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ABSTRACT  

Background: Cathepsin A (CTSA) is a key regulatory enzyme for galactoside 

metabolism. Additionally, it has a distinct proteolytic activity and plays a role in tumour 

progression. CTSA is differentially expressed at the mRNA level between breast ductal 

carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In this study, we aimed to 

characterise CTSA protein expression in DCIS and evaluate its prognostic significance. 

Methods: A large cohort of DCIS (n=776 for pure DCIS and n=239 for DCIS associated 

with IBC (DCIS/IBC)) prepared as tissue microarray was immunohistochemically stained 

for CTSA. Results: High CTSA expression was observed in 48% of pure DCIS. High 

expression was associated with features of poor DCIS prognosis including younger age at 

diagnosis (<50 years), higher nuclear grade, hormone receptor negativity, HER2 

positivity, high proliferative index and high hypoxia inducible factor 1 alpha expression. 

High CTSA expression was associated with shorter recurrence free interval (RFI) 

(p=0.0001). In multivariate survival analysis for patients treated with breast conserving 

surgery, CTSA was an independent predictor of shorter RFI (p=0.015). DCIS associated 

with IBC showed higher CTSA expression than pure DCIS (p=0.04). In the DCIS/IBC 

cohort, CTSA expression was higher in the invasive component than DCIS component 

(p<0.0001). Conclusion: CTSA is not only associated with aggressive behaviour and 

poor outcome in DCIS but also a potential marker to predict co-existing invasion in 

DCIS. 
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INTRODUCTION  

An estimated 20-25% of women undergoing screening mammography are diagnosed 

with ductal carcinoma in situ (DCIS)1. DCIS is a non-obligatory precursor to invasive 

breast carcinoma (IBC) and 45-75% of IBC coexist with DCIS 2-5. The main objective in 

treating DCIS is to prevent its progression to invasive disease and to reduce any chance 

of ipsilateral local recurrence, of which half would be IBC. Achieving this goal is vital, as 

the mortality rate associated with diagnosis of DCIS alone is only about 1% 6. Several 

histopathological characteristics of DCIS can be used as predictors of recurrence 

including the nuclear grade, presence of comedo necrosis, architectural pattern, lesion 

size and patient age at diagnosis 7-10. However, there is a critical requirement for a 

validated reliable and reproducible clinicopathological and molecular signature that could 

improve risk stratification of DCIS to facilitate accurate individualised management. 

Currently available gene signatures such as Oncotype DX DCIS and risk indices for DCIS 

show lack of reliability and reproducibility between different studies 11-14. One possible 

reason is that a considerable percentage of patients (16-25%) are categorised as 

intermediate risk with undefined further management plan 12, 14 and another possible 

reason for this lack of reproducibility is the failure to take the tumour microenvironment 

into account, in view of the advances in deciphering the role of the microenvironment in 

tumour behaviour 15-22. Identification an optimal biomarker(s) incorporating tumour 

intrinsic factors and factors related to the surrounding microenvironment might offer a 

comprehensive prognostic model in addition to the currently used clinicopathological 

factors. This in turn would establish the risk of potential progression to IBC and thus 

identify whether patients required any further treatment, e.g. local re-excision, 

mastectomy or adjuvant radiotherapy and/or endocrine therapy 23.  In addition, 

identification of novel markers that predict DCIS invasiveness might also improve our 

understanding of the disease biology.          

Degradation and remodelling of the surrounding basement membrane and stroma are 

fundamental steps in DCIS progression to invasive disease. The key role of matrix 

metalloproteinases in stromal degradation is undeniable, however, it is insufficient to 
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explain DCIS progression to invasive disease depending solely on them. Blocking 

metalloproteinase action did not show promising results in terms of prevention of 

disease progression 24, 25.  

Cathepsins are a family of lysosomal proteinases or endopeptidases that are highly 

expressed in numerous human cancers. Lysosomal protective protein/Cathepsin A 

(CTSA) is an acidic serine carboxypeptidase that has a proactive function towards β-D-

galactosidase and N-acetyl-α-neuraminidase 26. A deficiency in this multifunctional 

lysosomal protease can cause human lysosomal storage disease (galactosialidosis) 26. 

CTSA is expressed in platelets 2, lymphocytes 27 and primary human antigen-presenting 

cells 28  and plays a role in primary and metastatic human melanocytic tumours 29. 

Interestingly, CTSA is differentially expressed between IBC and DCIS at the mRNA level 

22. Moreover, while the role of different Cathepsins in breast cancer has been studied 

before 30, 31, to the best of our knowledge, no previous study has addressed the role of 

CTSA in DCIS progression and its prognostic impact. In this study, we aimed to evaluate 

the protein expression of CTSA in a large cohort of DCIS and to assess its prognostic 

significance. 

MATERIAL AND METHODS 

Study Cohort  

A large DCIS, well characterised annotated cohort, including pure DCIS (n=776) and 

DCIS coexist with IBC (DCIS-Mixed) (n=239) presented between 1990 to 2012 at 

Nottingham City Hospital, Nottingham, United Kingdom (UK) was used as previously 

described 3, 26, 32. To avoid selection bias, the DCIS-mixed cohort was selected with 

clinicopathological features comparable to the pure cohort. 

Patients’ demographic data, method of disease detection either through mammographic 

screening or symptomatic presentation (regardless of whether the patients had ever 

been screened), morphological features, treatment including adjuvant radiotherapy (RT) 

and development of local recurrence were retrieved from local database system. Local 

recurrence free interval (LRFI) was defined as the time (in months) between 6 months 
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after the first DCIS surgical removal and occurrence of ipsilateral local recurrence 

(whatever DCIS or IBC). Patients had close/positive surgical margins or presented with 

residual tumour tissue and undergoing re-excision surgery within the first 6 months were 

not considered as recurrence. Patients who developed contralateral disease after initial 

diagnosis of DCIS were censored at the time of occurrence of the contralateral disease. 

In the pure DCIS cohort, 83 cases (11%) developed a recurrence within a median follow 

up period of 103 months (range 6-240), compromising 30 DCIS (36%) and 53 IBC 

(64%). The majority of the recurrences (n=66) occurred in patients treated with breast 

conserving surgery (BCS) alone.  

In addition, molecular classes, hypoxia inducible factor 1 alpha (HIF-1α) expression and 

tumour infiltrating lymphocytes (TILs) density were available for the cohort 23, 26, 32. 

Briefly, the molecular classes were defined based on the immunohistochemistry (IHC) 

surrogate classification using oestrogen (ER) and progesterone (PR) receptor, the human 

epidermal growth factor receptor 2 (HER2) and Ki-67 status. ER and PR were defined as 

positive if >1% of tumour cells showed nuclear staining 33 while HER2 positivity was 

defined when more than 10% of tumour cells showed strong complete membranous 

staining (score +3), where borderline cases (+2) were checked using chromogenic in 

situ hybridisation technique (CISH) to assess the gene amplification status 34. 

Proliferation index was assessed using IHC staining with Ki-67 antibody and defined as 

low when <14% of cells showed nuclear staining 35. HIF-1α was evaluated using IHC and 

was considered positive when >1% of tumour cells showed nuclear staining as 

previously described 36, 37 3, 26. Tumours with average number of 20 lymphocytes/duct or 

more was considered as dense TILs DCIS 23.   

Immunohistochemistry 

Tissue microarrays (TMAs) were prepared from both cohorts using a TMA GRAND 

MASTER 2.4-UG-EN MACHINE, using 1 mm punch sets. All cases were reviewed prior to 

TMA construction and cases with heterogeneous nuclear grade and/or histological 
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patterns were sampled from all representative areas. A separate TMA from each 

component of mixed cases (DCIS and IBC) was constructed. The pattern of CTSA 

expression in malignant breast tissue, adjacent stroma and normal tissue were 

evaluated using whole tissue sections from 20 cases including 10 pure DCIS and 10 

DCIS coexist with IBC. 

Primary antibody specificity for rabbit polyclonal CTSA antibody [Ab217857, Abcam, UK] 

was validated using Western Blot on whole cell lysates of MCF7 and SKBR3 human breast 

cancer cell lines (obtained from the American Type Culture Collection; Rockville, MD, 

USA). CTSA antibody was used at a dilution of 1:300, which showed a single specific 

band at the predicted size of 51 KDa (Figure 1A).  

Expression of CTSA protein in both DCIS cohorts was assessed by IHC using the 

Novocastra Novolink TM Polymer Detection Systems kit (Code: RE7280-K, Leica, 

Biosystems, UK). 4 µm sections were incubated for 24 hours with rabbit polyclonal CTSA 

(dilution 1:200). Normal kidney tissue was used as a positive control while a negative 

control was carried out by omitting the primary antibody. 

Scoring of CTSA expression 

Expression of CTSA in the cytoplasm of tumour cells and surrounding stroma was 

assessed in each component separately using the semi-quantitative Histo-score (H-

score); staining intensity was multiplied by the percentage of representative cells in the 

tissue for each intensity, producing a range of values between 0 and 300 38. Stromal 

expression was evaluated in stromal fibroblasts, where any staining in the collagenous 

acellular stroma was not considered. For mixed cohort, each component, DCIS and 

invasive, was scored separately for the tumor epithelial cells and surrounding stroma. All 

non-representative cores (lost cores, folded tissue during processing and staining or 

cores with normal breast tissue or these containing <15% tumour tissue), were excluded 

from the scoring. Average score was used as a final score for cases with multiple cores 

(n=180). The cases were scored by two pathologists (MST and IMM) using a 

multiheaded microscope. For dichotomisation of protein expression, a cut-off point was 
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defined according to the results from X-tile bioinformatics software (Yale University, 

version 3.6.1) based on LRFI in the pure DCIS cohort 39. High CTSA expression was 

defined as an H-score of >75.  

Analysis of CTSA mRNA expression in breast cancer: 

Due to scarce data on the transcriptomic profiles of DCIS, CTSA normalised mRNA 

expression was evaluated as a potential prognostic marker in the Molecular Taxonomy of 

Breast Cancer International Consortium (METABRIC) well characterised IBC cohort 

dataset (n=1980) 40, to emphasise the prognostic role of CTSA in breast cancer. 

Moreover, to validate the prognostic significance of CTSA in breast cancer, analysis using 

the Breast Cancer Gene-Expression Miner v4.1 (bc-GenExMiner v4.1) database was 

performed. 

Statistical analysis 

Statistical analyses were performed using SPSS v21 (Chicago, IL, USA) for Windows. 

Student’s t test and analysis of variance (ANOVA) were used to correlate between CTSA 

mRNA level as a continuous variable and other clinicopathological parameters in 

METABRIC data. Association with CTSA mRNA expression and breast cancer specific 

survival was done after dichotomisation of expression into high and low based on the 

median value.  

Correlation between CTSA expression and other clinical and morphological features in 

pure DCIS and between pure DCIS and DCIS-mixed cases was performed using Chi-

square, unpaired Student’s t and ANOVA tests. Wilcoxon signed rank test was used to 

compare the expression of CTSA between DCIS and invasive components within the 

DCIS-mixed cohort. Log rank test and Kaplan Meier curves were used for univariate 

survival analysis against local recurrence free interval. Cox regression model was used 

for multivariate analysis. For all tests, a two-tailed p-value of less than 0.05 was 

considered as statistically significant. 
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RESULTS 

Pattern of CTSA expression 

The full-face tissue sections demonstrated an even throughout staining of CTSA 

expression, indicating that TMA is representative for the whole tumour when assessing 

CTSA expression. Adjacent normal breast terminal duct-lobular units showed weak 

cytoplasmic staining. Occasional inflammatory cells and stromal fibroblasts were stained 

in a few cores in the pure DCIS cohort, while most cases in the mixed cohort showed 

stromal expression in addition to the expression within epithelial tumour cells. When 

present, CTSA was expressed in the cytoplasm of the epithelial tumour cells. In invasive 

cases, CTSA was expressed in epithelial tumour cells and surrounding fibroblasts (Figure 

1).  

After exclusion of uninformative cores, the final number of cases suitable for scoring in 

was 527 and 204 cores in pure DCIS and DCIS-mixed cohorts, respectively. The median 

H-score was 75 in pure DCIS (range 0-250); which was similar to the cut-off point 

generated by X-tile, 90 in the DCIS component of mixed cases (range 0-200), and 110 in 

the IBC component of the latter (range 0-250). High CTSA expression was observed in 

48% of pure DCIS. 

The proportion of cases that showed high expression of CTSA was greater in DCIS-mixed 

than pure DCIS (48% of pure DCIS cases vs. 70% of DCIS with co-existence IBC, 

χ2=3.0, p=0.04). Similar results were observed when the score was analysed in a 

continuous scale (p=0.0001). Moreover, there was a statistically significant difference 

between CTSA expression within the tumour epithelial cells of the DCIS component and 

invasive component of the mixed cases (Z=8.8, p<0.0001) (Figure 2).   

Significance of CTSA expression in pure DCIS 

Numerous clinicopathological parameters indicating poor DCIS prognosis were allied with 

high CTSA expression (Table 1) including younger age at diagnosis (<50 years), higher 

nuclear grade, hormonal receptor (ER and PR) negativity, HER2 positivity and high 
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expression of HIF1α. Moreover, there was a trend of high CTSA expression with 

symptomatic DCIS presentation, high proliferative (Ki-67) index, and dense TILs. 

Comparable results were generated when the analysis was carried out using continuous 

data for CTSA expression (Figure 2).  

In the METABRIC cohort, a higher level of CTSA mRNA was associated with adverse 

prognostic parameters including high tumour histological grade (p<0.0001), lymph node 

metastasis (p=0.001), ER negativity (p<0.0001), HER2 positivity (p<0.0001) 

(Supplementary Table 1). CTSA was also associated with shorter breast cancer specific 

survival (HR=1.5, 95%CI=1.1-1.5, p<0.0001) (Supplementary Figure 1).  Analysis using 

the Breast Cancer Gene-Expression Miner v4.1 (bc-GenExMiner v4.1) database showed 

that high CTSA mRNA was associated with higher metastatic relapse (HR=1.4, 

95%CI=1.3-1.6, p<0.0001) (Supplementary Figure 2).  

Outcome analysis in pure DCIS cohort  

Higher expression of CTSA was correlated with shorter LRFI (all recurrences either as in 

situ or invasive disease) in the entire cohort of pure DCIS (HR=3.2, 95%CI=1.8-5.8; 

p=0.0001, Figure 3A). A similar result was seen in patients treated with BCS without any 

further treatment with adjuvant RT (HR=2.7, 95%CI=1.6-4.8; p=0.002, Figure 3B). 

However, there was no correlation between CTSA and outcome in patients treated with 

either mastectomy or BCS followed by adjuvant RT. Figure 4 displays forest plots 

(utilising univariate survival analysis) demonstrating the hazard ratio for disease 

recurrence of the various parameters in patients treated with BCS. In addition, there was 

a trend between high CTSA expression and occurrence of invasive recurrence (HR=1.8, 

95%CI=0.9-4.6; p=0.07, Figure 3C).    

Multivariate survival analysis revealed that high expression of CTSA is an independent 

poor prognostic factor for tumour recurrence after treatment with BCS (HR=2.5, 95% 

CI=1.2-5.3; p=0.015) regardless the other variables including patient age at diagnosis, 

DCIS size, mode of DCIS presentation, nuclear grade, presence of comedo necrosis, 

surgical margin width, different molecular classes and adjuvant radiotherapy (Table 2). 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Discussion 

Understanding the complexity and heterogeneity of DCIS requires full integration of 

various factors such as tumour-intrinsic factors (e.g. tumour size, nuclear grade, intrinsic 

molecular subtypes and proliferation rate), tumour-extrinsic tissue factors (e.g. stromal 

complexity, immune cell response, and the interaction with the surrounding basement 

membrane and myoepithelium) and clinical factors (e.g. tumour size, grade and patient 

age at diagnosis). A robust signature combines both clinicopathological and molecular 

features that incorporates intrinsic tumour factors with the surrounding 

microenvironment is highly warranted to identify high-risk DCIS, especially those at 

greatest risk of developing invasive carcinoma 26. DCIS survival, proliferation and 

subsequent invasion and metastasis are highly affected by the crosstalk between tumour 

cells and the surrounding microenvironment including the myoepithelial cell layer, 

vasculature, stromal fibroblasts and the immune cells. Changes in the breast tumour 

microenvironment can be detected as early as DCIS or even earlier 2. Subsequently, 

epithelial cells and the surrounding microenviroment contribute to reciprocal paracrine 

acting signalling loops. These actions would stabilise the surrounding immune cells, 

fibroblasts and myofibroblasts at the DCIS, which in turn alter and remodel the 

extracellular matrix (ECM) and facilitate tumour cell proliferation, maintenance and 

invasion 22, 41-43.  

Cathepsins are a superfamily of proteins expressed in various types and stages of human 

cancers 29. Each member of this family has different functions compared to each other 

under normal and cancerous conditions. Several cathepsins have been studied and linked 

to poor prognosis in breast cancer 35. Similarly, our analysis of the METABRIC cohort 

showed a correlation between elevated levels of CTSA mRNA and aggressive behaviour 

of IBC. Studies evaluating the role of CTSA in breast cancer and particularly in DCIS are 

lacking, although a transcriptomic analysis showed CTSA is differentially expressed 

between DCIS and IBC 22. We were able to validate this result at the protein level by 

showing that both pure DCIS and the DCIS component of mixed tumours had 

significantly less CTSA staining than IBC both within the tumour cells and in the 
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surrounding stromal fibroblasts. Fibroblasts have previously been reported to be an 

additional source of CTSA activity 34 and our result reflects the interactive role between 

tumour cells and surrounding tissues in tumour aggressiveness. However, further 

functional studies are highly recommended to understand the underlying mechanisms 

and functions of CTSA expression in carcinogenesis and tumour progression either from 

the tumour cells or the surrounding stroma. 

Our analysis of CTSA in a large well characterised cohort of DCIS supported our 

hypothesis that this protein would be associated with features of high-risk DCIS. In 

addition, the poor prognostic significance of higher CTSA expression was shown to be 

independent from other clinical and morphological features, and with a trend of 

association towards invasive recurrence and progression.  

Despite the direct role of CTSA in the ECM degradation that helps in tumour invasion, 

there are other mechanisms by which CTSA might contribute to tumour aggressiveness. 

For instance, an increase in CTSA chymotrypsin-like activity was documented to induce 

the degradation effect of tumour suppressor proteins leading to greater resistance to 

apoptosis, which would result in more aggressive cancer behaviour 27. Another 

mechanism by which CTSA participates in tumour growth is by regulating chaperone-

mediated autophagy, which is reported to be essential for cancer cell proliferation 44. 

Finally, activation of CTSA requires a low pH acidic environment 34, 45. Our observation of 

an association between high CTSA with HIF1α, which usually is accompanied by lower 

pH, supports elevated CTSA expression as a mechanism of surviving acidic hypoxic 

environments and more aggressive behaviour. Altogether, these findings support a role 

in disease progression for the crosstalk and interactions between various factors within 

the DCIS tumour cells and the surrounding microenvironment.   

The role of CTSA in inflammatory processes and in antigen presenting cells function was 

previously studied 28. Moreover, overexpression of CTSA in tumour associated 

macrophages and lymphocytes of the surrounding tissues has been reported 28, 46. We 

have previously reported that dense TILs is associated with worse prognosis in DCIS, a 
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contradictory phenomenon to IBC for which the underlying mechanisms are unclear 23. 

Here, we observed a tendency for high CTSA expression in DCIS harbouring dense 

lymphocytic infiltration that may be associated with an inflammatory function or tumour 

associated immunity role for CTSA. Further functional mechanistic studies are required 

to confirm such observation in DCIS and decipher the possible underlying biological 

mechanisms and significance. 

Conclusion  

CTSA might have a potential role in DCIS aggressiveness through its regulatory role in 

ECM degradation and interaction with the surrounding tumour microenvironment. More 

functional studies to decipher the role of CTSA and its mechanism of action in DCIS 

behaviour are warranted.  
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Table 1: Correlation between CTSA expression with clinicopathological parameters in the 
pure DCIS cohort  

Parameters

CTSA expression in tumour epithelial 
cells

χ2 
(p-value)Low 

(N=272) 

N. (%)

High 
(N=255) 

N. (%)

Age (years) 
   ≤50  
   >50 

54 (20) 
218 (80)

69 (27) 
186 (73)

3.8 
(0.045)

DCIS Presentation  
   Screening 
   Symptomatic

144 (53) 
128 (47)

115 (45) 
140 (55)

3.2 
(0.071)

DCIS Size (mm) 
   ≤20 
   >20

122 (45) 
150 (55)

113 (45) 
139 (55)

0.1 
(0.998)

DCIS Nuclear Grade 
   Low 
   Moderate 
   High

44 (16) 
79 (29) 
149 (55)

23 (9) 
60 (23) 
172 (68)

10.2 
(0.006)

Comedo necrosis  
   Yes 
   No

174 (64) 
98 (36)

177 (69) 
78 (31)

1.8 
(0.18)

Oestrogen receptor (ER) status    
   Negative 
   Positive

49 (20) 
199 (80)

79 (34) 
149 (66)

11.9 
(0.001)

Progesterone receptor (PR) status    
   Negative 
   Positive

89 (44) 
152 (56)

112 (56) 
119 (44)

6.4 
(0.011)

HER2 status  
   Negative 
   Positive

219 (85) 
37 (15)

169 (70) 
72 (30)

17.2 
(<0.0001)

Proliferation Index (Ki-67) 
   High (≥14%) 
   Low (<14%)

41 (20) 
168 (80)

58 (28) 
152 (72)

3.7 
(0.051)

Molecular classes 
   Luminal A 
   Luminal B 
   HER2 enriched  
   Triple negative 

113 (59) 
33 (17) 
19 (10) 
28 (14)

89 (43) 
42 (20) 
40 (20) 
37 (17)

11.6 
(0.009)

Tumour infiltrating lymphocytes (TILs) 
   Dense 
   Sparse 

90 (44) 
116 (56)

102 (53) 
92 (47)

3.1 
(0.075)

Hypoxia inducible factor 1 alpha 
(HIF1α) 
   High 
   Low

35 (18) 
159 (82)

60 (32) 
130 (68) 9.4 

(0.002)
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Significant p values are in bold  

               

Table 2: Multivariate survival analysis (Cox regression model) of variables predicting 
outcome in terms of ipsilateral local recurrence in patients treated by breast conserving 
surgery  

*This model includes CTSA expression in tumour cells with other known parameters 
determining aggressive DCIS behaviour in the pure DCIS cohort.   
p values in bold= Significant  

Parameters  Hazard ratio 
(HR)

95.0% confidence 
interval (CI)

Significance 
p-value

Lower Upper

High CTSA expression 2.5 1.2 5.3 0.015

Patient Age 0.6 0.3 1.4 0.255

DCIS size 1.1 0.5 2.2 0.811

DCIS nuclear Grade 1.7 0.9 3.1 0.056

Comedo type necrosis 0.6 0.3 1.4 0.254

Radiotherapy 0.2 0.1 0.8 0.019

Surgical margins 0.8 0.4 1.4 0.381

Molecular classes 0.9 0.7 1.3 0.7

DCIS presentation 2.1 0.9 4.1 0.051
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Supplementary Table 1: Correlation between CTSA mRNA level and the 
clinicopathologic parameters in the METABRIC series of invasive breast cancers 
(n=1980). 

p values in bold= significant 
METABRIC:   Molecular Taxonomy of Breast Cancer International Consortium 

Parameter Number of 
cases

Mean CTSA mRNA 
level

p-value

Patient Age (years) 
   <50  
   ≥50 

383 
1556

8.5 
8.5

0.452

Tumour Size (mm) 
   ≤20 
   >20

622 
1331

8.4 
8.5

0.007

Histologic Grade 
   1 
   2  
   3

170 
770 
952

8.3 
8.4 
8.6

<0.0001

Lymph node metastasis  
   Negative 
   Positive

1035 
938

8.4 
8.5

0.001

Oestrogen Receptor Status 
   Positive 
   Negative

1506 
474

8.4 
8.6

<0.0001

HER2 Status 
   Negative 
   Positive

1733 
247

8.4 
8.6

<0.0001

PAM50 molecular classes 
   Luminal A 
   Luminal B 
   Basal-like 
   HER2 enriched 
   Normal like

718 
488 
329 
240 
199

8.4 
8.6 
8.6 
8.7 
8.5

<0.0001
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    Figures 

Figure 1: Anti-CTSA antibody validation and patterns of protein expression. A) 
Western blot of rabbit polyclonal anti-CTSA antibody showing a single specific band 
(upper green band) at expected molecular weight (51 kDa) in MDA-MB-231, MCF-7, 
SKBR3 and MCF-10A cell lysates. The lower red band represents the beta-actin 
(positive control) at 42kDa molecular weight, B) Normal breast duct (x20) shows weak 
cytoplasmic staining of CTSA in the normal epithelial cells. C) Weak CTSA expression 
(x40) in a pure low grade DCIS case; D) stronger expression of CTSA in (x40) in a 
pure DCIS case. Note the dense inflammatory cells surrounding the DCIS. E) Strongest 
expression of CTSA (x40) in a pure high grade DCIS case.  F) Expression of CTSA in a 
mixed case (x20) showing higher intensity within the invasive tumour cells than the 
DCIS component. Stromal expression of CTSA is also noticed.   

!   
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Figure 2: Violin plots showing the associations between CTSA expression (H score) 
and other clinicopathological parameters in pure DCIS cohort (A-K) and the difference 
between CTSA expression in pure DCIS and DCIS mixed with invasive carcinoma (L), 
using continuous expression data. The central boxplot represents 95% confidence 
interval and the median while the red dot represents the mean. (TILs; tumour 
infiltrating lymphocytes, HIF1α; hypoxia inducible factor 1 alpha, Lum; luminal, TN; 
triple negative, DCIS; ductal carcinoma in situ, IBC; invasive breast cancer)   

!

!

!
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Figure 3: Kaplan Meier curves show that high expression of CTSA is associated with 

shorter ipsilateral local recurrence free survival (LRFS) in the whole series (A), and in 

patients treated with breast conserving surgery (BCS) without adjuvant radiotherapy 

(B). (C) showing the association between CTSA expression and invasive recurrences only 

in the whole cohort.  

!

!
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Figure 4: Forest plot showing the univariate analysis results of association between 
different clinicopathological parameters including CTSA expression and ipsilateral tumour 
recurrence for patients treated with breast conserving surgery in the pure DCIS cohort 

!
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Supplementary figure  

Supplementary Figure 1: Association between CTSA mRNA level and outcome in 

terms of breast cancer specific survival in the METABRIC series. The cohort was split into 

high and low mRNA expression based on the median.  

!
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Supplementary Figure 2: Association between CTSA mRNA level and metastatic free 

interval in Breast Cancer Gene Miner Data. The cohort was split into high and low mRNA 

expression based on the median.  

'
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