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We propose a nontrivial two-qubit gate scheme in which Rydberg atoms are subject to designed
pulses resulting from geometric evolution processes. By utilizing a hybrid robust non-adiabatic
and adiabatic geometric operations on the control atom and target atom, respectively, we improve
the robustness of two-qubit Rydberg gate against Rabi control errors as well as blockade errors
in comparison with the conventional two-qubit blockade gate. Numerical results with the current
state-of-the-art experimental parameters corroborates the above mentioned robustness. We also
evaluated the influence induced by the motion-induced dephasing and the dipole-dipole interaction
and imperfection excitation induced leakage errors, which both could decrease the gate fidelity. Our
scheme provides a promising route towards systematic control error (Rabi error) as well as blockade
error tolerant geometric quantum computation on neutral atom system.

I. INTRODUCTION

Neutral atoms have strong dipole-dipole interactions
when excited to high-lying Rydberg states [1–4]. The
dipole-dipole-interaction induced Rydberg blockade has
many important applications in quantum computa-
tion [5, 6]. Experimentally, the Rydberg blockade has
been observed [7, 8], and furthermore, quantum CNOT
gates as well as quantum entangled states [9–17] using
Rydberg atoms have also been achieved. And the toric
code topological order has also been predicted based on
the Rydberg blockade [18]. Quantum logic gates based
on Rydberg blockade are often accompanied with block-
ade errors [19] proportional to (Ω/V )2, where Ω and
V denote the Rabi frequency and Rydberg-Rydberg-
interaction (RRI) strength, respectively. Although block-
ade errors can be reduced by increasing the RRI strength,
the performance of the quantum computation scheme will
be affected inevitably since the mechanical effect would
be increased due to the increase of RRI strength [20].
The blockade error can be minimized through consider-
ing rational generalized Rabi frequency [21] or taking into
consideration of dark-state dynamics that contain Ryd-
berg states [22]. In addition to the blockade error, the
control error, such as the Rabi frequency error induced by
laser intensity fluctuations at high Rabi frequencies [23],
is another resource of infidelity commonly encountered in
the Rydberg quantum computation.
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The Abelian geometric phase [24, 25] and non-Abelian
holonomy [26–29] depend only on the global properties of
the evolution trajectories of cyclic processes. On that ba-
sis, the geometric quantum logic gates based on Abelian
and non-Abelian geometric phases (holonomy) are robust
against local noises during the gate evolution [30–34].
Earlier geometric quantum computation schemes usually
rely on adiabatic processes that can suppress the tran-
sition between different instantaneous eigenstates of the
Hamiltonian [35–39]. Nevertheless, since the adiabatic
process requires longer evolution time to satisfy the adia-
batic condition, the scheme may suffer from the influence
of decoherence although it is robust to systematic con-
trol errors. Then, the nonadiabatic geometric quantum
computation [40–44] and nonadiabatic holonomic quan-
tum computation (NHQC) [45, 46] have been proposed to
reduce the evolution time of geometric gates, which can
enhance the robustness of the scheme on decoherence [47–
52]. Experimentally, progresses in nuclear magnetic res-
onance system [53, 54], superconducting qubits [55–61]
and nitrogen-vacancy centers in diamond [62–67] have
confirmed the theoretical schemes. However, these nona-
diabatic schemes are sensitive to the experimental con-
trol errors [68], which reduce the real usefulness of NGQC
and NHQC. Recently, to overcome the problem, Liu et
al [69] proposed a NHQC+ scheme by combining nona-
diabatic geometric quantum computation with optimal
control technology, but at the cost of complicated pulses
and gate time [70–76]. To balance all of speed, flexibil-
ity and robustness of geometric gates, the super-robust
pulse geometric quantum computation scheme has been
theoretically proposed [77] and experimentally realized
[78].
In this paper, we employ the geometric processes to

construct the nontrivial two-qubit Rydberg gate under
the consideration of the dark-state dynamics as described
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FIG. 1. Energy levels of the control (left) and target (right)
qubits to construct CNOT gate. |0⟩ ≡ |6s1/2, f = 3, mf = 0⟩
and |1⟩ ≡ |6s1/2, f = 4, mf = 0⟩ are two long-lived ground
states of Cs atom clock states. |R′⟩ ≡ |101s1/2, m = 1/2⟩ and
|r′⟩ ≡ |101p3/2, m = 3/2⟩ are Rydberg states of the control
atom, and |R⟩ ≡ |109p3/2, m = 3/2⟩ and |r⟩ ≡ |109s1/2, m =
1/2⟩ are Rydberg states of the target atom. We consider the
static Stark field 15.4 V/m directed along the quantization
axis that makes the Rydberg pairs energy degenerate and
leads to resonant interaction with C3 = 64.4 GHz ·µm3 [22].
V denotes the RRI strength relevant to C3 and the inter-
atomic distance. For the control atom, the transition |1⟩ ↔
|R′⟩ is driven resonantly by the laser with time-dependent

Rabi frequency Ωc(t) ≡ |Ωc(t)|eiφc(t). For the target atom,
the transition |0⟩(|1⟩) ↔ |r⟩ is driven resonantly by the lasers
with time-dependent Rabi frequency Ωt0(t)[Ωt1(t)] and phase
φt0(φt1).

in Ref. [22], where we can realize two-qubit gates robust
to Rabi control as well as blockade errors by the hybrid
of robust non-adiabatic and adiabatic geometric opera-
tions on the control atom and target atom. Through
a thorough numerical analysis on the performance of
our scheme and conventional Rydberg two-qubit scheme
under current experimental conditions, the control er-
ror caused by the deviation of the laser Rabi frequency
and the blockade error can be significantly suppressed.
We also consider the motion-induced dephasing as well
as dipole-dipole-interaction- and imperfection-excitation-
induced leakage errors. The analysis show that the mo-
tion leakage errors will decrease the fidelity. Our scheme
is suitable and useful for Rydberg experimental platforms
where some severe conditions, such as ultrastable Rabi
frequency and very strong Rydberg atom interactions,
can be relaxed.

II. MODEL

The protocol to achieve the two-qubit CNOT gate is
based on the dark state scheme [22] and consists of the
following three steps sketched in Fig. 1. Step (i) is to
apply a resonate laser to achieve the geometric opera-
tion |1⟩ → |R′⟩ of the control atom. In the rotating
wave approximation and the interaction framework, the

Hamiltonian of this step can be written as (ℏ ≡ 1)

Hc(t) =
1

2

(
0 Ω∗

c

Ωc 0

)
(1)

in the basis {|1⟩, |R′⟩} with the control parameters of
the lasers Ωc ≡ Ωc(t) = |Ωc(t)|e−iφc(t). In general, it
is difficult to analytically solve the dynamical evolution

U(t) = T e−i
∫ t
0
Hc(t

′)dt′ with time-dependent Hamilto-
nian due to the time-ordering operator.
To achieve the robust geometric gates, we adopt the

inverse engineering method [79–81] by choosing a pair of
states |ϕk(t)⟩ following the time-dependent Schrödinger
equation,

|ϕ1(t)⟩ ≡ eiγ
[
cos(θ/2)|1⟩ − sin(θ/2)e−iη|R′⟩

]
,

|ϕ2(t)⟩ ≡ e−iγ
[
sin(θ/2)eiη|1⟩+ cos(θ/2)|R′⟩

]
, (2)

where γ, η, and θ are time-dependent parameters. Ex-
plicitly, we find that the control parameters of the laser
are governed by the following coupled differential equa-
tions [see Appendix A],

|Ωc(t)| =
√
θ̇2 + η̇2 tan2 θ,

φc(t) = η − π

2
− arctan

(
η̇ tan θ

θ̇

)
,

γ̇(t) = − sin2(θ/2)

cos θ
η̇. (3)

After a cyclic evolution, i.e., |ϕk(τ)⟩ =
exp

[
i(−1)kγ(τ)

]
|ϕk(0)⟩ (k = 1, 2), the acquired

non-adiabatic geometric phase (Aharonov-Anandan
phase) [25] is given by

γg = ∆γ +

∫ τ

0

⟨ϕ1(t)|H(t)|ϕ1(t)⟩ dt , (4)

where ∆γ = γ(τ) − γ(0) is the global phase, and the
second part on the right-hand side of Eq. (4) denotes the
dynamical phase. To remove the dynamical phase, one
simple choice is to satisfy the parallel transport condition,
⟨ϕk(t)|H(t)|ϕk(t)⟩ = 0. Specifically, we find that the
control parameters need to satisfy the following condition

η̇ sin θ = 0 . (5)

Then the resulting unitary evolution becomes purely
geometric, i.e. U(τ) = eiγg |ϕ1(0)⟩⟨ϕ1(0)| +
e−iγg |ϕ2(0)⟩⟨ϕ2(0)|, which is non-diagonal in the basis
{|1⟩, |R′⟩},

U(τ) = e−iγgn·σ(c)

(6)

where n = [sin θ(0) cos η(0),− sin θ(0) sin η(0), cos θ(0)],

σ(c) = [σ
(c)
x , σ

(c)
y , σ

(c)
z ] denotes the Pauli matrix of the

control atom. Note that the robustness of geometric
gate in Eq. (6) against the experimental Rabi error,
i.e., ΩC → ΩC(1 + ξ) with relative Rabi frequency de-
viation ξ, is no more advantage than standard dynam-
ical gate [68]. To further enhance the robustness on
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the error, the additional dynamical effect between the
states |ϕ1(t)⟩ and |ϕ2(t)⟩ should be eliminated [77], i.e.,∫ τ

0
⟨ϕ1(t)|H(t)|ϕ2(t)⟩ dt = 0. Specifically, the control pa-

rameters should satisfy the following constrain,∫ τ

0

θ̇

2
exp

(
−i
∫ t

0

η̇

cos θ
dt′
)
dt = 0, (7)

where τ = τ1 is the total time for step (i).

TABLE I. One set of possible parameters of the laser am-
plitude and phase to implement the super-robust geometric
quantum operations in step (i).

t ∈ [0, τ1
3
] t ∈ ( τ1

3
, 2τ1

3
] t ∈ ( 2τ1

3
, τ1]

φc(t)
π
3

−π
3

π
3

|Ωc(t)| 3π
τ1

3π
τ1

3π
τ1

During the step (i), we implement the |1⟩ → |R′⟩ oper-
ation on the control atom, which is equivalent to achiev-
ing the NOT gate (U = σx) when the initial state is
|1⟩. To satisfy the conditions in Eqs. (5) and (7) for the
robust NOT gate, one can set

|Ωc(t)| = θ̇, φc = η − π

2
. (8)

A set of parameters listed in Table. I satisfy the constrain
in Eqs. (5) and (7) [see Appendix B].

In Step (ii) we achieve the conditional operation on the
target atom depending on the state of the control atom.
The Hamiltonian of the target atom is given by

Ht(t) =
Ωt0(t)

2
|0⟩t⟨r|+

Ωt1(t)

2
|1⟩t⟨r|+H.c.

=
Ωt(t)

2
(sin

Θ

2
eiφ(t)|0⟩+ cos

Θ

2
|1⟩)t⟨r|+H.c., (9)

in which Ωt0(t) = |Ωt0(t)|eiφt0(t), Ωt1(t) =
|Ωt1(t)|eiφt1(t), φ2(t) = φt1(t), φt0(t) =
φ(t) + φ2(t), Ωt(t) = |Ωt(t)|eiφ2(t) with |Ωt(t)| =√
|Ωt0(t)|2 + |Ωt1(t)|2, tan(Θ/2) = |Ωt0|/|Ωt1|. If Θ

is time-independent, the Hamiltonian for target atom
can be rewritten in the basis {|b⟩t ≡ sin(Θ/2)eiφ|0⟩ +
cos(Θ/2)|1⟩, |d⟩t ≡ cos(Θ/2)|0⟩ − sin(Θ/2)e−iφ|1⟩, |r⟩t}
as

Ht(t) =
Ωt

2
|b⟩t⟨r|+H.c., (10)

where |d⟩ is the dark state of the system that is decoupled
from the dynamics.

We now consider the first case of step (ii). If the con-
trol atom is initially in |0⟩ state, it would not be excited
after step (i). As such, there is no RRI involved in the
dynamics. Then, the evolution of target atom is con-
trolled by Eq. (10), which has the similar form to that of
Hc(t). Thus, one can use the similar method mentioned
in step (i) to design the desired super-robust geometric

operations in the subspace {|b⟩t, |r⟩t}. Specifically, we
choose the time-dependent states as

|ϕt1(t)⟩ ≡ eiΥ
[
cos

(
θt
2

)
|b⟩t − sin

(
θt
2

)
e−iηt |r⟩

]
,

|ϕt2(t)⟩ ≡ e−iΥ

[
sin

(
θt
2

)
eiηt |b⟩t + cos

(
θt
2

)
|r⟩
]
, (11)

where Υ, θt and ηt are the time-dependent parameters.
Similar to the process in step (i), the parallel transport
and super-robust condition for the control parameters of
step (ii) are given by,∫ τ1+τ2

τ1

θ̇t
2
exp

(
−i
∫ τ1+t

τ1

η̇t
cos θt

dt′
)
dt = 0,

η̇t sin θt = 0 . (12)

And the time-dependent laser parameters are determined
by,

|Ωt(t)| = θ̇t, φ2(t) = ηt −
π

2
. (13)

Consequently, the geometric evolution operator in the
subspace {|b⟩t, |r⟩t} is obtained as equation (6), with n =
[sin θt(0) cos ηt(0),− sin θt(0) sin ηt(0), cos θt(0)].
In this step, we implement the geometric operation

|b⟩ → eiπ|b⟩ with Υ(τ) = π, which is equivalent to
U = −|b⟩t⟨b| − |r⟩t⟨r| when the initial state is |b⟩t. If we
consider the decoupled dark state, the evolution opera-
tor in this step would be Uii = −|b⟩t⟨b|− |r⟩t⟨r|+ |d⟩t⟨d|.
To achieve this goal with the super-robust pulse, without
loss of generality, we design the Hamiltonian parameters
as shown in Table II.

After this step, the operation Ut = −|b⟩⟨b| + |d⟩⟨d| is
achieved in the computational subspace, which can be
re-expressed as

Ut =

(
cos(Θ) −eiφ sin(Θ)

−e−iφ sin(Θ) − cos(Θ)

)
(14)

in the basis {|0⟩t, |1⟩t}. Thus, one can set different
groups of parameters Θ and φ to realize various oper-
ations on the target atom. Concretely, one can choose

{φ, Θ} = {0, 0} for σ
(t)
z (σz operation on the target

atom) operation, {φ, Θ} = {0, − π/2} for NOT opera-
tion and {φ, Θ} = {0, − π/4} for Hadamard operation,
respectively.

We now consider the second case of step (ii), i.e., when
the control atom lies in |1⟩ state initially. In this case the
control atom would be excited after step (i). Then the
dipole-dipole interaction Hamiltonian

Hd = V |r′⟩c⟨R′| ⊗ |R⟩t⟨r|+H.c. (15)

would also be involved in controlling the dynamics of the
whole system. The total Hamiltonian of step (ii) in the
two-atom basis can thus be rewritten as

Hii =
Ωt(t)

2
|R′b⟩⟨R′r|+ V |r′R⟩⟨R′r|+ h.c., (16)
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TABLE II. One group of possible parameters of the laser amplitude and phase to implement the super-robust geometric
quantum operations in step (ii). τ2 is the total time of step (ii). |Ωt(t)| = (8π/τ2) sin

2[2π(t− t′)/(τ2/2)].

t ∈ [τ1, τ1 +
τ2
4
] t ∈ (τ1 +

τ2
4
, τ1 +

τ2
2
] t ∈ (τ1 +

τ2
2
, τ1 +

3τ2
4
] t ∈ (τ1 +

3τ2
4
, τ1 + τ2]

φ2(t) 0 3π
2

0 3π
2

t′ τ1 τ1 τ1 + τ2/2 τ1 + τ2/2

in which the state |mn⟩ ≡ |m⟩c ⊗ |n⟩t and this abbrevia-
tion style would be used throughout this work. Eq. (16)
has one dark state

|d⟩2 =
1

N

(
V |R′b⟩ − Ω∗

t

2
|r′R⟩

)
, (17)

where N is the normalized parameter of the dark state,
and two bright states

|b±⟩ =
1√
2N

(
Ωt

2
|R′b⟩ ± N |R′r⟩+ V |r′R⟩

)
(18)

with eigenvalues 0, ±N , respectively. Here N =√
V 2 +Ω2

t/4 is the normalized parameter.
In principle, when the initial state is |R′b⟩, the system

would evolve along the dark state |d2⟩ and the popula-
tion of the state |r′R⟩ would increase when Ωt increases
slowly on the premise of meeting the adiabatic condi-
tion [see Appendix C]. When Ωt is set to be zero initially
and finally, one can argue that |R′b⟩ is still be populated
when the adiabatic process is finished. We now analyze
the phases accumulated in this process. The phase accu-
mulated on the dark state can be classified as the dynam-
ical phase φdy and the geometric phase φge, respectively,
given by [see Appendix D]

φdy =

∫ τ1+τ2

τ1
2⟨d|Hii|d⟩2dt = 0 (19)

and

φge = i

∫ τ1+τ2

τ1
2⟨d|

∂

∂t
|d⟩2dt =

∫ τ1+τ2

τ1

Ω2
t φ̇2

Ω2
t + 4V 2

dt = 0.

(20)
That is, the initial state |R′b⟩ would keep invariant
and accumulate no phase, thus the identity matrix It is
achieved for the evolution operator. To derive Eq. (20),
we have supposed that V is constant. However, in prac-
tical case, V is determined by C3 and d (V = C3/d

3),
where C3 is the coefficient relevant to atom and Ryd-
berg states, and d is inter-atomic distance that linear in
time. That is, the value of V varies over time. In
Appendix E, we show clearly that, the geometric phase
is still zero in this case. One should note that although
this case has the similar effect to the conventional Ry-
dberg blockade, i.e., when control atom is excited, the
state of the target atom would be invariant, the phys-
ical regime is completely different and the performance
is better than that of blockade regime since the current
scheme utilizes the adiabatic process that has blockade

error if the adiabatic condition is satisfied well while the
blockade scheme always has blockade error.
Step (iii) is the reverse operation of step (i). After

these three steps, one acquires the operation

U = |0⟩c⟨0| ⊗ Ut + |1⟩c⟨1| ⊗ It. (21)

In general, Eq. (21) is a nontrivial two-qubit gate. One
can choose different parameters to realize the CZ and
CNOT gates, respectively.

III. RESULTS AND DISCUSSIONS

In this section, we demonstrate through numerical re-
sults that the current scheme has stronger robustness to
the Rabi frequency error and is also resilient to block-
ade error under the consideration of atomic spontaneous
emission in contrast to the conventional blockade scheme.
Moreover it has stronger robustness to the Rabi fre-
quency error in contrast to the dark state schemes.

A. Gate performance

We take advantage of the Lindblad master equation
to numerically simulate the performance of the scheme
under decoherence, which can be written as

ρ̇ = −i [H, ρ] +
12∑
i=1

Γi

(
AiρA

†
i −

1

2
{A†

iAiρ}
)
, (22)

where Γi denotes decay or dephasing rate relevant to
the dissipation process described by operator Ai. In
our scheme A1 = |0⟩c⟨R′|, A2 = |1⟩c⟨R′|, A3 = |0⟩c⟨r′|,
A4 = |1⟩c⟨r′|, A5 = |0⟩t⟨R|, A6 = |1⟩t⟨R|, A7 = |0⟩t⟨r|
and A8 = |1⟩t⟨r| denote the decay processes of the ex-
cited states. A9 = |R′⟩c⟨R′| − |0⟩c⟨0| − |1⟩c⟨1|, A10 =
|r′⟩c⟨r′|−|0⟩c⟨0|−|1⟩c⟨1|, A11 = |R⟩t⟨R|−|0⟩t⟨0|−|1⟩t⟨1|
and A12 = |r⟩t⟨r| − |0⟩t⟨0| − |1⟩t⟨1| denote the dephas-
ing processes. In Fig. 2, we plot the populations and
fidelities of the constructed gates with a specific group of
initial states. For the chosen energy level, the decoher-
ence parameters are set as Γ1 = Γ2 = 2π × 0.425 kHz,
Γ3 = Γ4 = 2π × 0.213 kHz, Γ5 = Γ6 = 2π × 0.169 kHz,
Γ7 = Γ8 = 2π × 0.336 kHz [83]. For the dephasing
rate, we here temporarily set Γ9 = Γ10 = Γ11 = Γ12 =
2π× 1 KHz at 0 K and using the relationship n ∼ τ3 for
the evaluation. The inter-atomic distance is set as 6 µm,
which induces the RRI strength V = 2π × 298 MHz for
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FIG. 2. Population and fidelity of the constructed logic gates
with the initial state |ψ⟩ = (|00⟩ + |01⟩ + |10⟩ + |11⟩)/2.
(a)[(b), (c)] Populations of the CZ(CNOT, CHadamard) gate.
(d) The fidelity of the constructed gates. The parameters
are chosen as follows. Ω = 2π × 8 MHz, |Ωc(t)| = Ω, V =
2π × 298 MHz when the interatomic distance is set as 6 µm
for the chosen Rydberg levels. φc(t) is shown in Eq. (3). And
φt1(t) = φ2(t) is shown in Eq. (13), φt0(t) = φt1(t) + φ(t).
Ωt0 = |Ωt(t)| sin(Θ/2), Ωt1 = |Ωt(t)| cos(Θ/2). φ(t) and Θ
are parameters determined by the concrete quantum logic
gate we want to construct. Γi is shown in the main text.
For CZ, CNOT and CHadamard gate, Max[|Ωt1(t)|] is set as
2Ω/3.

the chosen Rydberg states as considered in the caption
of Fig. 1. The results indicate that the final population
and final fidelity agree well with the dynamics governed
by the constructed gates.

B. Robustness against Rabi control errors

When constructing quantum logic gates theoretically,
we often assume that the Rabi frequency is constant.
However, in practice, there are some errors in the Rabi
frequency due to the fluctuation of the laser intensity.
From this point of view, in order to better demonstrate
the super-robustness of the gate, we assume that the
Hamiltonian would be written as follows. In steps (i)
and (iii), the Hamiltonian would beHerror

c = (1+ξ)Hc(t),
and in step (ii) the Hamiltonian is Herror

t = (1+ ϵ)Ht(t),
where ξ and ϵ are parameters regarding the Rabi fre-
quency errors. In the following, we use the average fi-
delity [84, 85]

F (Ξ, U) =

∑
j tr
(
UU†

jU
†Ξ(Uj)

)
+ d2

d2(d+ 1)
(23)

to evaluate the performance of the present scheme, where
Uj is the tensor of Pauli matrices II, Iσx, · · · σzσz, U
is the perfect phase gate, d = 4 for a two-qubit gate, and
Ξ is the trace-preserving quantum operation obtained
through solving the master equation.

In Fig. 3(a), (b) and (c), we plot the average fidelity of
the current scheme, the dark state scheme [22] and the
conventional blockade scheme [5] to demonstrate their
robustness to both Rabi frequency errors ξ and ϵ being
[0, 20%]. It can be seen that, as discussed in Ref. [22],
although the infidelity of the dark state scheme without
Rabi frequency error can be 10−5 or even smaller, the
robustness of the dark state scheme is not better than
the current one when the Rabi frequency errors exist.
The results indicate the super robustness feature of the
current scheme in contrast to the other two schemes.

To consider the decay and dephasing processes we
choose the Rabi frequency, and the decay and dephas-
ing rates the same as that in Fig. 2. The inter-atomic
distance is assumed to be 6 µm, which induces the RRI
strength V = 2π×298 MHz for the chosen Rydberg states
as considered in the caption of Fig. 1. With these experi-
mental parameters, the fidelity of the current scheme, the
dark state scheme [22], and the conventional scheme [5]
are plotted in Fig. 3(d), (e) and (f), respectively. The
results show that without Rabi frequency errors, the av-
erage fidelity of our scheme does not have an advantage,
i.e., the average fidelity of the dark state, the current and
the conventional blockade scheme are 0.9975, 0.9915, and
0.9982, respectively. That is due to the fact that our
schemes require longer evolution time which enhances
the influences of dissipation. However, when the Rabi
error of each step is close to 20%, our fidelity can still
reach 0.99, and the fidelities of the other two schemes
are just close to 0.95. In addition, we also plot the av-
erage fidelities of the CNOT and CHadamard gates in
Fig. 4, respectively, which also indicate the robustness of
our scheme under the Rabi frequency errors and dissipa-
tion. It should be noted that we have not considered the
motion-induced dephasing here, which would no doubt
decrease the average fidelity as shown in the following
experimental considerations.

We now compare our scheme with the works presented
in Refs. [86, 87]. To obtain the Hamiltonian dynam-
ics, Refs. [86, 87] utilize second-order perturbation the-
ory twice during the derivation of the effective Hamil-
tonian. The current scheme does not utilize the per-
turbation theory for the Hamiltonian, which means the
dynamics could be faster. For the operation steps, the
schemes in Ref. [86, 87] require one step while the cur-
rent one requires three steps. For the optimal geomet-
ric quantum computation method, Ref. [86] employs the
zero-systematic error method [88] while Ref. [87] consid-
ered the time-optimal technology [89]. In our scheme, the
super-robust pulse that can limit error to fourth-order is
utilized. Ref. [86] aims to implement multiple-qubit gate,
and Ref. [87] constructed three-qubit gate, while we con-
struct the robust two-qubit gate.
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FIG. 3. Fidelity of the CZ gate based on the current super-robust scheme(a)[(d)], the dark state scheme [22](b)[(e)], and the
conventional blockade scheme [5](c)[(f)], respectively, without (with) the consideration of dissipation. For panel (a)[(d)], the
parameters are chosen the same as Fig. 2(a) with Γi = 0(or not). For panel (b)[(e)], |Ωt(t)| = (4π/τ2) sin

2[2π(t−τ1)/(τ2/2)](τ1 <
t ⩽ τ1 + τ2), and the scheme is described in Ref. [22]. For panel (c)[(f)], Ωt = Ω, and the corresponding blockade scheme
can be found in Refs. [5, 82]. In panels (a), (b) and (c), Γi = 0. In panels (d) and (e), Γ1 = Γ2 = 2π × 0.425 kHz,
Γ3 = Γ4 = 2π × 0.213 kHz, Γ5 = Γ6 = 2π × 0.169 kHz, Γ7 = Γ8 = 2π × 0.336 kHz, Γ9 = Γ10 = Γ11 = Γ12 = 2π × 1 kHz. In
panel (f), since the blockade scheme is three-energy-level structure, we consider |R′⟩ for control atom and |r⟩ for target atom,
respectively. Thus, Γ3 = Γ4 = Γ5 = Γ6 = Γ10 = Γ11 = 0, and the remaining rates are the same as panel (d).

C. Blocked-error resilience analysis

In the conventional blockade scheme, the fidelity of the
constructed gate would decrease when the RRI strength
is not strong enough, leading to the blockade error.
This blockade error is proportional to the square of
Ω/V [19, 21], where Ω is the Rabi frequency and V the
RRI strength. Thus, when V ∼ Ω, the blockade error is
large enough that decreases qualities of the scheme.

In Fig. 5, we show the average fidelity of the CZ gate
with weak RRI strength. One can see that, for the
conventional blockade scheme, the blockade error signifi-
cantly influences the performance. While for our scheme,
the average fidelity is still very high even with weak RRI
strength and large Rabi frequency errors, implying the
robustness of the scheme to the blockade errors as well
as the Rabi frequency errors.

IV. EXPERIMENTAL CONSIDERATIONS

A. Excitation process and concrete laser
parameters

The excitation to Rydberg state can be implemented
by single-photon process [90, 91]. In this case the Ry-
dberg state should be considered as |np⟩ level due to
the selection-rule. In this scheme, we consider the two-
photon excitation process. As shown in Fig. 6, the en-
ergy levels are chosen as |0⟩ ≡ |f = 3, mf = 0⟩ and
|1⟩ ≡ |f = 4, mf = 0⟩, two long-lived ground states of
Cs atom clock states. |R′⟩ ≡ |101s1/2, m = 1/2⟩ and
|r′⟩ ≡ |101p3/2, m = 3/2⟩ are two Rydberg states of
the control atom, and |R⟩ ≡ |109p3/2, m = 3/2⟩ and
|r⟩ ≡ |109s1/2, m = 1/2⟩ are Rydberg states of the tar-
get atom. The resonant dipole-dipole interaction can be
achieved with C3 = 64.4 GHz·µm3 under the electric
field E = 15.4 V/m [22]. Alternatively, there are other
choices of the Rydberg level for experiments. For in-
stance, one can also choose |R′⟩ ≡ |112s1/2, m = 1/2⟩,
|r′⟩ ≡ |111p3/2, m = 3/2⟩, |R⟩ ≡ |101p3/2, m = 3/2⟩ and
|r⟩ ≡ |101s1/2, m = 1/2⟩. The resonant dipole-dipole in-
teraction can be achieved with C3 = 65.3 GHz·µm3 under
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FIG. 4. Fidelity of the CNOT (a)[(c)] and
CHadamard (b)[(d)] gates based on the current super-
robust scheme without (with) consideration of dissipation.
The parameters are chosen the same as that of Fig. 2(b) and
(c), respectively, except for panels (a) and (b), Γi is set as
zero.

the electric field E = 5.36 V/m [22].
The laser parameters are as follows. For the control

atom, the wavelengths for |1⟩ → |P ⟩ and |P ⟩ → |R′⟩ are
set as 852 and 509 nm, respectively. The Rabi frequencies
are assumed to be Ωr1 = 2π × 245 MHz and Ωb1 = 2π ×
80 MHz, respectively, and the detuning is 1.225 GHz.
To achieve this goal, the power and waist are 1 µW and
3.6 µm for the red laser and 80 mW and 3 µm for the blue
laser, respectively. For the target atom, the wavelengths
are the same as those of the control atom, also for the
|0⟩ → |r⟩ process. Rabi frequency is time-dependent, we
here only consider how to achieve the maximal values,
and the time-dependent characteristic can be achieved by
tuning some of the laser parameters, such as the power.
The Rabi frequencies are set as Ωr1 = 2π×245 MHz and
Ωb1 = 2π × 80 MHz, respectively. The detuning is set as
1.225 GHz. To achieve this goal, the power and waist are
1 µW and 3.6 µm for red laser and 80 mW and 2.7 µm
for blue laser, respectively (for CZ gate, Ωr0 = Ωb0 = 0
for the target atom). The inter-atomic distance is 6 µm.

B. Effectiveness of the two-photon excitation
process and influence of larger Rabi errors

For the excitation processes to Rydberg state, we con-
sidered here is the effective two-photon process. Thus,
it is worthwhile to discuss the validity of the excita-
tion process with the parameters used in this work. We

here consider the two-photon excitation process |g⟩ Ωr−−→
∆

FIG. 5. Fidelity of the super-robust CZ gate with V ∼
2max[|Ω|] (a) and V ∼ max[|Ω|] (b) under dissipation.
Fidelity of the conventional blockade scheme with V ∼
2max[|Ω|] (c) and V ∼ max[|Ω|] (d) under the consideration
of dissipation. The rest parameters are chosen the same as
that of Fig. 3.
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FIG. 6. Energy levels for the considered 133Cs atom. Ωri and
Ωbi (i = 0, 1) denote the Rabi frequencies of the two-photon
process |i⟩ → |ns1/2⟩ with detuning ∆i, respectively. And
∆i ≫ {Ωri,Ωti} should be satisfied. For the control atom,
the two-photon process from |0⟩ to |nS1/2⟩ is not exist, and
the parameters satisfy Ωc = Ωr1Ωb1/(2∆1). For the target
atom, the parameters satisfy Ωti = ΩriΩbi/(2∆i).
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FIG. 7. Shape of the Rabi frequency and the correspond-
ing phase. (a)[(c) (e)] phase of the laser for CZ (CNOT,
CHadamard) gate. (b)[(d) (f)], Rabi frequency of the
CZ (CNOT, CHadamard) gate. It should be noted that the
maximum value of the Rabi frequency of the target atom can
be random, provided that the laser power and beam waist
parameters are allowed experimentally and the adiabatic con-
ditions are met.

FIG. 8. (a) Populations of excited state with respect to evolu-
tion time for the two-photon (full process) and effective pro-
cesses, respectively, without consideration of dissipation. The
dotted line denotes the difference of these two process. (b)
Average fidelity of CNOT gate based on the effective and
the full two-photon excitation process. The decay rates are
considered the same as that in Fig. 4. The decay of the inter-
mediate state |P⟩ is considered as 2π × 3.2 MHz.

|P⟩ Ωb−−→
−∆

|R⟩ (full process) and the effective process

|g⟩ ΩrΩb/(2∆)−−−−−−−→
resonant

|R⟩ (effective process). In Fig. 8(a), we

simulate the full and effective process with the parame-
ters (Ωr, Ωb, ∆) = 2π×(245 MHz, 80 MHz, 1.225 GHz),
from which one can see that the full and effective process
coincide with each other very well. In Fig. 8(b), we plot
the average fidelity of the proposed CNOT gate with the
consideration of dissipation with full and effective pro-
cesses, the result also demonstrates the validity of the
effective model.

The large Rabi frequency of two-photon process re-
quires the narrow waist of laser, which may change the
Rabi error more than 20% that we discussed in the main

FIG. 9. (a)[(b), (c)]Average fidelity of the proposed
CZ(CNOT, CHadamard) gate with the maximal Rabi error
40%. The parameters are the same as Fig. 3(d)[Fig. 4(c),
Fig. 4(d)].

TABLE III. Leakage error of Rydberg states. We here con-
sider two leakage channels with two groups of energy-adjacent
Rydberg states based on the spirit of Refs. [22, 92]. Leak-
age channel one is |R′r⟩ ↔ |101p3/2,m = −1/2; 109p1/2,m =
−1/2⟩, the strength and detuning for this channel are 2π×120
and 2π × 65 MHz, respectively. Leakage channel two is
|r′R⟩ ↔ |99d5/2,m = 5/2; 108d5/2,m = 5/2⟩, the strength
and detuning for this channel are 2π×156.8 and 2π×190 MHz,
respectively.

CZa CNOTa CHadamarda

Maximal 8.08× 10−5 8.11× 10−5 8.05× 10−5

Average 3.01× 10−5 3.02× 10−5 3.01× 10−5

a The results are achieved with the fourth-order Runge-Kutta
method.

text. For this point, we plot the average fidelity of the
constructed gates under dissipation with Rabi error as
large as 40% in Fig. 9. The fidelity is above 96% (with-
out consideration of motion-induced dephasing) in most
of the regions when both of ϵ and ξ are as large as 40%,
which further proves the robustness of the scheme.

In fact, the single-photon excitation process to Ryd-
berg state is also available for 133Cs atom in our scheme.
It should be noted that one typically cannot access very
high Rydberg state in this case. For instance, n = 64 is
achievable in experiment [90].

C. Leakage error to neighboring Rydberg states
due to dipole-dipole interaction

From a practical point of view, we here consider
the Rydberg state leakage error [92]. The definition
of this error is P = 1 − |⟨Ψ′|ψ(t)⟩|2, where |Ψ′⟩ =
|R′⟩c ⊗ |1⟩t is the initial state and |ψ(t)⟩ is the sys-
tem state after the evolution of Hamiltonian in step (ii).
For our chosen Rydberg levels, the possible leakage
channels contains |101s1/2, m = 1/2; 109s1/2, m =
1/2⟩ ↔ |101p3/2,m = −1/2; 109p1/2,m = −1/2⟩ and
|101p3/2, m = 3/2; 109p3/2, m = 3/2⟩ ↔ |99d5/2,m =
5/2; 108d5/2,m = 5/2⟩ [22]. In table III, we show the
maximal and the average leakage errors when perform-
ing these three gates on the initial state, which shows the
leakage error is negligible.
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FIG. 10. Main possible excitation leakage channels (the states
in the left and right rectangles enclosed by the dotted-dashed
line are possible leakage states) for the control atom. The
ideal excited state is |101S1/2⟩, and we consider the principle
quantum number from 97 to 104. The relevant data is get by
the package in Python [93]. And the similar process can also
be plotted for the target atom.

D. Excitation error to the neighboring Rydberg
states due to the imperfection excitation process

We now consider the leakage error to the neighbor-
ing Rydberg states. As shown in Fig. 10, the princi-
ple quantum number from n = 97 to 104 is consid-

ered. The energy detuning δLeakagek = Eleakage state
k −

E|101S1/2⟩ is the main influence factor to the excitation

error, where Eleakage state
k denotes the energy of the k-

th leakage state in Fig. 10. The leakage probability
to the k-th state can be approximately described by

Perror ≈ Ω2/(δLeakagek )2(see Appendix F for detail), here
Ω denotes the effective two-photon Rabi frequency from
ground state to the ideal Rydberg state. Thus, one can
get the total excitation error as

P excitation
error ≈ x×

∑
k

(
d|6P ⟩→kth state

d|6P ⟩→|101(109)S1/2⟩
Ω)2/(δLeakagek )2,

(24)
where x = 3 (x = 2) denotes the excitation times for
control (target) atom during the control-error-robust op-
erations and d is the relevant transition dipole moment.
After substituting the data in Fig. 10 and relevant dipole
moment, one can get the sum of P excitation

error for control and
target atoms is about 8 × 10−4 when Ω = 2π × 8 MHz.
And if one can consider all of the excitation leakage
channels with larger detuning, the order of magnitude
of the result can be conservatively estimated to be 10−3,
which is larger than the leakages in Rydberg states due
to dipole-dipole interactions discussed in Sec. IVC.

E. The effects of motion-induced dephasing

So far we mainly focus on the influence of the Rabi
control error and blockade error. However, as mentioned
in Ref. [17], the dephasing error induced by motion when
exciting the neutral atom from ground to Rydberg state
is another factor that limits the fidelity and the geomet-
ric phase may not be robust to this error [94]. The most
accurate way to analyze the effects of such motion is to
use quantum mechanical treatments [95]. In this subsec-
tion, we will treat the motion of atom ballistic [96] and
propose to use the spin-echo to suppress the influence.
This will provide some reference for the experiments.

We take the control atom as an example to analyze
the process, and a similar process applies to the target
atom as well. Here for simplicity we do not consider the
effect of the temperature on atomic spontaneous emis-
sion. The Rabi frequency should be modified as Ωce

ikvt

(for two-photon process with the intermediate state be-
ing large detuned, this can be calculated by the second-
order perturbation theory) when we consider the motion
of atoms, where k is the effective wave vector, v is the
atomic velocity and can be approximately calculated as
|v| =

√
kbT /m with kb, T and m being Boltzmann

parameter, atomic temperature and mass, respectively.
The atom initial position is not considered because one
can set it as a relative position and thus has no influ-
ence for the process [96]. The first strategy is the spin-
echo method [15], for the control atom we change the
Doppler detuning at the midpoint of the first step and
the third step. While for the target atom we also change
the Doppler detuning at the midpoint of the second step.
This can be done be modulating the direction of the wave
vector. In Fig. 11, we take advantage of CNOT gate
as an example to show the performance of the scheme
under Doppler shift with the consideration of spin-echo
technology, the result show that the scheme has a sig-
nificant improvement with the consideration of spin-echo
technology. Specifically, when the atomic temperature is
at about 10 µK(35 µK), the average fidelity is improved
from 0.93(0.8) to 0.97(0.9). We have to admit that this
value of fidelity is slightly lower than that in Ref. [16],
due to the fact that our control-error-resilient pulse re-
quires more evolution time. On the other hand, when
the system error is around 10%, our scheme is still able
to maintain around this value, which is the main feature
of our work.

We treat the speed as a constant in the above anal-
ysis, while in reality, the speed varies randomly within
a certain range, which will undoubtedly reduce the fi-
delity of the scheme. In this case, we consider the Gauss
distribution of the atomic velocity in each step individ-
ually when the atomic temperature is 10 µK, and use
spin-echo technology in the process to numerically solve
the master equation. The result in Fig. 12 show that
the average fidelity can be 0.955 even with the individual
random velocities and the control error being 10% under
dissipation. We also make simulations with the control
error being 20% and random velocities, the results show
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FIG. 12. (a)[(c)] Random speed of the control atom in
step (i)[(iii)]. (b) Random speed of the target atom ver-
sus time in step (ii). The temperature of the atoms is
set as T = 10 µK, the average velocity is calculated by
|v| =

√
kbT /m, and the variation is set as 0.1|v|. (d) Av-

erage fidelity of the CNOT gate versus the evolution time
with the consideration of spin-echo with the Rabi error (con-
trol error) being 10%. The rest parameters are the same as
that in Fig. 4(c).

that the average fidelity can be as 0.934. These results
demonstrate the robustness of the scheme to control er-
rors under realistic experimental conditions.

F. Other practical considerations

Experimentally, the values of the Rabi fre-
quency as well as the RRI will be lower than
the values set and discussed above. We simu-
late the influence of this case with the consider-
ation of dissipation in Fig. 13 through consider-
ing the achieved parameters in experiment [16]
with excitation Rabi frequency from ground to
Rydberg state being 2π×3.5 MHz and RRI being
2π × 24 MHz, respectively. From Fig. 13(a)[(b),
(c)], one can see that, on the premise that the
RRI has 20% fluctuations, the average fidelity of
CZ (CNOT and CHadamard) gate are still higher
than 0.978(0.98, 0.98), respectively, when the

-0.2 0 0.2
ǫ

-0.2

0

0.2

ξ

(a)

-0.2 0 0.2
ǫ

-0.2

0

0.2

ξ

(b)

-0.2 0 0.2
ǫ

-0.2

0

0.2

ξ

(c)

0.976

0.978

0.98

-0.2 0 0.2
δV/V

0.980395

0.9804

0.980405

A
ve

ra
ge

 F
id

el
ity

(d)

-0.2 0 0.2
δV/V

0.984945

0.98495

0.984955

0.98496
(e)

-0.2 0 0.2
δV/V

0.981575

0.98158

0.981585
(f)

FIG. 13. Average fidelity of CZ (CNOT, and
CHadamard) gate versus Rabi error(a)[(b), (c)] and
variance of RRI (d)[(e), (f)], respectively. For pan-
els (a), (b) and (c), the variance of RRI is set as
20%. For panels (d), (e) and (f), Rabi errors for con-
trol and target atom are set as 10%. The maximal
Rabi frequency and RRI are chosen based on the ex-
periment [16]. The other parameters and the pulse
shape (here τ1 and τ2 should be recalculated through
the maximal Rabi frequency) are the same as that of
Fig. 3.

Rabi error of control and target atoms are close
to 20%. Meanwhile, From Fig. 13(d)[(e), (f)], one
can see that, on the premise that the Rabi error
for control and target atoms are 10%, the average
fidelity of CZ (CNOT and CHadamard) gate are
still higher than 0.98 (0.985, 0.981), respectively,
when the RRI has 20% fluctuations.

V. CONCLUSION

In conclusion, we have proposed to construct two-bit
quantum logic gates with Rydberg atoms based on geo-
metric phase and dark-state dynamics. The results show
that, on one hand, the scheme is feasible even when the
RRI strength is comparable to the Rabi frequency which
may induce strong blockade errors in the conventional
blockade scheme. On the other hand, the scheme does
not reduce the average fidelity significantly when the con-
trol error reaches 10%. Although the consideration of the
motion-induced dephasing with random velocities for in-
dividual atoms would decrease the average fidelity, this
does not affect the application of our scheme on the Ryd-
berg experimental platform with large Rabi and blockade
errors.
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Appendix A: Derivation of Eq. (3)

As the time-dependent states |ϕk(t)⟩ follows the
Schrödinger equation, we can write the time evolution

operator as,

U(t, 0) = Te−i
∫ t
0
Hc(t′)dt′ =

∑
k=1,2

|ϕk(t)⟩ ⟨ϕk(0)| , (A1)

where T is time ordering operator. On the other hand,
the equation between Hamiltonian Hc(t) and evolution
operator U(t, 0) is given by,

Hc(t) = iU̇(t, 0)U†(t, 0) . (A2)

Combining Eq.(A1), Eq.(A2) and Eq. (2), the Hamil-
tonian Hc(t) can be written as

Hc(t) = i
∑

k=1,2 |ϕ̇k(t)⟩ ⟨ϕk(t)|

=

(
−η̇ sin2 θ

2 − γ̇ cos θ 1
2e

iη(i̇θ +M)
1
2e

−iη(−iθ̇ +M) η̇ sin2 θ
2 + γ̇ cos θ

)
,

(A3)
withM = 2γ̇ sin θ−η̇ sin θ. Note that the Eq.(A3) should
be equal to the Eq.(1), and thus it is not difficult to
obtain Eq. (3).

Appendix B: Demonstration of the parameters in Tabel. I satisfy the condition in Eq. (7)

∫ τ1

0

θ̇

2
exp

(
−i
∫ t

0

η̇

cos θ
dt′
)
dt

=

∫ τ1−/3

0

θ̇

2
exp

(
−i
∫ t

0

η̇

cos θ
dt′
)
dt+

∫ τ1+/3

τ1−/3

θ̇

2
exp

(
−i
∫ t

0

η̇

cos θ
dt′
)
dt+

∫ 2τ1−/3

τ1+/3

θ̇

2
exp

(
−i
∫ t

0

η̇

cos θ
dt′
)
dt

+

∫ 2τ1+/3

2τ1−/3

θ̇

2
exp

(
−i
∫ t

0

η̇

cos θ
dt′
)
dt+

∫ τ1

2τ1+/3

θ̇

2
exp

(
−i
∫ t

0

η̇

cos θ
dt′
)
dt

=

∫ τ1−/3

0

θ̇

2
exp

(
−i
∫ τ1−/3

0

η̇

cos θ
dt′

)
dt+

∫ τ1+/3

τ1−/3

θ̇

2
exp

(
−i
∫ τ1−/3

0

η̇

cos θ
dt′ − i

∫ τ1+/3

τ1−/3

η̇

cos θ
dt′

)
dt

+

∫ 2τ1−/3

τ1+/3

θ̇

2
exp

(
−i
∫ τ1−/3

0

η̇

cos θ
dt′ − i

∫ τ1+/3

τ1−/3

η̇

cos θ
dt′ − i

∫ 2τ1−/3

τ1+/3

η̇

cos θ
dt′

)
dt

+

∫ 2τ1+/3

2τ1−/3

θ̇

2
exp

(
−i
∫ τ1−/3

0

η̇

cos θ
dt′ − i

∫ τ1+/3

τ1−/3

η̇

cos θ
dt′ − i

∫ 2τ1−/3

τ1+/3

η̇

cos θ
dt′ − i

∫ 2τ1+/3

2τ1−/3

η̇

cos θ
dt′

)
dt

+

∫ τ1

2τ1+/3

θ̇

2
exp

(
−i
∫ τ1−/3

0

η̇

cos θ
dt′ − i

∫ τ1+/3

τ1−/3

η̇

cos θ
dt′ − i

∫ 2τ1−/3

τ1+/3

η̇

cos θ
dt′ − i

∫ 2τ1+/3

2τ1−/3

η̇

cos θ
dt′ − i

∫ τ1

2τ1+/3

η̇

cos θ
dt′

)
dt

=
π

2
+ 0 +

π

2
e−i 2π

3 + 0 +
π

2
e−i 4π

3 = 0. (B1)

And the parameters in Table II can be demonstrated to
satisfy the condition in a similar way.

Appendix C: Adiabatic condition of step (ii)

The adiabatic condition is

|⟨b±|
∂

∂t
|d⟩2| ≪ | ± N − 0| (C1)

The left hand of Eq. (C1) can be calculated as

|⟨b±|
∂

∂t
|d⟩2| =

|
√
2V

∂Ω∗
t

∂t |
4N 2

(C2)

Thus, Eq. (C1) can be simplified as∣∣∣∣∂Ω∗
t

∂t

∣∣∣∣≪ 2
√
2N 3

V
(C3)
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We can choose parameters to make |Ωt|φ̇2 ≡ 0 (In fact,
the parameters in Table. II satisfy this condition). That
is the variation rate of the absolute value of Rabi fre-
quency should satisfy

∂ |Ωt|
∂t

≪ 2
√
2N 3

V
. (C4)

Appendix D: Derivation of Eqs. (19) and (20)

For Eq. (19), since |d⟩2 is the dark state of Hii, one
can get Hii|d⟩2 = 0 and thus φdy = 0. For Eq. (20),

∫ τ1+τ2

τ1

Ω2
t φ̇2

Ω2
t + 4V 2

dt =

∫ τ1+
τ2−
4

τ1

Ω2
t φ̇2

Ω2
t + 4V 2

dt+

∫ τ1+
τ2+
4

τ1+
τ2−
4

Ω2
t φ̇2

Ω2
t + 4V 2

dt+

∫ τ1+
τ2−
2

τ1+
τ2+
4

Ω2
t φ̇2

Ω2
t + 4V 2

dt+

∫ τ1+
τ2+
2

τ1+
τ2−
2

Ω2
t φ̇2

Ω2
t + 4V 2

dt

+

∫ τ1+
3τ2−

4

τ1+
τ2+
2

Ω2
t φ̇2

Ω2
t + 4V 2

dt+

∫ τ1+
3τ2+

4

τ1+
3τ2−

4

Ω2
t φ̇2

Ω2
t + 4V 2

dt+

∫ τ1+τ2

τ1+
3τ2+

4

Ω2
t φ̇2

Ω2
t + 4V 2

dt

=

∫ τ1+
τ2−
4

τ1

Ω2
t × 0

Ω2
t + 4V 2

dt+

∫ τ1+
τ2+
4

τ1+
τ2−
4

0× φ̇2

0 + 4V 2
dt+

∫ τ1+
τ2−
2

τ1+
τ2+
4

Ω2
t × 0

Ω2
t + 4V 2

dt+

∫ τ1+
τ2+
2

τ1+
τ2−
2

0× φ̇2

0 + 4V 2
dt

+

∫ τ1+
3τ2−

4

τ1+
τ2+
2

Ω2
t × 0

Ω2
t + 4V 2

dt+

∫ τ1+
3τ2+

4

τ1+
3τ2−

4

0× φ̇2

0 + 4V 2
dt+

∫ τ1+τ2

τ1+
3τ2+

4

Ω2
t × 0

Ω2
t + 4V 2

dt

=0. (D1)

Appendix E: Re-derivation of the geometric phase in
Eq. (20) when V is time-dependent

In practical case, V is related to interatomic distance
d and d is linearly related to time t. We set d = a ∗ t
where a is a time-independent parameter. Thus we can

get V (t) = C3/(a
3t3). On that basis, we calculate the

geometric phase as

φge = i

∫ τ1+τ2

τ1
2⟨d|

∂

∂t
|d⟩2dt =

∫ τ1+τ2

τ1

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt.

(E1)
After considering the concrete pulses, the geometric
phase is calculated as

φge =

∫ τ1+
τ2−
4

τ1

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+
τ2+
4

τ1+
τ2−
4

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+
τ2−
2

τ1+
τ2+
4

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+
τ2+
2

τ1+
τ2−
2

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt

+

∫ τ1+
3τ2−

4

τ1+
τ2+
2

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+
3τ2+

4

τ1+
3τ2−

4

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+τ2

τ1+
3τ2+

4

a6t6Ω2
t φ̇2

a6t6Ω2
t + 4(C3)2

dt

=

∫ τ1+
τ2−
4

τ1

a6t6Ω2
t × 0

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+
τ2+
4

τ1+
τ2−
4

0× φ̇2

0 + 4(C3)2
dt+

∫ τ1+
τ2−
2

τ1+
τ2+
4

a6t6Ω2
t × 0

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+
τ2+
2

τ1+
τ2−
2

0× φ̇2

0 + 4(C3)2
dt

+

∫ τ1+
3τ2−

4

τ1+
τ2+
2

a6t6Ω2
t × 0

a6t6Ω2
t + 4(C3)2

dt+

∫ τ1+
3τ2+

4

τ1+
3τ2−

4

0× φ̇2

0 + 4(C3)2
dt+

∫ τ1+τ2

τ1+
3τ2+

4

a6t6Ω2
t × 0

a6t6Ω2
t + 4(C3)2

dt

= 0. (E2)

Appendix F: Approximated excitation error of a
single channel

For simplicity, we treat all of the possible imperfection
excitation process as a series of two-level systems consti-
tuted by the any one of leakage states and the ground
state. The Hamiltonian can be written as

Hleakage = δ|RL⟩⟨RL|+Ω/2(|g⟩⟨RL|+H.c.), (F1)

where δ denotes the detuning and Ω the Rabi frequency,
|g⟩ is the ground state (|0⟩ or |1⟩) and |RL⟩ is the leakage
state. One can get the population of the state |RL⟩

PRL
= |

iΩe−
1
2 iδt sin

(
1
2 t
√
δ2 +Ω2

)
√
δ2 +Ω2

|2. (F2)

For simplicity, we can get the series expansion by consid-
ering the condition Ω/δ ≪ 1 and one π pulse time for the
resonant case t = π/Ω. Then, Eq. (F2) can be simplified
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as (we set m = Ω/δ for simplicity)

PRL
≈
(
m2 −m4 +m6 +O

(
m7
))

sin2

(
1

2

√
1

m2
π +

1

4

√
1

m2
πm2 − 1

16

(√
1

m2
π

)
m4 +

1

32

√
1

m2
πm6 +O

(
m8
))

.

(F3)

Since the maximal value of (sin)2 is 1 and m2 ≪ 1, the
following relationship can be derived from Eq. (F3) as

PRL
≤ m2 = (Ω/δ)2. (F4)
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and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[6] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan,
D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
87, 037901 (2001).

[7] E. Urban, T. A. Johnson, T. Henage, L. Isenhower,
D. Yavuz, T. Walker, and M. Saffman, Nat. Phys. 5,
110 (2009).
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