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ABSTRACT 
This paper proposes a machine learning (ML) approach to detect 
and resolve motion conflicts that occur between a human and a 
proactive robot during the execution of a physically collaborative 
task. We train a random forest classifier to distinguish between 
harmonious and conflicting human-robot interaction behaviors 
during object co-manipulation. Kinesthetic information generated 
through the teamwork is used to describe the interactive quality 
of collaboration. As such, we demonstrate that features derived 
from haptic (force/torque) data are sufficient to classify if the 
human and the robot harmoniously manipulate the object or they 
face a conflict. A conflict resolution strategy is implemented to get 
the robotic partner to proactively contribute to the task via online 
trajectory planning whenever interactive motion patterns are 
harmonious, and to follow the human lead when a conflict is 
detected. An admittance controller regulates the physical 
interaction between the human and the robot during the task. This 
enables the robot to follow the human passively when there is a 
conflict. An artificial potential field is used to proactively control 
the robot motion when partners work in harmony. An 
experimental study is designed to create scenarios involving 
harmonious and conflicting interactions during collaborative 
manipulation of an object, and to create a dataset to train and test 
the random forest classifier. The results of the study show that ML 
can successfully detect conflicts and the proposed conflict 
resolution mechanism reduces human force and effort 
significantly compared to the case of a passive robot that always 
follows the human partner and a proactive robot that cannot 
resolve conflicts.  
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1 INTRODUCTION 
Collaborative robots have emerged during the last two decades 
due to the advancements in hardware (e.g., lightweight and safe 
design, built-in force/torque sensing) and software (e.g., user 
friendly interfaces, integrated artificial intelligence techniques). 
These enhancements have allowed robots to act near humans in 
activities through indirect interaction [1, 2] or within direct 
physical contact with humans [3, 4]. In object co-manipulation 
(see Figure 1), a collaborative robot can assist a human partner by 
bearing the weight of the jointly manipulated object and 
proactively guide the motion to lower human workload. However, 
if the motion intentions of the proactive robot are different from 
those of the human partner, conflicts may arise. If the robot has 
no means to resolve such conflicts, the task may become 
frustrating and exhausting for the human partner. Hence, a 
proactive robot should be aware of human intentions and act 
accordingly to perform the task naturally and effectively. 

Figure 1: Human-robot co-manipulation scenario. 
Upper left figure shows the force sensors attached to the 
object for measuring the forces applied by human (1) 
and robot (2), the actual object being manipulated (3), 
the human hand (4), and the collaborative robot (5). 
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Consequently, in physical human-robot interaction (pHRI), a 
considerable amount of research has been directed toward 
detecting human intentions to regulate the interaction between 
humans and robots. Many of the earlier studies implemented rule-
based methods, while more recent ones employed ML techniques. 
In this regard, we review the existing literature based on these two 
groups of studies. 

In rule-based approaches, typically a set of rules are defined, 
based on thresholds over kinematic or kinetic interaction 
variables to detect human movement intentions. Wojtara et al. [5] 
implemented an interaction controller that allows a robot to 
follow the human partner’s movement during a collaborative 
manipulation task based on the forces applied by the human on 
the object and the position of the human’s grasp point. Other 
studies utilized velocity and human force [6], velocity and 
derivative of human force [7], velocity and acceleration [8], and 
velocity, human force, and its derivative [9] to predict human 
intentions to adjust parameters of an interaction controller for the 
robot during a collaborative manipulation task. 

Rule-based approaches are also used to detect human intention 
to exchange roles, such as between leadership and followership. 
For example, Oguz et al. [10] and Kucukyilmaz et al. [11] proposed 
mechanisms for dynamic role exchanges between the human and 
the robot during collaborative haptic interaction tasks. In these 
studies, the authors inferred human intentions based on the forces 
applied on the manipulated object by the human to adjust the 
robot’s role in the collaborative task. Later, Mörtl et al. [12] 
extended these methods to develop a rule-based strategy where 
robot and human partners could dynamically exchange their roles 
and adjust their contributions to the task based on the forces 
during a table co-manipulation task. Khoramshahi and Billard [13, 
14] proposed dynamical system approaches in pHRI using human 
intended motion velocity to switch between different tasks, and to 
change robot’s role between a stiff leader or a compliant follower 
to a human partner. Although these works demonstrate switching 
behaviors between active/passive roles, they do not perform 
harmony/conflict detection as done in this study. 

The emergence of machine/deep learning techniques has 
encouraged researchers in pHRI to detect human intentions using 
data/model-driven approaches. Townsend et al. [15] trained an 
artificial neural network (ANN) to predict the future human 
velocity based on the past velocity and acceleration in a human-
human co-manipulation task. This model was validated on a table 
carrying task executed by a human-robot dyad. Whitsell and 
Artemiadis [16] presented a controller that enables humans to 
take the leadership on any axis they desire while manipulating an 
object with a robot. They utilized force and torque data as inputs 
to a reinforcement learning algorithm to predict the value of 
future rewards to activate or deactivate the robot in the desired 
axis. Ge et al. [17] used the force, velocity, and position measured 
at the interaction point between the robot arm and human upper 
limb as inputs to an ANN model to estimate human motion 
intention, which is defined as the desired human upper limb 
trajectory. Guler et al. [18] trained an ANN classifier to detect the 
subtasks intended to be executed by the human operator during a 
collaborative drilling task. They adapted the interaction controller 

parameters based on the detected subtask to improve task 
efficiency. Lu et al. [19] utilized an LSTM model to estimate  
human motion intention as the desired trajectory based on human 
limb dynamics in a human-robot collaborative task. Based on this 
estimation, they used a reinforcement learning algorithm to adjust 
parameters of an interaction controller in real-time. Ly et al. [20] 
trained a Deep Q-Network to estimate human intentions to reach 
pre-learned motion trajectories and provided adaptive haptic 
guidance on a robotic sorting task. Chien et al. [21] used a fuzzy 
radial basis function impedance compensator to compute the hand 
compensation force that assists the robot in following an intended 
trajectory, estimated using an ANN model. Wang et al. [22] 
estimated human intention in human-robot hand-over tasks. They 
utilized an inertial measurement unit (IMU) and EMG sensors to 
measure arm motion along with muscle activity. These data were 
used as inputs to the extreme learning machine (ELM) algorithm 
to predict human hand-over intention. Sirintuna et al. [23] used 
EMG signals to detect the movement direction intended by human 
using an ANN model to constrain the movement directions using 
an interaction controller. Their approach reduces the motion 
errors during collaborative positioning with a robot. 

The above studies focused on inferring human intentions to 
regulate the human-robot interactions. However, in the 
foreseeable future, as more sophisticated AI techniques are 
expected to be integrated into robotic systems, robots 
collaborating with humans are expected to have their own 
intentions. In such a scenario, if the intentions of a robot do not 
match those of the human, there will be motion conflicts [24]. For 
instance, consider a robot which proactively contributes to a co-
manipulation task performed with a human partner. If the 
partners have a joint intention to push the manipulated object 
toward the same target, they will work harmoniously with 
minimal conflict. This harmonious interaction enables the human 
to spend less effort during the task. However, if the human 
changes the target by altering the direction of movement or 
stopping the motion before/after reaching the initial target 
location while the robot keeps moving toward it, conflicting 
behaviors will arise. Such behaviors create undesired interactions, 
which make the task tiring for the human partner unless the robot 
recognizes these conflicts and reacts to resolve them. 

In our earlier works [25, 26], we defined a set of interaction 
behaviors that emerge from human partners’ agreement or 
disagreement during collaborative manipulation of objects, akin 
to carrying a table together. ML classification models are shown 
to successfully distinguish between these behaviors using haptic 
and velocity data in [25] and haptic data solely in [26] as inputs to 
classification algorithms. Later, Kucukyilmaz and Issak [27] 
showed that these behaviors can be successfully recognized 
during real-time collaboration.  

In this study, we aim to transfer the knowledge gained from 
human dyads [25, 26, 27] to a human-robot dyad. To this end, we 
trust that the identification and resolution of conflicts is a key skill 
that a robot needs to be equipped with to execute co-manipulation 
tasks with a human. We utilize features extracted from haptic data 
to build a random forest classifier that enables the robot to predict 
interaction behaviors and resolve conflicts when necessary. The 
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Figure 2: The flowchart of the proposed pHRI approach 
for co-manipulation of an object. 

use of ML reduces reliance on task-specific thresholds, which are 
essential in rule-based approaches. In the current study, the robot 
contributes to the co-manipulation task proactively when the 
partners work in harmony, and follows the human when a conflict 
is detected between the partners’ intentions. We show that the 
proposed approach significantly reduces the human force and 
effort compared to the case of a passive robot that always follows 
human partner and a proactive robot that cannot resolve conflicts.  

2 APPROACH 
In this paper, we focus on conflict-driven dyadic interaction 
patterns that typically emerge during co-manipulation. In our 
pHRI scenario, the human and the robot collaborate to jointly 
move an object (see Figure 1) toward a target location. Our 
approach detects interaction patterns using a random forest 
classifier, which is a supervised ML classification algorithm, and 
adapts the robot’s role accordingly. Figure 2. presents a flowchart 
to summarize our approach: Initially, the robot passively follows 
the movements of the human based on the magnitude and 
direction of the forces applied by him/her, since it is not given the 
target location. Once the direction of human force vector settles 
(see Section 2.3), robot estimates an intended target location by 
intersecting a line in the direction of human force vector with a 
virtual boundary defined by a virtual circular workspace defined 
around the robot. An artificial potential field (APF) is generated to 
compute a trajectory for the robot to move the object toward the 
estimated target location. At this stage, the robot becomes 
proactive and moves the manipulated object collaboratively with 
the human partner. If the human changes the target during this 
manipulation, a conflict arises. We use a random forest ML model, 
trained with haptic-related features derived from the 
forces/torques (i.e., wrenches) applied on the object, to detect 
three interaction patterns: 

1) WH: Working in Harmony: The partners agree on the target 
direction; hence, they move the object harmoniously. 
2) CD: Conflict in target Direction: The partners face a conflict 
in movement direction as each aims at a different target location. 
3) CP: Conflict in Parking location: The partners face a conflict 
in parking location since one of them aims to stop the motion of 
the object before or after the intended/estimated target location. 

The random forest ML classifier detects these behaviors and 
notifies the interaction controller of the robot to generate a 
suitable response as shown in Figure 2. If WH pattern is detected, 
the controller maintains the proactive status of robot. On the  
other hand, if CD is detected, the controller switches the robot role 
to a follower until a new target location is determined and a new 
trajectory is generated. In CP, robot relinquishes its trajectory and 
acts as a follower to assist the human in parking the object. To 
avoid any jerky motion in CD and CP due to the switching 
between robot states, we gradually scale down the robot’s 
attractive force in APF to zero once the robot turns from a 
proactive state to a passive state. 

2.1 Hardware Setup 

The setup used in our experiments consists of a UR5 collaborative 
robot, a box-shaped object made of plexiglass with dimensions of 
30 cm × 25 cm × 10 cm and a weight of 2.5 kg, two force/torque 
(F/T) sensors (Mini45, ATI Inc.), and a computer screen to provide 
visual feedback for the participants. This setup physically couples 
the human and the robot through the manipulated object. One end 
of the object is rigidly connected to the robot via an F/T sensor to 
measure the wrenches applied by the robot. Human holds the 
object from the opposing end through an aluminum handle. A F/T 
sensor is attached to this handle to measure the human wrenches. 
All data is acquired at 125 Hz by an external DAQ card (USB-6343, 
National Instruments Inc.), connected to a personal computer. 

2.2 Control Architecture 
The control architecture utilized in this study is shown in Figure 
3. An admittance controller regulates the interactions between the 
human and the robot. Initially, the target location is unknown to 
robot, which starts as a follower. At this stage, the ML classifier is 
not active, and only the human force, FH, is fed to the admittance 
controller to generate the reference velocity VREF for the robot’s 
motion controller, which in turn, transmits torques to robot joints 
to move the object with velocity V. Once the target location is 
estimated by the robot based on the direction of human force, a 
trajectory is generated for the robot using the APF and the robot 
is pulled to the estimated target location with an attractive force 
FATT (we assume no obstacles in the environment, hence the 
repulsive force is always set to zero in this study). Here, the force 
applied by human partner FH is added to FATT and the total force 
FT is sent to the admittance controller. At this stage, ML classifier 
is active and utilizes the haptic-related features computed using 
the wrenches applied by human and robot (WH and WR) on the 
object, to predict the interaction pattern. If WH is detected, the  
robot contributes to the task proactively. On the other hand, if CD 
or CP is detected, the robot switches its role to a follower.  
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Figure 3: The control architecture utilized in our 
approach to regulate the harmonious and conflicting 
interactions between human and robot. 

Role switching: Figure 3 includes logical commands to 
activate central input lines to turn on the data flow for blocks A, 
B, and C. The two-way switch S turns on block A while 
deactivating block C (i.e., robot is a follower), which is the starting 
phase of the motion in our approach. Similarly, if target location 
is determined, block B is activated; hence machine learning is 
involved. Consequently, switch S, which works based on the 
classifier decision, activates block C whenever WH pattern is 
detected. On the other hand, if the ML classifier observes one of 
the conflicting patterns (CD or CP), block C is deactivated by 
switch S, and the robot is a follower again.  

Admittance Controller: The transfer function model of the 
admittance controller utilized in this study is similar to that in [9]: 

VREF (s) KA
Y (s) =  =  (1) 

FT (s) τAs +1 
where, KA and τA are the admittance gain and time constant, 
respectively, VREF (s)  and  FT (s) are respectively the Laplace 
transformations of the reference velocity and the total force. 

2.3 Trajectory Generation 
We utilize an APF (artificial potential field) to generate a 
trajectory for the robot, to be used when it proactively cooperates 
with the human partner. In APF, the total potential field U(Q) is 
made of an attractive, UATT(Q), and a repulsive, UREP(Q), field [28]. 
In our scenario, there are no physical obstacles in the 
environment, hence we ignore the repulsive field. However, even 
if there were obstacles, the proposed paradigm would have 
worked without needing any modifications: The human could 
perceive the environment and direct the motion to avoid 
obstacles, while the robot reacts to detected conflicts. 

The total force, which defines the robot’s contribution to the 
task, is calculated as the negative gradient of the total potential 
field, FATT = − ∇U(Q) = − ∇UATT. This attractive force is set at its 
maximum value when the robot is fully proactive, and gradually 
reduces to zero as it reaches the target. 

To implement the APF, the position of the target QTARGET 
should be known by the robot. However, estimating the intended 
target location at the very beginning of the movement, which is 
only known by human, is not trivial. In our approach, initially, 
robot has no prior information about the target location; hence it 
starts the task as a follower while human guides it toward the 
target by applying forces to the manipulated object. Once the 
direction of the human force vector settles toward a specific 

direction, robot utilizes this direction to estimate the target 
location by intersecting the vector of human force with a virtual 
circular task boundary within the robot workspace, centered 
around the robot base frame. To decide that the human’s forces 
settle on a direction, we first measure the angle (θ) between the 
human force vector and the x-axis of robot. Then, we select a 
sliding buffer of size n for the measured data and compute the 
mean of the absolute differences between the angles in this buffer 
and their average. When this mean value is less than a threshold 

nvalue (i.e., ( ∑i=1 |θi − θAVE| ∕n) < θTHR ), we consider that the 
human force vector settled in the desired direction without 
considerable deviation. Note that when human changes the target 
location by altering the movement direction during the 
manipulation while robot is still active and moves toward the 
initial target, conflict in target direction (i.e., CD) emerges. Once 
robot detects this conflict, it leaves its own trajectory and follows 
the human passively until it can estimate the new target location 
and generate a new trajectory. 

Figure 4: The parameters used for implementing the 
hybrid formulation for APF. 

To avoid high attractive forces far from the target, we utilize a 
hybrid APF that uses quadratic potentials near the target and a 
conic formula when farther away as illustrated in Figure 4 [28]: 

⎧ ⎪ −ξ (Q − QTARGET) if  ρTARGET(Q)≤dt⎪ ⎪ ⎪ (Q − QTARGET)⎪ ⎪−dt ξ  if l − ds>ρTARGET(Q)>dt
FATT = ⎨ ρTARGET(Q)   (2) ⎪ ⎪ ⎪ (Q − QTARGET)⎪ −dt ξ m⎪  if ρTARGET(Q)≥l − ds⎪⎩ ρTARGET(Q) 

where ξ is a positive constant scaling factor, Q and QTARGET are 
respectively the current and target position vectors of the object 
with respect to the robot base frame, dt is a positive constant to 
define a catchment area around the target for switching between 
quadratic and conic formulas, and ρTARGET(Q) is the Euclidean 
distance to target ‖Q − QTARGET‖. To prevent the attractive force 
from being set to its maximum value, FATT = dt ξ, at the beginning 
of the task, which would cause a jerky motion, we introduced 
three new variables as shown in Figure 4: l = ‖QSTART − QTARGET‖ 
is the Euclidean distance between the object’s starting position 
vector, QSTART and the estimated target, ds is a distance threshold 
around QSTART, and m = ((ds − ρSTART(Q)) ∕ l)+(ρSTART(Q)) ∕ ds is a 
scaling constant, where ρSTART(Q) = ‖Q − QSTART‖. 

3 EXPERIMENTS 
In order to train and validate our ML classifier, we designed and 
implemented two sets of pHRI experiments: 

1) Training Experiments: These experiments were designed 
to train and test the ML time-series classifier, relying on haptic 
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features for distinguishing between the human-robot 
interaction behaviors. 
2) Validation Experiments: These experiments were 
designed to investigate the potential benefits of the proposed 
ML approach in comparison to two other approaches.  
All experiments utilized the same setup shown in Figure 1. The 

object manipulations mainly involved translation and performed 
in the xy plane. The experimental study was approved by the 
Ethical Committee for Human Participants of Koc University. The 
values of the parameters used in the implementation were selected 
as; KA = 0.0167, τA = 0.054 , n = 30 , dt = 8 cm, ds = 4 cm, ξ = 125, 
and θTHR = 0.08 rad. 

3.1 Training Experiments 
3.1.1 Training Scenarios. The objective in designing the training 

scenarios was to collect haptic data to train a classifier model that 
can effectively distinguish between different interaction patterns 
(WH, CD, CP). To this end, 16 different manipulation scenarios, 
listed in Table 1, were introduced by covering as many different 
combinations of interaction behaviors as possible without being 
too exhaustive. In these training scenarios (TS), human and robot 
collaborate to move the object from the starting location to one of 
the target locations shown in Figure 5 (A, B, C, D, E, F).  In  
designing these scenarios, we intentionally created harmonious 
and conflicting patterns by assigning a specific target location for 
the robot and hence a trajectory to follow, regardless of the human 
partner’s target location. As a result, harmonious/conflicting 
interaction patterns resulted from the agreement/disagreement 
between the partners. 

Table 1: Training scenarios and the expected interaction 
behaviors. 

Training Robot Human target Expected 
scenario (TS) target Initial Final behavior 

TS1 B B B WH 
TS2 E E E WH 
TS3 B E E CD 
TS4 E B B CD 
TS5 B A A WH, CP 
TS6 B C C WH, CP 
TS7 E D D WH, CP 
TS8 E F F WH, CP 
TS9 B B F WH, CD 
TS10 E E B WH, CD 
TS11 E B D CD, WH, CP 
TS12 E B F CD, WH, CP 
TS13 B E A CD, WH, CP 
TS14 B E C CD, WH, CP 
TS15 E B E CD, WH 
TS16 B E B CD, WH 

To put things into context, consider training scenario 8 in 
Table 1, where both the human and the robot have the same target 
direction but different locations; therefore, they are expected to 
work in harmony (WH) initially to move the object toward that 
direction. However, as the human’s scenario requires him/her to 
park the object (at target F in Figure 5) before the robot’s target 
(target E in Figure 5), they face a conflict in parking location, CP. 

Figure 5: Scenarios used in training experiments. 

3.1.2 Participants and Protocol. The training experiments were 
performed with 8 subjects (2 females and 6 males with an average 
age of 26.25 ± 4.2 SD). Prior to the experiment, subjects were 
instructed about the experimental procedure. They were not 
aware of the robot’s target and were explicitly instructed to move 
the object toward their own targets regardless of robot’s behavior. 
Subjects performed the task by following the text instructions and 
visual images displayed on a computer screen, and the software 
sounds played during the experiment. To familiarize themselves 
with the setup, all subjects performed one manipulation trial 
involving harmonious collaboration (WH) with the robot. 
Thereafter, each subject performed the scenarios listed in Table 1 
in four separate sessions with 5 minutes break between the 
sessions. Each subject performed 32 trials, where each scenario 
repeated twice. The order of the scenarios was randomized in each 
session, while the order for all subjects was the same. 

Subjects started the experiment by grasping the object from 
their handle while facing the robot handling the object from the 
other side by its end effector. To provide visual feedback to the 
subjects, initial and target locations were displayed on the 
computer screen as static 2D rectangles in white color while the 
current location of the manipulated object was displayed as a 
moving 2D rectangle in pink. A message was displayed on the 
screen along with a distinct software sound to notify subjects to 
start the task. During the task, if the scenario involved a change 
in target location, the new target location was updated 
immediately on the screen to notify the subject. When the subject 
reached the target, the color of the rectangle at the target changed 
to green to notify the subject, and after staying at the target for 2 
seconds, a message appeared on the screen along with a distinct 
beep to inform the subject about successfully parking the object. 

3.1.3 Haptic Features and Classifier Design. The raw haptic data 
(i.e., wrenches applied by human and robot) collected during the 
training experiments are annotated and segmented based on the 
expected behaviors listed in Table 1 by following the procedure 
employed in [26]. As demonstrated in this work, the features 
extracted from the haptic data alone are sufficient to distinguish 
between different interaction patterns. We utilize the haptic 
features, originally suggested by Noohi and Žefran [29] and 
extended by Al-Saadi et al. [26] to train our random forest ML 
classifier. We briefly mention them here for the sake of discussion, 
but the details are available in [26]. 

Consider Figure 6, where FH , FR , and FSUM are the forces 
applied on an object by the human and the robot, and the 
summation of these forces, respectively. That is: 

FSUM(t) = FH(t)+FR(t) (3) 
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Figure 6: Force decomposition. 

* *The effective forces of human FH and robot FR that contribute 
to the task are calculated as the projection of partners’ forces on 
FSUM: 

FH
* (t) = α FSUM(t) (4) 

FR
* (t) = β FSUM(t)  (5) 

where t is the time step and α + β = 1 . The forces that are 
perpendicular to FSUM (i.e., FNORMAL in Figure 6) do not contribute 
to the task and are canceled out. 

Based on this force decomposition, five force-related features 
Fwere introduced: individual force efficiencies MEK 

, team force 

efficiency MTE
F F, negotiation force efficiency MNE, and similarity of 

forces MS
F. In addition, five additional torque-related features were 

τintroduced in [26]: individual torque efficiencies MEK 
, team torque 

efficiency MTE 
τ , negotiation torque efficiency MNE 

τ , and similarity 
F τof torques MS 

τ . Note that the subscript K in MEK
 and MEK

 refers to 
either human (H) or robot (R), while the superscripts F and τ refer 
to force and torque-related features, respectively.  

In [26], we showed that analyzing the task in different 
movement planes resulted in more informative features than 
analyzing it in 6-DoF space. For that, we performed the 
force/torque decomposition in the three principal movement 
planes, xy, xz, and yz. This resulted with 30 wrench-related 
features (10 wrench-related features × 3 planes) that are used as 
inputs into our classifier. We utilized a random forest algorithm 
to train our time-series classifier model to discriminate between 
the interaction patterns. Random forest is a supervised learning 
algorithm used for both regression and classification. In 
classification, it constructs a multitude of decision trees and 
outputs the class selected by most of them. Python Scikit-Learn 
package was utilized for the implementation of the algorithm [30]. 
The number of trees in the random forest was set to 100 while the 
maximum depth of the trees was unconstrained.  

We split the dataset into two distinct sets: training and test. To 
train the classification model, we used the data coming from 24 
trials of each subject and used the remaining 8 trials for testing. 
Since there were 8 subjects, the total number of trials for training 
and testing were 192 (75%) and 64 (25%), respectively. We achieved 
a classification accuracy of 88.82% and a BER of 0.11 after cross-
validation. Figure 7 shows the confusion matrix.   

3.2 Validation Experiments 
To evaluate the performance of our proposed approach, we 
implemented another set of experiments utilizing the same setup 

Figure 7: Confusion matrix for classifier trained with 
haptic feature set. 

and scenarios. Recalling the co-manipulation example discussed 
in the introduction section, where the robot acts either as a 
follower or interacts proactively with human, we considered 3 
experimental conditions (C1, C2, and C3). The first condition, C1, 
implements a simple leader-follower model where the robot is 
passive and always follows the human. In C2, the robot has a fixed 
target location and follows a trajectory based on the APF, 
regardless of the agreement/disagreement with human partner. In 
C2, the robot assists the human partner (i.e., contributes to the 
task) if they have the same target. Nevertheless, when they are 
given different target locations, they display conflicting behaviors, 
which cannot be resolved. Finally, C3 utilizes our approach of 
integrating the APF with the ML classifier for conflict resolution.  

Three different experimental scenarios (ES1, ES2, and ES3) 
were considered for the validation experiments (Figure 8). In ES1, 
human and robot work in harmony (WH) to transport the object 
to a target position (point B), while in ES2, the target location 
changes suddenly from location B to location E, causing a conflict 
in movement direction (CD). Finally, in ES3, the target location 
suddenly changes from location B to location C, causing a conflict 
in parking location (CP). 

ES3ES2ES1 

Figure 8: Experimental scenarios (ES) used in validation 
experiments. 

Six subjects, with an average age of 25.5 ± 4.4 SD, participated 
in this experiment. Each experimental condition (C1, C2, and C3) 
was repeated twice for each experimental scenario (ES1, ES2, and 
ES3). Hence, the total number of trials performed by each subject 
was 18, which were completed in two sessions with 5 minutes 
break between the sessions. The order of the experimental 
conditions and scenarios was randomized in each session while 
the same order was displayed to each participant. 

3.2.1 Results and Discussions 

3.2.1.1 Force Profiles and Classifier Performance. Figure 9 
represents the force profiles of a representative dyad (a human 
and a robot) for ES1, ES2, and ES3 under C3 (our approach) in 
tandem with the decisions taken by the classifier. We 
concentrated on the forces applied in the xy plane, which is the 
plane of most movements in our experiment. In all plots, 
subscripts H and R stand for human and robot, respectively. The 
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Figure 9: (a) Forces profiles of a human subject (blue) and robot (red), and (b) the raw predictions (RP) by ML and the 
processed predictions (PP) after filtering for the experimental scenarios ES1, ES2, and ES3 under our proposed approach 
(C3). Subscripts H and R stand for human, robot, respectively. The predicted values 1, 2, and 3 stand for WH, CD, and CP 
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interaction behaviors, respectively, while “None” stands for the periods where ML is inactive, and the robot is follower. 

blue and red lines in Figure 9a represent the forces applied by
human and robot, respectively (please note that all forces were
presented with respect to the manipulated object frame), while
Figure 9b depicts the raw predictions RP (green vertical lines) and 
processed predictions PP (orange line) of the ML classifier. As
shown in Figure 9b, the classifier successfully predicted the
interaction behaviors in all experimental scenarios. Moreover, the 
classifier was able to predict the conflicting behaviors (i.e., CD in 
ES2 and CP in ES3), which occurred for short periods of time only, 
and instructed the controller to resolve the conflicts by switching 
the robot to a follower state. Prior to sending the classifier 
decision to the controller, a voting buffer was implemented:  

Voting buffer:  This buffer uses raw predictions within a
window of  20 samples, with an overlap of 10 samples between
each buffer, and outputs the most frequent prediction in the  buffer.
The behavior predictions are processed every 10 samples. Using 
this buffer eliminates instantaneous misclassifications due to the  
sudden and unintentional movements. For instance, in Figure 9b, 
some patterns were misclassified initially (i.e., a CP in ES2 and
some CDs in ES1), but these were filtered  out by  the voting buffer. 
 By inspecting the interaction behaviors in Figure 9, we
observed that they produced highly complex force profiles though  
the object manipulations were translational (no rotations) and
mainly performed in the xy plane. For example, the yellow-
colored shaded areas in Figure 9 correspond to WH behavior, in  
which the partners harmoniously translated the object toward the 
target. One anticipates that partners perform the manipulation by  
exerting forces in the same direction of the movement during this  
type of interaction. However, when the force profiles in Figure 9a 
are inspected carefully, one observes that only human partner
applies forces in the direction of the movement while the forces 
applied by robot are in the opposite direction. The reason for this  
mismatch is due to the delay in the reaction times of the partners 
to each other’s actions as also observed in human dyads [26].  

The grey-colored shaded area in Figure 9 corresponds to CD 
behavior, in which the partners disagreed on the target direction.  
This behavior occurred in ES2 scenario: a new target location
(location E in Figure 8) was suddenly displayed to the subject, and 
he/she started to apply forces in the negative y-axis to move the  

  
 
 

  
 

 
 
  

  

  

 

 

 

  

object toward the new target. As the robot was still actively  
moving toward the original target location (location B in Figure  
8), it resisted human movement, which  resulted in the opposing 
forces applied by the partners along the y-axis. By inspecting the 
force patterns during this behavior, we observed that they 
changed in both x and y directions, although the new target 
position deviated from the initial one along the  y-direction only.  

Finally,  in CP behavior  (the  pink-colored shaded area in Figure 
9), the subject and the robot were given the same target location 
of B as shown in ES3 in Figure 9, but the subject was instructed  
later to park the object suddenly  at location C prior to reaching 
the original target location at B. Subject applied forces in opposite  
direction to the movement (along x-axis) to park the object at  
location C, as clearly shown in  Figure 9a for ES3 (see the change 
in the direction of forces in the pink shaded region). However,  
since the robot was moving the object toward B, it applied forces 
opposite to the direction of forces applied by the subject.  

The observations above reveal the complexity of the force 
signals though the task was implemented in 2D. This infers that  
generating rules based on force signals to distinguish between 
these behaviors is not straightforward, especially  when the task is 
conducted in 6D. Hence, the ML approach proposed in this paper 
has more generalization  potential to  identify similar behaviors.    

3.2.1.2 Task Performance Under  C1, C2, and C3. We used the 
following metrics [9, 31] to evaluate the task performance of the 
subjects: the average velocity of the object  ( VAVE= 1 ∕(tf  −  

t
t ⌠ f AVE
i) |V(t)| dt ), average force applied by subject (FH = 1∕(tf  −  ⌡ti 

t
t ⌠ f 

i) |FH(t)| dt),  average power consumed by the human⌡ ti 
t

(PAVE= 1∕(t   t ⌠ f 

f − i) |FH(t)V(t)| dt ), and the task completion time ⌡ti 

(TCT). Here,  ti and tf  are the timestamps when the object velocity  
just exceeded 2% of the maximal velocity (denoting the start of the 
trial) and the ending time of  the trial, respectively. TCT was 
computed as tf − ti. 

Figure 10 presents the means and standard errors of means of  
the performance metrics of the subjects under each experimental 
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Figure 10: Mean values of the performance metrics for 
three experimental scenarios ES1, ES2, and ES3 under 
three different experimental conditions C1, C2, and C3. 
Error bars are the standard deviations of means and 
horizontal bracket with * on top indicates statistically 
significance pairwise comparisons with p = 0.05. 

condition (C1, C2, and C3) for each scenario. We performed a one-
way ANOVA with Tukey corrected post-hoc tests to examine the 
effects of the experimental conditions on the performance metrics. 

Figure 10a (10b) shows that VAVE (TCT) under C2 and C3 were 
significantly higher (lower) than that of C1 in both ES2 and ES3. 
Although VAVE (TCT) under C2 and C3 were higher (lower) than 
that of C1 in ES1, the difference was not statistically significant. 
In addition, the differences in VAVE and TCT between C2 and C3 
were not significant in any experimental scenario. 

In Figure 10c, we observe that the average forces applied by 
AVEsubjects FH under C3 (our proposed approach) were 

significantly lower than those of C1 and C2 in both ES2 and ES3, 

and lower than that of C1 in ES1. In addition, FH 
AVE under C2 was 

lower than those of C1 and C3 in ES1. This shows that the ML 
classifier in our proposed approach (C3) successfully resolved the 
conflicts between human and robot, and hence reduced the forces 
exerted by human to change the direction of movement or parking 

location. Additionally, FH 
AVE under C2 was higher than those of C1 

in both ES2 and ES3. Although the APF utilized in C2 reduced the 
task completion time compared to C1, it caused the subjects to 
exert more force during the conflicting scenarios in ES2 and ES3. 

Figure 10d shows that subjects spent less effort PAVE under C2 
and C3 compared to that under C1 due to the benefit of utilizing 
APF, especially in ES1. Moreover, when the conflict was stronger, 
as in ES2, C3 led to less effort than that of C2, thanks to our ML 
model in resolving the conflict. The results on PAVE showed that 
the conflicts in parking (ES3) were more easily (with less effort) 
resolved than the conflicts in changing direction (ES2). 

In summary, our proposed approach C3 resolved the conflicts 
between the partners effectively, allowing subjects to exert less 
force than those under C1 and C2. However, in ES1, where no 

conflict happened, we can see that FH 
AVE under C3 was higher than 

that of C2. This is because the robot in C2 was active through the 
whole task, while in C3, human needs to apply forces to guide the 
robot as it starts the task as a follower. Although subjects applied 
less force under C3, they translated the object with higher 

velocities and lower TCT (particularly compared to those under 
C1). The results of the experiments show that our approach (C3) 
reduces the average force applied by subjects by 42.65% and 30.6% 
compared to those under C1 and C2, respectively. Moreover, the 
average power spent by the subjects under C3 was reduced by 
46.27% and 4.94% compared to those of C1 and C2, respectively. 

4 CONCLUSION 
We proposed an approach that allows the robot to proactively 
interact with a human partner based on the time-series 
classification of the interaction behaviors that arise while 
executing a collaborative task. During these interactions, conflicts 
may naturally arise if the partners have different movement 
intentions. To resolve these conflicts, we argue that it is important 
to study the dyadic interaction behaviors rather than the 
individual behavior of human partner. Moreover, we show that 
the features derived from haptic data alone are sufficient to detect 
these conflicts. These features were used to train a random forest 
classifier that differentiates between the interaction patterns. 

To demonstrate our approach, we designed a pHRI experiment 
where both human and robot collaborated to manipulate an object. 
Experimental scenarios that involve partners work in harmony 
and conflict with each other in movement direction and parking 
location were designed to test the efficacy of the proposed 
approach. The results showed that our ML classifier successfully 
recognized the interaction behaviors that emerged during those 
scenarios and instructed the robot to take proper action 
accordingly. Hence, the robot was able to adapt its behavior to act 
as a follower when there was a conflict or contribute to the task 
proactively when the dyad was working in harmony. As a result, 
the conflicts between human and robot during the manipulation 
were accommodated effectively and the subjects performed the 
task with lower effort. 

Our current experimental scenarios involved translational 
manipulations of an object in 2D space. As a future work, we aim 
to extend our approach to more complex scenarios involving 
object manipulations in 6D space. In particular, we would like to 
show that a rule-based approach (e.g., defining some rules based 
on force magnitudes/thresholds) cannot successfully detect 
conflicts in such complex manipulation scenarios, or the same 
rules cannot be applied easily to other manipulation scenarios 
involving different sub-tasks or objects having different shape, 
weights or material properties (e.g., elastic objects). Additionally, 
we would like to design a questionnaire, similar to that done in 
[32], to measure the perceptions of human subjects participating 
in our experiments about their sense of interaction with the robot 
under different experimental conditions and scenarios. We are 
interested in quantifying the degree of conflict that they 
subjectively feel in the presence of a proactive robot and how 
much of our approaches help humans to resolve such conflicts. 
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