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Abstract The last three decades has seen some important
advances in our ability to represent the conformation of
proteins in solution on the basis of hydrodynamic measure-
ments. Advances in theoretical modeling capabilities have
been matched by commensurate advances in the precision of
hydrodynamic measurements. We consider the advances in
whole-body (simple ellipsoid-based) modeling—still useful
for providing an overall idea of molecular shape, particular-
ly for those systems where only a limited amount of data is
available—and outline the ELLIPS suite of algorithms
which facilitates the use of this approach. We then focus
on bead modeling strategies, particularly the surface or
shell-bead approaches and the HYDRO suite of algorithms.
We demonstrate how these are providing great insights into
complex issues such as the conformation of immunoglobu-
lins and other multi-domain complexes.

Keywords Solution conformation - Whole-body models -
Bead and shell models

Introduction

There are two approaches to the hydrodynamic modelling of

proteins. The simplest is “whole-body modelling” using
ellipsoids which involves the exact hydrodynamic equations
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linking hydrodynamic measurements with the axial ratios
describing the ellipsoidal shape. This approach which has
been used since Perrin (1934, 1936) and Simha (1940)
provided relationships linking the axial ratio for both prolate
and oblate ellipsoids of revolution (ellipsoids with two equal
axes) with the frictional properties (rotational and transla-
tional) and intrinsic viscosity, respectively. Progress was
made in the 1940s—1950s in dealing with the “hydration
problem”, namely the recognition that the frictional ratio
and intrinsic viscosity had contributions not only from
asymmetry but also the volume of the protein, “swollen”
by the time-averaged interaction with the surrounding sol-
vent. Graphical (Mehl et al. 1940; Oncley 1940), and ana-
lytical solutions for evaluating the axial ratio and hydration
were provided (Scheraga and Mandelkern 1953).
Intriguingly, Saito (1951) had questioned Simha’s derivation
on the basis of an apparently erroneous assumption (macro-
molecules rotating with zero angular velocity in viscous
flow rather than rotating at the same angular velocity as
the surrounding liquid), whilst arriving at the same relation-
ship himself. Simha’s derivation was later shown to have
reached the correct formula on the basis of an apparent
cancellation of errors (Harding et al. 1982). Further progress
was made with the removal of the restriction of two equal
axes and the introduction of the general triaxial ellipsoid in
the 1980s by combination of three different types of hydro-
dynamic measurement (see, e.g., Harding 1987).
Calculation of the relevant parameters required solution of
elliptic integrals: for ellipsoids of revolution, these integrals
could be solved analytically using quadrature—although
relationships were relatively complex, tabular or graphical
values as a function of axial ratio became available along
with simpler-to-use approximate formulae. For general
ellipsoids, numerical solution of the integrals was needed
using high-speed computers. Attention then moved to the
production of easy-to-use algorithms, an endeavour which
led to the ELLIPS algorithms now downloadable on
www.nottingham.ac.uk/ncmh.
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Whole-body modelling may be insufficient when finer
structural details are being investigated, and it has proved
inappropriate for representing the conformation of many
classes of protein, particularly non-globular protein
shapes, and multi-subunit structures, as is the case of
antibodies and a variety of macromolecular complexes. It
was, indeed, the lack of adequacy of ellipsoidal models
for such cases that prompted the pioneering work of
Bloomfield and coworkers in the 1960s (Bloomfield et
al. 1967), who proposed application of the bead model
concept, initially developed in polymer physics for simple,
chain-like or rod-like structures, to model the peculiar
shapes of biomacromolecules. The concept evolved over
the years (see, e.g., Garcia de la Torre and Bloomfied
1981; Carrasco and Garcia de la Torre 1999) by imple-
menting new theoretical advances into computational algo-
rithms that made use of the continuously increasing
computing power. After the publication of the first public-
domain bead-modeling program HYDRO (Garcia de la Torre
et al. 1994), a suite of software has been developed and made
available to the scientific community (http://leonardo.
inf.um.es/macromol/). This methodology can now be applied
to a variety of complex situations quite simply and with
considerably reduced computing requirements.

In this short review, we consider aspects of the ELLIPS
and HYDRO suites of algorithms for whole-body and bead
model representations of conformation in solution. For full-
er details, the researcher is referred to the respective
websites.

Whole body models—the ELLIPS suite of algorithms

With whole-body modelling we make no assumptions
concerning starting estimates for the structure—other than
assuming the molecule is rigid—and calculate the shape
directly from the measurement of one or more hydrodynam-
ic parameters. The shape model is a smooth whole regular
structure—namely an ellipsoid characterised by three per-
pendicular semi-axes a, b, ¢, with a > b > ¢, and two
independent axial ratios (conventionally a/b, b/c). The com-
mon limiting forms are the prolate (with semi-axes a,b,b)
and oblate (a, a, b) “ellipsoids of revolution” described by a
single axial ratio a/b, with a > b in both cases.

The ELLIPS algorithms were developed for performing
this type of modelling, initially for use on mainframe com-
puters (Harding 1983), then for MS-DOS (Harding et al.
1997), and finally for the Windows platform (Harding et al.
2005). It has been periodically updated for alterations in
Window platforms on www.nottingham.ac.uk/ncmbh, the lat-
est being for Windows XP or Windows 7.

Table 1 gives a summary of what these do. Obviously,
many classes of molecule cannot be reasonably represented
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by a smooth symmetrical shape—antibodies are a good
example—this type of whole-body modelling is not appli-
cable and bead-approaches need to be employed. Even here,
however, ellipsoidal representations of the major domains
(Fab, Fc) have helped in the bead modelling of the intact
assembly (Carrasco et al. 1999, 2001; Longman et al. 2003;
Lu et al. 2006, 2007).

Universal shape functions—ELLIPSPRIME

The ELLIPS algorithms work with “universal shape”
parameters—i.e. parameters which can be described by a
unique function of shape and not of size. The simplest of
these is the Einstein-Simha shape function v, which is
measurable from the intrinsic viscosity of a protein and
has a value >2.5 (the limiting value being for a sphere).
Another is the Perrin function P, which is measurable from
the sedimentation coefficient or translational diffusion coef-
ficient of a protein and has a value >1. All these universal
shape functions have been worked out in terms of the axial
ratio (a/b) for ellipsoids of revolution and also the two axial
ratios (a/b, b/c) for general ellipsoids. The relations of all
these to (a/b) or (a/b, b/c) are given in Harding (1995). To
measure these shape functions experimentally, many—in-
cluding v and P—require knowledge of the hydration
(mass in g of H,O associated per g of dry macromolecule)
or hydrated volume V' (ml) of the particle, though the others
do not. Hydration is a dynamic process, and so 6 and V
represent time-averaged values. It is wrong, however, to
assume that because of the dynamic nature of hydration it
has no affect on hydrodynamic properties. The residence
time for water/solvent in the so-called hydration layer(s) has
been shown to be different from that in bulk water (Denisov
and Halle 1996). The particle volume Vis often presented in
two equivalent forms:

V =vs-M/Ny (1)

where M is the molecular weight or molar mass (g/mol) and
N, is Avogadro’s number (6.02205 x 10*mol "), and vy is
the specific volume (ml/g) of the hydrated macromolecule
(volume occupied by the hydrated macromolecule per unit
mass of dry macromolecule) or

V= (V4 8/p,) - M/N, 2)

where V is the partial specific volume (ml/g).

Examples of universal shape functions requiring knowl-
edge of & or V for their experimental measurement include
the viscosity increment, v

v=[MM/(NsV) (3)
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Table 1 The ELLIPS suite of

whole-body modeling Routine Language Model Purpose
algorithms
ELLIPS1  QUICKBASIC Ellipsoid of Revolution  Prediction of axial ratio (a/b) from any user
specified shape function
ELLIPS2  FORTRAN General Triaxial Evaluates all the hydrodynamic shape functions
Ellipsoid from user specified (a,b,c) or (a/b, b/c)
ELLIPS3  FORTRAN General Triaxial Evaluates (a/b, b/c) from combinations of
Ellipsoid hydration independent shape functions
ELLIPS4 FORTRAN General Triaxial Evaluates (a/b, b/c) from electro-optic decay
Ellipsoid combined with other data
and the Perrin function, P Ellipsoids of revolution: ELLIPS1
— 1/3 . . . . .
P= (f/fo)/{l +8/(Vpo)} / (4)  ELLIPS] is based on simple ellipsoid of revolution

where (f/f,), the frictional ratio (Tanford 1961) which can be
related to the sedimentation coefficient 5%, or diffusion
coefficient

Another popular parameter is the reduced excluded vol-
ume (Rallison and Harding 1985), u,q

teg = u/V = {2BM* — £(Z,1)} /(N4V) (5)

where u is the excluded volume (ml), B is the second
thermodynamic (or “osmotic pressure”) virial coefficient,
from osmotic pressure, light scattering or sedimentation
equilibrium measurements, and f(Z,/) is a function of the
valency Z of the macromolecule and ionic strength I of the
solution. u,.q=8 for a sphere (Tanford 1961).

There are also a plethora of shape functions relating to
rotational frictional behaviour (fluorescence anisotropy de-
cay and electric birefringence decay) described in Harding
(1983) and Harding et al., (1997, 2005). In addition there are
also universal shape functions that do not require knowledge
of & or V for their experimental measurement. These are
obtained by combining two hydrodynamic parameters. The
classical example is the Scheraga-Mandelkern 3 parameter
(from combination of v with P)—although this is a very
insensitive function of shape. Another and much more use-
ful example is the Pi function (Harding 1981) from the
combination of intrinsic viscosity measurement with mea-
surement of the 2nd thermodynamic virial coefficient:

IT = {2BM /[]} — {Z*)2IMn]} = ttreq /v (6)

Other examples involve combination of either v or P with
rotational frictional-based functions such as the harmonic
mean rotational relaxation time. To assist with the calcula-
tion of the Universal parameters such as v, P and u,.4, and IT
from the relevant experimental parameters, an Excel spread-
sheet routine ELLIPSPRIME has been set up specifically for
this purpose.

models (where two of the three axes of the ellipsoid
are fixed equal to each other); if the user enters a value
for a shape function from sedimentation or other types
of hydrodynamic measurement, it will return a value for
the axial ratio of the ellipsoid. The question an exper-
imenter wishes to address usually is not “what is the
shape function for a specified value of the axial ratio
a/b?” but rather “what is the axial ratio a/b for my
macromolecule specified by my (universal) shape func-
tion which I have experimentally measured?”. Although
there are exact analytical formulae linking each shape
function with a/b, the reverse is not true: inversion is
analytically impossible. The QUICKBASIC algorithm
ELLIPSI uses the polynomial-based inversion procedure
of Harding et al. (1997) to give a/b versus the various
universal shape functions to an acceptable degree of
accuracy (i.e. to better than the precision of the mea-
surement, which is normally no better than a few per-
cent). Figure 1 gives some recent published examples.

Evaluation of hydrodynamic properties from the axial
dimensions of a protein: ELLIPS2

ELLIPS2 evaluates exactly a complete set of universal
shape functions for user-specified values of the axial
ratios of a protein. All the user has to do is enter the
two axial ratios (a/b, b/c) for the protein from the axial
dimensions of the molecule (e.g. from x-ray crystallog-
raphy). Since prolate and oblate ellipsoids of revolution
are two limiting forms of the general ellipsoid, the
program will also of course evaluate the set of param-
eters for these two situation, as well as for (rigid) tapes
(a>>b>>c). An example of the method has been eval-
uation of the hydrodynamic parameters for tri-axial el-
lipsoid models for IgG Fab and Fc domains, using the
crystallographic dimensions for these structures (Fig. 2).
For example, P values were evaluated for this and
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Fig. 1 ELLIPSI representations for a the tetanus toxoid protein, used
in glycoconjugate vaccines (adapted from Abdelhameed et al. 2012)
and b wheat protein gliadins «, {3, w¢and wg (Ang et al. 2010)

compared with the corresponding bead—shell model rep-
resentations of the surfaces, validating the latter for
subsequent use in construction of models for the intact
antibody structure.

Evaluation tri-axial dimensions from hydrodynamic
parameters ELLIPS3 and ELLIPS4

ELLIPS3 and 4 perform the reverse of ELLIPS2 by evalu-
ating the tri-axial shape of a macromolecule (a/b, b/c) from
hydrodynamic measurements. At least three experimental
parameters are required since there are 3 unknowns—a/b,
b/c and the hydration 8. For example, ELLIPS3 has been set
up to allow the evaluation of (a/b, b/c) from a combination
of measurements of the intrinsic viscosity, the second ther-
modynamic virial coefficient and the radius of gyration, or
from a combination of the intrinsic viscosity with the har-
monic mean rotational relaxation time (from steady state
fluorescence depolarisation experiments) and sedimentation
data. For example, it has been successfully applied to the
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ELLIPS2 Output Data

(a/b, b/c)=1.6000 1.4200

Viscosity increment, nu= 2.9120

Perrin function, P =  1.0457

Corresponding hydration independent functions:
Walesvan Holde, R= 1.4721
Scheraga-Mandelkern, 10**-6xbeta =  2.1247
Functions based on the 2nd virial coefficient:
Reduced excluded volume, u_red 9.1442
Corresponding hydration independent function:
Pi function = 3.1401

G function (from radius of gyration) =  0.7491

Reduced electro -optic decay constants:

Theta+ = 0.1654
Theta= 0.1134
Corresponding hydration independent functions:
Delta+ = 2.8907
Delta = 1.9806
Gamma+=  1.6965
Gamma= 1.1624
Harmonic mean rotational relaxational time ratio:
tau_h/tau_0= 1.1956

Corresponding hydration-independent functions:

PSI (Squire -Himmel) function =  0.9853
LAMBDA = 2.4356

Fluorescence anisotropy relaxation time ratios:
tau_1/tau_0= 1.0075

tau_2/tau_0= 1.3083

tau_3/tau_0= 1.3292

tau_4/tau_0= 1.4703

tau_5/tau_0= 1.0074

Corresponding hydration independent functions:
lambda_1=2.8903

lambda 2= 2.2259

lambda_3 = 2.1908

lambda_4 = 1.9806

lambda_5= 2.8907

b

Fig. 2 a ELLIPS2 output for IgG antibody domain B72.3¢ Fab’ (see
Carrasco et al. 2001). b The axial ratios of (a/b, b/c) =1.60, 1.42) used
for this example were obtained from the crystal structure of Brady et al.
(1992) using the algorithm of Taylor et al. (1983), which fits a surface
ellipsoid to crystallographic atomic co-ordinate data from the protein
data bank (PDB)

study of myosin rods and the study of the mode of dimer-
isation of the neural protein neurophysin. ELLIPS3 uses as
its basis the function calculation routine of ELLIPS2 except
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that a whole array of such values are evaluated in the (a/b,
b/c) plane (a matrix of 40x40 values). A contour plotting
routine (RGCNTS from the Simpleplot Library) interpolates
between these matrix points, thereby effecting a combina-
tion of line solutions to yield a unique solution with allow-
ance for experimental error, of (a/b, b/c) for a protein.
ELLIPS4 is similar but involves a combination of intrinsic
viscosity and sedimentation data with electric birefringence
decay data, using a constrained fit procedure for extraction
of the decay constants.

Bead models—the HYDRO suite of algorithms
and the concept of equivalent radii

As mentioned in the Introduction, after the first release of
the HYDRO computer program for hydrodynamics of bead
models (Garcia de la Torre et al. 1994), the collection of
computer programs has been considerably expanded.
Hereafter, we shall give some details for only those tools
that are most relevant for the study of protein hydrodynam-
ics, particularly the programs HYDROPRO, HYDRONMR
and HYDROSUB. 1t is convenient to mention here another
advance, which consists of an interface between the results
of those programs and experimental data, in order to search
for conformations that would fit a set of data for several
proteins. For such a purpose, we have found it convenient to
employ the solution properties in the form of equivalent
radii (Ortega and Garcia de la Torre 2007). For a given
value of some property, the equivalent radius of the particle
is the radius that a spherical particle would have in order to
reproduce that value. For instance, the equivalent radius for
translational hydrodynamics, sometimes called Stokes radi-
us, is defined as ar = f/67m, where f is the translational
friction coefficient that can be determined from translational
diffusion or sedimentation. Examples of other equivalent
radii are that corresponding to intrinsic viscosity, a; = (3
[n1M/10 7'[)1/3 , and that from the radius of gyration ag =
(5/3)"2 R, The adequacy of an assumed structure to fit a set
of experimental values for several properties can be judged
in terms of the square deviations or the calculated and
experimental equivalent radii. A convenient measure of the
degree of fit is given by the quantity

3= ([(ad0 i) faoT) "

X

where <...> y indicates the mean over the various properties
that are available. Note that 100A is the typical percent
relative deviation of the calculated radii from the experi-
mental ones. In some instances, the structure is characterised
in terms of some parameters, so that A(ps, p1, ...) would be
a function of those parameters, whose optimum values,

defining the best fitting structure, are those which minimise
A. The HYDRO suite contains an ancillary program,
HYDROFIT (Ortega et al. 2011b), intended to carry out
such a kind of structural optimisation from the results pro-
duced by HYDRO, HYDROPRO, HYDROSUB, etc.
(Table 2).

Calculation of solution properties of rigid proteins
from their detailed molecular structure

Simple, single-valued quantities like the hydrodynamic
coefficients and the radius of gyration are low-resolution
properties, and one cannot hope to extract from them highly
detailed structural information. On the other hand, high-
resolution techniques like diffraction and NMR provide
detailed, even atomic-level, structures, although at the cost
of complex instrumentation and data handling. Historically,
these techniques came after many decades during which the
structural elucidation of proteins was mainly based on hy-
drodynamic properties, analysed in terms of primitive ellip-
soidal models. However, it was realized that, because of the
complexity of their determination, such structures should be
validated against experimental data of readily accessible
properties of the protein in solution.

This purpose motivated the development of a methodol-
ogy for predicting solution properties from high-resolution
structures with even atomic-level detail. A pioneering

Table 2 The HYDRO suite of modelling programs

Program Starting structure/information Results
HYDRO User-constructed model A, B
Spherical beads: coordinates and radii
HYDROPRO Atomic- or residue-level structure. A, B
(PDB-formatted list of coordinates)
HYDRONMR  Atomic- level structure. C
(PDB-formatted list of coordinates)
HYDROMIC 3D density map from electron A, B
microscopy, several formats
HYDROSAS “Dummy atoms” model from small-angle A
scattering
HYDROSUB User-constructed model A, B
Ellipsoids, cylinders: size, position and
orientation
HYDFIT Experimental data D
Output from any of the HY DROxxx
programs

A Hydrodynamic coefficients (sedimentation, diffusion, rotational
times, intrinsic viscosity), radius of gyration, covolume

B Angular dependence of scattering intensities and distribution of
distances

C NMR relaxation times
D Selection of an optimum, best-fitting structure
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attempt, when x-ray diffraction structures were still scarce,
was that by Teller et al. (1976). The availability of develop-
ments in hydrodynamic computations, implemented in the
computer program HYDRO (Garcia de la Torre et al. 1994),
prompted further advances in the application to proteins;
among many others, the work of Byron (1997) for atomic-
level models is particularly remarkable. Some aspects in
hydrodynamic modelling that were deficient by then were
improved later on (Carrasco and Garcia de la Torre 1999),
providing the framework for a methodology specific for
rigid proteins, implemented in the program HYDROPRO
(Garcia de la Torre et al. 2000), which allowed the calcula-
tion of solution properties from a set of atomic coordinates
in PDB format. Since then, some alternative procedures
have been proposed (Rai et al. 2005; Aragon and Hahn
2006; Brookes et al. 2010), but HYDROPRO has been, by
far, the most frequently used tool for this purpose. Very
recently (Ortega et al. 2011a, b), this program has been fully
refurbished, with inclusion of new modelling strategies and
improvements in computational aspects. Hereafter, we sum-
marise the main features of the present methodology

In the original HYDROPRO procedure (Garcia de la
Torre et al. 2000), an atomic-level structure, as specified
in a set of NV, atomic coordinates, was the origin of a
primary hydrodynamic model (PHM) in which each non-
hydrogen atom is replaced by a spherical element, beads of
radius @, which should be even larger than van der Waals
radii in order to account for hydration, so that beads in the
PHM overlap appreciably. In order to avoid some hydrody-
namic problems regarding bead overlapping, the PHM was
in turn replaced by a shell model, in which a number of
hydrodynamic centres, N, of non-overlapping “minibeads”
of radius o cover the surface of the PHM. Properties are
calculated for several, increasing values of N, up to about
2,000, with decreasing sigma, and the results extrapolated to
N — oo. The hydrodynamic calculations require handling a
3N x 3N matrix (which for the finest shell model would be
6,000%60,00), with computing time proportional to N°.

The present, state-of-the-art HYDROPRO methodology
includes important improvements, particularly in efficiency
achieved by techniques of high-performance computing,
and new modelling features. One of them is the possibility
of predicting the solution properties from a lower resolution,
non-atomic, residue-level model of the protein, specified by
a list of coordinates of C* atoms. Another refers to the
hydrodynamic treatment of bead overlapping, that has
allowed the possibility of making the hydrodynamic calcu-
lation directly from the primary hydrodynamic model
(PHM)—which in the case of the residue-level model would
contain a number of elements equal to the number of amino
acid residues, N,s. Computing time would be then propor-
tional to N, , with an evident computational advantage
over the shell calculations for proteins of less than, say,
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1,000 residues. Thus, there are now various computational
strategies possibilities:

(a) “Atomic/PHM — Shell”. An atomic PHM with over-
lapping beads of @a=2.9 A, built from atomic coordi-
nates, is in the computation replaced by a shell model
of up to N=20,00 minibeads

(b) “Residue/PHM — Shell”. A residue-level PHM with
overlapping beads of @=5.0 A, built from Cx coordi-
nates, is in the computation replaced by a shell model
of up to N=20,00 minibeads

(c) “Residue/PHM”. A residue-level PHM with overlapping
beads of a=6.1 A, built from Cx coordinates, is directly
used in the computation, which involves N, beads

Note that all the methods require a PHM, so that the
primary parameter is the radius, a, of the (overlapping) beads
in the PHM. As in the primitive version of HYDROPRO
(Garcia de la Torre et al. 2000), this parameter has been
adjusted so as to reproduce experimental data for small- and
medium-sized proteins, with the improvement in the new
version of making the parameterisation with an extensive set
of various properties (translational coefficients, intrinsic vis-
cosity, rotational relaxation) for over 70 proteins and of over
150 experimental data. For the global fit of such large and
complex set, we employed the procedure described above
based on the optimisation of equivalent radii. The results are
displayed in Table 3.

It seems clear from the summary in Table 3 and the
examples in Fig. 3 that our procedures provide highly accu-
rate predictions for the radius of gyration, Stokes radius and
other hydrodynamic radii; the deviation is in most cases
within the range 3-6 %, and, considering that this includes
the uncertainty of the experimental data themselves, then the
errors introduced by the modelling and computational pro-
cedures are, indeed, quite small.

It is also noteworthy that models derived from residue-
level structures provide predictions of the same quality as
those from atomic models. This possibility seems of practi-
cal importance, as it extends the utility of HYDROPRO to
cases where only lower-resolution structures are available.
Another important feature is that the hydrodynamic calcu-
lation made directly from the residue-level PHM in the
Residue/PHM method, with N, hydrodynamic elements,
performs nearly as well as the Residue/PHM — Shell and
Residue/PHM — Shell procedures, both with a number of
elements N up to 2,000. The computing time for the shell
methods is not long (less than 3 min on typical, inexpensive
personal computers); nonetheless, in cases where CPU con-
sumption may be important—as in high-throughput struc-
tural search software in which HYDROPRO may be
implemented (Bernado and Blackledge 2009; Cho et al.
2009; Krzeminski et al. 2013)—with an unappreciable
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Table 3 Best-fitting values of the bead size, a, in the PHM of proteins
for the several computing strategies, and typical (mean) percent devi-
ation, % dif., found for translational properties, radius of gyration,

intrinsic viscosity and relaxation time. Figure 3 presents numerical
values for some specific, well-known proteins of which more than
one property are available

Method a, A (in PHM) % dif. ax, % dif. ag, % dif. ar, % dif. ay, % dif. ag,
(from all prop.) (from Ry) (from D or s) (from[n]) from 1)
Atomic/PHM—Shell 29 4.5 3.9 4.7 3.8 5.3
Residue/PHM— Shell 4.8 4.4 4.0 4.7 3.5 5.4
Residue/PHM 6.1 4.8 6.7 5.0 39 5.0

sacrifice in accuracy, our new non-shell alternative may be
much more efficient for small- and medium-sized proteins
(with less than, say, 1,000 residues) than the shell method-
ologies employed in our previous HYDROPRO (Garcia de
la Torre et al. 2000) and other analogous procedures
(Aragon and Hahn 2006).

On the other hand, for large proteins and macromolecular
complexes, the shell model procedures, with a fixed N and
computing time independent on their size, is computation-
ally advantageous. Methods in which the number of elements
in the hydrodynamic model is related to the protein size, like
our Residue/PHM or others (Brookes et al. 2010), may result in
becoming too expensive or may even be not feasible for
such cases. However, with the Atomic/PHM — Shell or
Residue/PHM — Shell procedures, one can make

No. Atomic Residue Residue

Protein res., ay Shell Shell Primary

Nr N =2000 N=2000 N=Nr
BPTI 56 ar -5.8 8.5 6.5
(4PTI) ag -1.8 0.9 0.0
ag 2.5 -45 6.4
Lysozyme 129 ar 0.9 0.9 0.0
(6LYZ) a, -3.1 -3.1 -3.8
ag 1.1 1.1 0.3
Chymotrypsinogen ag 3.3 0.6 9.9
(2CGA) 245 a, -2.1 -2.7 -4.1
a, -4.8 -5.2 -6.2
Beta-Lactoglobulin 4 4.2 32 1.9
(1BEB) 324 ar -1.4 1.6 0.3
ag 2.4 0.9 0.1
Oxyhaemoglobin 574 a, -0.9 -0.4 -0.9
(1HHO) a, -5.9 -5.4 -5.2
Citrate synthase ag 0.3 0.0 5.2
(1CTS) 874 ar -3.0 -1.4 -2.1
a, 3.1 4.6 4.5
Aldolase 1452 ar -0.2 2.6 -0.2
(1ADO) a, -3.6 -2.7 -2.8
Urease (3LA4) 4996 ar -3.6 -2.8 -6.9
GroEL 7273 ag 1.3 3.9 3.0
(2CGT) a, -0.4 3.4 -0.4
ag - -4.7 -4.4
IgMm 7514 ar - 5.2 71
(2RCJ) a, - -0.7 -0.9
Ribosome 70S 10428 ag 6.4 4.3 6.4
(1VSA & 20W8) a, 1.7 -3.4 -0.8

hydrodynamic calculations with the same computing time,
and a similarly good accuracy, for GroEL, or the 70S
ribosomal particle, as for a protein as small as BPTIL
Figure 4 presents a summary illustrating the performance
of the three approaches for proteins across a wide range of
molecular weight.

NMR relaxation: HYDRONMR

Single-valued properties, like the sedimentation and diffu-
sion coefficient, the intrinsic viscosity or the radius of gy-
ration reflect, in a single numerical value, the overall
conformation of the protein, i.e. its size and shape in the
case of rigid molecules.

¢

R —

4,8
—

% difference
calc. — exper.
equivalent radii, ay

G, radius of gyration;

T, diffusion,
sedimentation;

1, intr. viscosity;

R, rotational diffusion

v

Fig. 3 Numerical results for the predicted solution properties of some rigid proteins, as obtained from the three procedures, with indication of the

deviation of the calculated results from the experimental ones
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Fig. 4 Plot of calculated versus experimental values of the equivalent
radii, for the Residue/PHM method, showing the predictive capability
of this scheme. Over 150 data from the various solution properties are
displayed in the plot

In its simplest mode of interpretation, dynamic NMR
spectroscopy provides an overall correlation time, T., which
corresponds to the harmonic mean relaxation time of the
rigid body, t,,. However, the amount of information that can
be extracted from this technique is much more abundant.

For each amino acid residue in the protein, several quan-
tities can be extracted, and within a dynamics perspective,
the most important ones are the longitudinal and transverse
relaxation times, 7} and 7,. These quantities are hydrody-
namic properties, which depend primarily on the rotational
diffusion tensor of the protein as a whole, but their distinct
values for each residue depend also on the orientation of
their N—H or C*~H bonds. Thus, the series of NMR relax-
ation times contains information not only on the overall size
and shape of the rigid protein but also on the placement of
each residue within its internal structure.

After the proven ability of the HYDROPRO scheme for
predicting the overall hydrodynamics of protein structures
had been established—particularly the rigid-body rotational
diffusion tensor—HYDRONMR was then developed.
Essentially, the development consisted of the detection of

the orientation of the involved bond vectors for each resi-
due, and the calculation of 7}, 7, and other properties using
existing theory to predict them from rotational diffusivity
and bond orientation—see, for instance, Palmer et al. (1996)
and Tjandra et al. (1997). An example of the experimental
results and HYDRONMR predictions is presented in Fig. 5.

Solution properties from lower-resolution structure

Other structural techniques, like cryo-electron microscopy
(cryoEM) and small-angle, x-ray or neutron scattering
(SAS), yield structures with a resolution lower than the
atomic- or residue-level structures provided by other meth-
ods. Nonetheless, those lower-resolution structures are still
sufficient for reliable prediction of solution properties, and
tools for making such predictions are available.

The outcome of cryoEM is a 3D density map from which
the particle’s reconstruction is obtained from the points with
density above a given threshold. HYDROMIC (Garcia de la
Torre et al. 2001) reads the density map and builds hydro-
dynamic shell model from which the solution properties can
be derived. Figure 6 displays the cryoEM-derived contour
and its corresponding shell model. For some recent illustra-
tive examples of HYDROMIC applications, see, for in-
stance, Niewiarowski et al. (2010), Braun et al. (2011) or
Del Castillo et al. (2011).

Other low-resolution techniques are small-angle neutron
and X-ray scattering (acronyms SANS and SAXS, respec-
tively). These techniques, particularly SAXS, are particular-
ly used to obtain estimates of the size and shape of the
particle from the angular dependence of the scattering in-
tensity. The widely employed analysis programs, developed
by Svergun and coworkers, including from DAMMIN
(Svergun 1999) to DAMMIF (Franke and Svergun 2009)
yield a 3D reconstruction in the form of an array of “pseudo-
atoms” that represent the size and shape of the macromole-
cule. Then, a number of authors have employed the first

—=— HydroNMR calculation

T 20
10

°-- Experimental

50

40

g 30

R
%2 100 110

Fig. 5 NMR Relaxation times of outer surface protein A, a highly
anisotropic protein with 272 residues. The HYDROPRO calculation in
the Atomic/PHM — Shell mode predicts a T, of 13.3 ns with the standard
choice a=2.9 A, in very good agreement with the experimental value of
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13.7 ns. But this single value is not the only one that is nearly matched by
the prediction; the HYDRONMR results for the series of 7'/7, ratios for
the successive residues reproduce extremely well the experimental data
(values shown for the region 100-150)
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Fig. 6 a The 3D reconstruction of cytosolic CCT chaperonin, a large
protein complex with molecular weight nearly 1,000 kDa. b Shell
model constructed by HYDROMIC and used in the calculation of the
sedimentation coefficient, with a result s°=24.1 S, in close agree-
ment with the experimental value 25.6 S. For details, see Garcia de la
Torre et al. (2001)

version of HYDROPRO (Garcia de la Torre et al. 2000) to
predict the hydrodynamic properties.

As examples of successful applications, see Scott et al.
(2002), Baldock et al. (2011), and Patel et al. (2012). In

B, degrees

Fig. 7 Modelling the structure of 1gG3 wild-type (W7) and mutant
(M15) antibodies. a General multisubunit model for IgG antibodies
employed in the HYDROSUB calculations. b, ¢ For the WT and M15

0 20 40 60

L., A

these applications of the Atomic/PHM — Shell mode
HYDROPRO to models which do not contain true atoms,
the authors made reasonable, ad hoc estimations of the value
of the pseudo-atom radius, «, to be employed in the calcu-
lations. At the time of writing this, we are devising an
automated procedure, HYDROSAS, which, as in the case
of HYDROMIC for cryoEM, would take the pseudo-atom
model directly derived from the small-angle scattering
(SAS) data by the reconstruction program, optimise inter-
nally the value of a, and yield the final values of the
hydrodynamic properties.

Solution properties from subunit-level structure

There may be instances in which the available level of struc-
tural detail is even lower than in the above-described applica-
tions, so that the hydrodynamic model must be accordingly
simple. It may also happen that, although high-level structural
information would be available, one would wish to concen-
trate on a few essential aspects of the structure, so that the level
of description of other details is unimportant.

In such cases, the macromolecule can be regarded as
composed of a few subunits, which can indeed correspond
to well-defined domains or entities, but may also be simply
model building blocks. This is the basis for the methodology
implemented in the computer program HYDROSUB
(Garcia de la Torre and Carrasco 2002), in which the pri-
mary model is an array of subunits having the shape of
cylinders (rods or disks) or ellipsoids of revolution. The
structure is specified by a list, containing one register for
each subunit, giving the sizes (axis lengths, or length and
diameter), position of its centre, and orientation of the main
axis. Internally, HYDROSUB constructs a shell model for
which the properties are calculated.

B, degrees

IgG3 M15
100 120 140

80 100 120 140 0 20 40 60 80

L. A

antibodies, contour plot of the values of target function, A, as a
function of the angle of between the two Fab subunits and the hinge
length
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The paradigmatic application of this procedure is the de-
termination of the basic structural features of antibody mole-
cules. For instance, antibody IgG consists of three nearly
globular subunits—two Fabs and one Fc—joined by a con-
nector. The size and shape of the subunits is nearly the same,
regardless of the specific origin or class of the IgG molecule.
The subunits may be isolated and independently characterised
by measuring solution properties; more recently, it has been
possible to determine their detailed structure from x-ray dif-
fraction, so that, alternatively, the solution properties can be
predicted by HYDROPRO. Then, from the solution proper-
ties, the dimensions of the equivalent ellipsoids can be deter-
mined as described, the surfaces represented by bead—shell
models which are then assembled via a linking hinge region to
give a structure representing the average domain orientation of
an intact immunologically active antibody (Carrasco et al.
1999, 2001; Lu et al. 2006, 2007).

Thus, even if one could construct full atomic models from
the atomic structures of the subunits, the HYDROSUB model
always allows the calculation of the solution properties of
such multisubunit structures. In the case of IgG antibodies,
essential features are the hinge length and the disposition of
the arms. Models constructed with ellipsoids for the subunits
and a rod for the hinge allows one to concentrate on the
dependence of solution properties on these aspects. Figure 7
illustrates the structural elucidation that differentiated the
wild-type and a mutant form of the IgG3 antibody (Amoros
et al. 2010). Having determined for each form a large set of
experimental properties, namely the sedimentation coefficient
and intrinsic viscosity, as well as the radius of gyration and
longest distance from SAXS, the HYDROSUB calculations
for multiple structures were analysed by means of
HYDROFIT. For the wild-type, a unique, best-fitting structure
is found, whose salient feature is a long hinge, with the
calculated values of all the properties in excellent agreement
with the experimental ones. For the mutant, several similarly
well-fitting structures are found, all having in common an
extremely short hinge, although several arrangements of the
arms were compatible with the solution properties. This illus-
trates how the combined HYDROSUB/HYDROFIT treat-
ment may determine the main structural features of
multisubunit structures from solution properties, providing
numerical values of the essential parameters, and informing
on quality and uniqueness of the structural determination.

The HYDROSUB approach has been successfully employed
in other, quite different, applications; see, for instance, Zorrila et
al. (2007), Gapinski et al. (2010) or Sokolova et al. (2010).

Concluding comment

The programs in the ELLIPS suite can be downloaded from
the NCMH website http://www.nottingham.ac.uk/ncmh

@ Springer

complete with full instructions. In any publication, users
are requested to acknowledge Salford Software and the
Numerical Algorithms Group, Oxford, for ELLIPS2-4, and
BUSS Limited for use of SimplePlot Library routines in
ELLIPS3.

The programs in the HYDRO suite can be downloaded
from http://leonardo.inf.um.es/macromol/ along with de-
tailed documentation (user guides and sample files).
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