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Abstract 27 

 28 

Inter-fibre adhesion is a key contributing factor to the mechanical response and 29 

functionality of cellulose-based biomaterials. ‘Dip-and-Drag’ lateral force atomic force 30 

microscopy technique is used here to evaluate the influence of arabinoxylan and xyloglucan 31 

on interactions between nanoscale cellulose fibres within a hydrated network of bacterial 32 

cellulose. A cohesive zone model of the detachment event between two nano-fibres is used 33 

to interpret the experimental data and evaluate inter-fibre adhesion energy. The presence 34 

of xyloglucan or arabinoxylan is found to increase the adhesive energy by a factor of 4.3 and 35 

1.3, respectively, which is consistent with these two hemicellulose polysaccharides having 36 

different specificity of hydrogen bonding with cellulose. Importantly, xyloglucan’s ability to 37 

strengthen adhesion between cellulose nano-fibres supports emergent models of the 38 

primary plant cell walls (Park & Cosgrove, 2012b), which suggest that xyloglucan chains 39 

confined within cellulose-cellulose junctions play a key role in cell wall’s mechanical 40 

response. 41 

 42 

  43 
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1. Introduction 44 

The remarkable combination of lightweight structure, load bearing capacity, and 45 

mechanical toughness of cellulose-based materials explains their ubiquitous utilisation in 46 

nature as a key structural component of the cell walls of plants and algae. The same set of 47 

physical properties alongside the inherent biocompatibility of cellulose-based materials 48 

make them an attractive and extremely versatile option for developing hydrogel materials 49 

and bio-mimetic systems for medical (de Oliveira Barud et al., 2016; Lv et al., 2016), 50 

pharmaceutical (Yang & Li, 2018) and food applications (Shi, Zhang, Phillips & Yang, 2014). 51 

Recent advances in cellulose-based biomaterials have been stimulated by new insights 52 

gained from analysing the structure and mechanical properties of plant cell walls, which 53 

provided a deeper knowledge of cellulose fibre assembly and the role of non-cellulosic 54 

polymers in modulating mechanics of fibre networks. 55 

Plant cell walls (PCW) exhibit a fine tuning of molecular and colloidal interactions 56 

between cellulose, hemicellulose polysaccharides and lignin that underpin material 57 

properties.  A special class of PCWs is primary cell walls in which cell growth is permitted; 58 

these walls are highly deformable and typically contain no lignin. Within the primary PCW 59 

fibre network, cellulose is the main load-bearing component and hemicelluloses act as a 60 

water holding matrix (Dolan, Yakubov & Stokes, 2018). In addition, hemicelluloses play the 61 

role of cellulose deposition ‘managers’ influencing fibre orientation and association, and are 62 

responsible for tuning the microstructure of the cellulose sub-network (Johnson, Gidley, 63 

Bacic & Doblin, 2018). The strength of adhesion between cellulose fibres and between 64 

cellulose and the surrounding polymer matrix is a key determining factor of the network 65 

mechanics. Despite this pivotal importance of inter-fibre links, no direct measurements of 66 

the adhesive forces between nanoscale cellulose fibres have yet been reported. 67 

Furthermore, there is little known about the mechanistic details of the role of 68 

hemicelluloses in the structure and energy of adhesive contacts between cellulose fibres. 69 

Bridging this knowledge gap has fundamental importance for understanding the structure 70 

and mechanics of PCWs that underpin key processes controlling cell growth and 71 

morphogenesis (Cosgrove, 2014). In addition, the ability to manipulate adhesion between 72 

nano-fibres is instrumental for enabling biomimetic engineering of fibre-based networks 73 

(Chen et al., 2017; Lopez-Sanchez et al., 2017). 74 

The properties of fibre-fibre contacts in PCWs arise from hydrogen bonding and van-75 

der-Waals interactions between cellulose microfibrils as well as between hemicellulose 76 

polysaccharides and the surface layer of cellulose microfibrils (Cosgrove, 2014; Park & 77 

Cosgrove, 2012b; Zhang, Zheng & Cosgrove, 2016). The surface of plant or bacterial cellulose 78 

microfibrils is described as having a paracrystalline structure that forms a shell around the 79 

crystalline domain in the core of the fibril (Fernandes et al., 2011; Kulasinski, Keten, 80 

Churakov, Derome & Carmeliet, 2014).  Such a hierarchical core-shell structure has been 81 

corroborated based on small angle scattering techniques, XRD, and SEM (Martinez-Sanz, 82 

Gidley & Gilbert, 2015). The paracrystalline state has intermediate mechanical properties 83 
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between crystalline (high modulus) and amorphous (low modulus) phases.  The partially 84 

ordered structure of the paracrystalline surface layer is thought to permit an association 85 

between the crystalline cellulose core and hemicellulose in the cell wall (Kulasinski, Keten, 86 

Churakov, Derome & Carmeliet, 2014).  This model of architecture and assembly of cellulose 87 

networks is largely based on direct visualisation experiments (Kafle et al., 2014; Zhang, 88 

Mahgsoudy-Louyeh, Tittmann & Cosgrove, 2014), tensile mechanical testing on native 89 

and/or enzyme treated macroscopic substrates (Gu & Catchmark, 2014; Park & Cosgrove, 90 

2012a; Whitney, Gothard, Mitchell & Gidley, 1999), as well as in silico modelling (Oehme, 91 

Doblin, Wagner, Bacic, Downton & Gidley, 2015; Oehme, Downton, Doblin, Wagner, Gidley 92 

& Bacic, 2015).  93 

The most abundant primary cell wall hemicelluloses across plant species are 94 

xyloglucan (XG) and arabinoxylan (AX). XG has a cellulosic backbone extensively decorated 95 

with carbohydrate sidechains, and binds to the cellulose surface predominantly due to 96 

hydrogen bonding (Finkenstadt, Hendrixson & Millane, 1995; Hanus & Mazeau, 2006; 97 

Keegstra, Talmadge, Bauer & Albershe.P, 1973; Whitney, Brigham, Darke, Reid & Gidley, 98 

1995; Zykwinska, Ralet, Garnier & Thibault, 2005).  More recently, Park and Cosgrove 99 

(2012b) established that XG-cellulose interaction may be more complex, and involve 100 

polymer entanglement between XG and amorphous cellulose chains on the fibril surface 101 

(Park & Cosgrove, 2012b; Zhao & Kwon, 2011).  In addition, a number of other mechanisms 102 

have been proposed for XG-cellulose interactions, including: physical entrapment of XG 103 

molecules inside the cellulose microfibril during synthesis (Baba, Sone, Misaki & Hayashi, 104 

1994; Park & Cosgrove, 2012b); covalent bonding of cellulose with XG via a 105 

transglycosylation reaction (Hrmova, Farkas, Lahnstein & Fincher, 2007); and lateral non-106 

covalent bonding by a single XG layer mediating adhesion between adjacent microfibrils 107 

(Park & Cosgrove, 2012b).  In contrast, AX is suggested to form non-specific associations 108 

between cellulose fibres (Martinez-Sanz, Mikkelsen, Flanagan, Gidley & Gilbert, 2017; 109 

Mikkelsen, Flanagan, Wilson, Bacic & Gidley, 2015; Mikkelsen & Gidley, 2011). This is 110 

consistent with a xylan backbone that is less structurally compatible with cellulose than XG. 111 

In vitro cellulose binding experiments on the walls of barley aleurone cells (containing 85% 112 

arabinoxylan) suggest non-covalent bonds between the AX chains themselves and with 113 

cellulose fibres (McNeil, Albersheim, Taiz & Jones, 1975).  114 

Currently, the most reliable information regarding inter-fibre adhesion is inferred 115 

from the analysis of macroscopic mechanical properties of cellulose networks. The 116 

mechanical properties of bacterial cellulose (BC) and composite hydrogels (with AX and XG)  117 

have been probed using small amplitude oscillatory shear (SAOS) rheology tests and large 118 

deformation uniaxial tensile testing (Whitney, Gothard, Mitchell & Gidley, 1999), and equi-119 

biaxial tension (Chanliaud, Burrows, Jeronimidis & Gidley, 2002). In addition, the 120 

poroviscoelasticiy of cellulose composite gels has been probed using a combined 121 

compression-SAOS test procedure (Lopez-Sanchez et al., 2017; Lopez-Sanchez et al., 2016; 122 

Lopez-Sanchez, Rincon, Wang, Brulhart, Stokes & Gidley, 2014).  From these mechanical 123 
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tests, the modulus of cellulose hydrogels and cellulose composites are measured to be in 124 

the range from 0.1 to 1 MPa (Chanliaud, Burrows, Jeronimidis & Gidley, 2002; Lopez-125 

Sanchez, Rincon, Wang, Brulhart, Stokes & Gidley, 2014; Whitney, Gothard, Mitchell & 126 

Gidley, 1999).  The mechanical properties of fibre networks are, however, vastly different to 127 

individual cellulose fibres; the Young’s modulus evaluated using an AFM-based three-point 128 

bending test of a suspended BC fibre was estimated to be of the order of 100 GPa (Guhados, 129 

Wan & Hutter, 2005). From these multi-scale measurements, and based on fibre network 130 

models, it is implicit that the mechanical properties of cellulose-based composites are 131 

largely driven by interactions between cellulose fibres and matrix polymers that control the 132 

fibre deposition and orientation (Bonilla, Lopez-Sanchez, Gidley & Stokes, 2016; Gartaula et 133 

al., 2018).  134 

The surface forces between model cellulose surfaces and cellulose fibre aggregates 135 

have been studied previously using AFM.  For example, AFM imaging of onion epidermis 136 

shows that the cellulose microfibrils come into close proximity with one another (Zhang, 137 

Mahgsoudy-Louyeh, Tittmann & Cosgrove, 2014). However, due to inter-fibre separations 138 

being of the order of the width of a molecule, deducing the nature of interaction between 139 

cellulose fibres based on microscopy data alone presents a significant challenge. Thus, AFM-140 

based force spectroscopy has been utilised for direct measurement of the friction and 141 

adhesion forces between model cellulose surfaces including pulp fibres (cellulose fibre 142 

aggregates 10µm) (Andersson & Rasmuson, 1997; Huang, Li & Kulachenko, 2009), spherical 143 

cellulose particles (Carambassis & Rutland, 1999; Notley, Eriksson, Wagberg, Beck & Gray, 144 

2006; Stiernstedt, Brumer, Zhou, Teeri & Rutland, 2006), and cellulose thin films 145 

(Nigmatullin, Lovitt, Wright, Linder, Nakari-Setala & Gama, 2004; Notley, Eriksson, Wagberg, 146 

Beck & Gray, 2006; Stiernstedt, Nordgren, Wagberg, Brumer, Gray & Rutland, 2006; 147 

Zauscher & Klingenberg, 2001). Despite these advances, our knowledge of cellulose fibre 148 

friction and adhesion is confined to large aggregates of cellulose fibres which are not 149 

representative of interactions between individual cellulose fibres (and nano-scale fibre 150 

bundles) that are typically found in primary plant cell walls and BC hydrogels (diameter  5  151 

100 nm) (Martinez-Sanz, Gidley & Gilbert, 2016; Martinez-Sanz, Lopez-Sanchez, Gidley & 152 

Gilbert, 2015).  153 

In this work we aim to probe the interactive forces between nanoscale cellulose 154 

fibres and explore the effect of non-cellulosic components (arabinoxylan and xyloglucan) on 155 

inter-fibre adhesion (Dolan, 2017). To enable such nano-scale characterisation, we adapted 156 

and further advanced our recently developed dip-and-drag lateral force spectroscopy (DnD-157 

LFS) technique (Dolan et al., 2016), which uses an AFM cantilever tip to pull fibres out of a 158 

network and measure forces associated with detachment events at fibre contacts. Building 159 

on previous developments (Lopez-Sanchez, Cersosimo, Wang, Flanagan, Stokes & Gidley, 160 

2015; Martinez-Sanz, Mikkelsen, Flanagan, Gidley & Gilbert, 2017; Whitney, Gothard, 161 

Mitchell & Gidley, 1999), BC networks are used as a model system and are self-assembled to 162 

give a random distribution of fibre orientations and contact configurations. Whilst BC’s 163 
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network density and fibre alignment may differ from other types of cellulose networks such 164 

as PCWs, we expect that the physical nature of interactions between cellulose fibres and 165 

hemicelluloses probed using DND-LFS technique can uncover general mechanisms that 166 

underpin the impact of adhesive forces on the mechanical properties of cellulose network 167 

assemblies including PCWs.  168 

2. Experimental Section 169 

2.1. Cellulose micro-gel preparation 170 

The method for producing pure BC networks and composites involves fermenting 171 

Gluconacetobacter xylinus in Hestin Schramm (HS) liquid medium followed from Mikkelsen 172 

and Gidley (2011). A frozen strain of Gluconacetobacter xylinus (ATCC 53524 American Type 173 

Culture Collection, Manassas, VA) stored at -800C is revived by incubating on HS agar 174 

medium at 300C for 48 hours. The resulting bacterial colonies are subsequently transferred 175 

to liquid HS medium, pH 5 (adjusted with 0.1M HCL), with 50 % (w/v) glucose solution to be 176 

incubated under static conditions for a further 48 hours. The cellulose matrix that forms on 177 

the surface of the medium contains trapped bacteria and an orbital platform shaker (KS 260 178 

IKA-Werke, Staufen, Germany) is used at 350rpm for 5 min to dislodge them into the liquid 179 

medium that is subsequently used as a primary inoculum.  180 

To produce cellulose-xyloglucan (CXG) and cellulose-arabinoxylan composites, a 1% 181 

solution of xyloglucan (tamarind xyloglucan, Lot 100402, Megazyme, Bray, Ireland) or 182 

arabinoxylan (medium viscosity wheat arabinoxylan, Lot 40302a, Megazyme, Bray, Ireland) 183 

in deionised water was mixed under sterile conditions with double concentrated HS medium 184 

(1:1) before inoculation. The concentration of hemicelluloses was 0.5% w/v as established in 185 

the previous work (Lopez-Sanchez, Cersosimo, Wang, Flanagan, Stokes & Gidley, 2015; 186 

Martinez-Sanz, Mikkelsen, Flanagan, Gidley & Gilbert, 2017; Mikkelsen, Flanagan, Wilson, 187 

Bacic & Gidley, 2015; Whitney, Gothard, Mitchell & Gidley, 1999).  188 

Micro-gel disks are grown within the confined geometries of a polydimethylsiloxane 189 

(PDMS) mould microarray of 50 micron cylindrical wells as shown in Figure 1A (Yakubov et 190 

al., 2016). Primary inoculum (with or without hemicelluloses) is pipetted onto the surface of 191 

the plasma treated (hydrophilic) PDMS microarray to enable inoculum to spread and 192 

bacteria to sediment inside the individual wells. The surface of the microarray is blotted to 193 

remove excess liquid medium allowing micro-gels to grow as a thin layer on the surface of 194 

the confined micro-wells. The micro-gels are harvested after 48 hours incubation under 195 

static conditions by washing the surface of the microarray with ice cold water. The 196 

assessment of composition was based on the contents of individual sugars analysed using a 197 

GC-MS technique and a high polarity BPX70 column (Thermo Fisher Scientific, Australia) as 198 

reported previously (Lopez-Sanchez, Cersosimo, Wang, Flanagan, Stokes & Gidley, 2015). 199 

The estimated content of XG and AX in the corresponding composites was 30 wt% and 50 200 

wt%, respectively. 201 
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Upon harvesting, the microarray with micro-gels is placed face down onto a plasma-202 

treated glass substrate and the PDMS mould is peeled off after approximately 1 hour, 203 

leaving the micro-gels deposited on the glass surface. In a JPK Nanowizard II AFM mounted 204 

on an inverted optical microscope (JPK Instruments, Germany) using a cantilever and a 5-205 

minute curing epoxy resin (UHU GmbH & Co. KG, Germany) (equal parts base and curing 206 

agent), the micro-gels are glued to the surface at two opposite edges of the gel. Once glued, 207 

the micro-gels where washed with water (resistivity 18.2 MΩcm, Sartorius) to remove any 208 

weakly bound polymers. While in a wetted state, the substrate with the attached micro-gels 209 

was mounted on an AFM stage, and water was added by pipetting  1 mL around the glass 210 

cantilever holder. 211 

2.2. Imaging and Lateral Force Microscopy using manipulation control 212 

High resolution images for characterisation of the cellulose network were obtained 213 

from a Cypher AFM (Asylum Research, Oxford Instruments, CA) with NSC/CSC Si tips (R  10 214 

nm) from Mikromasch (Nano World AG, Germany). 215 

The lateral force measurements were performed using the JPK Nanowizard II AFM 216 

mounted on an inverted optical microscope (JPK Instruments, Germany) and equipped with 217 

a CellHesion® module. The AFM was loaded with a stiff cantilever (HQ:NSC35/Cr-Au BS, 218 

Cantilever A) from Mikromasch (Nano World AG, Germany). First, the hydrogels were 219 

imaged in intermittent contact mode in air. The imaging is performed at a scan rate of 2 Hz 220 

for a 60 x 60 µm scan size with 1024 x 1024 pixels. The set point and drive amplitudes are 221 

around 1 V and the drive frequency is around 200 kHz. Using the same cantilever, lateral 222 

force measurements are taken with a set point vertical deflection of 3V and the cantilever 223 

travel speed of 0.3 µm/s. Using manipulation control in contact mode, a cantilever path is 224 

traced over the image that was collected. A cantilever of high stiffness is used so that a high 225 

lateral force can be applied for separating fibre contact points. In order to hook onto the 226 

loose fibre loops around the edge of the micropellicle, the cantilever is engaged with the 227 

substrate several microns outside of the identified edge and dragged under fixed set point 228 

away from the micropellicle. Then the cantilever is lifted (disengaged) from the surface and 229 

moved (without touching the substrate) to the starting point of the subsequent trace which 230 

is incrementally closer to the edge of the micropellicle. This “dip-and drag” procedure is 231 

repeated several times until the first peaks in the lateral deflection curve are observed. 232 

In order to ensure the tip is always in contact with the substrate, the normal load is 233 

set at c.a. 300nN. Such a high value of normal load ensured that the friction baseline, 234 

between tip and substrate remains constant so that changes in the lateral deflection can be 235 

confidently attributed to the detachment at the fibre contact points. The cantilever height is 236 

monitored to ensure that there is no significant change which would indicate the cantilever 237 

is lifting off the substrate and moving over fibres in the network, or otherwise indicating 238 

surface topography. The lateral deflection data is then recorded as a profile of lateral force 239 

versus cantilever travel distance. 240 
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The vertical spring constant is determined using the built-in heterodyne calibration 241 

procedure on the JPK AFM and the vertical cantilever sensitivity is measured from the slope 242 

of a vertical force-distance curve during retraction of the cantilever from a glass substrate. 243 

For lateral calibration of the cantilevers the Torsional Sader Method (Green, Lioe, Cleveland, 244 

Proksch, Mulvaney & Sader, 2004) is used to find the torsional spring constant, and the 245 

lateral sensitivity is calculated using a non-contact calibration procedure (Wagner, Cheng & 246 

Vezenov, 2011). For a few cantilevers the reference cantilever method was applied 247 

(Yakubov, Macakova, Wilson, Windust & Stokes, 2015) and deviations did not exceed 30%. 248 

3 Development of Dip-and-Drag Lateral Force Spectroscopy (DnD-LFS) 249 

Technique for Probing Adhesive Contacts between Cellulose Fibres 250 

3.1. Microstructure and DnD-LFS on BC hydrogels 251 

The structure of cellulose fibres synthesised by Gluconacetobacter xylinus is 252 

hierarchical. First, the synthesised cellulose chains are extruded out of the pores in the 253 

bacteria’s plasma membrane; these cellulose chains then assemble into microfibrils with a 254 

diameter of ca. 2-4 nm (Iguchi, Yamanaka et al. 2000).  Subsequently, microfibrils aggregate 255 

into ribbon-shaped bundles with dimensions of the order of tens of nanometres.  G. xylinus 256 

is used to produce sub-micrometre thin disk-shaped micropellicles of cellulose as shown in 257 

Figure 1A, which are utilised for DnD-LFS measurements. The vertical dimension of the 258 

fabricated micropellicles is smaller than the height of the AFM tip, which enables the tip to 259 

penetrate through the network and form a hard-wall contact with the glass substrate 260 

underneath. This hard-wall contact gives a baseline force during the DnD-LFS experiments. 261 

The morphologies of BC ribbons and fibre contacts are shown in Figure 1B and 1C.  The 262 

cross-sectional analysis of the ribbon-shaped microfibril bundle (Figure 1C) is presented in 263 

Supplementary Figure S1; the estimated width of microfibrils is 5 nm and the average 264 

width of the bundle is DB = 48  20 nm (calculated using a MATLAB-based image analysis 265 

package), which suggests that each bundle is an assembly of ca. 5  20 elementary fibrils.  266 

These dimensions and morphology are in broad agreement with observations on PCWs 267 

derived from onion (Allium cepa) epidermis by Zhang et al. (Zhang, Mahgsoudy-Louyeh, 268 

Tittmann & Cosgrove, 2014) and Kafle et al. (Kafle et al., 2014).  They are also consistent 269 

with observations by Martinez-Sanz et al. (Martinez-Sanz, Gidley & Gilbert, 2016) that 270 

indicate that microfibril dimensions are very similar between bacteria and plants’ primary 271 

walls, but bacterial microfibrils exhibit much greater degree of association. 272 

The DnD-LFS technique, originally developed to probe adhesion between 273 

electrospun fibres (Dolan et al., 2016), has been advanced to make it applicable for probing 274 

inter-fibre adhesion in the BC systems. First, we have performed in-situ imaging of BC 275 

hydrogels and identify protruding fibre loops around the edge of the micropellicle. Then the 276 

AFM tip was positioned in the open space inside the loop and dragged away from the 277 

pellicle’s edge, thus pulling the fibres away from the network, as depicted by the arrow in 278 
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Figure 2A.  The recorded lateral force-distance curves, an example of which is shown in 279 

Figure 2B, feature force peaks that consistently rise above the baseline.  Following the 280 

methods established in our previous work (Dolan et al., 2016), the observed sharp increase 281 

in force (above the baseline) is attributed to the AFM tip engaging with a cellulose fibre and 282 

dragging it until the latter is in tensiona.  This is followed by a detachment event at a fibre 283 

contact point (Dolan et al., 2016), when the fibre being pulled by the AFM tip is no longer in 284 

tension, which results in the cantilever deflection signal returning back to the baseline. For 285 

very low density networks, the friction force baseline (flat baseline) is anticipated to reflect 286 

the friction force between the glass substrate and the AFM tip. For dense systems, it is 287 

anticipated that the baseline force is also a function of the network mechanics and thus 288 

increases steadily with lateral distance. To make DnD-LFS technique suitable for BC, we have 289 

developed a signal processing algorithm and implemented it in MATLAB (see Supplementary 290 

Information for detailed description of the method). The algorithm identifies the cantilever 291 

deflection peaks directly from the experimental lateral force-distance spectra, and 292 

parameters such as the peak height, h, and the initial linear slope, s, are evaluated. The 293 

initial linear slope is determined by a linear fit of the ascending part of the force-distance 294 

curve prior to each peak as illustrated in Figure 2B.  By analysing multiple force-distance 295 

curves recorded on at least 10 different micropellicles, the ensemble data is collected and 296 

used to construct the resulting distributions of parameters h and s.    297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

                                                           
a There is a chance that the cantilever engages several fibres at once. This scenario, however, accounts only for 
the second order correction to the measured pull-off forces as elaborated in (Dolan et al., 2016). 
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A 

 

B C 

  

Figure 1. (A) Confocal scanning laser microscopy of BC pellicles grown inside an array of 

PDMS micro-wells. (B) AFM image of an air-dried cellulose network showing overall 

architecture. (C) Close-up AFM image of critical point dried cellulose network showing the 

ribbon structure of individual cellulose fibres and contact points. For (B) and (C) the colour 

scale on the left hand side is the vertical dimension of the topography in nm.  

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 
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A 

 

B 

 

Figure 2. (A) AFM image of the edge of cellulose network showing a loose fibre loop that is 

pulled with the AFM tip. The arrow represents the desired path of the AFM tip, where it 

engages with the glass substrate at a vertical force of 300 nN and is then dragged outward 

from the network to bring the fibre into tension and drive a fibre detachment event. (B) 

Lateral force-distance curve showing a typical peak that is representative of a detachment 

event at a fibre contact point. 



 

12 

 

3.2. Simulating fibre-fibre detachment events 318 

To assist in interpreting DnD-LFS results, a force balance across a section of a 319 

hypothetical network during a pulling experiment is considered, as illustrated in Figure 3. In 320 

order for a detachment event to occur, the force applied directly at a contact must be 321 

greater than the adhesive force between fibres. The AFM tip applies a force directly to the 322 

fibre that it is in contact with, and this force is divided between several fibres as one moves 323 

further into the network. For example, the 7 fibres at the bottom of the diagram experience 324 

approximately a seventh of the pulling force applied to the single fibre at the top system 325 

boundary. Thus, if the adhesive forces at all fibre contacts are from the same distribution, 326 

fibre detachment is most likely to occur at the first contact (see the circled contact in Figure 327 

3) because it experiences the largest direct pulling force. In Figure 3, the pull-off force at the 328 

circled contact is assumed to be equal to the pulling force measured by the AFM tip at the 329 

point of detachment. 330 

In order to simulate the scenario portrayed in Figure 3A, a simplified model is 331 

implemented in ComsolTM Multiphysics using the beam mechanics interface. The model 332 

setup is depicted in Figure 3B. Contacts 1 and 2 in Figure 3B are assumed to be fixed in the 333 

simulation. The cross-section of the fibrils is assumed to be rectangular (30 nm width × 15 334 

nm height) and the fibril modulus is taken as 78 GPa (Guhados, Wan & Hutter, 2005). The 335 

contact is modelled as a collection of ten springs separated from each other by 1 nm; each 336 

spring has an equilibrium length, . The mechanics of the contact is set to follow a simplified 337 

cohesive zone model (CZM) structure (Park & Paulino, 2011), with the contact strength (or 338 

equivalently the modulus), K, following eq 1. 339 

𝐾 = 𝐾0𝐻(𝜀𝑐 − 𝜀) + 𝐾0𝑒−𝛼(𝜀−𝜀𝑐)𝐻(𝜀 − 𝜀𝑐) 
(1) 

𝐾0 is the contact strength of unstretched springs, 𝜀 is contact strain, 𝜀𝑐 is the critical contact 340 

strain, and H(x) is the Heaviside function which takes the value of zero for x < 0 and unity for 341 

x ≥ 0. Hence, the contact springs weaken exponentially when 𝜀 > 𝜀𝑐. Since we examine the 342 

pull-off force (i.e. where K = K0) and not the detachment length, the value of the decay 343 

constant  can be set arbitrarily and does not require further refinement; in all simulations 344 

the  was fixed at 15 for optimum numerical stability. This formalism is a slight departure 345 

from the usual CZM, which assumes a finite detachment displacement. For the present 346 

system, where fibre contacts are highly variable and dependent on the type of polymer (AX 347 

or XG), incorporating a finite detachment displacement is ambiguous as it cannot be 348 

extracted from the experimental data.  349 

 350 

 351 

 352 
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A 

 

B 

 

Figure 3. (A) Force balance across a section of the fibre network to illustrate that the pulling 

force recorded by the AFM tip is a good estimate of the force acting at the fibre-fibre 

contact closest to the pulling arm (encircled). The dashed line marks the system boundary 

over which the force balance is applied. (B) Simplified setup of the system depicted in (A) 

implemented in ComsolTM Multiphysics. Due to large aspect ratio of cellulose fibres they can 

be modelled as ideal beams. The adhesive contact is modelled as a collection of beams that 

soften when a critical strain, c, is reached. Contacts 1 and 2 in are assumed to be fixed. 

(Inset) The sketch of the probability argument used to estimate the ensemble average value 

of the structural factor b = L1/L2. 

 353 
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Parametric sweeps are performed over K0, 𝜀𝑐, and the ratio between beam lengths 354 

(b = L1/L2).  Some sample curves from the parametric sweeps at constant 𝜀𝑐 = 0.40 are 355 

presented in Supplementary Figure S2. The simulated pulling force increases linearly with 356 

pulling distance until a peak force is reached, beyond which the pulling force decreases as 357 

the contact strength decays and the fibres are separated. The peak pulling force is 358 

equivalent to the experimentally measured peak heights and is taken as the pull-off force 359 

between fibres under the specific conditions of K0, 𝜀𝑐, and b. When comparing the 360 

respective force-distance curves generated keeping K0 and 𝜀𝑐 constant and varying b (see 361 

pairs of curves with open and closed symbols in Supplementary Figure S2), it is observed 362 

that b does change the initial (pre-maximum) force gradient (∇𝐹CZM) but does not affect 363 

the pull-off force. This result is fundamentally important because it confirms that, on 364 

average, the pull-off force is independent of the geometric configuration of the fibre 365 

network and the pulling geometry (e.g. pulling angle etc.).  366 

We, however, note that the pre-maximum force gradient (∇𝐹CZM) does depend on 367 

both network mechanics as well as ‘spring action’ of contacts, and therefore the values of 368 

the slope extracted from experimental force spectra (s) are not explicitly related to ∇𝐹CZM. 369 

In order to estimate the contribution of network mechanics and enable comparison of 370 

experimental values of s with predictions of CZM model, we have mapped the function  371 

∇𝐹CZM = 𝑓(𝐾0, 𝑏) (2) 
 372 

Supplementary Figure S3 presents a 3-D plot of the functions in eq 2, and the equation of 373 

the best fits to the surface is given in eq 3.  374 

∇𝐹CZM = 1[𝑁/𝑚] ∙ 𝑒𝑥𝑝[−8.59839 − 0.08275 ∙ (ln 𝐾0)2 + 1.31794 ∙ ln 𝐾0 +

3.63849𝑏 − 4.81016 ∙ √𝑏 ∙ ln 𝑏]  

(3) 

The expression for ∇𝐹CZM (eq 2) is a function of two parameters: K0 and b. First, we 375 

estimate the contact strength, K0, which is expected to be directly proportional to the 376 

experimental values of the pull-off force. The size of interacting cellulose fibres is of the 377 

order of 5  50 nm, while cellulose elastic modulus is estimated to be approximately 78 GPa 378 

(Guhados, Wan & Hutter, 2005). Using these values, we can estimate the critical crack 379 

length, using the expression derived by Carbone and Pierro (2013): 380 

𝑎𝑐 =
1

2
𝜋𝐸

𝛿2

∆𝛾
 

(4), 

E is elastic modulus,  is the distance between interacting surfaces, and  is adhesion 381 

energy per unit area. For contacts bound by van-der-Waals forces, we can assume  =  1 nm  382 

and the value of Hamaker constant for cellulose determined by Notley et al. (Notley, 383 

Pettersson & Wågberg, 2004), AH = 3.510-21 J, which yields ∆𝛾 = 𝐴H (12𝜋𝛿2)⁄ ≈ 0.1 mJ/m2.  384 

For this scenario one obtains 𝑎𝑐 ≈ 1300 m, which is disproportionally large compared to 385 
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microfibre or bundle dimension. Alternatively, we evaluate a scenario where contacts are 386 

held by hydrogen bonding. In this case,  can be estimated assuming the energy of 387 

hydrogen bonding (EH-b) in water is  6.6 kJ/mol as obtained by Sheu et al. (Sheu, Yang, 388 

Selzle & Schlag, 2003). The density of hydrogen bonding per unit area can be evaluated from 389 

the distance between layers (dl) along the polymerisation axis of cellulose microfibrils 390 

reported to be  4.5 Å based on X-ray diffraction data (Martinez-Sanz, Mikkelsen, Flanagan, 391 

Gidley & Gilbert, 2016; Martinez-Sanz et al., 2016) and molecular dynamics models (Oehme, 392 

Doblin, Wagner, Bacic, Downton & Gidley, 2015; Oehme, Downton, Doblin, Wagner, Gidley 393 

& Bacic, 2015). Hence the approximate area per single hydrogen bond within the contact is 394 

 dl
2  20 Å2. Using these values, one obtains ∆𝛾~

𝐸𝐻−𝑏
(𝑁𝐴𝑑𝑙

2)⁄ ≈ 55 mJ/m2 (here, NA is 395 

Avogadro’s number). For the case of cellulose microfibrils interacting via hydrogen bonding, 396 

the distance between interacting surfaces, , includes a layer of adsorbed water (Raviv, 397 

Laurat & Klein, 2001). Hence, we estimate  to be ca. 0.3 nm, which is of the order of the 398 

thickness of a water monolayer. For this scenario we obtain 𝑎𝑐 ≈ 200 nm, which is 399 

comparable with the upper bound for the width of a bundle, DB  100 nm. Therefore we 400 

conclude that 𝐷B 𝑎𝑐⁄ ≤ 1, and, consequently, we determine that the pull-off process follows 401 

the decohesion mechanism (Carbone & Pierro, 2013), whereby:  402 

𝐾0 =
∆𝛾

𝛿
=

𝐹pull−off

𝐷B
2  

(5) 

A crude estimate based on hydrogen bonding scenario ( = 55 mJ/m2,  = 0.3 nm) leads to 403 

the value of K0  180 MPa. The postulated decohesion mechanism associated with reaching 404 

a critical contact stress implies that contributions from c in the CZM model described in eq 405 

1 are small and can be neglected.  406 

The next step of examining eq 2 is the evaluation of parameter b. We estimate b based on a 407 

simple geometric argument; let us consider a problem shown in the inset of Figure 3B 408 

whereby 1/b is a ratio of an average distance between two random points within a unit 409 

square (L2) to an average distance between either of the two points and the vertices of the 410 

square (L1). Based on geometric probability of the configuration considered in Figure 3B, the 411 

basic calculus problemb leads to the expression for the average value of <b> shown in eq 6. 412 

In eq 6 we assume two points with coordinates [x1,y1] and [x2,y2], and the respective 413 

distances are 𝑥 = |𝑥1 − 𝑥2| and 𝑦 = |𝑦1 − 𝑦2|. Using the estimated values of <b>  1.47 and 414 

K0  180 MPa, we evaluate ∇𝐹CZM ≈ 0.4 N/m. 415 

                                                           
b A popular reference to an analogous problem can be found on the MathWorks blog by Prof Cleve Moler at 
https://blogs.mathworks.com/cleve/2017/09/25/how-far-apart-are-two-random-points-in-a-square/, who 
credits Presh Talwalker’s YouTube channel for posting this puzzle https://youtu.be/i4VqXRRXi68 

https://blogs.mathworks.com/cleve/2017/09/25/how-far-apart-are-two-random-points-in-a-square/
https://youtu.be/i4VqXRRXi68


 

16 

 

〈𝑏〉 = 〈𝐿1
𝐿2

⁄ 〉 = (
4 ∬ √𝑥2 + 𝑦2(1 − 𝑥)(1 − 𝑦)𝑑𝑥𝑑𝑦

1

0

∬ √𝑥2 + 𝑦2𝑑𝑥𝑑𝑦
1

0

)

−1

= (1 −
4√2 − 2

5(√2 + ln(1 + √2))
)

−1

≈ 1.47 

(6) 

 416 

3.3 Adhesive links between cellulose bundles. 417 

In Section 3.2, we considered that the inter-fibre junctions can be modelled as a 418 

‘microfibril-on-microfibril’ contact, whereby flat facets of cellulose microfibrils are facing 419 

each other.  A complication to this model may be introduced when cellulose fibrils bundle 420 

together to form a rod-like configuration. We find the majority of junctions formed by 421 

bundles exhibit the unwrapping of the twisted motif (Figure 1B & Supplementary Figure 422 

S4),resulting in the formation of a flat ribbon-like configuration. The formation of twisted 423 

bundles is expected for high aspect ratio fibres due to minimisation of the bending energy. 424 

In addition, recent reports suggest that the twist motif is encoded already at the level of 425 

individual fibrils and is a result of van der Waals interactions (Kannam, Oehme, Doblin, 426 

Gidley, Bacic & Downton, 2017).  Although the formation of twisted bundles can be 427 

rationalised, the observed untwisting of fibres requires further clarification. 428 

In a number of AFM and SEM images reported for cellulose networks over the last 429 

decade (Ding & Liu, 2012; Ding, Zhao & Zeng, 2014; Fanta et al., 2012; Goelzer, Faria-430 

Tischer, Vitorino, Sierakowski & Tischer, 2009; Kafle et al., 2014; Linder, Bergman, Bodin & 431 

Gatenholm, 2003; Retegi et al., 2010), we note a phenomenon of fibril ‘bulging’ in locations 432 

where one fibril crosses another.  Figure 4 illustrates this effect from our own SEM and AFM 433 

observations. In order to minimise the effect of capillary condensation and corresponding 434 

capillary forces which may promote fibre deformation in air-dried samples, we have 435 

performed imaging on critical point CO2 dried samples to reduce possible artefacts. Figure 436 

4B depicts a cellulose network with clearly visible bulges that are distributed across the 437 

surface and, in some areas, within the depth of the pellicle (as deep as can be probed using 438 

AFM). The higher resolution images (Supplementary Figure S4) provide further illustration of 439 

twisted fibril bundles, which get split or untwisted around the area of the inter-fibril 440 

contact. Due to untwisting of the fibres they produce an apparent ‘bulge’ that can be clearly 441 

visualised in the lower resolution images.  442 

 443 

 444 

 445 
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A 

 

B 

 

Figure 4. SEM (a) and AFM (B) images of BC networks illustrating the morphology of fibre-

fibre contacts. The encircled area ‘1’ in A illustrates a twisted fibre. The encircled area ‘2’ in 

A and encircled areas in B illustrate the ‘bulging’ of fibres in the contact zone. 

 446 
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The AFM and SEM imagess are used to estimate the distribution of the bulging areas 447 

and their relative strain, i.e. the ratio of fibre cross-section before and at the junction. 448 

Assuming the cellulose fibres have an elastic modulus of 78 GPa (Guhados, Wan & Hutter, 449 

2005), the force required to deform cellulose per single inter-fibre junction to produce a 450 

‘bulge’ is estimated to be 0.4 mN per junction, which translates to a contact pressure of  6 451 

GPa. Such large pressures are entirely erroneous, as they are at least an order of magnitude 452 

larger than the tensile strength of cellulose fibres,  400 MPa (Kafy et al., 2017). This crude 453 

estimation suggests that cellulose bundles cannot be treated as a continuous cellulose 454 

material, and thus untwisting of bundles becomes a more likely explanation of observed 455 

SEM and AFM results. This behaviour has not been reported before, and thus requires 456 

further investigation. However, the proposed untwisting is topologically possible during the 457 

assembly of the network when bundles have a greater degree of freedom. The effect of 458 

‘bulging’ is also found in cellulose composites (Supplementary Figure S5), and therefore 459 

appears to be a general property characteristic of high aspect ratio bundles. 460 

In the context of our dip-and-drag experiments, this observation has important 461 

repercussions in that the interactions between bundles are effectively represented by 462 

multiple interactions between elementary cellulose microfibrils. Indeed, if the bundles of 463 

fibres have a ribbon like configuration, the junction can be considered as being a 464 

superposition of adhesive contacts between elementary fibrils. The significance of this 465 

statement is that insights generated in this work can be applicable to other cellulose 466 

networks such as plant-derived cell wall preparations where the structure of cellulose 467 

bundles can be markedly different compared to that of BC. 468 

4. Cellulose Inter-Fibre Adhesion: The Role of Hemicelluloses 469 

4.1 Results of DnD-LFS on pure BC and on CAX and CXG composite hydrogels 470 

Figure 5 presents typical DnD-LFS lateral force-distance spectra for pure BC 471 

hydrogels, as well as CAX and CXG composites.  For illustration, the identified peaks in 472 

Figure 6 (left panel) are denoted with ‘*’, and the peak height for one of the pull-off events 473 

is labelled ‘h’ and the corresponding evaluation of the slope is marked with a dash line and 474 

labelled ‘s’. Figures 6A and 6B show histograms of the normalised distributions of the pull-475 

off forces (Fpull-off) and the peak slopes (s), respectively. The distributions are analysed using 476 

the Weibull function, and the measures of central tendency such as mean, median, and 477 

mode, as well as skewness, have been extracted and summarised in Table 1.  478 

 479 

 480 

 481 
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BC

 

CAX

 

CXG

 
Figure 5. Examples of force-distance curve for pure bacterial cellulose (BC), CAX and CXG 
fibre networks. The force distance curve shown in the left panel is used as an example force 
spectrum to illustrate methodological approach. The asterisk symbol denotes the peaks in 
the curve that represent detachment events at fibre contacts, h is an example of the peak 
height, and s is an example of the pre-detachment slope, which is evaluated for each peak 
event.  

 482 

Table 1. Parameters of the Weibull distribution fits of the pull-off force (Fpull-off) and slope (s) 483 

data, and the respective measures of central tendency.   484 

                          Fpull-off [N] 

 k 
Mean Median Mode Skewness 

(1 + 𝑘−1)  ∙ (ln 2)𝑘−1
  ∙ (1 − 𝑘−1)𝑘−1

  

BC 0.16 2.5 0.14 0.14 0.13 0.35 

CAX 0.21 2.7 0.19 0.18 0.18 0.27 

CXG 0.67 3.4 0.60 0.60 0.60 0.06 

                          s [N/m] 

 k 
Mean Median Mode Skewness 

(1 + 𝑘−1)  ∙ (ln 2)𝑘−1
  ∙ (1 − 𝑘−1)𝑘−1

  

BC 2.6 1.5 2.3 2.0 1.3 1.0 

CAX 1.5 1.7 1.3 1.2 0.9 0.9 

CXG 2.5 1.5 2.3 1.9 1.1 1.1 

 485 

The distribution in Figure 6A shows that pull-off forces in CXG (0.6 N) are much 486 

larger compared to BC (0.14) and CAX hydrogels (0.19), suggesting stronger adhesive forces. 487 

The BC and CAX hydrogels have comparable values of skewness, with CAX hydrogels 488 

showing 35% large pull-off force compared to BC (one way ANOVA, P-Value 0.005). Albeit 489 

the distribution for CXG composites is much broader, its skewness parameter is lowest of 490 

the three. Overall, the values of skewness are low, suggesting that distributions for all three 491 

types of hydrogels are close to the normal. 492 
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The distribution of the initial linear slopes, s, are found to be more skewed (Figure 493 

6B); the skewness parameter for all three hydrogels is found to be 1.  The narrowest 494 

distribution is observed for CAX hydrogels.  The values of the initial linear slope suggest that 495 

s is markedly larger compared to ∇𝐹CZM ( 0.4 N/m) estimated based on the cohesion zone 496 

model (CZM). Therefore, s reflects the micromechanics of cellulose network and can be 497 

interpreted as an effective spring constant for the localised fibre network.  The results 498 

suggest that BC and CXG networks have almost identical micromechanics, whereas CAX 499 

hydrogels are somewhat weaker.  That being said, the mode values of s are found to be very 500 

similar between all three hydrogels, suggesting that mechanical properties of fibre networks 501 

are comparable. To further support this statement, SEM images of the cellulose, CAX, and 502 

CXG networks are shown in Supplementary Figure S6.  Whilst some differences are 503 

observed, one can conclude that hemicelluloses have no substantial effect on the thickness 504 

of bundles and the overall topology of the network.  505 

In order to explore the influence of network micromechanics on the measured 506 

values of the pull-off force, the pull-off force data are plotted against the initial linear slope 507 

for each individual detachment event as shown in Figure 7. The purpose of this analysis is 508 

twofold: first, we test prediction of the CZM model that network configuration has little 509 

effect on the measured pull-off force; and, second, we validate the principle of DnD-LFS 510 

technique, which relies on the force balance between fibre deformation and fibre 511 

adhesion/detachment. The results shown in Figure 7 demonstrate that the values of pull-off 512 

force weakly correlate with the corresponding value of the initial linear slope. For 513 

convenience, we used power law regression to find the values of the power law exponent, 514 

which is found to be in the range from 0.1 for CXG and CAX hydrogels to 0.15 for pure BC. 515 

The spread in the values of the slope, which range anywhere from 0.1 to 10 N/m, suggest 516 

we probe a vastly diverse ensemble of network configurations. Some configuration may be 517 

dense and stiff, while others may comprise lower number of fibres and, consequently, are 518 

weaker. The very weak dependency of the pull-off force on the slope suggests that the 519 

conclusions from the CZM modelling are adequate, and hence eq 5 provides a good first-520 

order approximation of the adhesive behaviour of fibre-fibre contacts. Secondly, the 521 

observed weak dependence does indicate that ‘dipping’ the AFM tip into a denser network 522 

and ‘dragging’ a greater portion of entangled fibres increases our chances of rupturing 523 

stronger adhesive contacts that represent the ‘tougher’ end of the distribution across the 524 

ensemble, as illustrated in Figure 7 (inset, bottom panel).   525 

 526 

 527 

 528 

 529 
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A 

 

B 

  
Figure 6. Normalised histograms of Fpull-off (B) and s (C) distributions for a complete data set 
measured on BC (N=877), CAX (N=1617) and CXG (N=674). Solid lines represent the best fit 
using the Weibull function. 
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Figure 7. The plots of correlation between Fpull-off and s for BC (N=877), CAX (N=1617) and 
CXG (N=674). Dash lines represent the power law regression fits. The values of power law 

exponent, n, are found to be of the order of 0.10  0.15. The inset in the bottom panel 
illustrates that with the increasing of the initial linear slope, s, we probe a progressively 
larger area of the distribution of pull-off forces.  
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The mean values of Fpull-off are substituted in eq 5 to calculate the values of the 530 

adhesion energy per unit area () and the strength of cellulose fibre-fibre contact (K0). In all 531 

calculations, we use the ensemble average bundle width DB = 48 nm and the separation 532 

distance  = 0.3 nm. Further, the values of K0 as well as <b> = 1.47 are substituted into eq 3 533 

to yield the values of FCZM (c). All obtained values are summarized in Table 2. As already 534 

deduced from the distribution of pull-off forces, the fibre-fibre adhesion in CXG network is 535 

4.3 times stronger compared to BC. The CAX and BC networks are comparable; still, the 536 

contacts in CAX network are 30% more adhesive compared to BC.  537 

 538 

Table 2. Parameters of adhesive contact of pure BC, and CAX and CXG composite hydrogels 539 

calculated from the mean values of the pull-off force using eq 5. 540 

 BC CAX CXG 

K0 [MPa] 60 80 260 

 [mJ/m2] 18 24 79 

FCZM [N/m] 0.23 0.27 0.48 

dl [Å] 7.8 6.8 3.7 

 541 

The values of  for cellulose hydrogels are consistent with those estimated for the 542 

contacts dominated by hydrogen bond interactions. This result shows that in nano-cellulose 543 

assemblies the interaction between cellulose fibres is related to hydrogen bonding, and the 544 

contribution from the van der Waals forces is small. Using  values in Table 2 we have 545 

estimated the number of hydrogen bonds per unit area assuming the energy of hydrogen 546 

bonding in water is 6.6 kJ/mol (Sheu, Yang, Selzle & Schlag, 2003) (Table 2). The results 547 

suggest that the average distance between hydrogen bonds for BC and CAX is approximately 548 

twice larger compared to 4.5 Å estimated based on the distance between the layers along 549 

the polymerisation axis of cellulose microfibrils (Martinez-Sanz, Mikkelsen, Flanagan, Gidley 550 

& Gilbert, 2016; Martinez-Sanz et al., 2016). In CXG hydrogels, the spacing is smaller, 3.7 Å, 551 

which can be associated with the increased density of hydrogen bonds due to presence of 552 

xyloglucan.  553 

4.2 Discussion on the role of XG and AX in cellulose fibre-fibre interactions  554 

The use of BC as a model of primary plant cell wall (PCW) is frequently scrutinised. 555 

Indeed, BC and cellulose network in primary PCW of higher plants differ in many regards. 556 

One of the key differences is topology of entanglements (Park & Cosgrove, 2012b) that may 557 

influence the mechanical response of BC-based materials under conditions of bulk 558 

                                                           
c Based on the SEM images of pure BC, CAX, and CXG networks shown in Supplementary Figure S6, we 
conclude that all three types of networks have similar topology. Therefore, the geometric argument (Figure 3B, 
inset) used to estimate parameter <b> is applicable for all three types of cellulose hydrogels. 
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mechanical tests such as uniaxial extension (Mikkelsen, Flanagan, Wilson, Bacic & Gidley, 559 

2015). Gu and Catchmark (2014) proposed that during the biosynthesis of BC, the 560 

adsorption of XG onto the cellulose surface reduces the number of network entanglements. 561 

On the macroscale, this reduction may result in the reduced modulus of the network. 562 

Another possible mechanism is that XG may promote lubrication between cellulose fibrils 563 

and bundles, which may contribute to the reduced macroscopic stiffness of CXG composite 564 

networks. This hypothesis would be consistent with the data on the static friction between 565 

two bacterial cellulose hydrogel surfaces, which is driven by the adhesion between 566 

individual cellulose fibres at the interface (Dolan, Yakubov, Bonilla, Lopez-Sanchez & Stokes, 567 

2017).  The static friction between pairs of cellulose hydrogels is shown to be reduced by 568 

approximately half in the presence of XG. 569 

The use of DnD-LFS strips down several levels of complexity and provides, like never 570 

before, a window to probe single cellulose-cellulose junctions on a fundamental physical 571 

level. The results from the DnD-LFS technique confirm that the key interaction that holds 572 

cellulose network assemblies together is hydrogen bonding.  Furthermore, the results 573 

strongly suggest that XG has a direct effect on the interaction between cellulose fibres by 574 

increasing the adhesion energy via promoting formation of hydrogen bonds.  These results 575 

provide strong evidence to support the Park and Cosgrove model of primary PCWs (Park & 576 

Cosgrove, 2012b), where the presence of xyloglucan confined within cellulose-cellulose 577 

junctions is a key load-bearing element of the cellulose fibre assembly (schematically shown 578 

in Figure 8A). The mechanism by which XG promotes hydrogen bonding may well be 579 

association with the ability of XG to specifically adsorb on the surface of cellulose fibrils; this 580 

effect is well-attested in the literature (Dammak et al., 2015; Gu & Catchmark, 2014; Hanus 581 

& Mazeau, 2006; Lima, Loh & Buckeridge, 2004; Mysliwiec, Chylinska, Szymanska-Chargot, 582 

Chibowski & Zdunek, 2016; Park & Cosgrove, 2015; Villares, Moreau, Dammak, Capron & 583 

Cathala, 2015; Whitney, Brigham, Darke, Reid & Gidley, 1995; Zhang, Brumer, Agren & Tu, 584 

2011; Zhao, Crespi, Kubicki, Cosgrove & Zhong, 2014; Zykwinska, Thibault & Ralet, 2008). 585 

Importantly, the adsorption process is governed by hydrogen bonding between xyloglucan 586 

and cellulose, i.e. the same interaction that is responsible for adhesion (Hanus & Mazeau, 587 

2006; Zhang, Brumer, Agren & Tu, 2011).  588 

The behaviour of fibre-fibre contacts in CAX composites appears to be similar to pure 589 

BC, although we observe a notable increase in K0 and  in CAX composites. We propose 590 

that AX influences cellulose-cellulose contacts via hydrogen bonding. However, unlike XG, 591 

AX shows weaker and less specific binding to cellulose (Martinez-Sanz, Mikkelsen, Flanagan, 592 

Gidley & Gilbert, 2017; Mikkelsen, Flanagan, Wilson, Bacic & Gidley, 2015). Due to weaker 593 

binding, the contribution of AX molecules to the adhesion is attenuated as illustrated in 594 

Figure 8B. In addition, due to non-specific nature of binding, AX can adapt multiple 595 

configurations within the inter-fibre contact zone, and may not be necessarily sandwiched 596 

between cellulose fibrils, as it was postulated for the case of XG.  597 
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A 

 

B 

 

Figure 8. Illustration of proposed configuration of cellulose-cellulose inter-fibre contact 
mediated by hemicellulose. (A) A fibre-fibre contact modulated by XG molecules 
sandwiched between cellulose fibrils. (B) A possible contact configuration for CAX 
composites, which may include tethered AX chains that contribute to the adhesive force 
between cellulose fibres. 

 598 

For both AX and XG, the energy per unit area increases compared to pure bacterial 599 

cellulose, suggesting that these polysaccharides have a strong effect on fibre-fibre adhesion. 600 

These findings are instrumental to support a number of emerging models of cellulose 601 

networks, including plant cell walls (Cosgrove, 2014). The emerging school of thought 602 

postulates that different types of contacts may co-exist within the network and the unique 603 

properties of such a network stem from the diversity in mechanical properties of fibre-fibre 604 

contacts, which are required to be of tuneable strength to enable wall extensions and 605 

cell/tissue growth (Cosgrove, 2014). 606 

5 Conclusions 607 

The DnD-LFS technique enables the probing of molecular interactive forces between 608 

cellulose fibres in cellulose composite hydrogels. We interpret the measured peaks in lateral 609 

force-distance curves as representing fibre-fibre detachment events. Simulation of fibre-610 

fibre detachment is used to perform a sensitivity analysis on predicted measurements with 611 

system variables (contact strength and network structure), which found that the pull-off 612 

force is related to the adhesion energy between fibres.  The DnD-LFS results show that the 613 

adhesive contacts are dominated by hydrogen bonding, and the presence of XG or AX in the 614 

cellulose network increases the adhesive forces between fibres by a factor of 4.3 and 1.3, 615 
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respectively.  It is hypothesised that XG boosts adhesion by increasing the density of 616 

hydrogen bonding, which, we hypothesise, may be due to adsorption of XG on the surface 617 

of cellulose fibrils. 618 

These findings are consistent with the revised model of primary plant cell walls (Park 619 

& Cosgrove, 2012b), where cellulose-cellulose junctions assembled in the presence of 620 

xyloglucan confined between fibrils act as a key load-bearing element of the cellulose 621 

network. These findings give fresh insights into the way the mechanical properties of 622 

cellulose networks are controlled through the composition and assembly of cellulose-623 

hemicellulose hybrid networks. 624 
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SUPPLEMENTARY FIGURES 876 

 877 

A 
 

B 
 

C 
 

D 
 

E 
 

Supplementary Figure S1. Height (A) and Amplitude (B) tapping mode image of critically point dried 
sample of bacterial cellulose that shows several bundle aggregates with resolved internal structure. 
The corresponding cross-section plots (C and D) show that the apparent width of the single 

elementary fibril is around 16 nm. The de-convolution procedure to account for tip widening (R  10 

nm) yields feature width 5.5 nm. The periodicity of the micro-fibrils can be assessed from the 
zoomed-in cross-section plot (E). 

 878 

 879 

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0

n
m

750700650600550500450400350300250200150100500

nm

-10

-5

0

5

10

n
m

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0

n
m

750700650600550500450400350300250200150100500

nm

1.5

1.0

0.5

0.0

-0.5

-1.0

n
m

-10nm

-5

0

5

10

H
e
ig

h
t

800nm6004002000

 nm

2nm

1

0

-1

-2

A
m

p
lit

u
d
e

800nm6004002000

 nm

10nm

8

6

4

2

H
e
ig

h
t

600nm580560540520500480

 nm



 

33 

 

 

Supplementary Figure S2. Predicted force curves for combinations of 2 different values of b 

and K0 (c = 0.40 was kept constant). Blue squares and red circles correspond to K0 = 20 MPa 

and K0 = 10 MPa, respectively. Filled symbols with solid lines correspond to b = 0.5 and open 

symbols with dotted lines correspond to b = 1.5.  
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Supplementary Figure S3. Best surface fit describing the functional relationship between 
the pre-maximum force gradient (∇𝐹CZM), contact strength K0, and the structural parameter 
b. 
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Supplementary Figure S4. An AFM image of the BC network illustrating the twisting motif 
(arrow) found in BC fibre assemblies. 
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Supplementary Figure S5. SEM images of CAX (A) and CXG (B) networks illustrating the 
overall microstructure of the networks. 
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Supplementary Figure S6. SEM images of pure bacterial cellulose (A), CAX (B), and CXG (C) 

networks with a scale bar of 1 m.  
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SUPPLEMENTARY INFORMATION 932 

DnD-LFS Signal Processing Routine 933 

In order to determine the peak height, h, and initial linear slope, s, of the fibre-fibre detachment 934 

events present in a set of force-distance curves for BC, CAX and CXG, a MATLAB routine was 935 

developed. The prescribed MATLAB routine operates by isolating the force-distance curves from the 936 

data set collected from the JPK Nanowizard II AFM and subjecting the individual force-distance 937 

curves to criterion to identify the perceived detachments. To address the noise present in the signal, 938 

the resolution of the curve is reduced by fitting a Savitzky-Golay filter to the data using parameters 939 

based on the lateral force exhibited. 940 

The data points of the signal are then evaluated iteratively to determine the local minima and 941 

maxima within the curve. These points of interest are then identified as start and end points of the 942 

perceived detachment events and are related back to proximal maxima and minima in the original 943 

force-distance curve. The start and end points of the detachment events are then collated and then 944 

h and s are calculated. Detachment events with their midpoint within the band of noise associated 945 

with substrate friction or have a negative peak slope (s < 0) are omitted. The distribution of h and s 946 

are then presented for each force-distance curve and summarised in a final figure. 947 

The data set presented below illustrates an example case of the processed results of the MATLAB 948 

routine for CAX. 949 
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Cantilever Calibration Parameters: 968 

In reference to Wagner, Cheng, & Vezenov [1], the sensitivity factors and their respective measured 969 

parameters for HQ:NSC35/Cr-Au BS, Cantilever A are summarised in Table below: 970 

Cantilever width B 35 µm 

Cantilever thickness 𝑡𝑐𝑙 2 µm 

Cantilever tip height ℎ𝑡𝑖𝑝 15 µm 

Cantilever length L 110 µm 

Torsional resonant frequency 𝑣𝑡 1.356 MHz 

Torsional Q-factor 𝑄𝑡 721.1 

Flexural resonant frequency 𝑣𝑧 219.914 kHz 

Flexural Q-factor 𝑄𝑧 376.6 

Flexural spring constant from force-contact measurement 𝑘𝑧𝐹𝑐
 14.51 N/m 

Lateral spring constant 𝑘𝑥 198.6137 N/m 

Torsional spring constant 𝑘𝜃 5.0845E-8 N/rad 

Flexural spring constant 𝑘𝑧 14.51 N/m 

Lateral optical lever sensitivity 𝑂𝐿𝑆𝑥 5.4784E7 V/m 

Torsional optical lever sensitivity 𝑂𝐿𝑆𝜃 876.5441 V/rad 

Flexural optical lever sensitivity 𝑂𝐿𝑆𝑧 2.6079E7 V/m 

Lateral Sensitivity (in air) 𝑆𝑥 3.6254E-6 N/V 

Lateral sensitivity in water 𝑆𝑥𝑤𝑎𝑡𝑒𝑟
 2.7205E-6 N/V 

Torsional sensitivity 𝑆𝜃 5.8006E-11 Nrad/V 

Flexural sensitivity 𝑆𝑧 4.8031E-7 N/V 
 971 

The lateral force, 𝐹𝐿, is determined using the non-contact method [2,3].  972 

𝐹𝐿 = 𝑆𝑥𝑛𝑐
∙ Δ𝑉𝐿 =

𝑘𝜃𝑛𝑐

𝑂𝐿𝑆𝜃𝑛𝑐 ∙ℎ
∙ Δ𝑉𝐿  973 

Where: ℎ = ℎ𝑡𝑖𝑝 +
1

2
𝑡𝑐𝑙  974 
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