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Abstract 

This paper investigates the effects of varied temperature conditions on the kinetics of β-phase 

depletion in MCrAlYs by DICTRA diffusion simulations and experimental observations. A 

commercially available MCrAlY composition and two modelled compositions were examined 

at temperature regimes of 1000 °C, 1100 °C and 1200 °C. A previously developed 

temperature-dependent oxidation model was used at the boundary to examine the β-phase 

depletion kinetics at different temperatures. The oxide growth kinetics and the corresponding 

Al flux were calculated based on the oxidation model. The MCrAlY phase equilibrium 

calculations were conducted in Thermo-Calc and the oxidation-diffusion simulations were 

carried out using the finite difference diffusion software, DICTRA. It was found that the 

MCrAlYs exhibit a predominantly dual-phase γ+β structure at 1000 °C and above. It was 

revealed that varying the temperature had a strong effect on the β-phase depletion in low Al-

content MCrAlYs from DICTRA simulations and available experimental measurements. In 
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addition, it was demonstrated from the diffusion simulations that MCrAlYs with high Al 

content exhibit an enhanced lifetime in maintaining the two-phase structure with less β-phase 

depletion at high temperatures due to the high Al and β-phase content. 
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1. Introduction 

To meet the demands for high gas turbine efficiency, turbine inlet temperatures have reached 

or even exceeded the maximum service temperature of superalloys [1-3]. It is extremely 

difficult for superalloy components to maintain their mechanical and chemical stability in 

such harsh operating environments [4]. Surface protection is thus widely used to protect high 

temperature components against oxidation and corrosion [5-7]. Among the available high 

temperature coatings, MCrAlYs appear to be of particular interests due to their capability in 

forming a stable and protective alumina scale at the coating surface and their customised 

composition design to meet specific requirements [8-11]. MCrAlYs (where M = Co and/or Ni) 

are multi-component alloys and usually consist of fcc γ-Ni and, more importantly, the bcc β-

NiAl phase [12]. This β-NiAl phase is crucial in the chemical behaviour of MCrAlY coatings 

during oxidation. The formation and growth of alumina requires the continuous consumption 

of Al, resulting in the Al-rich β-NiAl phase becoming depleted during exposure to high 

temperatures [13-15]. Although the internal loss of β phase also occurs due to interdiffusion, 

it has been demonstrated that the interdiffusion can be minimised by applying effective 

diffusion barriers between the coating and substrate [16-18]. Hence, the β-phase depletion at 

the coating surface is a major concern for the durability of MCrAlY coatings. The MCrAlYs 

eventually lose their protective effects when the β phase is completely depleted since the 

lifetime is determined by the residual amount of the β-NiAl phase. 

The kinetics of Al loss and β-phase depletion at the coating surface are mainly governed by 

the oxidation characteristics, which are influenced by a few factors, such as alloy composition 

[19, 20], heat treatment [21-23] and, more apparently, the oxidation temperature [24, 25]. It 

has been reported that the phases present in the coating can have a significant influence on the 

oxidation characteristics and are likely to cause discrepancies in oxide growth and spallation 

mechanisms [26, 27]. The types of oxides formed during oxidation are largely affected by the 

heat treatment history and it is possible to achieve a dense alumina scale when a proper heat 
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treatment is given [28]. In addition, the oxide growth rate and the formation of α-Al2O3 also 

rely on the oxidation temperature. It is noted that the oxidation of MCrAlY coatings is rather 

slow when the temperature is below 1000 °C and the transition of oxides to α-Al2O3 would 

not occur [29, 30]. Since MCrAlY coatings are always utilised in with high temperature 

conditions (at 1000 °C or higher), the oxidation process is largely accelerated at such high 

temperatures, resulting in serious Al loss and β-phase depletion. Previous work mainly 

focuses on the oxidation kinetics, oxide growth mechanisms and interdiffusion of various 

MCrAlY compositions under different exposure conditions [31-33]. Specific temperature 

concerns related to the β-phase depletion kinetics have not been reported yet. Furthermore, 

previous studies on MCrAlYs are mostly limited to commercially available compositions and 

particular investigations on the design and application of novel MCrAlY compositions are 

somewhat sparse. With the development of relevant thermodynamic databases, evaluation of 

commercially unavailable MCrAlY compositions can be achieved. This is of interest in 

developing customised MCrAlY compositions to fit particular applications. 

Therefore, the aim of this work is to elucidate the kinetics of β-phase depletion at different 

temperatures in various MCrAlYs, in an attempt to design novel MCrAlY compositions. 

Thermo-Calc and DICTRA software are employed to conduct the phase equilibrium 

calculations and diffusion simulations using the TTNi7 and MOB2 thermodynamic databases 

[34, 35]. Since MCrAlY coatings are generally exposed to extremely high temperatures, the 

oxidation-diffusion simulations of free-standing coatings are thus performed at 1000 °C, 1100 

°C and 1200 °C for times up to 250 h. Furthermore, it appears that MCrAlY coatings with 

high β-phase fractions are likely to have an enhanced coating lifetime at high temperatures; to 

allow the theoretical evaluation of lifetime prediction in various MCrAlY coating alloys, a 

commercially available MCrAlY composition and two modelled compositions with different 

β-phase fractions are used for diffusion simulations. The calculated β-phase depletion from 

the three MCrAlY compositions are compared to elucidate the temperature effects on the 
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lifetime of MCrAlYs after high temperature exposure. Microstructural analysis and isothermal 

oxidation are carried out for the commercially available MCrAlY composition to validate the 

DICTRA calculated results. The two modelled MCrAlY compositions with different β-phase 

fractions are not yet commercially available and the corresponding comparisons to the 

experimental data are not possible. But it is part of the aims in this study to predict the β-

phase depletion behaviour in the commercially unavailable MCrAlYs, as an attempt towards 

designing new MCrAlY compositions. 

 

2. Modelling procedure 

2.1. Thermodynamic modelling 

Phase transformations occur when one or more phases in the system change into a new phase 

or mixture of phases, due to the fact that the initial state of the system is unstable when the 

temperature changes. The diffusion of atoms from one state to another is driven by the system 

to decrease the Gibbs free energy. Subsequently, by knowing the thermodynamic properties 

of various phases from the available thermodynamic databases, phase equilibria calculations 

are achieved by Thermo-Calc through Gibbs free energy minimisation routines. The phase 

compositions and distributions as a function of temperature can then be obtained. Since the 

microstructures of MCrAlYs vary with Al concentration, especially in terms of the β-phase 

fraction, one commercially available composition and two self-designed MCrAlY 

compositions with different Al concentrations are studied. The compositions are tabulated in 

Table 1, in which the MCrAlY-8 referred to is the commercially available Praxair CO-210-24 

composition. Co is used as the base element and the small amount of Y is neglected here due 

to its unavailability in the database. The liquid, fcc γ, γʹ, β-NiAl and σ phases are considered 

and other phases that are not related to MCrAlY are suspended in Thermo-Calc. 

 

2.2. DICTRA diffusion simulations 
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Since Thermo-Calc can only provide the equilibrium information, the evolution of element 

distribution in the system due to the diffusion process cannot be realised; however, this 

process can be simulated by the diffusion software, DICTRA, which combines the 

thermodynamic data from Thermo-Calc and its own kinetic mobility data. It allows the 

elemental diffusion in the system to be modelled through one-dimensional finite difference 

simulation methods. The nodal phase equilibrium during the diffusion simulation is calculated 

and the element distribution and phase fraction as a function of system distance are obtained 

at specified diffusion temperatures. Unlike the conventional diffusion theories that assume 

diffusion occurs due to the concentration gradient, DICTRA uses an alternative approach, 

considering that diffusion is driven by the local chemical potential gradient of elements. 

Equilibrium of the system is reached when the chemical potential of each individual element 

becomes homogeneous across the whole system. Further details on how DICTRA works can 

be found elsewhere [34]. 

 

2.2.1. Oxide growth kinetics 

Since β-phase depletion is driven by oxidation at the coating surface, the oxide growth 

kinetics is crucial to the β-phase depletion. Generally, MCrAlY coatings are subjected to an 

initial heat treatment at 1100 °C for 2 h prior to oxidation exposure. This heat treatment has 

been demonstrated to be effective in facilitating the Al2O3 growth at the surface [36]. Thus, it 

is assumed here that only Al2O3 grows at the surface. Among various oxidation models 

reported in the literature, the temperature dependent oxide growth kinetics proposed by Meier 

et al. is employed below to approximate the oxide growth at 1000 °C, 1100 °C and 1200 °C 

[37], 

 �( !) = "#$% &' * 1+, −
1
+./ 02

3
 (1) 
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where Q, T0 and n were extrapolated from the experimental data between 1000~1200 °C and 

were reported as 27,777.4 K, 2423.7 K and 0.332 respectively. By taking the differential of 

Eq. (1) with respect to time, the oxide growth rate against oxidation time is then obtained in 

Eq. (2). The above parameters for the oxide growth model and the time-dependent oxide 

growth rate model are summarised in Table 2. 

 4̇( ! 6)⁄ = 8 "#$% &' * 1+, −
1
+./2

3
039: (2) 

 

2.2.2. Initial conditions 

It is reported that a thin alumina scale tends to grow during the initial heat treatment [36]. To 

address this effect on the initial state of the coating alloy prior to oxidation, an initial layer of 

Al2O3 is assumed. By knowing the initial oxide thickness, an initial β-phase depletion zone 

can be calculated by assuming the β-NiAl phases are depleted to form the Al2O3. The β-phase 

depletion zone, which only exhibits a single γ-phase structure, is represented by the 

composition of the γ phase. The overall MCrAlY composition is used in the two-phase γ+β 

region. This one-dimensional model is defined as 250 µm which is the typical coating 

thickness in industrial applications. Grids of 0.2 µm and 2 µm, as illustrated in Fig. 1, are 

employed here for diffusion simulations. The fine grid spacing close to the surface allows 

reliable investigations in the first 50 µm where the β-phase depletion occurs. The elements 

involved in the diffusion calculations are Al, Ni, Co, Cr. The γ-fcc is defined as the matrix 

phase and the β-NiAl and σ phases are defined as dispersed phases with equilibrium 

compositions. Since the dispersed phases are treated as non-diffusional phases and diffusion 

only occurs in the γ-fcc phase in DICTRA, a labyrinth factor is thus introduced here to 

approximate the effective diffusivity [38, 39], as given in Eq. (3), 
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 ;<>> = ;? ∙ (1 +
3 − 3CDE
CDE − 10

3
) (3) 

where Deff is the effective diffusivity, Dγ is the diffusivity for γ and C?G is the volume fraction 

of the γ phase. The term in the bracket is the labyrinth factor and is used as an approximation 

for the effective diffusivity of the MCrAlYs in DICTRA simulations. 

 

2.2.3. Boundary conditions 

The growth of Al2O3 at the surface requires an Al flux from the MCrAlY to be determined. 

This Al flux can be derived from the oxide growth kinetics in Eq. (2), and through a mass 

balance conversion, the Al flux can be obtained in Eq. (4), 

 HIJ = 4̇ ∙ KLM ∙ N (4) 

where 4̇  is represented from Eq. (2), KLM  is the oxide density (assuming 3950 kg/m3 for 

Al2O3), and r is the converting ratio. It is further noticed from Eq. (2) that 4̇ is infinite when t 

= 0 (at the beginning of oxidation). This leads to an infinite Al flux at the boundary since Eq. 

(4) relies on Eq. (2). It is assumed here that the initial Al2O3 is 1 µm in thickness. The Al flux 

functions at different temperatures are plotted in Fig. 2 and the starting Al flux for each 

temperature condition is also highlighted. The simulation time is 250 h at 1000 s per step via a 

fully implicit solution method. 

 

3. Modelling results 

3.1. Phase equilibria calculations 

The phase fraction plots of the three MCrAlY compositions listed in Table 1 are shown in Fig. 

3. It can be seen that the MCrAlYs exhibit a primary two-phase γ+β structure at high 

temperatures and the γʹ and σ are formed at low temperatures. The changes of the phase 

fractions against temperature depend on the equilibrium state of the system to minimise the 
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Gibbs free energy. The β-phase fraction decreases with temperature but increases with Al 

content. It is also found that the σ phase appears to be one of the equilibrium phases in the 

MCrAlY-12 at 1000 °C in Fig. 3c, but at a rather small fraction. The composition of the minor 

σ phase is tabulated in Table 3, with high Cr and Co concentration and small Al concentration, 

which agrees well with previous experimental and modelled results [40]. Since the fraction of 

the σ phase is small and very limited Al exists in the σ phase, it is thus believed that the minor 

σ-(Cr, Co) phase would not affect the subsequent β-phase depletion. 

Fig. 4 depicts the relationship between the phase fractions and Al content at different 

temperatures. It is evident that the β-phase fraction increases with Al, indicating that Al has a 

stabilising effect on the β phase formation. It is also noticed that the β-phase fraction 

decreases with temperature from the thermodynamic calculations, which is based on the 

equilibrium state of the alloy system at increasing temperatures. From the data presented in 

Fig. 4b, it can be found that the mass fraction of the β phase is likely to decrease by 5% when 

the temperature increases by 100 °C at a given Al content and the mass fraction of the β phase 

roughly increases by 7.5% when the Al content increases by 1 wt% at a given temperature. 

Fig. 5 shows the phase compositions of MCrAlY-8, MCrAlY-10 and MCrAlY-12 at different 

temperatures. Cr concentration in the γ phase increases with Al whilst Ni decreases as Al 

content increases. No remarkable changes in Al and Co concentration in the γ phase are found 

from Fig. 5a. It is further shown from Fig. 5b that the β-phase compositions are almost 

identical for different Al contents and temperatures. This means that the addition of Al mainly 

results in the increase of the β-phase fraction while the composition of the β phase is largely 

unchanged, showing good consistency with the reported work by Achar et al. on the phase 

equilibria of MCrAlYs [41]. 

 

3.2. β-phase depletion kinetics 
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Fig. 6 depicts the oxide growth kinetics according to Eq. (1). An increase in the oxide growth 

is seen when the temperature increases. The oxide growth rate is plotted as a function of time 

in Fig. 7 according to Eq. (2). It is shown that the oxide growth rate is larger at 1200 °C 

compared to that at 1000 °C and 1100 °C within the same time intervals, indicating that 

temperature has a strong influence on the oxide growth kinetics and the subsequent β-phase 

depletion kinetics. The evolution of the phase fraction against oxidation time for MCrAlY-8, 

MCrAlY-10 and MCrAlY-12 at different temperatures is given in Fig. 8, Fig. 9 and Fig. 10 

respectively. It can be seen that the β phase depletes continuously with time in the three 

MCrAlYs, more significantly so at 1200 °C. For the MCrAlY-8, it can be observed in Fig. 8c 

that the β phase has become significantly depleted after 250-h of oxidation at 1200 °C due to 

the large Al flux at this temperature. For MCrAlY-10 and MCrAlY-12 in Fig. 9 and Fig. 10, 

since a higher β-phase fraction exists initially, the β-phase fraction in the two-phase region 

largely maintains the original value when the temperature is increased. The MCrAlY-12, 

which has the highest β-phase fraction, exhibits the lowest β-phase depletion at all 

temperatures, showing an enhanced lifetime during oxidation. It is noted that the minor σ 

phase only forms in the MCrAlY-12 at 1000 °C. Since the fraction of σ phase is small and the 

Al concentration in the σ phase is very limited, the depletion of the σ phase is not of much 

concern. 

The element profiles after 100 h oxidation simulation for the three MCrAlYs are summarised 

in Fig. 11. The loss of Al due to the oxidation kinetics causes the chemical potential of Co, Ni 

and Cr to redistribute. To achieve a new equilibrium state of the system, the concentrations of 

other elements are calculated to balance the local chemical potential difference. The element 

distribution against distance is similar at different temperatures for each alloy, except for the 

β-phase depletion zone, which varies with temperature. It is also found that a large Al 

depletion zone has developed in the MCrAlY-8 at 1200 °C, which correlates well with Fig. 8c. 

For the other two MCrAlYs, since they have high Al content, no significant Al depletion 
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occurred. Fig. 12 summarises the calculated β-phase depletion. For MCrAlY-8 in Fig. 12a, the 

β-phase depletion is relatively slow at 1000 °C but becomes much larger at 1200 °C, showing 

the strong effect of temperature on the β-phase depletion. For MCrAlY-10 and MCrAlY-12 in 

Fig. 12b and Fig. 12c, smaller β-phase depletion zones are developed compared to MCrAlY-8 

at the same temperatures. The MCrAlY-12 shows a much lower level of β-phase depletion, 

which can be attributed to the fact that the MCrAlY-12 has the highest Al content and β-phase 

fraction. It is also noticed that the β-phase depletion in MCrAlY-12 at 1200 °C is much 

smaller than the other two alloys, indicating that the temperature effects on the kinetics of the 

β-phase depletion in high Al-content MCrAlYs are not that significant compared to the 

MCrAlY-8 with a low β-phase fraction. 

 

4. Experimental validation 

A commercially available Praxair CoNiCrAlY powder (known as CO-210-24) is used to 

prepare free-standing coating alloy by HVOF spraying. This powder composition is the same 

as the MCrAlY-8 in Table 1 and can be used to identify the microstructure and phase 

distribution calculated in Fig. 3. The microstructure of the MCrAlY-8 after annealing at 

different temperatures is shown in Fig. 13. A two-phase structure is clearly seen. Some 

micron-sized oxide particles/stringers with a volume fraction of less than 1% are also found to 

exist in Fig. 13. The volume fraction of the β phase can be measured by image analysis. Due 

to the unavailability of the volume data in the TTNi7 database, in order to compare with the 

calculated mass fractions from Fig. 3a, the volume fraction of the β phase is converted to 

mass fraction by Eq. (5), 

  !
" =

#! !
$

#% %
$ + #! !

$ (5) 

where  %
$ and  !

$ are the volume fraction of the γ and β phase measured from Fig. 13, and ρ' 

and ρ( are the density of the γ and β phase, taken as 7.83×103 kg/m3 and 6.81×103 kg/m3 
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respectively [42]. The converted mass fraction from the measured volume fraction is thus 

plotted in Fig. 14 to compare with the modelled β-phase mass fraction. It is shown that the 

thermodynamic data from TTNi7 database correlates well with the experimental 

measurements of the MCrAlY-8. However, the MCrAlY-10 and MCrAlY-12 are not yet 

commercially available, thus experimental observations are not possible. But since good 

consistency between the experimental and predicted phase fractions has been demonstrated 

for the MCrAlY-8 in Fig. 14 and considering that only small variations in the Al content are 

introduced, it is believed that the calculated microstructural information for MCrAlY-10 and 

MCrAlY-12 in Fig. 3b and Fig. 3c is reasonable. 

Prior to oxidation exposure, the as-received MCrAlY-8 samples from thermal spraying are 

heat treated at 1100 °C for 2 h to aid the growth of alumina during oxidation. This aligns with 

the initial conditions in the DICTRA model. The microstructure of the MCrAlY-8 after 

isothermal oxidation for 100 h at different temperatures is shown in Fig. 15. The oxide layer 

is mainly composed of alumina and very few spinel oxides are found to exist, which is 

supported by the XRD pattern in Fig. 15d. The MCrAlY-8 still exhibits the two-phase γ+β 

structure after high temperature exposure. The experimentally measured β-phase depletion is 

compared with the modelling results in Fig. 12a. Reasonable agreement is shown in Fig. 12a 

between experiments and predictions. Since nearly parabolic oxide growth behaviour is used 

in the diffusion model, similar parabolic kinetics is expected for the β-phase depletion. Due to 

the unavailability of the MCrAlY-10 and MCrAlY-12 powder, direct experimental inspection 

is not possible. But Fig. 3b and Fig. 3c have shown that the primary phases in these two alloys 

are γ+β at high temperatures. It is also illustrated from Fig. 5 that the composition of the β 

phase remains largely unchanged. Hence, the mechanism of Al loss, which is driven by the 

oxide growth, is believed to be similar in MCrAlY-10 and MCrAlY-12. These two alloys 

have higher β-phase fraction, acting as more effective Al reservoir, and less loss of β phase is 

thus expected. This is supported by Fig. 12b and Fig. 12c when compared with MCrAlY-8 in 
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Fig. 12a. Therefore, considering that there is no significant change in the phase structure and 

mechanism of Al loss in MCrAlY-10 and MCrAlY-12, the simulated evolution of the β-phase 

in Fig. 12b and Fig. 12c is reasonable. 

 

5. Discussion 

5.1. Effects of Al content 

The thermodynamic calculations in Fig. 4 and Fig. 5 show that the additions of Al can 

increase the β-phase fraction in MCrAlYs without large changes in the β-phase composition. 

Since the β phase is defined as the dispersed non-diffusional phase in the thermodynamic 

database, its composition is unlikely to undergo significant changes. This also agrees well 

with its unique B2-type bcc structure [43]. As a result, the range of the β-phase composition is 

restricted in order to maintain the B2 bcc structure. The minor σ-(Cr, Co) phase that tends to 

form in high Al-content MCrAlYs has limited influence on the β phase because the Al 

concentration in the σ phase is rather small. It has been reported that the alloy composition is 

a major factor influencing the oxidation kinetics [44-46]. The oxidation model reported by 

Meier et al. in Eq. (1) is based on a composition of Ni22Co17Cr12.5Al0.5Y0.4Si0.25Hf, 

which is different from the MCrAlY compositions in this work; however, Eq. (1) has been 

successfully applied to an oxidation-diffusion model of a Ni23Co15Cr8.5Al7Ta coating by 

Karunaratne et al. [47]. It can be seen that the major difference between the above two 

compositions is the Al content. This means that the oxidation model in Eq. (1) has shown the 

capability of modelling MCrAlYs at different Al-contents. Furthermore, the effects of 

different oxide growth models on the subsequent β-phase depletion have been investigated in 

one of our previous studies [48]. No significant difference in the calculated β-phase depletion 

was reported when using Eq. (1) or self-derived oxide growth models and the predicted β-

phase depletion from different oxidation models showed reasonable agreements with the 

experimental measurements for Co32Ni21Cr8Al0.5Y. Brandl et al. also report that the 
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oxidation rates for their MCrAlY coatings with 8 wt% Al and 12 wt% Al are the same apart 

from the oxide morphology [45]. Thus, given that there is no generic oxidation model 

available, the oxidation model in Eq. (1) was adopted in this work as a more generic 

representation of the oxide growth kinetics. Considering only small variations in the Al 

contents are introduced, it is believed that Meier’s model is suitable for Co32Ni21Cr8Al0.5Y 

and is capable of predicting the β-phase depletion of this MCrAlY at different Al-contents. It 

has been further reported that different spraying processes may also have large impact on the 

oxidation kinetics [49, 50]. While the MCrAlY in the work of Meier et al. has been applied by 

low-pressure chamber spraying, the MCrAlY in this work was applied by means of the HVOF 

process. This is likely to cause some discrepancies in the subsequent diffusion calculations. 

But since Eq. (1) has been previously demonstrated to be suitable for the MCrAlYs used in 

this work and reasonable agreements have been achieved between model predictions and 

experimental measurements for the HVOF sprayed MCrAlYs in previous studies [39, 48],  

the oxidation model in Eq. (1) is thus assumed here to approximate the oxide growth. This 

may still result in discrepancies between the modelling and experimental results. Given that 

the focus of this work is to present a systematic numerical modelling of MCrAlYs with 

different Al-contents and their response on the β-phase depletion, the assumption and 

approximation are believed to be reasonable, as a first attempt towards designing new bond-

coat compositions. It is therefore acceptable to assume that the oxidation kinetics and the Al 

flux are temperature dependent in this study. The Al loss will be the same in the MCrAlYs at 

a given temperature. As a result, smaller β-phase depletion zones are expected in the 

MCrAlYs with high β-phase fractions, i.e. MCrAlY-12. 

In the current two phase γ+β MCrAlY systems, the addition of Al to the overall composition 

does not lead to significant microstructure changes. However, cautions must be taken as the 

addition of Al can result in higher amounts of β phase and cause the σ phase to precipitate. It 

has been reported that the bcc β phase exhibits a ductile-to-brittle transition behaviour [51]. 
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The addition of extra Al can increase the ductile-to-brittle transition temperature, leaving a 

broad temperature regime for the brittle behaviour of MCrAlYs [52]. This can be detrimental 

to the mechanical performance of the alloys because fast fracture may occur due to the 

increased brittleness at high Al content. Another aspect to consider is the formation of the 

minor σ-(Cr, Co) phase due to the increase of Al content. According to current work, the σ 

phase only forms in MCrAlY-12 at 1000 °C. It is reported that the σ phase is highly 

undesirable in MCrAlYs due to its poor mechanical performance [41]. Fig. 3 shows that the σ 

phase tends to precipitate at high Al content. Thus, further considerations need to be taken to 

avoid the formation of σ phase when Al content increases.  

 

5.2. Effects of temperature 

The microstructure of MCrAlY-8 in Fig. 13 shows the nearly globular morphology and 

irregular shapes of the β phase, indicating a large surface energy. A previous β-phase 

coarsening study has revealed that the γ/β interface in MCrAlY-8 exhibits large interfacial 

energies (>200 mJ/m2) at temperatures above 1000 °C [42]. Rapid dissolution of the β phase 

may occur when the temperature increases in order to minimise the interfacial energy of the 

system. Thus, for the MCrAlYs in Table 1, a reduction in the β-phase fraction is expected 

when the temperature increases. This agrees well with the thermodynamic calculations in Fig. 

4 when comparing the β-phase fraction at different temperatures. Meanwhile, it is known 

from Fig. 6 and Fig. 7 that the oxidation kinetics and Al flux increase with temperature. The 

MCrAlY-8, which has low Al content and a small β-phase fraction, cannot meet the 

accelerated loss of Al at 1200 °C, resulting in substantial loss of β phase in the alloy. This is 

indeed seen from Fig. 8c after 250 h at 1200 °C. It is further indicated that the MCrAlY-8 

starts to lose its protective effects due to the increase of Al flux and the loss of β phase at 

1200 °C. In terms of the β-phase depletion, the MCrAlY-10 and MCrAlY-12 show an 
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enhanced lifetime, as seen from Fig. 9 and Fig. 10 when comparing the size of the remaining 

two-phase regions. 

Another important factor to be considered is the change of diffusion coefficient due to the 

temperature increase. The general Arrhenius representation of the diffusion coefficient is 

given in Eq. (6), 

 � = � exp (− #
$%) (6) 

where D, D0, Q, R and T are the diffusion coefficient, frequency factor, activation energy, 

global gas constant and oxidation temperature respectively. It indicates that the increase of 

oxidation temperature would increase the element diffusion coefficient. Although DICTRA 

uses the diffusion coefficient matrix to perform the element diffusion, the above equation can 

still be used as a quick approximation for the temperature dependent diffusion coefficient. 

The increase of the diffusion coefficient means that the element diffusion, especially the Al 

depletion, becomes faster as the temperature increases. It has also been reported that the grain 

size of the thermally sprayed MCrAlYs is in sub-micron range [53, 54]. The grain boundaries 

in such fine-grained structure can act as fast diffusion paths for elements like Al with small 

atomic radius in MCrAlY systems [55]. Since only Al loss is considered, the diffusion of Al 

can be approximated by Eq. (7),  

 &'~*�+,,- (7) 

where &' is the Al diffusion distance or, more simply, the β-phase depletion zone. It can be 

seen from Eq. (6) and Eq. (7) that the β-phase depletion kinetics are proportional to the 

oxidation temperature. To further demonstrate the effects of temperature and Al content on 

the β-phase depletion kinetics, Table 4 summarises the effective diffusion coefficients in the 

MCrAlYs at different temperatures according to Eq. (7). The effect of temperature on the β-

phase depletion kinetics in MCrAlY-8 is very significant, in which the Deff in MCrAlY-8 

increases by one order of magnitude when the temperature increases by 100 °C. Meanwhile, 
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the increase of Deff in MCrAlY-10 and MCrAlY-12 is not as large as that in MCrAlY-8 when 

the temperature increases. As can be seen from Table 4, among the three MCrAlYs studied in 

the present work, MCrAlY-12 exhibits the smallest β-phase depletion kinetics at all 

temperatures, showing an enhanced lifetime under oxidation compared to the other two 

MCrAlYs. 

 

6. Conclusions 

The phase equilibria in the three MCrAlYs were modelled and the β-phase depletion was 

investigated at 1000 °C, 1100 °C and 1200 °C. The main conclusions were as follows: 

· The phase equilibria calculations revealed that the MCrAlYs used in this study mainly 

exhibit a γ+β phase structure. It was found that the addition of Al to the overall 

MCrAlY composition has a strong influence on the amount of the β phase. This is 

likely due to the Al in the MCrAlYs acting as the stabilising element on the β phase. 

· The β-phase depletion behaviour was modelled using the temperature-dependent oxide 

growth kinetics as the boundary condition at 1000 °C, 1100 °C and 1200 °C. 

MCrAlY-8 exhibited the largest β-phase depletion zone and MCrAlY-12, with the 

highest β-phase fraction, showed an improved lifetime under oxidation. It was 

revealed that the addition of Al to MCrAlYs could increase the β-phase fraction and 

achieve an enhanced lifetime performance during oxidation.  

· Significant β-phase loss occurred in the MCrAlY-8 at 1200 °C due to its limited 

amount of β phase. The other two MCrAlYs with higher β-phase fractions could 

maintain sufficient β phase after oxidation at 1200 °C. 

· Experimental observations on MCrAlY-8 showed good agreements with the 

modelling results. The simulated β-phase depletion results for MCrAlY-10 and 

MCrAlY-12 are believed to be reasonable since no significant changes in the phase 
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structure and Al-loss mechanism occurred, even though the MCrAlY-10 and 

MCrAlY-12 are not commercially available yet. 
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Table 1 

The compositions of MCrAlYs used for Thermo-Calc and DICTRA calculations with Y 

neglected.  

 Elements 

Co Ni Cr Al Y 

MCrAlY-8 Bal. 32 21 8 0.5 

MCrAlY-10 Bal. 32 21 10 0.5 

MCrAlY-12 Bal. 32 21 12 0.5 
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Table 2 

The parameters for the oxide growth model and time-dependent oxide growth rate 

model. 

Parameters 

Q T0 n T 

27,777.4 K 2423.7 K 0.332 1273-1473 K 
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Table 3 

The composition of the minor σ phase in MCrAlY-12 alloy at 1000 °C. 

 Elements 

Co Ni Cr Al 

σ 36.6 5.6 57.1 0.7 
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Table 4 

The effective diffusion coefficient of the β-phase depletion in MCrAlY8, MCrAlY-10 and 

MCrAlY-12 at different temperatures. 

 Effective diffusion coefficient, Deff (m
2/s) 

 MCrAlY-8 MCrAlY-10 MCrAlY-12 

1000 °C 4.33 × 10-16 1.93 × 10-16 1.06 × 10-16 

1100 °C 2.44 × 10-15 8.70 × 10-16 4.24 × 10-16 

1200 °C 1.46 × 10-14 3.42 × 10-15 1.38 × 10-15 
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Figure Captions 

Fig. 1. The schematic diagram of the DICTRA β-phase depletion model set up and node 

distribution. 

Fig. 2. Plots of Al flux functions at 1000 °C, 1100 °C and 1200 °C. The starting Al flux at 

each temperature is also highlighted assuming 1 µm Al2O3 has formed: 1.6×10-5 mol/m2/s at 

1200 °C, 4.0×10-6 mol/m2/s at 1100 °C and 1.7×10-7 mol/m2/s at 1000 °C. 

Fig. 3. Plots of phase fraction against temperature for (a) MCrAlY-8, (b) MCrAlY-10 and (c) 

MCrAlY-12. 

Fig. 4. (a) γ-phase fraction and (b) β-phase fraction against Al content at different 

temperatures. 

Fig. 5. (a) γ-phase and (b) β-phase compositions in the MCrAlYs at different temperatures. 

Fig. 6. Oxide growth behaviour according to Eq. (1) at 1000 °C, 1100 °C and 1200 °C. 

Fig. 7. Oxide growth rate according to Eq. (2) at 1000 °C, 1100 °C and 1200 °C. 

Fig. 8. The evolution of phase fraction against distance for MCrAlY-8 at different 

temperatures: (a) 1000 °C, (b) 1100 °C and (c) 1200 °C.  

Fig. 9. The evolution of phase fraction against distance for MCrAlY-10 at different 

temperatures: (a) 1000 °C, (b) 1100 °C and (c) 1200 °C. 

Fig. 10. The evolution of phase fraction against distance for MCrAlY-12 at different 

temperatures: (a) 1000 °C, (b) 1100 °C and (c) 1200 °C. 

Fig. 11. The element profiles after 100 h oxidation for (a) MCrAlY-8, (b) MCrAlY-10 and (c) 

MCrAlY-12 at different temperatures. 

Fig. 12. Summary of the β-phase depletion against oxidation time in (a) MCrAlY-8, (b) 

MCrAlY-10 and (c) MCrAlY-12 at different temperatures. The experimentally measured β-

phase depletion zone from MCrAlY-8 is included in (a). 

Fig. 13. Microstructures of MCrAlY-8 after annealing for 100 h at (a) 1000 °C, (b) 1100 °C 

and (c) 1200 °C. 

Fig. 14. The comparison between the converted and calculated β-phase mass fraction for 

MCrAlY-8 alloy. 

Fig. 15. Microstructure of MCrAlY-8 after oxidation for 100 h at (a) 1000 °C, (b) 1100 °C, (c) 

1200 °C and (d) the XRD patterns of MCrAlY-8 after exposure at these conditions. 
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