FPKM Fragments per kilobase of transcript per million mapped reads. Widely used measure for expression levels

determined by RNA-seq.

Likelihood A measure for how well a model agrees with the data.

Likelihood ratios Compares the goodness of fit of two models by calculating the ratio between their likelihoods.

Markov Chain Monte Carlo Class of methods that allow efficient sampling from a probability distribution and are commonly used to

produce estimates of posterior distributions in Bayesian statistics.

MCMC See Markov Chain Monte Carlo.

Overhang Unpaired nucleotides resulting in a single-stranded stretch at the 50 or 30 end of double-stranded DNA.

Parameters Values that our models depend on. They determine the exact shapes of the coverage functions and are

learned from a specific dataset through the fitting process (see MCMC). The parameters of our models have

intuitive interpretations:

d + 1 ratio of fragmentation efficiencies inside strands versus close to ends.

h distance (bases) from ends over which fragmentation efficiency is reduced.

1/q1 average synthesis length of reverse transcription (processivity).

1/q2 average synthesis length of second-strand synthesis (processivity).

a fraction of PCR-selected full-length strands.

Priming strategy The method by which reverse transcription or second-strand synthesis is primed to initiate the reaction—

including sequence-specific primers, Oligo(dT) primers, random primers, or others.

Processivity The ability of an enzyme to catalyze consecutive reactions between association and dissociation from its

substrate. In our context, we use the term as the average number of nucleotides incorporated (i.e., the

synthesized length) in one uninterrupted process (on an infinitely long template).

Reverse transcription See First-strand synthesis.

Second-strand synthesis Polymerization of a second DNA strand complementary to the first cDNA strand by a DNA polymerase.
transcription stops. An improved version of this protocol was

published as ‘‘Quartz-seq’’ (Sasagawa et al., 2013). By contrast,

complete (‘‘full-length’’) sequencing coverage along the whole

mRNA has been a selling point of different library preparation

protocols, as it is believed to correspond to more reads per tran-

script and/or better resolution of splice variants (Picelli et al.,

2013; Ramsköld et al., 2012). Particularly successful in this

respect is the second scRNA-seq approach we are studying,

termed ‘‘Switching Mechanism At the 50 terminus of the RNA

Transcript’’ (SMART) (Zhu et al., 2001). Here, the second-strand

primer binds to the overhang generated by the addition of

several non-templated cytosines by the reverse transcriptase

upon completion of full-length of the first-strand, which is primed

from the poly-A tail. SMART-based scRNA-seq, and its variants

(e.g., ‘‘Smart-seq2’’), has become a de facto standard (Deng

et al., 2014; Islam et al., 2012; Picelli et al., 2013; Ramsköld

et al., 2012; Shalek et al., 2013). Both poly-A-tagging and

SMART protocols are usually subjected to variable numbers of

PCR cycles. An extended first PCR cycle is used to synthesize

the second-strand, while later cycles also enrich complete sec-

ond strands by using primers flanking the 30 ends of first-strands.
While the bulk of our analysis will be devoted to methods

derived from poly-A tagging and SMART, we will also briefly

discuss the linear-amplification-based scRNA-seq strategy
CEL-seq (Hashimshony et al., 2012, 2016). CEL-seq compares

unfavorably to the above scRNA-seq protocols in some studies

in terms of its technical variation (Bhargava et al., 2014) and is

based on a complex sequence of enzymatic conversions; the

mRNAs are reverse transcribed based on poly-A priming using

molecular barcode containing primers, followed by random-

primed second-strand synthesis, in vitro transcription, RNA frag-

mentation, and another round of first- and second-strand

syntheses. Finally, only fragments containing the 30 end with re-

gards to the original mRNA are selected by PCR. Inference of

expression levels is based on counting these fragments and/or

unique barcodes, while coverage along transcripts is ignored.

CEL-seq thus follows a different principle than the other

protocols.

In addition to these single-cell techniques, we include two

bulk methods for comparison. First, we analyze the classical

RT-PCR/RNA-seq protocol based on random-oligonucleotide

primed first-strand synthesis, followed by randomly primed sec-

ond-strand synthesis based on RNaseH-nicking (CSHL, 2005)

(with fragmentation after cDNA production). This priming strat-

egy is not common in scRNA-seq, as the usage of 30 poly-A
tail binding primers reduces priming of rRNA, thus making puri-

fication of mRNA unnecessary and potentially reducing losses

of the limiting starting material. However, it provides a useful
Cell Systems 3, 467–479, November 23, 2016 469



comparison because it gives rise to very different coverages as

the above protocols and is still commonly employed for qPCR.

Second, we include an RNA-fragmentation-based dataset (Va-

hedi et al., 2012), which fragments mRNA instead of cDNA and

thus strongly reduces the coverage bias due to cDNA-produc-

tion. While this is routinely applied in standard RNA-seq, it is

not used for scRNA-seq, presumably for fear of degrading and

losing mRNA and because it precludes direct poly-A priming.

This allows us to compare above protocols to a popular and

potentially bias-free one.

The principles of the above mentioned RNA-seq protocols are

mostly based on assumptions, and it is unclear how closely

these reflect the experimental reality. It has been pointed out

before, for instance, that SMART protocols may increase the

portion of full-length products in the final reaction mixture by

excluding incomplete first-strand synthesis products (due to

reduced efficiency of the SMART mechanism inside the mRNA

compared to its end), rather than by improving or completing

their synthesis (Hebenstreit, 2012; Shapiro et al., 2013). We

wanted to explore from a general and quantitative perspective

how reliable the above assumptions are and what trade-offs be-

tween complete coverage, loss of starting material, and position

bias are to be expected for the various protocols.

Thus, we visualized the sequencing read distributions in actual

datasets generated by a variety of RNA-seq and scRNA-seq li-

brary preparation protocols. We group protocols into poly-A

tagging-like, SMART-like, random priming, CEL-seq, and RNA

fragmentation (Table 1). To limit the influence of confounding

factors in our analyses, we selected datasets for a single species

only (mouse) and mapped reads to non-overlapping RefSeq

transcripts without splice variants as it was done before (Li

et al., 2010b); overlapping genes and geneswithmultiple isoform

annotations would potentially give rise to more complex

coverage shapes that are independent from the protocol-spe-

cific effects we want to study.

In order to effectively visualize coverage and define global

shapes present within each dataset, we ordered transcripts ac-

cording to their lengths and color-coded read densities in 20 bins

along the transcripts after length normalization (Figure 1C). This

highlights the ‘‘noisiness’’ of the data due to the various bias

sources but also confirms some previous observations: poly-A

primed libraries tend to exhibit a 30 bias (Mortazavi et al.,

2008), SMART protocols produce reasonable coverage even

for longer transcripts (Ramsköld et al., 2012), and the profiles

depend on transcript length (Bohnert and R€atsch, 2010) (Fig-

ure 1C). Random priming yields more uniform, yet 50-biased
coverage, as previously reported (Mortazavi et al., 2008) (Fig-

ure 1C). Virtually all datasets feature underrepresented regions

close to transcript ends, presumably due to inefficient fragmen-

tation as discussed above. We include a plot for CEL-seq data,

which confirms selection of 30 fragments (Figure 1C).

Several features of the data have been noted before (Adiconis

et al., 2013; Ramsköld et al., 2012) but warrant more discussion

and analysis: the 30 bias in the SMART and poly-A-tagging data-

sets tends to worsen with increasing transcript lengths, whereas

the coverage of shorter transcripts is more uniform and even

50 biased in some cases. In addition, bimodality in the coverage

(high read densities at 50 and 30 ends, low density in the centers

of transcripts) appears for transcripts of intermediate and/or long
470 Cell Systems 3, 467–479, November 23, 2016
lengths (>�3 kb) in most SMART-seq datasets (Figure 1C; more

datasets are shown in Figure S1). It is also noteworthy how

similar these aspects are among poly-A-tagging and SMART

protocols, given the differences between these. Although the

graininess of the data is affected by the amount of starting mate-

rial/PCR cycles, the bias shapes appear independent of this

(Bhargava datasets, Figure S1). The only protocol without strong

systematic bias (aside from underrepresented ends) is RNA frag-

mentation (Figure S1).

As a first step toward understanding these phenomena, we

asked whether they could be recapitulated by simplified models

(Figure 1D). To this end, we defined the expected and assumed

differences among the protocols, including their possible limita-

tions, in a set of five abstracted and simplified models (these are

summarized graphically in Figure 1D).We label these from ‘‘A’’ to

‘‘E,’’ which roughly increase in complexity, starting with the

idealistic scenario of full-length syntheses for both first- and sec-

ond-strand ‘‘A.’’ This would be compatible with an optimally

functioning SMART protocol, free from any coverage bias,

similar also to earlier assumptions of uniform coverage of

RNA-seq data (using the measure of fragments per kilobase

per million total fragments [FPKM]; see below). Models B and

C correspond to successful full-length selection for fragments

containing either the 30 or 50 transcript end, respectively (i.e.,

by PCR with 30 flanking primers or full-length SMART on

50 end, respectively). We consider models that abstract non-

full-length poly-A tagging (model D) and random priming

(model E) and also the possibility of a combination of these

simpler models (Figure 1D). The models are discussed in greater

conceptual detail below.

RNA-seq library preparation can be understood as a stochas-

tic process, where steps in the protocol depend on preceding

ones and are associated with varying degrees of randomness.

A convenient and very intuitive way to model this is by using

conditional probabilities (Box 1). For instance, given that first-

strand synthesis starts at position s1 along the transcript, it might

end at position e1 with probability P(e1 j s1). The starting position

of the second-strand synthesis, s2, would then depend on this,

giving P(s2 j e1), and so forth (Figure 1A, see Method Details for

details). We use this approach to capture the various aspects

of the protocols with the aim of quantitatively and formally under-

standing their expected influence on shaping the distributions of

sequencing read starting positions (mathematical models can be

found in the Models section of Method Details). While our frame-

work is very flexible and allows us to easily include several

different factors, we focused on the effects of enzyme reactions

during cDNA conversion as captured by our minimal models A to

E (Figure 1D). We thus do not consider sequence-specific biases

and the lengths of primers. We also exclude factors that are ex-

pected to cause overall loss with regards to the starting material

but do not introduce bias. Failed poly-A tail priming, for instance,

will probably affect different transcripts with roughly equal

probability, so we do not consider it in our analysis. In contrast,

usage of random first-strand primers plausibly will favor cDNA

conversion of longer transcripts, as the chances of binding are

higher.

Depending on the protocol, the start and endpoints of enzy-

matic syntheses during cDNA conversion are determined not

only by priming positions but also by the enzymes’ average



Table 1. Previously Published Datasets Used in This Study

Group Name/Reference Accession Number Sample Library Protocol Read Type

Read

Number

Reads

Mapped (%)

poly-A tagging Tang et al. (2009) GSM365014 single cell, oocyte Tang 50 bases SE, SOLiD 25M 36

Sasagawa et al. (2013) GSM1036495 50 cells, embryonic stem cells Quartz-seq 102 bases PE, Illumina 85M 96

Wei et al. (2011) GSM523211 > mg, resting Th2 cells Tang 36 bases SE, Illumina 11M 57

SMART Deng.smartseq (Deng et al., 2014) GSM1112540 single cell, 4-cell stage embryo Smart-seq 53 bases SE, Illumina 27M 42

Bhargava.AA.ng GSM1231200 1 ng Smart-seq 99 bases SE, Illumina 25M 50

Bhargava.SFM.ng GSM1231198 1 ng 24M 41

Bhargava.AA.pg GSM1231212 25 pg 23M 51

Bhargava.SFM.pg (Bhargava et al.,

2014)

GSM1231210 25 pg mRNA, embryoid bodies 24M 41

Wold (ENCODE project) ENCSR814JMM 50 cells, cerebellar granule layer Smart-seq 100 bases SE, Illumina 48M 26

Deng.smartseq2 (Deng et al., 2014) GSM1278036 single cell, fibroblast Smart-seq2 43 bases SE, Illumina 28M 42

Mahata et al. (2014) ERR489030 single cell, activated Th2 cells Smart-seq 75 bases PE, Illumina 23M 23

Random priming Hebenstreit.a GSM710184 > mg, resting Th2 cells Random priming,

RNaseH

36 bases 16M 46

Hebenstreit.b (Hebenstreit et al., 2011) GSM710183 41 bases SE, Illumina 26M 37

CEL-seq Bhargava.celseq (Bhargava et al.,

2014)

GSM1231230 1 ng mRNA, embryoid bodies CEL-seq 100 bases PE, Illumina

(30 read used only)

30M 16

Celseq2 (Hashimshony et al., 2016) GSM2076520 single cell, fibroblast CEL-seq2 35 bases (trimmed) PE,

Illumina (30 read used only)

0.65M 40

RNA fragmentation Vahedi et al. (2012) GSM994539 > mg, resting Th2 cells TruSeq 100 bases SE, Illumina 40M 46

SE, single end; PE, paired end.
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Table 2. Theoretical Expectations, Corresponding to

Likelihoods, of Transcript Coverage with Different Models

Model/

Scenario Coverage Function f (x, l, .) =

A e�lðq1 + q2Þ

B 1

ðq1 + q2Þ ½q1e
�2lðq1 + q2Þ+ ðq1 + q2Þðl + xÞ + q2e

�lðq1 + q2Þ�

C e�q1 l�q2x

D 1

ðq1 + q2Þ ½q1e
�q1ðl�xÞ + q2e

�q1 l�q2x �

E a1a2

q01ðq01 + q02Þ

"
l � 1

q01 + q02
� 1

q01
� q01e

�lðq01 + q02Þ

q02ðq01 + q02Þ
+
ðq01 + q02Þe�lq01

q01q
0
2

#

Theoretical expectations (likelihood) of transcript coverage with different

models (Figure 1D). x is the absolute position within the transcript (x = 0 at

the 50 end), l is the absolute transcript length (Figure 1A), and q1 and q2 are

the inverse processivities of first- and second-strand syntheses, respec-

tively. q01 and q02 are modified processivities for model E (see Method

Details). a1 and a2 are the probabilities of first- and second-strand prim-

ing at a certain position, respectively. The fragmentation-related terms

and parameters (d, h) are omitted for clarity.
synthesis lengths, their ‘‘processivities.’’ The enzymes’ proces-

sivities are in general likely to depend on several parameters,

such as temperature or nucleotide concentration, and could

reflect eventual stops in the synthesis process or physical

detachments of the enzyme from its template or both. The proc-

essivity of the reverse transcription is influenced by mRNA sec-

ondary structure as well, which again depends on other factors,

including sequence and temperature (Joseph and David, 2001).

In total, cDNA strand synthesis length is most commonly

assumed to roughly follow geometric/exponential distributions

(Bibillo and Eickbush, 2002; Von Hippel et al., 1994). We adapt

this for our model and assume P(e1 j s1) and P(e2 j s2) follow
exponential distributions, taking also account of possible full-

length synthesis (see Figure S2 and STAR Methods). The distri-

butions are subject to parameters q1 and q2, which are inversely

proportional to the processivities of the first- and second-strand

synthesis. Finally, we include terms in our model to account for

reduced fragmentation efficiency at the ends of the double-

stranded cDNAs in the library. This has the form of a step change

of sequencing probability as given by parameter d over distance

h from either end.

Based on these considerations, we derived expressions for

the expected coverage of our models A to E as functions of tran-

script length l. These have the forms of various combinations of

exponential terms and are of moderate complexity (Table 2,

shown without d, h terms for clarity). It is of note that the expres-

sion for model A and its notion of ‘‘ideal’’ SMART can be inter-

preted in two ways; either full-length syntheses are achieved

by very high processivities (giving essentially q1 = q2 = 0), or

full-length cDNA is enriched over incomplete products (e.g., by

PCR and/or the SMART mechanism), allowing for higher q1

and q2, but implying exponentially decreasing sequencing effi-

ciency with increasing mRNA length.

Models A, B, and C restrict the global coverage shapes that

can be expected to a straight line or simple exponential de-

creases from either side, respectively, for all lengths (Figure 2A).
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However, the coverage obtained with model ‘‘D’’ under realistic

parameter settings resembles the experimental SMART data-

sets, capturing the transition from 50 to bimodal to 30 bias (Fig-

ure 2A). Model D also predicts lower densities for the 50 edges
compared to the 30 edges throughout, in the regions where frag-

mentation efficiency is reduced (Figure 2A). This too appears to

mirror the experimental data for all relevant protocols. Using the

same parameter settings, we obtain equally promising shapes

for model E, which resembles the 50-biased random-priming

data it is designed to explain (Figure 1C). The overall character-

istics of the bias shapes are conserved if the skewed distribution

of natural transcript lengths is replaced with a linear function

(Figure S3a).

We proceeded to test fits of our models to the actual datasets

and infer parameters using a Markov Chain Monte Carlo

(MCMC) approach (STAR Methods). As the coverage in models

A and C does not depend on all the parameters, in these cases a

subset of parameters are inferred. We compare the quality of the

fits we obtain for all models based on their likelihoods (STAR

Methods), which reveals that models B and D provide best

fits for poly-A-tagging and SMART datasets (Figure S3b).

Model D, in particular, captures well the changing coverage

shapes with increasing transcript lengths (Figure 2B). Given

these findings, we presumed that second-strand priming and

partial PCR selection of both, poly-A-tagging and SMART proto-

cols is captured best by a combination of models B and D,

which indeed yields the best fits (Figures S3b and 2B). The

parameter values we obtained for the combined model suggest

that the average synthesis lengths for the first- and second-

strands are about 5–10 and 1–3 kb, respectively (Figures 2C

and S4), which agrees with estimates from the literature (Joseph

and David, 2001). The parameterized models capture behavior

observed in in vivo datasets, suggesting that the assumptions

made during modeling are reasonably conservative. For

example, increasing the number of PCR cycles used in the

SMART protocol should result in an increase in the proportion

of the (full-length second-strand) model B over D, as param-

eterized by parameter a (Method Details). The Bhargava

dataset allows testing this as it includes samples subjected to

different numbers of PCR cycles. a indeed increases signifi-

cantly (p < 10�9, one-sided Mann-Whitney U test) with higher

numbers of PCR cycles for two different biological samples

(Activin A treated [AA]; serum-free media [SFM]; Figure 2D).

Our parameterized models allow us to test the common as-

sumptions about how scRNA-seq and RNA-seq protocols

work. Model A and model C clearly perform worse as these

restrict the coverages to patterns that are not observed in the

data, which is reflected in the goodness-of-fit statistics (Fig-

ure S3b). This suggests that the common assumptions

regarding SMART protocols are too optimistic. For example,

second-strand synthesis appears to frequently start within tran-

scripts, not at ends only, and selection for complete second-

strands is imperfect, which explains the similarities between

poly-A-tagging and SMART protocols. A similar observation

termed ‘‘strand invasion’’ was made for the nanoCAGE tech-

nique recently, where it was found that the second-strand

primer (‘‘template switching oligo’’) can bind the first-strand

internally at complementary sequences (Tang et al., 2013). As

expected, model E fits well the random-priming datasets, but
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not the poly-A-tagging and SMART datasets (Figures 2B and

S3b; see Figure S5 for parameter estimates of the remaining

models).

Altered Incubation Temperature and Model-Driven
Improvement to RNA-Seq Protocols
While the goodness of our fits and the underlying logic suggest

our modeling approach is valid, we sought further experimental

confirmation. To this end, we prepared RNA-seq samples de-

signed to specifically perturb single parameter values only and

sequenced them on an Illumina MiSeq sequencing machine.

We focused on incubation temperature for enzyme reactions

because it is both experimentally accessible and interpretable:

we reckoned that it should affect polymerase processivity. We

prepared libraries using lowered temperatures during reverse

transcription (25�C instead of the standard 42�C) and/or

second-strand synthesis (42�C instead of the standard 72�C);
protocols were based on and generated by SMART-seq or

Quartz-seq and began with different starting RNAs (poly-A+,

total RNA, single cell; see Table S1 for a list of all samples).

If the notions underlying our modeling approach are correct,

the changed temperatures should change the corresponding

parameter estimates while the remaining parameter estimates

should remain the same. The parameter estimates we obtained

confirm this reasoning; lowering first-strand temperature

changes q1 estimates without affecting q2 significantly, and

vice versa if second-strand temperature is changed (Figures

3A and 3B; examples for coverage plots Figure S6). An exception

is the significantly different q1 estimate upon changing second-

strand temperature with first-strand synthesis at 25�C; however,

in this case, the median is very close.

We note that estimation of q2 for SMART-seq is less precise,

as the PCR step with flanking primers means that the original

second-strand contributes substantially less to the shape of

the coverage (compare this to model A, ‘‘ideal SMART-seq,’’

which would not even allow estimation of q1, as discussed

above), thus obscuring the temperature-related differences.

For this reason, we excluded SMART-seq samples from the

plot for q2 in Figure 3B (they are shown as Figure S7a) and

instead add SMART-seq samples where we omitted the PCR

step (Figures 3A and 3B), which yields similar results as the other

protocols.

This analysis also revealed an unexpected feature of cDNA

synthesis: lowering temperatures appears to increase processiv-

ities of the enzymes (Figures 3A and 3B). This observation sug-

gests that lowering incubation temperatures should improve

the yield of RNA-seq protocols. We therefore measured by Qubit

the absolute amount of cDNA produced from the same starting
Figure 2. Analysis and Fitting of Models

(A) Coverage heatmaps as in Figure 1C for theoretical models A–E (Table 2), u

distribution of the Wold dataset was used.

(B) Overlays of best fitting models (dashed lines) after Markov Chain Monte Carlo

middle, and right, respectively) for two datasets (Wold, left and middle; Hebenstre

positions for different length categories (color code, inset), each containing data

(C) MCMC parameter estimates for a selection of SMART and poly-A-tagging data

the median absolute deviations.

(D) MCMC parameter estimates for a for four datasets, Bhargava.AA/SMF.ng/pg.

which were subjected to 14 or 18 PCR cycles during library preparation as indicate

median absolute deviations. ***p < 10�9, Mann-Whitney U test.
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amounts of mRNA and synthesis reactions carried out at

the temperatures described above. We observed significantly

(p% 0.001, one-sided t test) increased cDNA synthesis at lower

temperatures, with an optimum yield upon lowering both tem-

peratures (Figure 3C). To further investigate the increase in proc-

essivity, we turned to RNA-seq again. We prepared RNA-seq

samples from the same RNA, aliquoted the samples for each

temperature, and sequenced these on the same lane using in-

dexed primers. Increased processivities should increase the

proportion of longer mRNAs within the samples. We thus

compared the relative representation by sequencing reads of

transcripts of different lengths normalized to corresponding

read numbers at the standard incubation temperatures. Indeed,

we observe significantly increased representation of longer tran-

scripts (Figure 3D); this is in accordance with the Qubit measure-

ment and suggests that polymerase processivity increases at

low temperatures. We further compared the numbers of genes

detected and the overall numbers of sequencing reads we ob-

tained for transcripts and for spike-in probes, which we had

added to a subset of starting RNAs for our RNA-seq samples.

This confirms increased yields upon reduced temperatures

(Figures 3E–3G). Accordingly, RNA-seq also became more

sensitive: we were able to detect lower concentrations of the

spike-in probes (Figure 3H). Notably, reducing the incubation

temperatures does not appear to increase local bias. The

coverage heatmaps do not exhibit obvious visual differences

regarding their ‘‘noisiness’’ (Figure S6), and quantifying this

rather suggests improved coverage uniformity upon reduced in-

cubation temperatures (Figure S7b). These findings show an

improved RNA-seq performance at lower temperatures and

illustrate how insights generated by our framework can be ex-

ploited to optimize protocols.

Our framework can also improve analysis of existing data. For

example, accurate quantitation of mRNA expression necessi-

tates a thorough understanding of the expected numbers of

sequencing reads for different types of transcripts. The simplest

notion of linear scaling with transcript length is embodied in the

classical RNA-seq FPKM measure, which is now generally un-

derstood to be an oversimplification but still widely used. Several

approaches to take account of non-uniform read distributions

along transcripts have been published and are included in com-

mon RNA-seq analysis software, such as CuffLinks (Roberts

et al., 2011; Trapnell et al., 2012) or RNA-Seq by Expectation

Maximization (RSEM; Li and Dewey, 2011). These approaches

focus mostly on the correction of biases within transcripts to

yield corrected FPKM. Thus, while approaches like these

improve isoform quantitation, they do not account for the non-

linear scaling of expected read numbers across transcripts of
sing parameter settings as indicated on the right side. The transcript length

(MCMC) parameter estimation for three different models (D, B&D, and E; left,

it.a, right). Solid lines are kernel density estimates for sequencing read starting

for all mRNAs with lengths within 10% of the length category.

sets. The bar heights correspond to the medians; the error bars correspond to

AA (Activin A) and SFM (serum-free media) are two different biological samples,

d. The bar heights correspond to themedians; the error bars correspond to the



Figure 3. Model Correctly Infers Increased

Enzyme Processivities upon Lowered Reac-

tion Temperatures

(A) MCMC parameter estimates for q1 for diverse

RNA-seq samples (Table S1, color code on bottom

of figure) prepared with altered reaction tempera-

tures during first- and second-strand syntheses.

‘‘Standard’’ temperatures were 42�C and 72�C for

first- and second-strand, respectively, which were

lowered to 25�C and 42�C, respectively, in the

designated samples (black horizontal lines indicate

the median; *p % 0.051, **p % 0.01, ***p % 0.001,

one-sided Wilcoxon signed-rank test).

(B) As (A) for q2.

(C) cDNA yield increases upon altered reaction

temperatures. Starting amounts were 100 ng

mRNA in all samples. DNAmass was measured by

Qubit (which does not detect RNA). ***p % 0.001,

one-sided t test.

(D) Fraction of reads mapping to transcripts in

different length categories (0–2 kb, 2–4 kb,., 10–

12 kb; >12 kb not included in figure) were deter-

mined for sequencing samples with lowered in-

cubation temperatures (first- and second-strand

synthesis at 25�C and 42�C, respectively) as indi-

cated by color code at the bottom of the figure. The

fractions were then normalized to the corre-

sponding length category for standard incubation

temperatures. ***p% 0.001, Mann-Whitney U test.

(E) Increased numbers of genes are detected upon

lowered incubation temperatures. The log2 ratio of

the numbers of detected genes for reduced tem-

perature versus standard temperatures is shown

for different RNA-seq samples as indicated by

color code at the bottom. The black horizontal line

indicates the median.

(F) Increased total sequencing read numbers map

to mRNAs upon lowered incubation temperatures.

The log2 ratio of read numbers for reduced

temperature versus standard temperatures for

different RNA-seq samples as indicated by color

code at the bottom is shown. The black horizontal

line indicates the median.

(G) Same as (F) for ERCC-mix1 spike-in probes.

(H) Detection of ERCC-mix1 spike-in probes

versus nominal concentrations for diverse se-

quencing samples (color code at bottom). Bar

heights in bar charts corresponds to the mean of

independent replicates (three in C). Error bars

correspond to sample SD.
different lengths (see Note - previous approaches to correct

coverage bias in Method Details).

Using our probabilistic framework, we can predict the ex-

pected sequencing read numbers for any transcript length,

tailored to the library preparation protocol that was used and

with parameters inferred from the fit to the corresponding

RNA-seq dataset. The expected read numbers are proportional

to the areas under the coverage curves that our models predict.

Normalizing read numbers of transcripts by the area under the

coverage curves for their corresponding length will thus remove

the bias and provide a more precise abundance estimate

(Method Details). Plotting transcript lengths versus these abun-

dance estimates reveals that model E approaches a linear mea-

sure equivalent to FPKM (and model A with q1 = q2 = 0) for longer
transcripts, while the other models reach plateaus at roughly

4 kb using a single parameter set close to inferred ones (Fig-

ure 4A). This highlights protocol-specific gene length dependent

sensitivity, since the areas our models predict estimate the rela-

tive mass of an mRNA that is converted to double-stranded

cDNA, if non-enzyme-induced losses, such as incomplete

primer binding, are ignored. Increasing transcript length beyond

�4 kb does not increase sensitivity for non-random priming

protocols.

The length scaling of models B–D also means that FPKM-

based measures strongly underestimate long transcripts pre-

pared with SMART or poly-A-tagging datasets due to enzyme

drop-offs. Benchmarking this prediction based on correlation

with standard qPCR or microarray data is not useful per se as
Cell Systems 3, 467–479, November 23, 2016 475
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the latter are mostly subject to the same protocol-derived biases

we are describing. However, theWold (SMART) dataset contains

a set of spike-in RNA probes of different lengths at known rela-

tive concentrations (Jiang et al., 2011). The longest of these

probes is still comparatively short, at 2,022 bases. Yet, plotting

normalized (by nominal probe concentration) and standardized

(subtraction of mean and division by SD) Cufflinks or RSEM

abundance estimates versus probe length reveals negative

trends, confirming our prediction of length-dependent underes-

timation (Figure 4B). Applying our abundance estimates derived

from the fits to the model B&D almost completely eliminates this

trend (Figure 4B).

To extend this analysis to greater transcript lengths, we

randomly selected 12 genes (Table S2) covering mRNA lengths

from �2 to �22 kb with intermediate read counts from our

RNA-seq samples (Table S1; we included samples correspond-

ing to different incubation temperatures and pooled these after

quantifying them separately tomaximize the data wewere using;

the different temperatures are thus not relevant in this analysis).

Quantifying their expression levels based on Cufflinks, RSEM, or

our Model D fits yields similar results as above; Cufflinks and

RSEM estimates exhibit anti-correlation with mRNA length,

which is much less pronounced with our model (Figure 4C).

Next, we experimentally test the actual expression levels of

the selected transcripts and how they related to their lengths.

To this end, we performed qPCR on the same RNA samples,

but using primers pairs close (< �200 bases) to the 30 ends of

the mRNAs in order to strongly limit the effects of enzyme con-

version. Indeed, the results demonstrate better agreement with

our models than established methods regarding the measured

mRNA abundances versus their lengths (Figure 4C). Further-

more, correlation between the qPCR results and RNA-seq

expression estimates is higher for our model than for Cufflinks

or RSEM (Figure S8a). Notably, transcript expression levels, in

particular at the low range, still appeared moderately anti-corre-

lated with length after correction, even with the RNA fragmenta-

tion (Figure S8b) and qPCR data (Figure 4C), which support the

notion that, biologically, longer genes are on average expressed

at a lower level.

Finally, we wanted to test whether the improved, protocol-

specific mRNA quantification of our method can reduce li-

brary-preparation-induced differences among biological data-

sets. We have included in our study four datasets for the same

cell type (Th2 cells) but using different library preparation proto-

cols. If our method provides more reliable estimates for expres-

sion levels, its application should increase correlations among

the datasets. We performed individual model fits tailored to the
Figure 4. Quantification Based on Our Novel Modeling Approach

(A) Length dependency of abundance estimates for our models. The estimates are

the right.

(B) Abundance estimates for RNA spike-ins (ERCC-mix1) of the Wold dataset a

(Cufflinks, blue; RSEM, green; our model B&D fit, orange). Each dot correspond

measures (Z scores) are used to make the approaches comparable.

(C) Abundance estimates for twelve randomly selected mRNAs (Table S2) coveri

samples (Table S1) were quantified by RSEM, Cufflinks, or our model D as indicat

respectively) were subjected to qPCR for the same twelve genes. Presentation a

(D) Correlation matrices for abundance estimates of four datasets for the same c

(Hebenstreit.a/b, random priming; Wei, poly-A tagging; Vahedi, RNA fragmentatio

(middle panel), and our model fittings (Hebenstreit.a/b, model E; Wei, model B&D
library preparation protocols used in each case and calculated

correlations among the datasets with regards to expression

levels of all genes. Our models indeed yield higher correlations

in most cases compared to Cufflinks- and RSEM-based expres-

sion quantification, even though our models do not even take ac-

count of sequence-specific, local bias (Figure 4D).

DISCUSSION

We present here a mathematical framework to model library

preparation protocols, which addresses several important issues

with regards to RNA-seq and, specifically, scRNA-seq. Our

approach offers a unified treatment of coverage bias, inference

of reaction mechanisms, quantification, sensitivity, and design

guidance for library preparation protocols. It can be easily adapt-

ed to protocols not covered here and to future developments.

Protocols with limited bias, such as those using RNA fragmen-

tation, will profit from our approach as well; sample preparation

of these can potentially be improved based on general insights

generated with our framework, such as the cDNA-yield

increasing effects of altered incubation temperatures. Further-

more, our models can be easily extended to take account of

RNA degradation (see Note - previous approaches to correct

coverage bias in Method Details); although this is not imple-

mented yet, our approach of modeling the logics of sample prep-

aration permits inclusion of RNA degradation mechanisms in our

models and thus potentially allows analysis and/or correction of

their effects. It is also straightforward to integrate and combine

our bias correction with previous methods focused on other is-

sues such as the sequence-specific bias; our abundance esti-

mates can be simply included as correction factors, e.g., in the

likelihood functions for read numbers of individual isoforms,

while the model fitting and thus learning of parameters can be

performed on a reduced gene set without overlapping genes.

A first application of our modeling framework suggests

an incomplete understanding of the mechanisms underlying

SMART protocols and yields processivities of enzymes during

library preparation. Notably, our approach presents a novel alter-

native to processivity measurements by radioactive footprint as-

says (Bambara et al., 1995). An interesting extension of this

aspect of our work would be to explore alternatives to the expo-

nential enzyme drop-offs we assumed. Usage of enzymes under

saturating conditions might feasibly result in strands that corre-

spond to concatenates of several individual polymerization pro-

cesses, requiring more complex models (Method Details).

Another prediction from our study is the substantial underesti-

mation of expression levels of long transcripts with poly-A
normalized to unity at length 2 kb. Parameter settings are shown in the table on

re plotted versus their lengths for three different bias-correction approaches

s to one probe. Fitted trend lines and their formulas are shown. Standardized

ng a wide range of lengths. RNA-seq samples deriving from two different RNA

ed. In parallel, the corresponding two RNA samples (dots and triangle symbols,

nd analysis as in (B).

ell type (resting Th2 cells) prepared with different library preparation protocols

n). Different quantification approaches were used: Cufflinks (left panel), RSEM

; Vahedi, model A). See Table 1 for details of the datasets.
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priming and SMART protocols if read numbers are assumed to

scale linearly versus length. This is due to the small fraction of

a long mRNA that becomes double-stranded cDNA and also im-

plies under-exploitation of the starting material, thus forgoing a

potentially higher sensitivity with current scRNA-seq protocols.

Inclusion of spike-in probes that are longer than the current stan-

dard (< 2 kb) might be valuable for RNA-seq experiments in gen-

eral to allow for better monitoring of this effect. This might require

a different probe production technique from the commonly em-

ployed in vitro transcription, which becomes ineffective for long

templates.
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NP-40 ThermoFisher Cat#28324

Agencourt Ampure XP Beads Beckman Coulter Part#A63881

polyA Spin mRNA Isolation Kit New England Biolabs Cat#S1560S

TRIzol Reagent Thermofisher Cat#15596018

NEB next qPCR quantification kit New England Biolabs Cat#E7630L

Critical Commercial Assays

Nextera XT DNA Library Preparation kit Illumina Cat#FC-131-1024

Nextera XT index kit Illumina Cat#FC-131-1001

Miseq Reagent kit v3 (150 cycle) Illumina Cat#MS-102-3001

Qubit Fluorometric Quantitation Thermofisher Cat#Q32866

Agilent 2100 high sensitivity kit Agilent Technologies G2939AA

Deposited Data

Data Files for RNA sequencing This Paper GEO: GSE84785

For previously published datasets used in

this study see Table 1

Various N/A

Experimental Models: Organisms/Strains

Mouse B6CBF1 wildtype Rodent Facility, University of Warwick N/A

Sequence-Based Reagents

For qPCR primers see Table S2 This Paper N/A

Smart-seq 2 Template Switching

Oligonucleotide AAGCAGTGGTATCAA

CGCAGAGTACrGrG+G

Picelli et al., 2013 N/A

Quartz-seq RT primer (WTA) TATAGAATT

CGCGGCCGCTCGCGATAATACGACTC

ACTATAGGGCGTTTTTTTTTTTTTTTTTT

TTTTTT

Sasagawa et al., 2013 N/A

Quartz-seq Tagging primer TATAGAATTC

GCGGCCGCTCGCGATTTTTTTTTTTTTTT

TTTTTTTTT

Sasagawa et al., 2013 N/A
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Quartz-seq suppression PCR
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Sasagawa et al., 2013 N/A

ERCC Spike-in mix Ambion (Thermofisher) Cat#4456740

Software and Algorithms

Mathematica (v10.4) Wolfram Research, Inc. http://www.wolfram.com/education/

Bowtie (v1.0.0) Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.

shtml

MATLAB MCMC toolbox Haario et al., 2001 http://helios.fmi.fi/�lainema/mcmc

MATLAB and Statistics Toolbox The MathWorks, Inc. http://www.mathworks.com/includes_

content/domainRedirect/domainRedirect.

html?uri=http%3A%2F%2Fuk.mathworks.

com%2F

Cufflinks (v2.2.1) Trapnell et al., 2012 http://cole-trapnell-lab.github.io/cufflinks/

SRA Toolkit NCBI http://trace.ncbi.nlm.nih.gov/Traces/sra/

sra.cgi

RSEM Li and Dewey, 2011 http://deweylab.biostat.wisc.edu/rsem/

qpcR R library Ritz and Spiess, 2008 https://cran.r-project.org/web/packages/

qpcR/index.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to Lead Contact Daniel Hebenstreit (D.Hebenstreit@warwick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Mice

All projects involving animals, including studies not subject to home office licensing are scrutinised and approved by AWERB, estab-

lished with Home Office guidance and RSPCA/LASA guiding principles on good practice for local ethical review processes. The

AWERB ensures that in all cases staff and students are trained and appropriately experienced and that the potential benefits of

the research outweigh the effects on the animals concerned while being committed to the promotion of 3Rs (reduction, refinement

and replacement). Wild-type B6CBF1 mice were used for splenocyte isolation from spleen. Total mouse RNA used in some exper-

iments was purchased from Clontech.

METHOD DETAILS
RNA isolation and preparation

Starting RNA was either ‘‘mouse liver control RNA’’ (Clontech), or was prepared from murine lymphocytes that were isolated

from a B6CBF1 mouse spleen by homogenization through a cell strainer in DMEM-10 media, followed by centrifugation through

Lympholyte Ficoll (Cedarlane). For single cell preparations, lymphocytes were additionally stained with anti-CD5 FITC antibody

and sorted using a FACS aria fusion (BD Bioscience) into lysis buffer immediately before first-strand synthesis (see below).

Otherwise, total RNA was extracted from the lymphocyte suspension using 1 mL Trizol (Ambion) and isolated with 500 mL chlo-

roform before being ethanol precipitated. This was followed by poly-A purification for a selection of samples (Table S1) using

the polyA Spin mRNA isolation kit (NEB) following the manufacturer’s instructions. ERCC spike-in probes were added to a subset

of samples in the following way. 0.2 mL of a 1:10 dilution of ERCC spike-ins (Ambion) were added to 1 mL of 1mg/mL total RNA,

before dilution to 100 pg/mL for low input samples, while 1 ml of a 1:10 dilution were included with the samples containing

100 ng of poly-A+ RNA (Table S1). The RNA was then divided into two equal samples for the different first-strand incubation

temperatures.
SMART-seq, SMART-seq2

First-strand synthesis was performed in two separate reactions using the SMART cDNA synthesis kit (Takara Clontech), with different

temperatures either 25�C or 42�C but otherwise following the manufacturers’ instructions. In brief, 1 mg total RNA or 100 ng poly-A+

RNA from murine lymphocytes or liver in 3.5 mL was mixed with 1 mL of anchored 12 mM Oligo(dT) (30 SMART CDS Primer II A) and
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denatured at 72�C for 3 min in a thermocycler with a heated lid, before the temperature was dropped to the desired first-strand syn-

thesis temperature. The following were then added for a 60min incubation: 1 mL 10mMdNTPmix, 1 mLMMLV SMARTscribe reverse

transcriptase (Takara Clontech), 0.25 mL RNase inhibitor, 2 mL 5X smart scribe first-strand buffer, 0.25 mL 100 mM DTT, and 1 mL of

12 mM template switching oligo (SMARTer II A Oligonucleotide).

SMART-seq2 was carried out as described in Picelli et al. (Picelli et al., 2013), with either isolated, lysed cells or 10 pg of total input

RNA. In brief, a single lysed CD5+ cell or 10 pg of total RNA (0.1 mL of 100 pg/mL RNA) was mixed with 0.3 mL of anchored 12 mM

Oligo(dT) (30 SMART CDS Primer II A) and 0.3 mL of 10 mM dNTPs before being denatured at 72�C as in SMART-seq ‘‘1’’ as above.

Upon reaching the desired first-strand synthesis temperature, 0.5 ul 5X first-strand buffer, 0.5 mL betaine, 0.003 ml MgCl2, 0.06 ml DTT

(100 mM stock), 0.25 ml LNA template switching 50 Oligo, 0.06 ml RNase inhibitor, and 0.25 ml reverse transcriptase (100 u/mL) were

added. First-strand synthesis was then carried out at either 25�C or 42�C including the SMART-seq2 temperature cycling as in the

below table where xx is the first-strand synthesis temperature.
Single cell Smart-seq2 first strand where xx is the

chosen first-strand synthesis temperature of 25 or 42

Cycle Temperature (�C) Time

1 xx 90 min

2 to 11 50 2 min

2 to 11 xx 2 min

12 xx 15 min

13 4 Infinite hold
After first-strand synthesis, each sample was again divided into two equal samples for the different second-strand incubation tem-

peratures. Second-strand synthesis was performed with TAQ polymerase (KAPPA) in ‘‘Buffer A’’ tris-ammonium sulfate based buffer

with 1.5mMMgCl2 and in the presence of 200 mMdNTPswith 1 mL of 12 mM50 PCRprimer (‘5-AAGCAGTGGTATCAACGCAGAGT-30)
to prime the second-strand synthesis. Samples were incubated for 20min at either 72�C or 42�C, followed by PCR for a subset of the

SMART-seq samples. PCR was included for all SMART-seq2 samples as follows where xx is the second-strand synthesis

temperature:
SMART-seq (with PCR) and Smart-seq2 PCR conditions

where xx is the chosen second-strand synthesis

temperature of 42 or 72

Cycle Temperature (�C) Time

1 98 3 min

2 to 19 98 20 s

2 to 19 68 15 s

2 to 19 xx 6 min

20 xx 5 min

21 4 Infinite hold
Qubit analysis ensured that 1 ng of dual stranded input cDNA for the ‘‘tagmentation’’ reaction using Nextera XT (Illumina)

carried out following the manufacturer’s instructions including a 12 cycle PCR, at which point molecular barcodes were added iden-

tifying the reverse transcription conditions. Ampure XP beads were used to purify the reaction products before quantitation and

pooling.

Agilent 2100 high sensitivity kit was used to determine the average fragment size, while quantification was done with a Qubit high

sensitivity kit, allowing the libraries to be diluted to a final concentration of 4 nM and pooled, this was then confirmed using the NEB

next qPCR quantification kit (NEB). The reactions were then denatured with 0.1 N NaOH and 20 pmol sequenced on Illumina MiSeq

using reagents kits v3 in a 75 bp paired-end run. The data were deposited at GEO (http://www.ncbi.nlm.nih.gov/geo/, accession

number GEO: GSE84785).
Quartz-seq

Quartz-seq was carried out on 100 ng poly-A purified RNA as previously described (Sasagawa et al., 2013) with minor modifications.

In brief, 100 ng of poly-A purified RNA in 3.5 mL was mixed with 1 mL of 10 mM RT Primer (TATAGAATTCGCGGCCGCTCGCGATAA

TACGACTCACTATAGGGCG[T]24) and denatured at 70�C for 90 s in a thermocycler with a heated lid. The following was then added
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to each sample at 4�C: 1 mL10 mM dNTP mix, 1 mL MMLV SMARTscribe reverse transcriptase (Takara Clontech), 0.25 mL RNase

inhibitor, 2 mL 5X smart scribe first-strand buffer, 0.25 mL 100 mM DTT and 1 mL nuclease free water. First-strand synthesis was

then carried out in a thermocycler at either 25�C or 42�C (xx) as below:
Quartz-seq first-strand where xx is the chosen first-

strand synthesis temperature of 25 or 42

Cycle Temperature (�C) Time

1 4 To begin

2 35 5 min

3 xx 20 min

4 70 10 min

5 4 Infinite hold
Following first-strand synthesis, the primers were removed using Exonuclease I digestion in Kappa PCR ‘‘Buffer A’’ tris-ammonium

sulfate based buffer with 1.5 mMMgCl2. Poly(A) tailing of the single stranded cDNAwas then carried out using TdT in the presence of

0.15 mM dATP and Rnase H for 50 s. Second-strand synthesis was carried out for 20 min at either 72�C or 42�C using Kappa Taq as

previously. PCR enrichment was carried out using TAQ polymerase (KAPPA) in ‘‘Buffer A’’ tris-ammonium sulfate based buffer with

1.5 mMMgCl2 and in the presence of 200 mM dNTPs with 1 mL of 10 mMPCR primer (NH2)-GTATAGAATTCGCGGCCGCTCGCGAT,

with the following PCR program:
Quartz-seq enrichment PCR where xx is the chosen

second-strand synthesis temperature of 42 or 72

Cycle Temperature (�C) Time

1 68 To begin

2-18 98 10 s

2-18 65 15 s

2-18 xx 5 min

19 xx 5 min

20 4 Infinite hold
qPCR & RNA-seq length correlation analysis

Two poly-A+ RNA samples corresponding to Smartseq.noPCR.a.ng and Smartseq.noPCR.d.ng (Table S1) were subjected to first-

strand synthesis as outlined previously, with the exception that the template switching oligo (TSO) was not included. SensiMix SYBR

No-ROX kit (Bioline) was used for qPCR following the manufacturer’s protocol, with the exception of a reduced volume to 10 ml. PCR

primers were designed to be located close to the 30 ends of twelve transcripts covering a range of lengths from �2 to �22 kb (Table

S2). We designed multiple alternative reverse primers for some genes to test precision of the qPCR (Table S2). These gave very

similar results which were averaged for analysis. The reactions were carried out on a QIAGEN Rotorgene-Q 5-plex model, running

software v2.1.0, using conditions as shown below:
qPCR conditions

Cycle Temperature (�C) Time

1 95 10 min

2-45 95 15 s

2-45 60 15 s

2-45 72 15 s
The transcripts’ expression levels were calculated as 2-Ct, where Ct was calculated with the qpcR R library, and were z-trans-

formed separately for the two RNA samples. The pooled expression levels were plotted against the corresponding transcript lengths

and a linear model was fitted with the R function lm().
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In parallel, we calculated expression levels for the RNA-seq samples corresponding to the same RNA starting preparations

(Smartseq.noPCR.a.ng and Smartseq.noPCR.d.ng; all temperature variations were used; Table S1). We analyzed the samples

with CuffLinks, RSEM, or fitted our Model D as described below. We averaged expression levels for all temperatures variations of

the same starting RNA, and processed the data further in the same way as the qPCR data.
Data processing

Datasets (see Table 1 for accession codes) were downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/) or ENCODE (https://

www.encodeproject.org/). SRA format files were converted to FASTQ format files using the fastq-dump program from the SRA Tool-

kit (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc). We downloaded RefSeq gene annotations for the mouse

genome (mm10) from UCSC Genome Browser (https://genome.ucsc.edu/). We then used custom Perl scripts to remove all entries

that overlapped each other or corresponded to multiple isoforms of a gene. The mRNA sequences for the remaining entries were

downloaded from UCSC Genome Browser and were clipped by any 30 stretches of poly-A. In addition, we downloaded a FASTA

file for the ERCC-mix1 spike-in controls from https://www.encodeproject.org/datasets/ENCSR156CIL/. Both sets of sequences

were used to generate indices for Bowtie 1.0.0 (Langmead et al., 2009). All datasets were then mapped to the appropriate indices

with Bowtie, using option ‘-m 1’. The starting positions of reads were extracted from the mapping output files and were collected

as lists for each transcript. Names, lengths, and read position lists of each transcript were saved into files, which were used as input

for the parameter estimations.

Datasets produced in this study were processed as described above, with ‘NR_’ transcripts removed from the annotation file for

most analyses due to an outlying ribosomal RNA that was present also in all poly-A+ samples. Unique read mappings were �20 to

50% for poly-A+ RNA and�2 to 5% for total RNA. Please note that our parameter estimations do not require large read numbers; we

therefore aimed for �0.1M to �1M reads per individual sample (Table S1).

To calculate FPKM using the bias correction approach by Roberts et al. (Roberts et al., 2011), we downloaded and ran CuffLinks

2.2.1 (http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/) (Trapnell et al., 2012). We supplied it with a GTF and a FASTA file prepared

from our transcript sequences, using options -G and -b, respectively.

To calculate FPKM using the RSEM bias correction approach (Li and Dewey, 2011), we downloaded RSEM 1.2.22 software (http://

deweylab.biostat.wisc.edu/rsem/) and used the function rsem-prepare-reference to produce an RSEM index for our transcript se-

quences. We then ran rsem-calculate-expression using options –sam, –estimate-rspd and –no-bam-output, and in addition –paired-

end for the Mahata dataset.

FPKM for spike-in probes in newly generated RNA-seq samples were calculated using the standard formula (1093 reads3 probe-

length-1 3 total-reads-1), where total reads were all reads mapping to the spike-in probes.

The coverage plots were generated in Mathematica 10 using the function ArrayPlot after calculating the densities of read starting

positions in 20 equally sized bins along the transcript lengths. The ColorFunction in ArrayPlot was set to ColorData[‘‘SunsetColors’’]

[1 - 10 #] &. The same binned data were used to compare coverage uniformity in the following way; RNA-seq samples prepared at

standard temperatures and the corresponding low-temperature samples were compared in terms of the numbers of detected genes.

All genes of the sample with the lower number were used for further processing. A random sample of the same number of genes was

selected from the other sample. This was done in order to process equal numbers of genes for the two samples. We then calculated

the statistical entropy for the binned data of all genes in both samples, since entropy becomes maximal for uniform distributions. We

then calculated the medians of these distributions and their ratio regarding high- and low-temperature samples.
Parameter estimation

Weused a BayesianMarkov ChainMonte Carlo (MCMC) Framework to fit the RNA-seq data and infer parameters of eachmodel. The

number of reads processed for a transcript was limited to 100, to reduce computational time. We confirmed including more data did

not affect our parameter estimates. We further used similar read numbers for different ranges of gene lengths to obtain an unbiased

estimate across all transcript lengths. We used likelihood ratios to test the goodness-of-fits of the models. Inference was performed

using the MATLAB MCMC toolbox (http://helios.fmi.fi/�lainema/mcmc/). For the parameter perturbations and bias correction ana-

lyses (Figures 3 and 4), we fit Model B&D to SMART-seq/SMART-seq2 samples, Model D to all others (including SMART-seq without

flanking PCR).
Note - previous approaches to correct coverage bias

Correction of RNA-seq coverage bias is necessary in order to yield correct estimates of the original mRNAs’ abundances. Effects

such as mRNA secondary structure or usage of random-primers with non-uniform nucleotide frequencies will influence the read dis-

tributions within transcripts. However, this type of coverage bias affects individual transcripts in a sequence-specific manner. In

contrast, the enzymatic bias that we address affects the representation of transcripts in a systematic and length-dependent way;

it can result in different shapes of the coverage distribution at different lengths. It is equally possible that the shape stays the

same while the total expected read numbers per transcript vary greatly and/or disproportionately for different lengths. Successful

correction of this bias thus requires an understanding of the actual, potentially non-linear, scaling between numbers of sequencing

reads mapping to transcripts and their lengths. While several methods to correct RNA-seq coverage bias have been published, they

mostly fall short with regards to this last point.
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Most methods follow the same overall strategy of re-weighing read densities along transcripts based on functions that describe

their deviance from uniform distributions. These functions range from non-parametric empirical to stepwise linear to Gaussian

mixture models and others (Bohnert and R€atsch, 2010; Li et al., 2010a; Howard and Heber. 2010; Wu et al., 2011; Hu et al., 2014;

Roberts et al., 2011; Li and Jiang, 2012; Huang et al., 2013; Tuerk et al., 2014). The approaches also differ by their resolution

(bins, sections, single bases, etc.), by how the functions are learned, and whether/how the functions are allowed to vary with tran-

script length. However, none of these methods offer mechanistic insights or scale across transcripts as explained above since they

are not based on an understanding of the logics underlying library preparation.

An approach that suffers from similar problems but takes into account scaling across transcripts is provided by Zheng et al. (2011).

The authors aim to remove length-related bias, which is implicitly based on the assumption that mRNA length and expression levels

are independent variables. It is not clear that this would be so as, biologically, restricting expression of long transcripts might be ener-

getically favorable; in line with this, even the (largely systematic bias-free-) RNA-fragmentation protocol displays anti-correlation be-

tween length and expression level (Figure S8b, Vahedi dataset). Also, we have observed anti-correlation between gene length and

expression level in most datasets after correcting for the length bias using our methodology (Figure S8b).

Noteworthy is also the approach of Wan et al. (2012), who correct FPKM within exons by a factor that is taken to exponentially

decrease from the 30 ends to the center of each exon. This is somewhat similar to our model B (Figure 1D), although their factor is

fitted separately for each gene. The authors interpret the exponential decrease as mRNA decay, which appears implausible for a

number of reasons; RNA degradation during experimental procedures is improbable to occur from one side only and/or to occur

at rates that correlate across datasets (Wan et al., 2012). Biological degradation, on the other hand, is unlikely to lead to a simple

exponential decrease; processive, one-sided degradation should theoretically yield a shape corresponding 1� e�dx(d being the

degradation rate), if detectable at all; biological mRNA degradation takes place extremely rapidly, usually leaving no detectable in-

termediates Houseley and Tollervey (2009). Note also that coverage bias is not generally limited to one side. We show that the

bias can shift from 30 to 50 end, or be bimodal, or be absent for the same cell type (Th2 cells, compare the datasets Wei, Hebenstreit,

Mahata, Vahedi, respectively) depending on the library preparation protocol (Figure S1). Our model predicts and confirms this effect.

It is worth including a brief discussion of the ‘Flux Simulator’ (Griebel et al., 2012) tool here. Although it is not a bias correction

method, it aims to computationally simulate the steps of experimental protocols in terms of their influence on the resulting read dis-

tributions. It is used for in silico data generation in several studies and is interesting for its consideration of enzymatic reactions during

library preparation. The dependencies of first- and second-strand syntheses on priming strategies are recognized. However, param-

eter estimations for these are not possible and the softwaremakes extensive simplifications; syntheses endpoints are assumed to be

uniformly distributed and are limited to a maximum distance of 5 kb. Over-represented ends of (short) strands upon frequent full-

length syntheses are not considered either (compare our density functions for synthesis endpoints, which feature delta peaks at

the ends; Figure S2b).
Models

Preliminaries

We use conditional probabilities for different events within an experimental protocol to derive an expression for the likelihood of a

sequencing read start position. For instance, the probability to initiate reverse transcription/first-strand synthesis might depend

on the binding probability of a primer to the mRNA, which in turn might depend on the transcript length, etc. These individual depen-

dencies can be conveniently factored following the chain rule to give the joint probability.

For one particular transcript of length l, let the possible start- and end-points of first- and second-strand cDNA synthesis be de-

noted by the random variables s1, e1, s2 and e2 (all ˛R), respectively, as illustrated in Figure S2a.

To take account of (i) the opposite direction of first- and second-strand syntheses and of (ii) the fact that synthesis necessarily ends

at either end of the transcript, the following semi-continuous conditional probability densities are introduced (Figure S2b):

pðe1 j s1Þ=
�
4ðs1 � e1; q1Þ+ dðe1Þ½1� Fðs1; q1Þ� if 0%e1%s1%l;

0 otherwise:

and

pðe2 j s2Þ=
�
4ðe2 � s2; q2Þ+ dðe2 � lÞ½1� Fðl � s2; q2Þ� if 0%s2%e2%l;

0 otherwise:

Here, 4 gives probability densities for the synthesis lengths of first- and second-strand enzymes (reverse transciptase and DNA

polymerase), respectively, andF gives the corresponding cumulative distribution functions. dðxÞ represented theDirac delta function.

The distributions are subject to parameters q1 and q2, and can be assumed to be exponential distributions based onwhat is known for

the processivity of polymerases (Figure S2b; in the case of concatenates of several individual polymerization processes, sums of

exponentially distributed variables will result, forming Erlang distributions).

We then have

4ðx; qÞ= qe�qx; Fðx; qÞ= 1� e�qx:
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Given the above conditional probabilities, in the following we will use the following relation:

pðs1; e1; s2; e2Þ=pðe2 j s2; s1Þpðs2 j e1; s1Þpðe1 j s1Þpðs1Þ:
If as in themodels A to D (Figure 1D), we have pðs1Þ= dðs1 � lÞ, the dependence of s2 and e2 on s1 is dropped. Inmany protocols the

cDNA is fragmented before sequencing. We assume there is uniform probability of fragmentation along the cDNA and therefore there

is also uniform probability of a sequencing start read along the transcript’s length. However, we assume that fragmentation efficiency

is reduced for positions closer than a distance h from either end, thus resulting in lower sequencing coverage. We calculate the likeli-

hood of a sequencing read on a fragmented end of a cDNA in either direction for a given mRNA as

ffragðxÞ=

0
BB@

1

d
Pðs2 < x <e2Þ+Pðs2 + h< x <e2 � hÞ for h< x < l � h;

1

d
Pðs2 < x <e2Þ otherwise:

Coverage inside fragments is thus assumed to be higher by a factor ðd + 1Þ than close to ends (we assume d > 0).

In the following, we derive analytical expressions for the likelihood function for several models of how library preparation of various

RNA-seq protocols takes place (Figure 1D in the main text).

Derivations of Models

Symbolic calculations of the derivations below were carried out with Mathematica software and were checked manually where

feasible.

Derivation of Model A. This model is compatible with idealistic assumptions about SMART-based protocols; first-strand synthesis

is primed with oligo(dT) primers and thus starts at the 30 end of transcripts (i.e., at position l). Only first-strands reaching the 50 ends of
transcripts are primed for second-strand synthesis at position 0. Only second-strands reaching position l are processed for

sequencing. Therefore:

pðs1Þ= dðs1 � lÞ and pðs2 j e1Þ= dðe1Þdðs2Þ:
We have for for h< x < l � h

PAðs2 + h< x <e2 � hÞ=
Z l

0

pðs2 + h< x <e2 � hÞpðs1; e1; s2; e2Þds1de1ds2de2
Z l Z l
=
0

ds1de1
x+ h

de2dðe2 � lÞ
Z x�h

0

ds2pðe2; s2; e1; s1Þ
Z l Z l Z

=

0

de1
x + h

de2dðe2 � lÞ
x�h

0

ds2pðe2 j s2Þpðs2 j e1Þpðe1 j lÞ
Z l Z x�h
=
x+ h

de2dðe2 � lÞ
0

ds2pðe2 j s2Þdðs2Þ½1� Fðl; q1Þ�
= ½1� Fðl; q1Þ� ½1� Fðl; q2Þ�
�l
= e ðq1 + q2Þ:

We note that for h> x or x > l � h we have

PAðs2 + h< x <e2 � hÞ= 0:

We note that the integrals above are a continuous approximation of the discrete sums over mRNA residues that includes the 30 and
50 end of the mRNA. So, the integral limits are from 0� ε to l + ε, where ε is a small positive real number. Throughout, these limits are

taken into account when integrating over the Dirac d functions but for simplicity the ε’s are not explicitly included.

Derivation of Model B. This model is compatible with idealistic assumptions about poly-A-tagging protocols; first-strand synthesis

is primedwith oligo(dT) primers and thus starts at the 30 end of transcripts (i.e., at position l). Second-strand synthesis starts at the end

of first-strands. Only second-strands reaching position l are processed for sequencing. Therefore:

pðs1Þ= dðs1 � lÞ and pðs2 j e1Þ= dðs2 � e1Þ:
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We have for h< x < l � h

PBðs2 + h< x <e2 � hÞ=
Z l

0

pðs2 + h< x <e2 � hÞpðs1; e1; s2; e2Þds1de1ds2de2
Z l Z l
=
0

ds1de1
x + h

de2 dðe2 � lÞ
Z x�h

0

ds2pðe2; s2; e1; s1Þ
Z l Z l Z

=

0

de1
x+ h

de2 dðe2 � lÞ
x�h

0

ds2pðe2 j s2Þpðs2 j e1Þpðe1 j lÞ
Z l Z

=

x + h

de2 dðe2 � lÞ
x�h

0

ds2pðe2 j s2Þpðs2 j lÞ
Z x�h Z

=

0

ds2 pðs2 j lÞ
l

x+ h

de2 dðe2 � lÞpðe2 j s2Þ
Z x�h
=
0

ds2 pðs2 j lÞpðl j s2Þ
Z x�h
=
0

ds2 pðs2 j lÞ½1� Fðl � s2; q2Þ�
�

=

1

ðq1 + q2Þ q1e
�2lðq1 + q2Þ+ ðq1 + q2Þðl�h+ xÞ + q2e

�lðq1 + q2Þ�:
We note again that for h> x or x > l � h we have

PBðs2 + h< x <e2 � hÞ= 0:

Derivation ofModel C. Thismodel assumes that full-length first-strands are selected, while second-strand synthesismay be incom-

plete; first-strand synthesis is primed with oligo(dT) primers and thus starts at the 30 end of transcripts (i.e., at position l). Only first-

strands reaching the 50 ends of transcripts are primed for second-strand synthesis at position 0. Therefore:

pðs1Þ= dðs1 � lÞ and pðs2 j e1Þ= dðe1Þdðs2Þ:
We have for for h< x < l � h

PCðs2 + h< x <e2 � hÞ=
Z l

0

pðs2 + h< x <e2 � hÞpðs1; e1; s2; e2Þds1de1ds2de2
Z l Z l
=
0

ds1de1
x + h

de2

Z x�h

0

ds2 pðe2; s2; e1; s1Þ
Z l Z l Z x�h
=
0

ds1de1
x + h

de2
0

ds2 pðe2 j s2Þpðs2 j e1Þpðe1 j s1Þpðs1Þ
= ½1� Fðl; q1Þ� ½1� Fðx + h; q2Þ�
�q1 l
= e �q2ðx +hÞ:

We again note that for h> x or x > l � h we have

PCðs2 + h< x < e2 � hÞ= 0:

Derivation of Model D. This model assumes that no selection for full-length syntheses takes place and is compatible with imperfect

SMART or poly-A-tagging protocols; first-strand synthesis is primed with oligo(dT) primers and thus starts at the 30 end of transcripts

(i.e., at position l). Second-strand synthesis starts at the end of first-strands. Therefore:

pðs1Þ= dðs1 � lÞ and pðs2 j e1Þ= dðs2 � e1Þ:
Cell Systems 3, 467–479.e1–e12, November 23, 2016 e8



We have for h< x < l � h

PDðs2 + h< x <e2 � hÞ=
Z l

0

pðs2 + h< x <e2 � hÞpðs1; e1; s2; e2Þds1de1ds2de2
Z l Z l
=
0

ds1de1
x+ h

de2

Z x�h

0

ds2pðe2; s2; e1; s1Þ
Z l Z l Z x�h
=
0

ds1de1
x + h

de2
0

ds2 pðe2 j s2Þpðs2 j e1Þpðe1 j s1Þpðs1Þ
2

=

Z x�h

0

ds24pðe1 = s2 j s1 = lÞ
Z l

x + h

de2pðe2 j s2Þ
3
5

Z x�h
=
0

ds2½pðe1 = s2 j s1 = lÞ½1� Fðx + h� s2; q2Þ��
Z x�h
=
0

4ðl � s2; q1Þ½1� Fðx + h� s2; q2Þ�ds2
+ ½1� Fðl; q1Þ� ½1� Fðx + h; q2Þ�
�

=

q1

q1 + q2
e�q1ðl�xÞ�q1h�2q2h � e�q1 l�q2ðx + hÞ�+ e�q1 l�q2ðx+ hÞ
�

=

1

q1 + q2
q1e

�q1ðl�xÞ�q1h�2q2h + q2e
�q1 l�q2ðx + hÞ�:

We note that for h> x or x > l � h we have

PDðs2 + h< x <e2 � hÞ= 0:

Derivation of Model E. This model is based on random-primed first- and second-strand syntheses. To model first-strand priming,

we set

pðs1Þ=
�
a1 if 0%s1%l;
0 otherwise:

where, l is the length of mRNA as before and a1 is the probability of primer binding per position. Second-strand priming is usually

carried out by (random) RNaseH nicking, so we have similarly

pðs2 j e1; s1Þ=
�
a2 if e1%s2%s1;
0 if s2 <e1ors2 > s1:

We assume that multiple priming events on the same first- and/or second-strand are possible. We approximate the effects of this

by assuming it will reduce the average syntheses lengths, yielding modified processivity parameters q10 and q20 . We have:

pðe1 j s1Þ=
�
41

�
s1 � e1; q

0
1

�
+ dðe1Þ

�
1� F1

�
s1; q

0
1

��
if 0%e1%s1;

0 otherwise:

and

pðe2 j s2; s1Þ=
�
42

�
e2 � s2; q

0
2

�
+ dðe2 � s1Þ

�
1� F2

�
s1 � s2; q

0
2

��
if s2%e2%s1;

0 if s2 >e2 or e2 > s1:

As we are assuming synthesis length follows an exponential decay, the new decay lengths can simply be related to the original

ones:

q01 = q1 +a1;
0
q2 = q2 +a2:
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Using the above probabilities, similar to the last sections, we can calculate the probabilities that are required to derive the

likelihoods.

We have for for h< x < l � h

PEðs2 + h< x <e2 � hÞ=
Z l

0

pðs2 + h< x <e2 � hÞpðs1; e1; s2; e2Þds1de1ds2de2
Z l Z l
=
0

ds1de1
x + h

de2

Z x�h

0

ds2 pðe2; s2; e1; s1Þ
Z l Z l Z x�h
=
0

ds1de1
x + h

de2
0

ds2 pðe2 j s2; s1Þpðs2 j e1; s1Þpðe1 j s1Þpðs1Þ
Z l Z x�h Z

=a1a2

x + h

ds1
0

de1

x�h

e1

ds2

Z s1

x +h

de2

�
4
�
e2 � s2; q

0
2

�

� � 0 ��� �
+ dðe2 � s1Þ 1� F s1 � s2; q2 4

�
s1 � e1; q

0
1

�
+ dðe1Þ

�
1� F

�
s1; q

0
1

���

a1a2 0 0

�

=
q01
�
q01 + q02

�e�ð2h+ l + xÞq
1
�ð2h+ xÞq

2 elq0
1 � eðh+ xÞq0

1

��
exðq01 + q0

2Þ � ehðq01 + q0
2Þ
�
:

We again note that for h> x or x > l � h we have

PEðs2 + h< x < e2 � hÞ= 0:

Derivation ofMixturemodel B&D. For thismodel, we assume that a partial selection of full-length second-strands takes place based

on PCR using 30 flanking primers. This corresponds to a mixture of models B and D:

PB&Dðs2 + h< x <e2 � hÞ=aPB + ð1� aÞPD; 0%a%1:

Model summary and correction (normalization) factors

Model A. Fragmentation model / Coverage function

ffragðxÞ=

0
BBB@

	
1

d
+ 1



e�lðq1 + q2Þ for h< x < l � h;

1

d
e�lðq1 + q2Þ otherwise:

Area under coverage function

Z l

0

ffragðxÞdx =

0
BB@

l +dðl � 2hÞ
d

e�lðq1 + q2Þ for h<
l

2
;

l

d
e�lðq1 + q2Þ otherwise:

Model B. Fragmentation model / Coverage function

ffragðxÞ=

0
BBB@

1

dðq1 + q2Þ
�
q1e

�2lðq1 + q2Þ+ ðq1 + q2Þðl + xÞ + q2e
�lðq1 + q2Þ�+ 1

ðq1 + q2Þ
�
q1e

�2lðq1 + q2Þ+ ðq1 + q2Þðl�h+ xÞ + q2e
�lðq1 + q2Þ� for h< x < l � h;

1

dðq1 + q2Þ
�
q1e

�2lðq1 + q2Þ+ ðq1 + q2Þðl + xÞ + q2e
�lðq1 + q2Þ� otherwise:

Area under coverage function

Z l

0

ffragðxÞdx =

0
BBBB@

1

dðq1 + q2Þ2
�
q1 + e�lðq1 + q2Þ�lq22 + lq1q2 � q1

��
+
q1
�
e�2hðq1 + q2Þ � e�lðq1 + q2Þ�+ q2ðq1 + q2Þðl � 2hÞe�lðq1 + q2Þ

ðq1 + q2Þ2
for h<

l

2
;

1

dðq1 + q2Þ2
�
q1 + e�lðq1 + q2Þ�lq22 + lq1q2 � q1

��
otherwise:
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Model C. Fragmentation model / Coverage function

ffragðxÞ=

0
BB@

1

d
e�q1 l�q2x + e�q1 l�q2ðx + hÞ for h< x < l � h;

1

d
e�q1 l�q2x otherwise:

Area under coverage function

Z l

0

ffragðxÞdx =

0
BBB@

e�lq1
�
1� e�lq2

�
dq2

+
e�lq1

�
e�2hq2 � e�lq2

�
q2

for h<
l

2
;

e�lq1
�
1� e�lq2

�
dq2

otherwise:

Model D. Fragmentation model / Coverage function

ffragðxÞ=

0
BBB@

1

dðq1 + q2Þ
�
q1e

�q1ðl�xÞ + q2e
�q1 l�q2x

�
+

1

q1 + q2

�
q1e

�q1ðl�xÞ�q1h�2q2h + q2e
�q1 l�q2ðx +hÞ� for h< x < l � h;

1

dðq1 + q2Þ
�
q1e

�q1ðl�xÞ + q2e
�q1 l�q2x

�
otherwise:

Area under coverage function

Z l

0

ffragðxÞdx =

0
BBB@

1� e�lðq1 + q2Þ

dðq1 + q2Þ +
e�2hðq1 + q2Þ � e�lðq1 + q2Þ

q1 + q2
for h<

l

2
;

1� e�lðq1 + q2Þ

dðq1 + q2Þ otherwise:

Model E. Fragmentation model / Coverage function

ffragðxÞ=

0
BBBBBBB@

a1a2

dq01
�
q01 + q02

� �1� e�xðq01 + q0
2Þ � e�ðl�xÞq0

1 + e�lq0
1
�xq0

2

�

+
a1a2

q01
�
q01 + q02

� �e�2hðq01 + q0
2Þ � e�ðh+ xÞðq01 + q0

2Þ � e�2hq0
2
�ðl + h�xÞq0

1 + e�lq0
1
�ðh+ xÞq0

2

�
for h< x < l � h;

a1a2

dq01
�
q01 + q02

� �1� e�xðq01 + q0
2Þ � e�ðl�xÞq0

1 + e�lq0
1
�xq0

2

�
otherwise:

Area under coverage functionZ l

0

ffragðxÞdx =
0
BBBBBBBBBBB@

a1a2

dq01
�
q01 + q02

�
"
l � 1

q01 + q02
� 1

q01
� q01e

�lðq01 + q0
2Þ

q02
�
q01 + q02

� +

�
q01 + q02

�
e�lq0

1

q01q
0
2

#

+
a1a2

q2
0

1 q
0
2

�
q01 + q02

�2 he�lq0
1
�2hq0

2

�
q01 + q02

�2 � e�lðq01 + q0
2Þq201 + q01q

0
2e

�2hðq01 + q0
2Þ�lq02 � 2hq01 � 2hq02 + lq01 � q02

�
q01 � 2

�i
for h<

l

2
;

a1a2

dq01
�
q01 + q02

�
"
l � 1

q01 + q02
� 1

q01
� q01e

�lðq01 + q0
2Þ

q02
�
q01 + q02

� +

�
q01 + q02

�
e�lq0

1

q01q
0
2

#
otherwise:

Mixture model B&D. Fragmentation model and correction (normalization) factor correspond to the weighted sum as given above in

the derivation of the mixture of models B&D.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters and statistical significance are reported in the figures and figure legends. Data were in general judged to be

statistically significant when p < 0.05 using the statistical tests are described in figure legends. Where data were suspected not to be

normally distributed, MannWhitney U (unpaired data) andWilcoxon signed-rank tests (paired data) were used as appropriate and as
e11 Cell Systems 3, 467–479.e1–e12, November 23, 2016



identified in the figure legends; otherwise one-sided t tests were used as indicated in the figure legends. Trendlines are based on

straight-line fits calculated with Mathematica or R as described in the method text and figure legends where relevant. Correlations

in Figure 4D were calculated with Mathematica 10 and are the Pearson product-moment correlation coefficient.

DATA AND SOFTWARE AVAILABILITY
Data Resources

The accession number for the raw and processed data files for the RNA sequencing analysis reported in this paper is NCBI GEO:

GSE84785.
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