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Abstract

SHM methods for damage detection and localization in plate-like structures have typically relied on signal post-

processing techniques applied to ultrasonic guided-waves. The time of flight is one of these signals features which

has been extensively used by the SHM community for damage localization. One approach for obtaining the time of

flight is by applying a particular time-frequency transform to capture the frequency and energy content of the wave

at each instant of time. To this end, the selection of a suitable methodology for time-frequency transform among

the many candidates available in the literature has typically relied on experience, or simply based on considerations

about computational efficiency. In this paper, a full probabilistic method based on the Bayesian inverse problem is

proposed to rigorously provide a robust estimate of the time of flight for each sensor independently. Then, the robust

prediction is introduced as an input to the Bayesian inverse problem of damage localization. The results reveal that

the proposed methodology is able to efficiently reconstruct the damage localization within a metallic plate without the

need to assume a specific a priori time-frequency transform model.

Keywords: Bayesian inverse problem, Ultrasonic guided-waves, Time of flight, Damage localization, Multiple

damage areas, Structural Health Monitoring

1. Introduction1

Damage reconstruction and localization in plate-like structures using guided-waves based SHM have been mainly2

addressed using post-processing techniques applied to ultrasonic signals [1]. The exploration of large areas with a3

small attenuation [2] is one of the most remarkable characteristics that has led industries, such as the aerospace in-4

dustry, to focus on guided-waves (e.g. the “PAMELA” system [3–5]). Other approaches that use acoustic-based SHM5

methods to localize damage in thin-walled structures are also available nowadays. These can be broadly classified6

into (1) passive sensing diagnostics (PSD) and (2) active sensing diagnostics techniques (ASD). In contrast to PSD7

techniques, which are based on sensors in “listening-mode” (e.g., acoustic emission) [6–12], ASD techniques for8
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Nomenclature

a,b scaling and time-shift factors

c normalizing constant in Bayes’ Theorem

D(k) mean of the hyper-robust model for the k-th
sensor

d̂(k) set of d̂ j in the k-th sensor

d̂(k)
j first energy peak provided by the j-th TF

model in the k-th sensor

d̃(k) first energy peak measured in the k-th sensor

D set of D(k) values for all the sensors

D (k) signal acquired in the k-th sensor

e model error of ellipse-based ToF model

g j(·) j-th TF model

h(t) window function

m model parameters of ellipse-based ToF
model

M
(k)
j j-th TF model class for the k-th sensor

M set of model classes M j

N number of sensors

Nm number of model classes

NA
i number of samples in i-th annealing level

N (·, ·) Gaussian distribution

P(·) probability

p(·) probability density

q(·) proposal PDF in MCMC sampling algo-
rithms

r acceptance rate for the M-H algorithm

Ts number of samples generated in M-H algo-
rithm

ToF(a−s)
D measured ToF between actuator a and sen-

sor s

ToF(a−s)
M modeled ToF between actuator a and sensor

s

U (·, ·) uniform distribution

v mean of prior PDF of the velocity

Va−d ,Vd−s wave propagation velocity in paths a− d
and d− s, respectively

w(k)
j weight of the j-th TF model class in the k-th

sensor used in the hyper-robust model

X(t) time series of the signal

Xa,Ya actuator coordinates

Xd ,Yd damage position coordinates

Xs,Ys sensor coordinates

α(t) magnitude of the analytic signal

γ threshold parameter for AIMS algorithm

ε error term in TF model

ζ number of state of the chain in M-H

ΘΘΘ set of possible values of the parameters in the
BIP

θθθ set of ToF model parameters including σe

ρ scaling factor in the prior PDF of σε

σε standard deviation of ε

σe standard deviation of model error of ellipse-
based ToF model

σM MAP value of σε

σv standard deviation of prior PDF of the veloc-
ity

Ψ(t) analyzing wavelet

ω j(t) instantaneous frequency

plate-like structures emit ultrasonic waves that interact with the structure and are measured by sensors [13]. Sparse9

or phased-array sensors’ layouts are placed so that the structure is actively interrogated on demand, which confers10

higher accuracy and reliability [14]. Potential safety and economical implications in condition-based maintenance are11

extra-motivations for the use of this SHM technique.12

Moreover, the need for autonomous techniques that provide accurate health state indicators is specially crucial for13

aerospace structures, which are based on a considerable number of critical structural components requiring frequent14
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inspection. Once a damaged area is detected, i.e. through analysis of damage tolerance exceedance, proper operational15

decisions can be taken. Two general approaches are typically adopted for damage detection: (1) model-based inverse16

problems, whereby detailed damage information (e.g. the severity of damage as residual strength) [15] can be obtained17

from the measured signal at a considerable computational cost; and (2) inverse problems based on post-processed18

signal features, whereby other relevant information, e.g. the damage position or the damage severity, can be obtained19

more efficiently. With regards to the second approach, several damage reconstruction techniques have been reported20

in the literature [2, 16–18]. Among them, the time-of-flight (ToF) has been extensively used as a signal feature for21

its efficiency in obtaining information about material properties along with damage localization using post-processing22

scattered signals.23

Time-frequency (TF) representation techniques have been intensively used for the extraction of ToF as a signal24

feature. By TF representation, a frequency domain spectrum can be obtained at each instant of time [19], however the25

results slightly differ from each other depending on the adoption of the various approaches available in the literature.26

Amongst them, the Hilbert-Huang transform (HHT), the continuous wavelet transform (CWT), the short-time Fourier27

transform (STFT) and the Wigner-Ville distribution (WVD) [19–22], are some of the most commonly used techniques28

in ultrasonic guided-waves based SHM applications [23–25]. Typically, the selection of one among the available29

options has been based on the modeler’s experience or based on specific TF resolution characteristics. However, the30

selection of an unappropriated model may result in a biased damage identification [26, 27] due to the disparate model31

assumptions and hypotheses adopted for each of them. In other words, the choice of a particular TF approach instead32

of another one is subject to epistemic uncertainty (i.e., lack of knowledge). Moreover, ultrasound-based damage33

localization conveys other sources of uncertainty which are mostly related with the measurement system and physical34

properties of the material. They might produce unreliable damage predictions should these uncertainties are not35

properly considered and quantified within the calculations.36

To partially address this modeling issue, a number of researchers have proposed the use of probability-based37

methods [28–30]. Among them, the Bayesian inverse problem (BIP) applied to ultrasound based damage localization38

is getting increasing attention within the SHM community, although it is still in its early stage. In [24], the BIP was39

successfully proven in localizing damage areas in aluminum plates. More recently, a BIP methodology to account40

for the anisotropy in the group velocity was proposed in [23] for composite laminates. Notwithstanding, there is41

still an evident need for a rigorous treatment of the uncertainty in modeling the damage localization using ultrasonic42

guided-waves based methods, overall when multiple damage locations are expected.43

This paper proposes a multi-level Bayesian framework to rigorously account for the overall uncertainty in appli-44

cation to the problem of ultrasound-based damage localization using Lamb waves. The main novelty of this paper is45

that it provides a unified methodology to rationally address the problem of damage identification using ultrasounds46

from probabilistic Bayesian principles: first, the problem of TF model selection is addressed for a given experimental47

configuration based on posterior probabilities that assess the relative degree of belief [31] of a particular model over a48

set of candidates; then, the problem of damage identification and localization is carried out using a BIP based on sig-49
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Figure 1: General workflow proposed to address the challenge of damage localization. Note that the signal data can be obtained by numerical (e.g.
FEM) or experimental methods (e.g. using PZT transducers, a signal generator, and an oscilloscope) [13].

nal features adopting a hyper-robust TF model resulted from the first assessment level. To this end, once the raw data50

have been acquired, two BIPs are hierarchically formulated for each piezoelectric (PZT) sensor so that the outcome51

of the model selection problem is used as input for damage localization, as shown in Figure 1. In this framework,52

uncertainties coming from (1) material’s mechanical properties, (2) measurement errors, and (3) epistemic uncertainty53

in the TF model due to the Heisenberg principle [19, 30], are taken into account. The proposed approach relies on rig-54

orous probability-logic assumptions for model class selection [32] and as such, it avoids experience-based decisions55

about the optimal post-processing technique. Here, probability is interpreted as a multi-valued logic that expresses56

the degree of belief of a proposition conditioned on the given information [32, 33]. The methodology is applied in57

two case studies using aluminum plates with one and two damaged areas, respectively. For the particular problem of58

damage localization, the asymptotic independent Markov sampling (AIMS) [34, 35] algorithm is adopted to solve the59

resulting Bayesian inverse problem, showing high efficiency in dealing with damage multi-modality. In general, the60

results show the efficiency of the proposed methodology in reconstructing the damage position in plate-like structures61

using guided-waves, while rigorously accounting for the modeling uncertainties in the reconstruction.62

The remainder of the paper is organized as follows: Section 2 shows the TF models used in the proposed model63

selection problem. Section 3 comprises the probabilistic methodology used to obtain the robust estimate of the ToF64

for each sensor. The BIP principles used to obtain the damage localization are presented in Section 4. In Section 5,65

the proposed framework is applied in two case studies to serve as example. Section 6 discusses the robustness of the66

proposed methodology. Finally, Section 7 provides concluding remarks.67
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2. Time-frequency models68

Among the most used TF models in the literature, four of them are selected in this paper to be assessed and ranked69

using the proposed Bayesian methodology for each sensor, independently; namely the HHT, CWT, STFT, and WVD.70

The main formulation of these TF representation techniques is shown in the following subsections.71

2.1. Hilbert-Huang transform72

The HHT is obtained by the sum of intrinsic mode functions (IMF) whereby the spectrum is defined after per-73

forming the Hilber transform over each IMF component [20, 26], as follows:74

g1(t) =
n

∑
j=1

α j(t)exp
(

i
∫

ω j(t) dt
)

(1)

where α j(t) is the magnitude of the analytic signal which is typically considered as the envelope of the input time75

series or directly the signal acquired by the sensor, n is the number of IMF components, and ω j(t) is the instantaneous76

frequency. Equation (1) represents the amplitude and instantaneous frequency as function of time.77

2.2. Continuous wavelet transform78

TF wavelets are used in the CWT to obtain the TF representation of the assessed signal, by:79

g2(b,a) =
1√
a

∫
∞

−∞

X(t)Ψ
(

t−b
a

)
dt (2)

where X(t) represents the time series of the signal, Ψ(t) denotes the analysing wavelet, a > 0 is the scale factor, b80

is the time-shift variable, and the overline denotes the complex conjugate [21, 36]. Remarkable time and frequency81

resolution are obtained using this model.82

2.3. Short-time Fourier transform83

Alternatively, the TF representation can be obtained with a STFT, which performs Fourier transforms to a moving84

window in the assessed signal [19, 37], as follows:85

g3(ω, t) =
1

2π

∫
∞

−∞

e−iωτ X(τ)h(τ− t)dτ (3)

where X(t) is the time series, h(t) is a window function, and ω denotes the frequency. The energy spectrum of an86

STFT is known as a spectrogram.87
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2.4. Wigner-Ville distribution88

The WVD can be interpreted as a measure of the signal’s local time-frequency energy [37], and it is defined as89

follows:90

g4(ω, t) =
∫

∞

−∞

X
(

t +
τ

2

)
X
(

t− τ

2

)
e−iωτ dτ (4)

where X(t) is the time series and the overline denotes the complex conjugate. This technique is highly effective in91

detecting and localizing Dirac impulses and sinusoids [19, 37].92

3. Bayesian model class ranking93

The TF models in Section 2 are just different alternatives based on a number of simplifying hypotheses and94

modeling assumptions to represent the same reality. Instead, for a particular model, the validity of such simplifying95

assumptions depends on the adopted values of certain model parameters (e.g. the dispersion parameter). Thus, to96

simultaneously identify both the plausibility of each TF model and the values of the model parameters that better suit97

the information coming from the raw ultrasonic data, a Bayesian inverse problem (BIP) is proposed here. Given a98

plate-like structure monitored through a set of PZT sensors, the BIP is addressed separately for each PZT sensor due99

to the potential differences between sensors, such as different working environments or manufacturing defects.100

3.1. Stochastic embedding of TF models101

Let us consider a candidate TF model defined by the relationship g j : Rn→R between a discrete signal D (k) ∈Rn
102

acting as input and the model output g j ∈R, where k denotes the k-th sensor in the structure. Next, let d̂(k)
j ∈R be the103

first energy peak observed in the scattered ultrasound signal, so that d̂(k)
j = g j(D (k)). Under the assumption that g j is104

only a candidate model over a set of alternatives [32] (e.g. like those described in Section 2), then the measured first105

peak, denoted here as d̃(k), would be more rigorously represented as an uncertain variable, as follows:106

d̃(k) = g j

(
D (k)

)
+ ε (5)

where ε is an uncertain error term which accounts for the discrepancy between d̂(k)
j and d̃(k), namely the modeled and107

measured values for the first energy peak, respectively. Following the Principle of Maximum Information Entropy108

(PMIE) [32, 33], this error can be conservatively assumed to be modeled as a zero-mean Gaussian distribution with109

standard deviation σε , i.e., ε ∼ N (0,σε). The PMIE enables a rational way to establish a probability model for the110

model error term such that it produces the largest uncertainty (largest Shannon entropy); the selection of any other111

probability model would lead to an unjustified reduction in such uncertainty [32]. Thus, following Equation (5), a112
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probabilistic description of the TF model can be obtained as:113

p
(

d̃(k)|M (k)
j ,σε

)
=
(
2πσ

2
ε

)− 1
2 exp

−1
2

 d̃(k)−g−1
j

(
D (k)

)
σε

2 (6)

where M
(k)
j denotes the j-th candidate model class within a set of Nm available TF models114

M = {M (k)
1 , . . . ,M

(k)
j , . . . ,M

(k)
Nm
}. Each model class is defined by the stochastic TF model given by Equa-115

tion (6) along with the prior probability density function (PDF) of the model parameter σε , p(σε |M (k)
j ). This prior116

PDF represents the initial degree of belief of the values of σε within a set of possible values ΘΘΘ ⊆ R before the117

information from measurements is incorporated through Bayesian updating, as explained further below. For all the118

sensors in the structure, the stochastic model is defined independently, thus accounting for different potential sources119

of errors and uncertainties.120

3.2. Model parameters estimation121

Previously to obtain the model parameter updating from measurements, a preliminary assessment of the influence122

of the dispersion parameter σε in the model class assessment and ranking was carried out, which showed a relatively123

high sensitivity of the resulting model class assessment to the value of this parameter. Thus, a first stage of the BIP is124

conceived to obtain the set of most plausible values for σε given a set of data d̂(k) = {d̂(k)
1 , . . . , d̂(k)

Nm
}, which corresponds125

to a set of Nm values obtained by adopting each TF model class. To this end, the posterior PDF p(σε |d̂(k),M
(k)
j ) of126

the dispersion parameter σε given the j-th TF model class (M (k)
j ), is required. Thus, by using Bayes’ theorem, this127

posterior PDF is given by:128

p
(

σε |d̂(k),M
(k)
j

)
= c−1 p

(
d̂(k)|σε ,M

(k)
j

)
p
(

σε |M (k)
j

)
(7)

where c is a normalizing constant, so that:129

∫
ΘΘΘ

p
(

σε |d̂(k),M
(k)
j

)
dσε =

∫
ΘΘΘ

c−1 p
(

d̂(k)|σε ,M
(k)
j

)
p
(

σε |M (k)
j

)
dσε = 1 (8)

In Equation (7), p
(

d̂(k)|σε ,M
(k)
j

)
is the likelihood function, which expresses how likely the data d̂(k) are repro-130

duced by the stochastic model in Equation (6) if model class M
(k)
j is adopted, as shown in Figure 2. This likelihood131

function can be obtained by substitution of the values of d̂(k) as the output of the stochastic model, as follows:132

p
(

d̂(k)|σε ,M
(k)
j

)
=

Nm

∏
`=1

p
(

d̂`
(k)|σε ,M

(k)
j

)
(9)
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Figure 2: Likelihood functions derived from each time-of-flight (d̂ j
(k)

). The standard deviation provided by level I of the proposed model ranking

is expected to have different values in each model-class. The time-of-flight data are then substituted in the likelihood function p(d̂(k)|σε ,M
(k)
j ).

Therefore, Equation (7) rewrites as:133

p
(

σε |d̂(k),M
(k)
j

)
∝

{
Nm

∏
`=1

p
(

d̂`
(k)|σε ,M

(k)
j

)}
p
(

σε |M (k)
j

)
(10)

Furthermore, it is observed that the evaluation of the normalizing constant c in Equation (7) cannot usually be eval-134

uated analytically except for special cases based upon linear models and Gaussian uncertainties [38]. However,135

stochastic simulation based on MCMC methods [39, 40] can be used to obtain samples from the posterior avoiding136

the evaluation of c, as shown in the next section.137

3.3. Model class assessment138

The probabilistic approach for model class assessment is motivated by the uncertainty about the TF model based on139

the assumed hypotheses and simplifications adopted for its formulation [32, 33]. Once the posterior p(σε |d̂(k),M
(k)
j )140

is obtained, the plausibility of the model class M
(k)
j can be obtained by applying the Total Probability Theorem as:141

P
(
M

(k)
j |d̂

(k)
)
=
∫

ΘΘΘ

P
(
M

(k)
j |d̂

(k),σε

)
p
(

σε |d̂(k)
)

dσε =

=
∫

ΘΘΘ

p
(

d̂(k)|M (k)
j ,σε

)
P
(
M

(k)
j |M

)
∑

Nm
`=1 p

(
d̂(k)|M (k)

` ,σε

)
P
(
M

(k)
` |M

) p
(

σε |d̂(k)
)

dσε

(11)

where p
(

σε |d̂(k)
)

denotes the posterior PDF obtained by Equation (10). Equation (11) can be simplified by applying142
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the asymptotic Laplace’s approximation [32] as follows:143

P
(
M

(k)
j |d̂

(k)
)
≈

p
(

d̂(k)|M (k)
j ,σM j

)
P
(
M

(k)
j

)
∑

Nm
`=1 p

(
d̂(k)|M (k)

` ,σM j

)
P
(
M

(k)
`

) (12)

where the conditioning on M has been suppressed for simplicity and σM j is the maximum a posteriori (MAP) value144

of the posterior PDF p(σε |d̂(k),M
(k)
j ), i.e.:145

σM = argmax
σε

p(σε |d̂(k),M
(k)
j ) (13)

3.4. Hyper-robust model estimation146

The probability-based ranking of the model classes M
(k)
j obtained above provides information about the degree147

of belief of the j-th TF model class for each sensor. However, a hyper-robust model [32] is proposed to account for148

the uncertainties held by all the model classes, thus providing a rigorous tool to address the model class selection. The149

hyper-robust model for a specific sensor k is defined as a weighted average of each TF model as follows:150

p
(

d̃(k)|M
)
=

Nm

∑
`=1

p
(

d̃(k)|M (k)
` ,σM`

)
P
(
M

(k)
` |d̂

(k)
)
∼= N

(
Nm

∑
`=1

w(k)
` d̂(k)

` ,
Nm

∑
`=1

(
w(k)
` σM`

)2
)

(14)

where d̃(k) are the possible ToF values and w(k)
` are the weights, given by the posterior probabilities of the `-th151

model class P(M (k)
` |d̂

(k)). Given that each stochastic model is assumed to be distributed as a Gaussian function,152

a simplified expression for the hyper-robust Gaussian distribution is also provided in Equation (14). However, to153

address the damage localization problem, the use of a stochastic model as the input data would require an intensively154

computational effort. Instead, the mean value of the hyper-robust model in the k-th sensor, denoted as D(k), is adopted.155

4. Bayesian damage localization156

4.1. Probabilistic description of ToF model157

In this section, the damage localization is addressed by a model-based BIP using an ellipse-based ToF model [28],158

which has been extensively used for damage localization in guided-waves based SHM. For this problem, Np actuator-159

sensor paths are considered in a plate-like structure to excite and receive Lamb waves for damage localization by160

screening changes of their ToF. To this end, the ToF information of the scattered signals can be theoretically obtained161

as follows [41]:162

ToF(a−s) =

√
(Xd−Xa)

2 +(Yd−Ya)
2

Va−d
+

√
(Xd−Xs)

2 +(Yd−Ys)
2

Vd−s
(15)
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where (Xd ,Yd) are the coordinates of the damage, (Xa,Ya) are the actuator transducer coordinates, (Xs,Ys) are the163

coordinates of one arbitrary sensor transducer, and Va−d and Vd−s are the wave propagation velocities of the actuator-164

damage and damage-sensor paths respectively. These velocities are the same under the assumption of isotropic mate-165

rials and a concentrated damage within a bounded region, i.e. V =Va−d =Vd−s. Alternatively, under the consideration166

of orthotropic materials, such as composite structures, both velocity terms would be dependent on the angle of the167

actuator-damage and damage-sensor paths, Va−d(αa) and Vd−s(αs) respectively [23].168

To probabilistically describe the ToF model given by Equation (15), uncertainties coming from the data, material169

properties, and also from the model itself, need to be accounted for. To this end, a set of uncertain model parameters170

m = {Xd ,Yd ,V} are considered in this problem to describe the uncertainty about the damage coordinates as well as171

the wave propagation velocity. The set m of model parameters is augmented with a model error term e ∈ R, resulting172

in a set of model parameters defined as θθθ = {m,σe}= {Xd ,Yd ,V,σe} ∈ ΘΘΘ, where σe is the standard deviation of the173

error term e and ΘΘΘ is the model parameter space. This set of parameters is further updated through Bayes’ Theorem,174

as will be explained below. The referred model error term e ∈ R is considered to account for the non-existence of a175

theoretical ToF model that fully represent the reality, so that:176

ToF(a−s)
D = ToF(a−s)

M (m)+ e = ToF(a−s)
M (θθθ) (16)

where subscripts M and D from ToF(a−s)
M and ToF(a−s)

D refer to modeled and measured ToF, respectively. Note in177

Equation (16) that e provides the discrepancy between ToF(a−s)
M and ToF(a−s)

D values. By the PMIE, this error term178

can be conservatively described as a zero-mean Gaussian distribution with covariance σe as N (0,σe). Thus, a179

probabilistic description of the ToF model from Equation (16) can be obtained as:180

p
(

ToF(a−s)
D |ToF(a−s)

M (θθθ)
)
=
(
2πσ

2
e
)− 1

2 exp

−1
2

(
ToF(a−s)

D −ToF(a−s)
M (θθθ)

σe

)2
 (17)

Observe that Equation (17) provides a measurement of the similarity of the modeled and measured ToF. Also, note181

that Equation (17) provides a likelihood function for the ToF(a−s)
D data under the ToF(a−s)

M (θθθ) model.182

4.2. Model parameter estimation183

Given the likelihood function in Equation (17), one can obtain the posterior PDF of the model parameters given the184

ToF data D = {D(1), . . . ,D(N)}, where N is the total number of sensors by applying the well-known Bayes’ Theorem185

as:186

p(θθθ |D) =
p(D|θθθ)p(θθθ)

p(D)
(18)

where p(θθθ) is the prior PDF of the model parameters, and p(D|θθθ) is the likelihood function for the set of data D. Given187

the stochastic independence of the measurements, the likelihood can be expressed as p(D|θθθ) =∏
N
k=1 p(D(k)|θθθ), where188
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Algorithm 1 Pseudo-code implementation of AIMS algorithm.

1: PreambleDefine γ ∈R . {threshold for the essential sampling size (ESS)}, NA
0 , . . . ,N

A
j , . . . ,N

A
m . {total number

of samples in each annealing level j}, q0(·|θ), . . . ,q j(·|θ), . . . ,qm(·|θ) . {proposal distributions at each annealing
level j}

2: Algorithm
3: j = 0 . {first annealing level}

4: Sample {θ (i)
0 }

NA
0

i=1, where θ
(i)
0 ∼ p(θθθ)

5: Obtain the ESS as a measure of the similarity between p0(·) and the target distribution p(·)
6: while ESS/N j < γ do
7: Obtain the normalized importance weights as a measure of the relative importance of the likelihood func-

tion in annealing levels j+1 and j [34].
8: Run the M-H algorithm to generate N states of a Markov chain with target distribution p j+1(·): Generate

a Markov chain θ
(1)
j+1 . . .θ

(NA
j+1)

j+1 with target distribution p j+1(·) [34].
9: Calculate the ESS as a measure of the similarity between p j+1(·) and the target p(·)

10: j← j+1
11: end while
12: Set m = j+1 . {total number of steps in the annealing approach}

13: Generate a Markov chain θ
(1)
m . . .θ

(NA
m)

m with distribution pm(·) = p(·) at annealing level m.

each factor p(D(k)|θθθ) is given by Equation (17). Finally, p(D) is the evidence of the data under the model specified189

by θθθ . This term, which acts as a normalizing factor within the Bayes’ theorem, can be bypassed through sampling,190

e.g. using Markov Chain Monte Carlo (MCMC) methods [42]. Thus, Equation (18) can be rewritten as:191

p(θθθ |D) ∝

{
N

∏
k=1

p
(

D(k)|θθθ
)}

p(θθθ) (19)

4.3. Asymptotic independence Markov sampling algorithm192

In practice, the presence of multiple damage locations in plate-like structures is possible, thus the updating algo-193

rithm used to obtain the posterior PDF of the locations of such potential damage should be able to provide samples194

of a multimodal PDF. In the literature, the majority of available MCMC algorithms can identify multimodal posterior195

PDFs at the cost of increasing the computational burden, which can be exacerbated if large dimensional parameter196

spaces are explored, or by introducing ad-hoc algorithmic modifications [43]. To overcome this drawback, the asymp-197

totic independence Markov sampling (AIMS) algorithm [34] is used here due to its efficiency to provide samples from198

multi-modal posterior PDFs. In AIMS algorithm, a posterior PDF p(·) is approximated using a combination of three199

well-known stochastic simulation methods. To this end, simulated annealing is used to obtain the target distribution200

p(·) from the prior distribution by sampling intermediate distributions p j(·) through a random walk M-H. The inter-201

mediate distributions p j(·) are approximated by using importance sampling. A pseudo-code implementation of AIMS202

method is provided as Algorithm 1.203
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(a) Case study 1 considering one damage locations and 14 sensors.
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(b) Case study 2 considering two damage locations and 6 sensors.

Figure 3: Representation of the aluminum plates considered in both case studies along with the position and layout of the sensors (dimensions
expressed in millimetres). The white circle represents the actuator, which is positioned in the center of the plate. Damage is represented using dark
rectangles.

5. Case studies204

In this section, two case studies are presented to validate the proposed model class selection methodology using205

a set of guided-waves synthetically generated by finite element modeling (FEM). The methodology is applied to two206

cases of damage detection and localization considering one and two damaged areas, respectively.207

5.1. Synthetic signal generation208

To numerically generate the input signals, Lamb waves are modeled using Abaqus® for the simulations. The209

waves are generated over a thin plate made of aluminum-based alloy 2024-T351 with dimensions 0.5 m× 0.25 m,210

as depicted in Figure 3 (see further properties about the aluminum alloy 2024-T351 in Table 1). In Figure 3 (panel211

(a)), sensor numbering is established starting from S1 for the left-most upper sensor to S14 for the right-most down212

sensor. In panel (b), which corresponds to the case of two damage locations, sensors are analogously arranged starting213

from S1 to S6. For the ToF calculations, the Abaqus/Explicit module is used in this work for its effectiveness in214

simulating the transient behavior of the ultrasonic guided-waves.215

Table 1: Material and structural properties (aluminum alloy 2024-T351 [44]) used in the Abaqus model.

Young’s modulus Poisson’s ratio Density Thickness
[GPa] [-] [kg/m3] [mm]

73.1 0.33 2780 1.5

A 4-node, quadrilateral, stress-displacement shell element with reduced integration and a large-strain formulation,216

referred to as S4R element [45], is used for the plate model, which is uniformly meshed using square elements of217

1 mm size. The element size is determined by the smallest wavelength λmin of the guided-wave mode represented.218

A minimum of 10 nodes per wavelength is normally required to ensure the avoidance of spatial aliasing [46]. The219

signal excitation is modeled as a perpendicular point force generated as a sine tone-burst of 5 cycles centered at220
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a frequency f = 100 kHz. This frequency is selected to avoid extra complexity in the signal post-processing due221

to the appearance of possible higher order guided-waves modes. When the frequency is maintained at relatively222

low values, only both anti-symmetric 0 (A0) and symmetric 0 (S0) modes are excited [46]. Given that the wave223

propagation velocity of the mode1 captured by the model is around V = 1950 m/s, the maximum element size would224

be λ/10 = (V/ f )/10 = 1.95 mm. However, note that the selected element size (1 mm) is nearly half of the maximum225

value. Next, the damage is modeled as a rectangular hole of dimension 2 mm×4 mm for both case studies considered226

in this paper. Free boundary conditions are considered in both cases. The ultrasonic signals are then received by the227

sensors in both undamaged and damaged cases. Afterwards, signals from both states are subtracted, thus the scattered228

information from the damage is obtained, as described in Section 4.1.229

5.2. Model selection results230

As previously mentioned, the simulated response of the plate to Lamb waves is used as data within the Bayesian231

framework. First, the standard deviation parameter σε is defined as σε = ρ · d̂(k)
j , where d̂(k)

j is the time of arrival at232

the k-th sensor using the j-th TF model, and ρ is a factor defined within a sufficiently large interval, which in this233

example is taken as (0, 0.5]. Therefore, the prior PDF of σε can be expressed as a uniform distribution over the234

referred interval, i.e. p(σε) = U (0,0.5 · d̂(k)
j ). The posterior PDF p(σε |d̂(k),M

(k)
j ) is obtained through samples using235

the Metropolis-Hasting (M-H) algorithm (see a pseudo-code implementation in Appendix A) with Ts = 40000 and a236

Gaussian proposal distribution, i.e., q(θ ′|θ) = N (θ ,σ), where σ is the standard deviation of the M-H random walk237

which is selected such that the acceptance rate r lies within the interval [0.2,0.4] [47–49]. The maximum a posteriori238

(MAP) parameter is then computed and introduced as an input for the model class selection problem, as explained in239

Section 3.3.240

(a) P(Mi|d̂) for case study 1 (b) P(Mi|d̂) for case study 2

Figure 4: Posterior probability P(Mi|d̂).

The resulting posterior probabilities from Equation (12) are subsequently used to rank the candidate TF models241

for each of the sensors, as shown in Figures 4a and 4b for case study 1 and 2, respectively. Observe from these results242

1The referred mode is the anti-symmetric mode (A0) since only the bending mode can be captured with shell elements.
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Table 2: Time of arrival (D(k)) obtained as the mean of the hyper-robust models given by Equation (14).

Sensor Time Sensor Time
D(k) [µs] D(k) [µs]

C
as

e
st

ud
y

1

S1 157.53 S8 163.33

S2 125.29 S9 136.23

S3 98.125 S10 114.66

S4 71.539 S11 94.115

S5 49.164 S12 83.664

S6 70.242 S13 96.235

S7 98.500 S14 116.35

C
as

e
st

ud
y

2 S1 109.96 S4 54.577

S2 81.214 S5 81.214

S3 54.577 S6 109.96

that there is not a particularly predominating TF model for all the sensors. Nonetheless, the CWT model emerges as243

the most plausible one for a considerable majority of sensors, i.e., 8 out of 14 sensors for the case study 1, and 4 out244

of 6, for case study 2. Therefore, if a single TF model had to be selected for damage identification, a rational selection245

based on these results would be to choose the CWT model, since the better representation of the given data for the246

majority of sensors is provided by this choice. This output is in agreement with most of the authors in the literature247

who select CWT model to obtain the ToF from the scattered signals [23, 24]. Notwithstanding, a hyper-robust model248

can be obtained by applying Equation (14) using the posterior probabilities of each model class. The ToFs in this case249

are obtained by a model average from the probabilistic model from each sensor, as shown in Table 2. These values250

are subsequently used to reconstruct the damage in the BIP of damage localization, which is shown next.251

5.3. Damage localization and reconstruction252

Once the TF models are ranked and the hyper-robust TF model is obtained, the mean values of each hyper-robust253

model for each sensor are used as ToF data D within the BIP of damage localization, described in Section 4. The254

prior information of the model parameters has been defined as a uniform distribution for the damage position and255

dispersion parameter (X ∼U (−0.25,0.25)m, Y ∼U (−0.125,0.125)m, and σe ∼U (0,10−4)), and a Gaussian PDF256

for the velocity V ∼N (v,σv), where v = 1950m/s and σv = 40m/s. The posterior PDF of model parameters θθθ is257

obtained in this case using the AIMS algorithm, with a threshold value γ = 1/2, 105 samples per annealing level, and258

a Gaussian PDF as proposal distribution, i.e. q(θ ′|θ) = N (θ ,σ), where σ is the standard deviation of the M-H259

random walk which is again selected such that the acceptance rate r lies within the interval [0.2,0.4]. Figure 5 shows260

the inferred damage position for the aluminum plates of case study 1 and 2, respectively, using the hyper-robust TF261

model obtained by Equation (14). The hyper-robust model is obtained for each sensor by model averaging weighted262

using the posterior plausibilities of the TF models, showed in Figure 4. It is observed that the damage position263

is efficiently reconstructed with the BIP methodology presented in this paper. The results also show that for the264

particular case study 2, the multi-modality due to dual damage position is well addressed using the AIMS algorithm.265
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(a) Estimated and actual damage position (X−Y ) for the case study 1 (b) Estimated and actual damage position (X−Y ) for the case study 2

Figure 5: Damage location estimation for the plate of case study 1 and 2. The actual position of the center of the damage is depicted using red
rectangles which are represented in actual dimensions.

(a) Dispersion parameter (σe). (b) Wave propagation velocity (V ).

Figure 6: Posterior PDFs of the σe and V parameters for both case study 1 and 2.

The marginal posterior distributions of the other two parameters used by the BIP of damage localization, namely266

the standard deviation factor of the likelihood function σe and the wave propagation velocity V , are depicted in267

Figure 6. In case study 1, a lower level of dispersion in both parameters, σe and V , is observed, whereas in case study268

2, a higher dispersion is obtained.269

6. Discussion270

The proposed Bayesian methodology for damage localization has been exemplified using two case studies pre-271

sented in Section 5. For each of the sensors, a Bayesian model class assessment framework is proposed to rank the272

candidate TF models, according to relative plausibilities that measure the relative degree of belief of the candidate273

model class in interpreting the raw signal acquired by the sensor. These relative plausibilities are then used to obtain274

a hyper-robust TF model for each sensor, which provides a higher level of robustness to damage localization than just275

taking the most plausible TF model among the candidate set. This robustness is clearly manifested in Figure 5a, where276
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damage position is identified in two plausible regions close to the actual damage position; an unjustified TF model277

choice would lead to a biased localization due to unconsidered model uncertainty. The same behavior can be also278

observed in Figure 6b for the reconstruction of the wave propagation velocity parameter. Note that the ultrasonic data279

used in both case studies are synthetically obtained through FEM, although the methodology is entirely applicable to280

real ultrasonic signals. However, for real ultrasonic data, the uncertainty in the damage localization would be higher281

due to electronic noise or other measurement errors coming from, for instance, imperfect sensor bonding.282

Then, a damage localization BIP using an ellipse-based model is applied to reconstruct the damage position using283

the AIMS algorithm as Bayesian updating algorithm. The data D are obtained by using the mean of the hyper-robust284

model, given by Equation (14) for each sensor independently. The damage location has been remarkably inferred in285

both case studies. However, a higher dispersion in the X −Y parameters (larger localization uncertainty) has been286

found in case study 2 compared to case study 1, as can be observed in Figure 5. In addition, a higher dispersion is287

identified in the marginal distribution of the standard deviation parameter σe in case study 2. This could be explained288

due to the nature of the likelihood function from Equation (17), which is a Gaussian distribution. In order to properly289

identify the two damage positions in this case study, the posterior values of σe (which is an updatable parameter)290

need to increase, hence leading to a higher dispersion in the damage localization as well as in the velocity parameter291

reconstruction, as observed in Figure 6. This points out a limitation of the proposed methodology when dealing with292

multiple damage locations. In this context, a desirable further work would be the exploration of optimal likelihood293

functions to deal with damage multi-modality.294

The robustness of the proposed methodology can then be observed by comparing the Bayesian identification295

results against those obtained using a deterministic approach. A well-known method to address inverse problems296

efficiently, but deterministically, is by the use of genetic algorithms (GA) [50]. GA’s are used to find the value of297

the parameters that minimizes a cost function, which in this case can be defined as ‖ToF(a−s)
D −ToF(a−s)

M (m)‖2
2, a298

L2-norm of the residual time of flight between the model and the data. Figure 7 depicts the comparison between299

the damage identification results obtained using the proposed Bayesian methodology and a deterministic GA-based300

inverse problem. To better highlight the robustness of the proposed Bayesian damage identification methodology in the301

presence of uncertainties, a bias is artificially introduced in the velocity term as a 5% of deviation in the value obtained302

through Abaqus (from 1950 m/s to 1850 m/s). Note that even with this small deviation, the damage localization303

results given by the GA become biased, whereas the results using Bayesian methodology are virtually immune to304

such variation. This simple example demonstrates the superiority of the proposed methodology in reconstructing the305

position of damage from guided-waves data, regardless of potential input errors.306

Finally, it is worth mentioning that the position of the sensors plays a crucial role in the damage reconstruction.307

As observed in Figure 3, case studies 1 and 2 have different sensor selection and layout. In this paper, a former308

sensitivity study on the sensors positions was carried out to identify: (1) the best number and (2) locations of sensors309

for each case study. Therefore, given the influence of the aforementioned two factors in the reconstruction of the310

damage position, an immediate further work will be the exploration of an efficient methodology for optimal sensor311
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Figure 7: Comparison between a deterministic damage localization using GA (gray point) and the results obtained with the proposed Bayesian
methodology.

configuration, based on rigorous probabilistic assumptions to deal with the aforementioned sources of uncertainties.312

7. Conclusions313

A Bayesian methodology for damage location using guided-waves is presented in this paper. This methodology314

allows accounting for several sources of uncertainty, like the epistemic uncertainty due to TF model selection, and the315

uncertainty coming from the measurement noise and variable material properties. The effectiveness of the method is316

shown through two case studies with one and two damaged areas, respectively. The following conclusions are drawn317

from this paper:318

• The damage position can be accurately reconstructed using ToFs proving the effectiveness of the proposed319

multi-level Bayesian inverse problem methodology;320

• The use of a hyper-robust TF model as an input for the damage localization Bayesian inverse problem leads to321

a more robust damage inference;322

• The reconstruction of the two damage areas in case study 2 (multi-modality) has been remarkably addressed323

by using the AIMS algorithm. However, under this scenario of damage, an important increase in the posterior324

uncertainty of the model parameters is obtained.325

Further research work is under consideration with regards to: (1) the assessment of a suitable likelihood function to326

efficiently deal with multi-modal damage scenarios, (2) devising a rigorous technique for optimal sensor configuration327

in ultrasonic guided-waves based SHM, and (3) the influence of different types of damage in the performance of the328

proposed methodology.329
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Appendix A. Metropolis-Hastings simulation for Bayesian updating333

The M-H algorithm generates samples from a specially constructed Markov chain whose stationary distribution334

is the required posterior PDF p(θθθ |d̂,M ). By sampling a candidate model parameter θθθ
′

from a proposal distribution335

q(θθθ
′
|θθθ ζ ), the M-H obtains the state of the chain at ζ + 1, given the state at ζ , specified by θθθ

ζ . The candidate pa-336

rameter θθθ
′

is accepted (i.e., θθθ
ζ+1 = θθθ

′
) with probability min{1,r}, and rejected (i.e., θθθ

ζ+1 = θθθ
ζ ) with the remaining337

probability 1−min{1,r}, where:338

r =
p(d̂|θθθ

′
,M )p(θθθ

′
|M )q(θθθ ζ−1|θθθ

′
)

p(d̂|θθθ ζ−1,M )p(θθθ ζ−1|M )q(θθθ
′ |θθθ ζ−1)

(A.1)

The process is repeated until Ts samples have been generated so that the monitored acceptance rate (ratio between339

accepted M-H samples over total amount of samples) reaches an asymptotic behaviour. A pseudo-code description of340

this method is provided below as Algorithm 2.341

Algorithm 2 M-H algorithm

1. Initialize θθθ
ζ=0 by sampling from the prior PDF: θθθ

0 ∼ p(θθθ |M )
for ζ = 1 to Ts do

2. Sample from the proposal: θθθ
′
∼ q(θθθ

′
|θθθ ζ−1)

3. Compute r from Eq. A.1
4. Generate a uniform random number: α ∼U [0,1]
if r > α then

5. Set θθθ
ζ = θθθ

′

else
6. Set θθθ

ζ = θθθ
ζ−1

end if
end for
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