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Antiferromagnetic materials are magnetic inside, however, the direction of their ordered microscopic moments 
alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in 
antiferromagnets invisible on the outside. It also implies that if information was stored in antiferromagnetic 
moments it would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the 
antiferromagnetic element would not affect magnetically its neighbors no matter how densely the elements 
were arranged in a device. The intrinsic high frequencies of antiferromagnetic dynamics represent another 
property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how 
to efficiently manipulate and detect the magnetic state  of an antiferromagnet. In this review article we 
focus on recent works addressing this question. The field of antiferromagnetic spintronics can be also viewed 
from general perspectives of spin-transport, magnetic textures and dynamics, and materials research. We 
briefly mention this broader context together with providing an outlook of future research and applications 
of antiferromagnetic spintronics. 
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Interesting and useless - this was the common perception of antiferromagnets expressed quite explicitly, for example, 
in the 1970 Nobel lecture of Louis Néel.1   Connecting to this traditional notion we can define antiferromagnetic 
spintronics as a field that makes antiferromagnets useful and spintronics more interesting. Below we give an overview 
of this emerging field whose aim is to complement or replace ferromagnets in active components of spintronic devices. 
We recall some key physics roots of the field and first concepts of spintronic devices based on antiferromagnetic 
counterparts of the non-relativistic giant-magnetoresistance and spin-transfer-torque phenomena.2  We then focus on 
electrical reading and writing of information, combined with robust storage, that can be realized in antiferromagnetic 
memories via magnetoresistance and spin torque effects in which the relativistic spin-orbit coupling plays the key 
role.3,4 Related to these topics is the research of spintronic devices in which antiferromagnets act as efficient generators, 
detectors, and transmitters of spin currents.  This will lead us to studies exploring fast dynamics in antiferromagnets5 

and different types of antiferromagnetic materials. They range from insulators to superconductors. Here we comment 
also on the relation between crystal antiferromagents and synthetic antiferromagnets, with the latter ones playing an 
important role in spintronic sensor and memory devices.6  In concluding remarks we outline some of the envisaged 
future directions of research and potential applications of antiferromagnetic spintronics. 

 
 

Equilibrium properties and magnetic storage in antiferromagnets 

 
The understanding of equilibrium properties of ferromagnets has been guided by the notion of a global molecular field, 

introduced by Pierre Weiss.1 The theory starts from the Curie law for paramagnets with the inverse susceptibility 
proportional to temperature, χ−1 ∼ T . It further assumes that the externally applied uniform magnetic field is 
accompanied in ferromagnets by a uniform internal molecular field, λM , proportional to the magnetization M and 
the Weiss molecular field constant λ. The high-temperature inverse susceptibility of ferromagnets is then described 
by the Curie-Weiss law, χ−1 ∼ T − θ, where θ > 0 is the Curie constant proportional to λ. The microscopic origin of 
the molecular field was explained by Heisenberg in terms of the exchange interaction between neighboring magnetic 
atoms favoring parallel alignment of their magnetic moments and leading to the ferromagnetic order with a large 
macroscopic moment below the Curie temperature. 

In early 1930’s, Loius Néel was drawn into the problem that some materials containing magnetic elements and 
showing zero remanence at all temperatures did not follow the paramagnetic Curie law.1 Instead they obeyed the 
Curie-Weiss law at high temperatures, however with a negative θ, and showed a nearly constant susceptibility at low 
temperatures. Since at high temperatures the magnetic atoms with strongly thermally fluctuating moments can be 
considered identical, the global molecular field could still be invoked, albeit with a negative λ to explain the negative 
Curie constant. Néel pointed out that the microscopic origin of the negative Weiss molecular field is in the exchange 
interaction between neighboring magnetic atoms favoring anti-parallel alignment of their moments. He emphasized 
that this interaction is not compatible with a low-temperature ordered state that can be described by a global uniform 
molecular field. Instead he introduced the concept of a local molecular field which can vary at inter-atomic length 
scales.1 

Using an example of two interlaced cubic sublattices, Néel described a new type of magnetic order in which the local 
molecular field had opposite sign on the two sublattices, stabilizing a spontaneous magnetization of one sign on the first 
sublattice and of the opposite sign on the second sublattice. In magnetically isotropic systems, i.e. when neglecting 
the relativistic coupling between spins and the lattice, an infinitesimally weak external magnetic field would align the 
antiparallel sublattice magnetizations along an axis parpendicular to the applied field. With increasing field strength, 
the magnetic sublattices increasingly tend to cant their moments towards the field. This leads to the development of 
a non-zero net moment whose amplitude is inverse proportional to the local molecular field constant (to the exchange 
coupling between the sublattices), proportional to the external magnetic field, and independent of temperature. This 
was Néel’s explanation of the constant low-temperature susceptibility seen, e.g., in the elemental metal of Cr and 
later in a number of systems called antiferromagnets.1 

Apart from introducing the concept of the local molecular field, several other observations made in Néel’s seminal 
works have provided key principles for the development of antiferromagnetic spintronics. Néel noted a general rule 
that effects depending on the square of the spontaneous (sublattice) magnetization should show the same variation 
in antiferromagnets as in ferromagnets.1 One example he considered was the magnetic anisotropy energy. In fer- 
romagnetic memories,7 it is this quantity that provides the energy barrier separating two different stable directions 
of ordered spins, representing 1 and 0. Storing magnetic information in devices made of antiferromagnets should, 
therefore, be equally feasible, as confirmed in several recent experiments.8–12 

Fig. 1a shows an example of storing information, at temperatures of a few Kelvin, in a nanostructure 
comprising an antiferromagnetic chain of Fe atoms.9 A polarized scanning tunneling microscope tip sets and 
detects, atom-by-atom, two distinct stable states of the antiferromagnetically coupled Fe spins. The measurements 
highlight current experimental capabilities, unthinkable at times of Néel’s seminal works, of the control of 
antiferromagnetic moments 
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by aiming the external probe at a specific individual atom, belonging to one or the other magnetic sublattice. The 
experiment provides a direct microscopic image of information storage in an antiferromagnet. Moreover, it vizualizes 
with the ultimate atomistic resolution the Néel’s local field principle extended to non-equilibrium phenomena for 
writing and reading information in antiferromagnets. On the other hand, controlling a few spin nanostructure by 
spin polarized STM resembles a mechanical hard-drive taken in a laboratory environment to the ultimate atomistic 
limit. This scheme does not open a route to antiferromagnetic spintronics compatible with practical approaches for 
designing microelectronic devices. In the following section we show that in antiferromagnets with many magnetic 
atoms one can find physical phenomena that allow for the seemingly impossible local control of the antiferromagnetic 
spin-sublattices by global electrical currents in common microelectronics set-ups. Simultaneously, the sufficiently large 
number of magnetic atoms in these devices provides robust storage at room temperature, as shown in Fig. 1b.11 

Before that, still in the context of this section focusing on equilibrium properties, we recall one more aspect of Néel’s 
pioneering studies. When analyzing the magnetic susceptibility in the presence of the magneto-crystalline anisotropy, 
Néel concluded that for the magnetic field applied along the antiferromagnetic easy axis the susceptibility is zero up 
to a spin-flop field that scales with the geometric mean of the exchange and anisotropy fields. Above the spin-flop 
field, the antiferromagnetic moments switch to a direction perpendicular to the field, resulting in the above constant 
susceptibility inverse-proportional to the exchange energy. In ferromagnets, on the other hand, magnetization is 
reoriented by magnetic fields proportional to the anisotropy fields. Relativistic or dipolar magnetic anisotropy fields 
are many orders of magnitude weaker in typical magnets than exchange fields. Antiferromagnets therefore not only 
generate zero stray fields and by this automatically eliminate unintentional magnetic cross-talk between neighboring 
devices, but also provide magnetic storage that is exceptionally robust against magnetic field perturbations.10 

 
 
Writing and reading magnetic state in antiferromagnets 

 
The insensitivity to magnetic fields comes at a price of the notorious difficulty of manipulating antiferromagnetic 

moments by means comparably efficient to ferromagnets. One possibility is offered by the exchange-coupling at an 
interface between an antiferromagnet and a ferromagnet.13,14 The effect is already utilized in ferromagnetic spin- 
valves, comprising a pair of fixed and free ferromagnetic layers and forming the basis of commercial magnetic field 
sensors and magnetic random access memories (MRAMs).7 Exchange-coupling to an antiferromagnet enhances the 
magnetic hardness of the fixed reference layer.13 In this arrangement, the antiferromagnetic moments are assumed 
to be also fixed and the antiferromagnet plays only a passive supporting role in the spintronic device. In another 
arrangement where the ferromagnet is soft and the adjacent antiferromagnet thin enough, a weak external magnetic 
field can reorient the ferromagnet whose interfacial moments then drag the neighboring antiferromagnetic moments 
via the interfacial exchange spring. The method was already employed to control antiferromagnetic moments by weak 
fields in several studies of spintronic devices.8,15–19 

Electrical writing and reading by non-relativistic effects. In MRAMs, the trend is to abandon writing by 
magnetic fields because the method is not scalable.7 The most extensively explored alternative is writing by the 
current-induced spin transfer torque (STT). It is basically a non-relativistic phenomenon understood in terms of the 
global angular momentum conservation and the corresponding transfer from the carrier spin angular momentum to 
the magnetization angular momentum.20 

The STT is considered to be driven by an effective field proportional to the non-equilibrium carrier spin polarization 
s in the free recording ferromagnet and to have the general form T = dM/dt ∼ M × s, where M is the magnetization 
in the free ferromagnet. In the limit of a short carrier spin life-time relative to the spin precession time in the free 
ferromagnet, s ∼ p is independent of M and proportional to the polarization p of the injection spin current defined by 
the fixed ferromagnetic polarizer. Magnetization dynamics induced by this field-like STT, T ∼ M × p, is analogous 
to applying an external magnetic field. Switching then occurs when the current-induced effective field overcomes the 
magnetic anisotropy fields in the free ferromagnet. 

In the limit of long carrier spin life-time, the injected carrier spins precess around the magnetization of the free 
ferromagnet.  The resulting s  ∼ M × p depends on M in this case.   The corresponding (anti)damping-like STT, 
T ∼ M × (M × p), can contribute or compete with the Gilbert damping in the  ferromagnet,  depending  on  the 
polarity of the applied current between the fixed and the free ferromagnet. In different configurations, switching by 
this type of torque occurs when the current-induced effective field overcomes the anisotropy fields, or anisotropy fields 
rescaled by the magnetization damping factor which is typically << 1. In common transition metal ferromagnets, 
relatively long carrier spin life-times imply that the (anti)damping-like STT typically dominates. Electrical switching 
by the STT in ferromagnetic spin valves is reversible by flipping the sign of the writing current. 

For antiferromagnets, the STT phenomenology is modified by considering a spin current into a particular atomic 
site that tends to produce a torque which acts on the spin centered on that site, attempting to restore spin conservation 
locally.2 For a given spin sublattice i of the antiferromagnet, the local STT is given by the local sublattice magnetization 



and the local non-equilibrium carrier spin polarization, Ti ∼ Mi × si. As in ferromagnets, two types of local non- 
equilibrium carrier spin polarizations can be considered, si ∼ pi and si ∼ Mi × pi, corresponding to the local field-
like STT, Ti ∼ Mi × pi, and (anti)damping-like STT, Ti ∼ Mi × (Mi × pi), respectively. 

Unlike the STM experiment9 discussed in the previous section, here the manipulation of the antiferromagnet by 
the local non-equilibrium effective fields is considered to be driven by a global uniform electrical current. The local 
control by global currents is the key prerequisite for making antiferromagnetic microelectronics feasible. 

Fig. 2a shows an example of a fixed-ferromagnet/antiferromagnet bilayer excited by a vertical electrical current.21 

Here the injected spin polarization from the reference ferromagnet is the same for both spin sublattices in the an- 
tiferromagnet, i.e. p1 = p2 = p. The field-like STT in the antferromagnet would then be driven by a uniform 
non-staggered effective field ∼ p, i.e., would be equally inefficient as a uniform external magnetic field acting on an 
antiferromagnet. 

The (anti)damping-like STT acting in the geometry of Fig. 2a is conceptually illustrated in Figs. 2b,c.21 Local 
non-equilibrium spin polarizations driving the (anti)damping-like STT, s1 ∼ M1 × p and s2 ∼ M2 × p, have opposite 
sign on the two spin sublattices since M1 = −M2. The corresponding non-equilibrium field ∼ si is, therefore, also 
staggered. This makes it equally efficient in the antiferromagnet as uniform current-induced fields that generate 
(anti)damping-like STTs in ferromagnets. For a uniform injection polarization p, the (anti)damping-like STT is an 
even function of the global magnetization in ferromagnets (T ∼ M × (M × p)) or local spin-sublattice magnetization 
in antiferromagnets (Ti ∼ Mi × (Mi × p)). The comparable efficiency in both types of magnetic systems reminds 
us again of the general Néel’s principle of the similarity between ferromagnets and antiferromagnets in quantities 
that are an even function of M . We summarize that large reorientations of the antiferromagnetic moments by weak 
effective current-induced fields, comparable to the anisotropy fields (possibly reduced by the damping factor), require 
staggered local effective fields, i.e., uniform non-staggered local torques (see Fig. 2c). 

The efficient (anti)damping-like STT in the geometry of Fig. 2a can induce a switching from a parallel to a 
perpendicular configuration of the antiferromagnetic moments with respect to the fixed ferromagnet, as shown in 
Fig. 2b. This is, however, independent of the polarity of the vertical electrical current so the antiferromagnet cannot 
be electrically switched back to the parallel configuration.21 Moreover, the structure comprises the auxiliary reference 
ferromagnet which diminishes some of the merits of spintronics based on antiferromagnets alone. 

When using an antiferromagnet instead of the ferromagnet as the reference spin injector, the polarization pi of 
the transmitted electrons through the reference antiferromagnet can oscillate with a period commensurate with its 
antiferromagnetic order.22,23 By adding to the structure a second, free antiferromagnet with a commensurate lattice 
one can infer from the above considerations the symmetries of the STTs acting in the second antiferromagnet. 
Since p1 = −p2 is staggered in this case, the effective field ∼ si ∼ Mi × pi, driving the (anti)damping-like STT, is 
non-staggered and is therefore inefficient. In this case the efficient torque is the field-like STT driven by a 
staggered, magnetization-independent effective field ∼ pi. As mentioned above, the field-like STT tends to have 
the weaker amplitude of the two types of torques in common transition metals. Moreover, microscopic calculations 
showed that in these all-antiferromagnetic spin valves, the non-relativistic STTs are subtle, spin-coherent 
quantum-interference phenomena relying on perfectly epitaxial and commensurate multilayers.2,22,23 This may 
explain why the STT in antiferromagnetic spin valves has not yet been identified experimentally. 

Disorder is also detrimental to the reading scheme proposed for the antiferromagnetic spin valves within the frame- 
work of non-relativistic spintronics.2,22 The proposal refers to the giant/tunneling magnetoresistance (GMR/TMR) 
in ferromagnetic spin valves with conductive/insulating non-magnetic spacer whose resistance depends on the relative 
orientation of the magnetization in the reference and free ferromagnet.7 In antiferromagnetic spin-valves with perfectly 
epitaxial commensurate multilayers, it is the relative orientation of the local spins on the last atomic planes of the two 
antiferromagnets facing each other across the non-magnetic spacer that determines the read-out resistance signal.22 

The difficulty to observe the effect experimentally has casted doubts on the principle ability to detect by practical 
means any effects of current on the magnetic order of an antiferromagnet.2 The attention within the non-relativistic 
spintronics framework thus turned back to interfaces of antiferromagnets with ferromagnets2,5,21,24–27 and to indirect 
observations of effects in the antiferromagnet by measuring induced magnetic signals in the adjacent exchange-coupled 
ferromagnet.2,28–31 

Electrical writing and  reading  by  relativistic  effects.  Relativistic physics provides the means for electrical read- 
out of the orientation of the antiferromagnetic moments in bulk antiferromagnets and interfaces.3 To comprehend this 
we can recall again Néel’s principle of the correspondence between ferromagnets and antiferromagnets in phenomena 
that are an even function of M . We already mentioned that the relativistic magneto-crystalline anisotropy energy is 
one example that has this property. Its relativistic magneto-transport counterpart is the anisotropic magnetoresistance 
(AMR) which is also an even function of the magnetization.32 

The first generation of spintronic magnetic field sensors and MRAMs made in ferromagnets used ohmic AMR.33 

Recently, several experiments have demonstrated AMR read-out in ohmic antiferromagnetic devices.10,12,18,34–36 Fig. 3 
shows an example of an FeRh antiferromagnetic memory resistor10 in which one state has antiferromagnetic moments 
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aligned parallel and the other state perpendicular to the probing current direction. This allows to use the AMR for 
the detection. The read-out via a global electrical current is combined in this memory device with a room-temperature 
storage whose insensitivity to magnetic field perturbations at room temperature was tested and confirmed up to 9 T. 
For setting the two distinct states, FeRh was heated above the transition to a ferromagnetic state and then cooled 
back to the room temperature antiferromagnetic phase with a writing magnetic field applied along one of the two 
orthogonal directions.10 The heat-assisted magneto-recording in the antiferromagnetic FeRh memory can be realized 
using electrically generated Joule heating.12 

AMR signals in ferromagnets and antiferromagnets are typically limited to a few per cent which, together with the 
low resistivity, makes ohmic AMR devices unfavorable for high density MRAMs.6 For this reason, modern ferromag- 
netic MRAMs use more resistive spin valves with a tunnel barrier separating the free and the reference layer and show- 
ing ∼100% TMRs.6,7 This has motivated studies of antiferromagnetic tunnel junctions. However, instead of the elusive 
non-relativistic antiferromagnetic TMR, experiments focused on the relativistic tunnelling AMR (TAMR).3,8,16,17,19,37 

Unlike the antiferromagnetic GMR/TMR22, the TAMR devices can operate with only one magnetic electrode facing 
the tunnel barrier and hence do not rely on the subtle spin-coherent quantum-interference effects.3 On the other 
hand, TAMR shares with TMR the basic property that the resistance of the device is dominated by the tunnelling 
probability from one to the other electrode through the barrier, rather than by carrier scattering within the electrodes. 
This allows for the larger magnetoresistance effects in the tunnelling devices compared to the ohmic resistors. 

Bistable antiferromagnetic TAMR signals as large as 160% have been reported at low temperatures8 and are illus- 
trated in Fig 4. The magnetic electrode in this antiferromagnetic TAMR device is formed by a common IrMn/NiFe 
bilayer, however, with an inverted order as compared to conventional TMR stacks. In the latter devices, the ferro- 
magnet (NiFe) is placed in contact with the tunnel barrier and serves as the reference to the free ferromagnet on the 
other side of the barrier. The antiferromagnet (IrMn) is at the other interface of the reference ferromagnet forming a 
fixed exchage-bias structure. In the inverted structure used for the antiferromagnetic TAMR experiments, the IrMn 
antiferromagnet is in contact with the barrier and by this governs the TAMR. Antiferromagnetic moments of IrMn 
are rotated via the exchange-spring effect from the NiFe ferromagnet at the opposite interface which is sensitive to 
weak magnetic fields (see Fig 4). 

Similar to the reading, efficient electrical writing schemes in antiferromagnets become feasible when introducing the 
relativistic spin-dependent phenomena into the antiferromagnetic spintronics.4 Néel’s concept of local fields, extended 
to non-equilibrium properties of antiferromagnets,2 remains central.  However, relativistic quantum mechanics adds 
to it new robust means for controlling these local fields by global electrical currents without auxiliary reference 
ferromagnets in the structure and without relying on subtle quantum-interference effects at perfectly ordered interfaces 
of magnetic multilayers.4,11 

Compared to the angular momentum to angular momentum transfer governing the non-relativistic STT in magnetic 
multilayers, the spin-orbit coupling in the relativistic Dirac equation allows for the additional linear momentum to 
spin angular momentum transfer phenomena. This opens the possibility of constructing spintronic devices with a 
single uniform magnetic component and with self-referencing schemes provided by the internal linear momentum to 
spin angular momentum transfer under applied electrical currents.38 

Experimental roots of this relativistic pillar of antiferromagnetic spintronics can be traced back to one of the Néel’s 
contemporaries, Clifford Shull. Apart from providing the first direct evidence of the antiferromagnetic order by neutron 
scattering39 (Nobel prize in 1994), he made earlier seminal experiments with electron beams.40 The experiments 
confirmed the validity of Dirac’s relativistic quantum mechanics by observing Mott scattering of electrons from heavy 
nuclei.41 The counterpart of Mott scattering in condensed matter physics is the spin Hall effect (SHE).38 It allows 
for turning even a non-magnetic conductor into an efficient injector of spin current and for using it instead of the 
reference ferromagnetic polarizer in spin torque devices.42,43 

As illustrated in Figs. 2d,e, a vertical spin current can be generated in a non-magnetic/antiferromagnetic stack due 
to the SHE in the spin-orbit coupled non-magnetic polarizer by an in-plane electrical current. The (anti)damping-like 
STT can efficiently reorient the antiferromagnet as in the case of the ferromagnetic polarizer and of injection by the 
vertical electrical current.4 Moreover, the SHE devices require no auxiliary ferromagnet in the structure and allow for 
a reversible electrical switching between the two orthogonal antiferromagnetic states by applying the writing electrical 
current along two orthogonal in-plane directions (see Figs. 2d,e). 

Still, the SHE stack geometry has some limitations. The torques are sensitive to the quality of the non- 
magnetic/antiferromagnetic interface and are efficient only for antiferromagnetic film thicknesses of the order of 
the spin diffusion length which in antiferromagnets is typically on the nanometer scale.44 Experimental indications of 
the presence of the SHE-induced torques have been recently reported at interfaces of ultra-thin IrMn with strongly 
spin-orbit coupled non-magnetic Ta.45 

The SHE was experimentally discovered a decade ago as a companion phenomenon to the inverse spin galvanic 
effect (ISGE).46–49 The origin of the ISGE is also in the relativistic transfer between linear and spin angular momenta. 
Unlike the SHE generating a bulk spin-current and a resulting surface/interface spin polarization, ISGE induces a 
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non-equilibrium spin polarization in the bulk of a crystal. It was experimentally discovered in GaAs47–53 where the 
non-equilibrium spin-polarization is globally uniform, as illustrated in Fig. 5. Apart from the spin-orbit coupling, 
the global current-induced spin polarizaton by ISGE requires a non-centrosymmetric unit cell of the crystal, as is the 
case of the zinc-blende GaAs. (For the cubic lattice of GaAs, an additional symmetry lowering is required by, e.g., a 
tetragonal deformation due to strain.) 

As in the zinc-blende lattices, the related diamond lattices of e.g. Si or Ge, shown in Fig. 5b, have two atoms in the 
unit cell with locally non-centrosymmetric environments.54,55 The two atoms sitting on the inversion partner lattice 
sites are, however, identical which makes the diamond lattice unit cell globally centro-symmetric. As a result, the 
diamond lattice is an example where the ISGE can generate local non-equilibrium spin polarizations with opposite 
sign and equal magnitude on the two inversion-partner atoms while the global polarization integrated over the whole 
unit cell vanishes.4,55 Here a uniform electrical current induces a non-equilibrium antiferromagnetic spin polarization 
in the bulk crystal. (Again, for the cubic lattice of Si or Ge, an additional symmetry lowering is required by, e.g., a 
tetragonal deformation due to strain.) 

In Si there is no equilibrium antiferromagnetic order that could be manipulated by these local staggered non- 
equilibrium polarizations.   However,  antiferromagnets like CuMnAs11,56   shown in Fig. 6a or Mn2Au3,4,57,58   share 
the  crystal  symmetry  allowing  for  the  current-induced  staggered  polarization  whose  sign  alternates  between  the 
inversion-partner atoms.  Moreover, one inversion-partner lattice site is occupied by the magnetic Mn belonging to 
the first antiferromagnetic spin sublattice and the other inversion partner to the second spin sublattice.  Under the 
applied electrical current, a commensurate self-induced staggered polarization playing the role of the above STT’s 
pi  is generated internally by the ISGE. As in the case of the non-relativistic STT, the field-like component of the 
relativistic spin torque induced by the ISGE can efficiently reorient the antiferromagnet for the case of staggered pi.  

Recent experiments have demonstrated (see Fig. 1b)11   that  the relativistic  staggered fields can indeed couple  as  
strongly to the Néel order as uniform fields couple to the global magnetic order in ferromagnets.  It opens the 
possibility for constructing antiferromagnetic devices using analogous microelectronic designs to the ferromagnetic 
AMR-MRAMs33 

with the writing Oersted field replaced by the relativistic current-induced staggered field. 
Fig. 6b illustrates the AMR read-out combined with electrical writing by the staggered fields in a biaxial an- 

tiferromagnetic memory.4 Commercialized ferromagnetic AMR-MRAMs33 utilized uniaxial magnets with opposite 
magnetizations representing 1 and 0. Uniaxial magnets tend to have higher magnetic anisotropy barrier between the 
two memory states and, therefore, more robust storage than biaxial magnets. In this case the Oersted field was used 
also for reading by partially tilting the magnetization of one state towards and of the other state away from the reading 
current direction. This allowed to read the uniaxial memory states by the AMR. As illustrated in Fig. 6c, the current 
induced staggered fields allow for employing an analogous scheme in a uniaxial antiferromagnet. Alternatively, Fig. 6d 
illustrates that the current-induced ISGE polarization can act as an internal self-reference for a GMR-like readout 
without involving any tilt of the moments. This method has been already demonstrated in counterpart experiments 
in ferromagnets.59,60 At a larger applied current, a larger amplitude staggered ISGE-field can also allow for reversing 
the uniaxial antiferromagnet, as shown schematically in Fig. 6e. 

 
 

Fast magnetic moment dynamics in antiferromagnets 

 
As already noted in the seminal Néel’s works,1 reorientation of the antiferromagnetic moments involves canting of 

the two spin sublattices from their equilibrium antiparallel state which costs exchange energy.61 In ferromagnets, a 
coherent reorientation of the magnetization involves no relative canting of the moments and the associated energy 
cost is only related to the much weaker magnetic anisotropy. As a result, antiferromagnets have typically much faster 
dynamics than  ferromagnets.5,61 

An illustration has been provided by optical experiments in insulating antiferromagnets.62–66 For example, 
picosecond-scale reorientation of the antiferromagnetic spin-axis was reported in an optical pump-and-probe study 
of a rare-earth orthoferrite.62 The origin of the generated staggered field was different than in current induced spin 
torques discussed above. The material has a temperature dependent antiferromagnetic easy-axis direction and the 
corresponding staggered anisotropy field was induced by laser-heating the sample above the easy-axis transition 
temperature. The microscopic origin of the staggered field is not crucial, however, for the time-scale of the spin- 
dynamics. The experiment therefore illustrates that the antiferromagnetic spin-axis reorientation in memory devices 
with electrical writing is not limited in principle by the antiferromagnetic spin dynamics itself but only by the circuitry 
time-scales for delivering electrical pulses which can reach ∼ 100 ps.67 

Studies of the dynamics in the antiferromagnetic spintronic devices are not limited to coherent reorientation of 
uniform antiferomagnetic domains. Recent theory works have considered also schemes employing domain walls and 
other antiferromagnetic textures,27,68–76 highlighting distinct features compared to the ferromagnetic spin textures 
and providing guidance for future experiments. 
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Transmission, generation, and detection of spin-currents in antiferromagnets 

 
Apart from storing, writing, and reading information, antiferromagnetic spintronics has also entered the broad 

research area of spin-currents in solid state systems. Recent studies suggest that antiferromagnets can act as ef- 
ficient spin-current transmitters.77–81 The functionality has been explored primarily in insulating antiferromagnets 
where spin-currents are transmitted by excitations of the local moments without involving charge transport. Theory 
predicts that antiferromagnets can support an essentially lossless superfluid spin transport over length-scales inverse 
proportional to the antiferromagnetic damping parameter.77 

Insulating antiferromagnets have been also considered as spin-current generators. Approaches, explored both the- 
oretically and experimentally, are based on antiferromagnetic resonance spin pumping or on the longitudinal spin 
Seebeck effect in which the spin-current is generated by thermal spin wave excitations.82–86 Here antiferromagnets 
are particularly favorable for their lack of magnetic stray fields, high frequency spin-waves, and the large number of 
antiferromagnetic insulators. 

It has been experimentally demonstrated that metallic antiferromagnets with strong spin-orbit coupling can also act 
as efficient SHE spin injectors. Measurements showing electrical reorientation of a ferromagnet by the SHE induced in 
an adjacent antiferromagnet87,88 highlight that antiferromagnetic spintronics aims not only at replacing ferromagnets 
but also at assisting ferromagnets in their performance in spintronic devices. 

Large inverse SHEs observed in transition metal antiferromagnets89,90 imply their utility as spin-current detectors. 
Experiments illustrated in Fig. 7 have demonstrated the detection by the inverse SHE in antiferromagnetic IrMn of 
spin currents generated either thermally by the longitudinal spin Seebeck effect91 or by microwave spin pumping from 
an adjacent insulating ferromagnet. 

 

 
Antiferromagnetic materials for spintronics 

 
The research of insulating antiferromagnets for spin-current generation and transmission is an example of the broad 

range of materials considered in the context of antiferromagnetic spintronics. Simple transition metal oxide insulators 
served as ideal model systems from the early days of anifrromagnetism1 and led to the discovery of exchange bias.13 

Above we also mentioned the role of complex oxides in optical experiments in antiferromagnets. BiFeO3 is another 
remarkable member of the family of insulating antiferromagnets. It combines a high-temperature magnetic order with 
ferroelectricity and offers a range of phenomena for spintronics stemming from the interplay of the two types of order 
in a multiferroic material.92,93 

Antiferromagntic semiconductors are the natural candidates for integrating spintronics and traditional microelec- 
tronics functionalities in one material.94,95 The synthesis of semiconductors with high-temperature ferromagnetic 
ordering of spins, which would simultaneously enable the conventional tunability of electronic properties and spin- 
tronic functionalities, remains a significant challenge.96,97 On the other hand, antiferromagnetic order occurs much 
more frequently than ferromagnetic order, particularly in conjunction with semiconducting electronic structure,98 as 
illustrated in Tab. I. 

Recent studies have identified several candidate antiferromagnetic semiconductor materials, ranging from counter- 
parts of common zinc-blende or heusler compound semiconductors,36,56,94,99 to perovskite semiconductor oxides.18,100,101 

A particular focus in this materials research has been on the preparation of thin epitaxial films and heterostructures 
as a prerequisite for the envisaged spintronic devices. Spintronic functionalities, including AMR read-out and storage, 
have been already demonstrated in several antiferromagnetic semiconductor structures.18,36,101 

In previous sections we already mentioned examples of metal antiferromagnets which have so far driven much of 
the research in antiferromagnetic spintronics. Alloys of Ir and Mn are a prime example of metal antiferromagnets 
gradually progressing from favorable passive exchange-bias materials to active electrodes in TAMR devices,8,16,17,19 

to SHE injectors of spin current controlling adjacent ferromagnets,87,88 or to sensitive spin detectors.89 

An additional remarkable property of IrMn3 is that its non-collinear antiferromagnetic order with three compensated 
spin sublattices is expected to allow for the anomalous Hall effect (AHE).102 In ferromagnets, AHE scales linearly 
with magnetization which suggests its absence in antiferromagnets. Its origin is described in terms of the broken time- 
reversal symmetry of the ordered state and spin-orbit coupling. Antiferromagnets have also broken time reversal 
symmetry resulting in the sublattice magnetization. In collinear antiferromagnets, however, a time-reversal combined 
with translation recovers the symmetry and makes the AHE vanish. However, such a symmetry operation is not in 
general present in non-collinear antiferromagnets. In IrMn3, the AHE was predicted to have comparable magnitude 
to ferromagnets.102 Experimentally, a large AHE has been observed in a similar antiferromagnet SnMn3 with a non-
collinear 120o spin order.103 

To complete our brief excursion up the conductivity ladder we also recall that the antiferromagnetic order can co- 
exist with superconductivity.104 Finally, the overview of antiferromagnetic materials would not be complete without 
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II-VI Tc (K) TN  (K) III-V Tc (K) TN  (K)
MnO 122 FeN 100
MnS 152 FeP 115
MnSe 173 FeAs 77
MnTe 323 FeSb 100-220
EuO 67 GdN 72
EuS 16 GdP 15
EuSe 5 GdAs 19
EuTe 10 GdSb 27

I-VI-III-VI  
11 

II-V-IV-V 
490 CuFeO2 MnSiN2

CuFeS2 825 I-II-V
LiMnAs

 
374 CuFeSe2 70

CuFeTe2 254

 
TABLE I. Comparison of ferromagnetic Curie temperatures (Tc) and antiferromagnetic Néel temperatures (TN ) in II-VI, 
I-VI-III-VI, III-V, II-V-IV-V, and I-II-V magnetic semiconductors. From Refs. 98 and 99 and references therein. 

 
 
mentioning synthetic antiferromagets.6,105 These man-made structures comprise ferromagnetic layers antiferromag- 
netically coupled through a metallic spacer. They led to the discovery of the GMR106,107 and by this to the birth of 
modern spintronics.108 

In synthetic antiferromagnets, the interlayer coupling is typically orders of magnitude weaker than the exchange 
coupling between neighboring atoms in antiferromagnetic crystals. Several approaches known from crystal antiferro- 
magnets have been successfully adopted in spintronic devices comprising synthetic antiferromagnets.  For example, 
a spin-flop-like reorientation provided the basis for a reliable magnetic field writing of the free layer composed of a 
synthetic antiferromagnet in the commercial toggle MRAMs.109 Reference layers prepared in the form of synthetic 
antiferromagnets, on the other hand, provided a better stability of these fixed magnets and suppressed the effects 
of stray field on the free magnetic electrode in the spin valve.6 In combination with relativistic spin-orbit coupling 
phenomena, synthetic antiferromagnets have recently led also to observations of a reliable and efficient current-driven 
domain-wall motion in racetrack memory devices.110,111 

 
 
Concluding  remarks 

 
Despite the recently rapidly growing literature on antiferromagnetic spintronics, the field is still at its infancy and 

it difficult to predict the future course of basic research in the field and viable applications. Nevertheless, we can 
make a few remarks based on the current knowledge and analogies with ferromagnetic spintronics. 

Spin torques and magnetoresistances are now in principle available for electrical manipulation and detection of 
antiferromagnets. However, the area requires continuing research to reach a level of control allowing for fully exploiting 
the merits of antiferromagnets in practical devices. For example, the high intrinsic frequencies of antiferromagnetic 
dynamics do not automatically guarantee ultra-fast switching. Antiferromagnetic domains play an essential role in this 
context which makes their detailed understanding an important challenge.112 Research in antiferromagnetic domain 
walls and other textures falls also naturally into this category of future studies. 

The read-out speed and the size-scalability of spintronic devices is proportional to the magnitude of the mag- 
netoresistance signal. Large TAMRs in antiferromagnetic tunnel junctions have so far been observed only at low 
temperatures. Increasing the temperature robustness of the effect is another challenge for future research. In ferro- 
magnets, huge relativistic AMR-like effects have been observed in devices where the magnetic electrode is capacitively 
coupled to the transport channel which can be non-magnetic.113,114 These types of devices with the gate electrode 
formed by a strongly spin-orbit coupled antiferromagnet will have a more complex design than ohmic or tunneling 
resistors but may provide a significant enhancement of the detection signal. Inverse transistor structures with a nor- 
mal gate and the transport channel made of an aniferromagnetic semiconductor represent a complementary and yet 
another unexplored research direction. 

The potential mid or long term applications of antiferromagnetic spintronics will depend on results of these and 
many other research directions in the field. One area of applied interest may be magnetic cloaking, i.e., making objects 
invisible to magnetic fields. Referring to real physical objects, this was already one of the many practical interests 
of Néel115 and it keeps intriguing scientists to date.116 The new twist that antiferromagnetic spintronics introduces 
to magnetic cloaking is making magnetically invisible not only the physical object, namely the magnetic medium or 
device, but also the information stored on the device. Here starting from a single bit may already initiate new paths 
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to viable applications. Magnetic cards or security tags invisible to common scanners for ferromagnets and uneraseable 
by high magnetic fields are clearly foreseeable within the current knowledge in antiferromagnetic spintronics. 

For computer MRAMs, antiferromagnets may turn more practical than non-magnetic SHE layers in the lateral- 
current writing schemes since their magnetic order provides additional functionalities, such as the exchange-bias. 
Purely antiferromagnetic MRAMs with the writing and reading performances matching the most advanced ferromag- 
netic MRAMs are a challenge for a longer-term research. Still, with the functionalities available today, the antiferro- 
magnetic counterpart of the early ferromagnetic AMR-MRAM is in principle feasible. It can be used to demonstrate 
the combination of the radiation-hardness,33 genuine to spin-based devices, with the exceptional magnetic-field- 
hardness of antiferromagnets. Finally, we anticipate that unique spin-transport characteristics of insulating antifer- 
romagnets, including the predicted lossless spin-transmission, may find applications in spin interconnects and make 
antiferromagnets potentially attractive for basic and applied research in magnonics.117 
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FIG. 1. a, Left: Schematic of atoms on a surface coupled antiferromagnetically with exchange energy J . Surface-induced 
magnetic anisotropy fields cause the spins of the atoms to align parallel to the easy magnetic axis, D. A spin-polarized STM tip 
reads and writes the magnetic state of the structure. Right: Spin-polarized STM image of a linear chain of eight Fe atoms. 
Spins are in Néel state 0 (top) or 1 (bottom). From Ref. 9. b, Left: Optical microscopy image of the solid-state memory device 
fabricated from a CuMnAs antiferromagnet and schematic of the electrical writing and readout geometry. Right: Change in the transverse 
resistance after applying three successive 50 ms writing pulses of amplitude Jwrite = 4×106 Acm-2 alternatively along the [100] crystal 
direction of CuMnAs (black arrow in left panel and black points in right panel) and along the [010] axis (red arrow in left panel and red 
points in right panel). From Ref. 11. 

 
 
 

FIG. 2. a, Schematic of a ferromagnet/antiferromagnet bilayer. J is the vertical electrical current and p is the polarization of 
electrons injected from the fixed ferromagnet. b, Transition from parallel to perpendicular configuration of the ferromagnet and 
antiferromagnet spin axes can be induced by current of either polarity. c, Local (anti)damping-like STTs, T1 and T2, driven 
by staggered local non-equilibrium carrier polarization, s1 ∼ M1 × p and s2 ∼ M2 × p, on antiferromagnetic sublattices with 
magnetizations M1 and M2  shown before (dotted arrows) and after (solid arrows) the action of the STT (m is the canting 
moment). From Ref. 21. d, Vertical injection of a spin-current in a non-magnet/antiferromagnet bilayer due to a lateral 
electrical current and SHE in the non-magnetic layer. e, Reversible transition between the two configurations of the 
antiferromagnet can be controlled by orthogonal in-plane electrical currents.4 

 
 

 
FIG. 3. a, Schematic illustration of the FeRh memory. For writing, the sample is cooled in a field HFC from a temperature 
above the antiferromagnetic-ferromagnetic transition in FeRh.  Black arrows denote the orientation of the magnetic moments 
in the ferromagnetic phase whereas either red or blue arrows denote two distinct configurations of the magnetic moments in the 
antiferromagnetic phase. b, Resistance measured at room temperature and zero magnetic field after field-cooling the sample 
with field parallel (blue) and perpendicular (red) to the current direction. c, Stability of the two memory states at room 
temperature tested by measuring the resistance while rotating a 1 T magnetic field. The states cannot be erased by fields as 
high as 9 T. From Ref. 10. 

 
 

 
FIG. 4. a, Larger than 100% TAMR signal recorded in a NiFe/IrMn(1.5 nm)/MgO/Pt tunnel junction. The insets illustrate 
the rotation of antiferromagnetic moments in IrMn through the exchange-spring effect of the adjacent NiFe ferromagnet. b, 
The external magnetic field is sensed by the NiFe ferromagnet whereas the tunnelling transport is governed by the IrMn 
antiferromagnet. From Ref. 8. 

 
 
 

FIG. 5. a, Global ferromagnetic-like non-equilibrium spin polarization generated by electrical current in a non-magnet lattice 
with global inversion-asymmetry (e.g. GaAs) due to the ISGE. b, Local antiferromagnetic-like non-equilibrium spin polarization 
in a non-magnet lattice with local inversion-asymmetry (e.g. Si) due to the ISGE. Red dot shows the inversion-symmetry center 
of the Si lattice. The two Si atoms on either side of the center occupy inversion-partner lattice sites with locally asymmetric 
environments. In GaAs lattice, the inversion-symmetry center is absent since the two inversion-partner cites in the unit cell 
are occupied by different atoms. 

 
 
 

FIG. 6. a, Local staggered non-equilibrium spin-polarization inducing a local staggered effective field in an antiferromagnet 
lattice with local inversion-asymmetry (e.g. CuMnAs). Here and in other panels thin arrows represent the current-induced 
staggered effective field and thick arrows the antiferromagnetic moments. b, Top: electrical AMR reading of two stable 
orthogonal antiferromagnetic magnetizations representing 1 and 0 in a biaxial memory. Gold lines show probing current path. 
Bottom: Electrical writing of the states by a strong staggered effective field generated by one or the other orthogonal writing 
current paths (gold lines with arrows indicate current direction). Dashed arcs show the sense of the 90◦ reorientation of the 
antiferromagnetic moments during the writing c, AMR reading of a uniaxial antiferromagnet assisted by a weaker current- 
induced staggered field that partially tilts the 1/0 state away/towards the current direction. Dashed arcs show the sense of the 
partial tilting during the read-out. d, ”GMR”-like reading of a uniaxial antiferromagnet assisted by a weaker current-induced 
staggered spin-polarization aligned/anti-aligned with sublattice-magnetizations in the 1/0 state. e, Electrical writing of the 
uniaxial antiferromagnet by a strong current-induced staggered field by one or the other current polarity. 
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FIG. 7. Sketches showing the YIG/IrMn or YIG/Pt structures and the electrodes used to measure the dc voltage due to the 
ISHE in IrMn (Pt) resulting from the spin currents generated in two configurations: a, microwave FMR spin pumping from 
YIG and b, longitudinal spin Seebeck effect. The static field H is applied in the film plane. From Ref. 89. 



Bistability in Atomic-Scale
Antiferromagnets
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Control of magnetism on the atomic scale is becoming essential as data storage devices are miniaturized.
We show that antiferromagnetic nanostructures, composed of just a few Fe atoms on a surface, exhibit
two magnetic states, the Néel states, that are stable for hours at low temperature. For the smallest
structures, we observed transitions between Néel states due to quantum tunneling of magnetization.
We sensed the magnetic states of the designed structures using spin-polarized tunneling and switched
between them electrically with nanosecond speed. Tailoring the properties of neighboring antiferromagnetic
nanostructures enables a low-temperature demonstration of dense nonvolatile storage of information.

Nanometer-scale ferromagnets are used as
magnetic bits to hold information in mass
storage devices. Antiferromagnets have

been difficult to switch and sense because of their
lack of net magnetic moment, but they offer ad-
vantages such as insensitivity to magnetic fields.

In ferromagnetic materials, the magnetic mo-
ments of the constituent atoms align, yielding
a net magnetic moment. The direction of this
magnetization can be changed by the application
of a magnetic field or by spin-polarized currents
(1). As magnetic devices shrink toward atomic
dimensions, new tools to fabricate and probe
them with atomic resolution are emerging (2–4).
These have revealed magnetic bistability in fer-
romagnetic islands (5, 6) and chains (7), having
as few as 30 atoms, as well as in metal-organic
molecules (8–10).

Antiferromagnets have neighboring atomswith
counteraligned magnetic moments. The absence
of a net magnetic moment makes imaging the
magnetic structure of antiferromagnets more dif-
ficult. Antiferromagnetic (AFM) domains in thin
films have been imaged using x-ray scattering
(11). On the atomic scale, the spin structure of
antiferromagnets has been observed by scanning
tunneling microscopy (12, 13) and atomic force
microscopy (14). So far, controlled switching of
antiferromagnets has required the help of nearby
ferromagnetic domains (15), magnetoelectricity
(16), or optical pulses (17). We investigated the
role that AFM nanostructures can play as can-
didates formagnetic storage and spintronic devices.

We assembled AFM nanostructures with a
low-temperature scanning tunneling microscope
(STM) by placing Fe atoms in a regular pattern
on a surface (Fig. 1A). The spins of neighboring
Fe atoms couple antiferromagnetically by an ex-
change interaction with strength J = 1.2 meV
(18) (fig. S1). The Fe atoms were placed at a
binding site on a Cu2N surface, for which Fe has
a large magnetic anisotropy field that aligns its
spin to the resulting easy axis (19). A magnetic
field of up to 6 Twas applied in order to make the
microscope’s tip spin-sensitive by polarizing its

magnetic apex (18) and in order to test the effect
of magnetic field on the nanostructures.

In assemblies of just a few magnetic atoms,
the atomic spins often couple to form quantum
superposition states (20). For AFM coupling, this
results in a singlet ground state, characterized by
a wave function in which all spins populate op-
posing spin states equally (21). In contrast, we
find that isolated AFM structures with as few as
six Fe atoms exhibit stable Néel states, in which
the spin orientation alternates between neighbor-
ing atoms. These states can be well described by
the classical Ising model (22), in which the spins
always point along one axis. Spin-polarized STM
images of a linear eight-atom chain (Fig. 1, B
to E) can clearly distinguish the two Néel states.
The spin-polarized STM tip forms a magnetic
tunnel junction in which the conductance alter-
nates between high (parallel alignment of tip and
sample spins) and low (antiparallel alignment) as
the tip passes from atom to atom along the chain
(12, 13, 23). Identical chains built fromMn atoms
do not show the magnetic bistability and do not
exhibit a spin-polarized contrast along the chain
(fig. S2). A key difference between Fe and Mn
chains is the strength of the magnetic anisotropy,
which is ~50 times stronger in Fe than in Mn on
this surface (19). The strong easy-axis anisotropy
of Fe evidently stabilizes the two Néel states as
observable magnetic states.

The stability of the magnetic states was not
affected by imaging them using an applied voltage
of <2 mV, but voltages in excess of ~7 mV
caused switching. To intentionally switch the mag-
netic state of the entire antiferromagnet, the tip
was held stationary over any Fe atom of the struc-
ture, and tunnel current was passed through it at
>7 mV until a step, indicating a change in mag-
netic state, was observed in the current (Fig. 2A).
Subsequently, the voltage was lowered to prevent
further switching. Near the 7-mV switching thresh-
old, the Néel state in which the spin of the atom

1IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, CA 95120, USA. 2Max Planck Research Group–
Dynamics of Nanoelectronic Systems, Centre for Free-Electron
Laser Science, Hamburg, andMax Planck Institute for Solid State
Research, Stuttgart, Germany. 3Department of Physics, Univer-
sity of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
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Fig. 1. Bistable AFM array of Fe atoms. (A) Schematic of atoms on a surface
coupled antiferromagnetically with exchange energy J. Surface-induced
magnetic anisotropy fields cause the spins of the atoms to align parallel to the easy magnetic axis, D. A spin-polarized STM tip reads
the magnetic state of the structure by magnetoresistive tunneling. A magnetic field applied parallel to D polarizes the tip. (B) Spin-
polarized STM image of a linear chain of eight Fe atoms assembled on a Cu2N overlayer on Cu(100). This is a constant-current image using 2 mV and 1 pA. Spins
are in Néel state 0. (C) Section through center of chain in (B) with the spin orientation of each Fe atom indicated by colored arrows. (D and E) Same as (B) and (C)
but in Néel state 1.
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Control of magnetism on the atomic scale is becoming essential as data storage devices are miniaturized.
We show that antiferromagnetic nanostructures, composed of just a few Fe atoms on a surface, exhibit
two magnetic states, the Néel states, that are stable for hours at low temperature. For the smallest
structures, we observed transitions between Néel states due to quantum tunneling of magnetization.
We sensed the magnetic states of the designed structures using spin-polarized tunneling and switched
between them electrically with nanosecond speed. Tailoring the properties of neighboring antiferromagnetic
nanostructures enables a low-temperature demonstration of dense nonvolatile storage of information.

Nanometer-scale ferromagnets are used as
magnetic bits to hold information in mass
storage devices. Antiferromagnets have

been difficult to switch and sense because of their
lack of net magnetic moment, but they offer ad-
vantages such as insensitivity to magnetic fields.

In ferromagnetic materials, the magnetic mo-
ments of the constituent atoms align, yielding
a net magnetic moment. The direction of this
magnetization can be changed by the application
of a magnetic field or by spin-polarized currents
(1). As magnetic devices shrink toward atomic
dimensions, new tools to fabricate and probe
them with atomic resolution are emerging (2–4).
These have revealed magnetic bistability in fer-
romagnetic islands (5, 6) and chains (7), having
as few as 30 atoms, as well as in metal-organic
molecules (8–10).

Antiferromagnets have neighboring atomswith
counteraligned magnetic moments. The absence
of a net magnetic moment makes imaging the
magnetic structure of antiferromagnets more dif-
ficult. Antiferromagnetic (AFM) domains in thin
films have been imaged using x-ray scattering
(11). On the atomic scale, the spin structure of
antiferromagnets has been observed by scanning
tunneling microscopy (12, 13) and atomic force
microscopy (14). So far, controlled switching of
antiferromagnets has required the help of nearby
ferromagnetic domains (15), magnetoelectricity
(16), or optical pulses (17). We investigated the
role that AFM nanostructures can play as can-
didates formagnetic storage and spintronic devices.

We assembled AFM nanostructures with a
low-temperature scanning tunneling microscope
(STM) by placing Fe atoms in a regular pattern
on a surface (Fig. 1A). The spins of neighboring
Fe atoms couple antiferromagnetically by an ex-
change interaction with strength J = 1.2 meV
(18) (fig. S1). The Fe atoms were placed at a
binding site on a Cu2N surface, for which Fe has
a large magnetic anisotropy field that aligns its
spin to the resulting easy axis (19). A magnetic
field of up to 6 Twas applied in order to make the
microscope’s tip spin-sensitive by polarizing its

magnetic apex (18) and in order to test the effect
of magnetic field on the nanostructures.

In assemblies of just a few magnetic atoms,
the atomic spins often couple to form quantum
superposition states (20). For AFM coupling, this
results in a singlet ground state, characterized by
a wave function in which all spins populate op-
posing spin states equally (21). In contrast, we
find that isolated AFM structures with as few as
six Fe atoms exhibit stable Néel states, in which
the spin orientation alternates between neighbor-
ing atoms. These states can be well described by
the classical Ising model (22), in which the spins
always point along one axis. Spin-polarized STM
images of a linear eight-atom chain (Fig. 1, B
to E) can clearly distinguish the two Néel states.
The spin-polarized STM tip forms a magnetic
tunnel junction in which the conductance alter-
nates between high (parallel alignment of tip and
sample spins) and low (antiparallel alignment) as
the tip passes from atom to atom along the chain
(12, 13, 23). Identical chains built fromMn atoms
do not show the magnetic bistability and do not
exhibit a spin-polarized contrast along the chain
(fig. S2). A key difference between Fe and Mn
chains is the strength of the magnetic anisotropy,
which is ~50 times stronger in Fe than in Mn on
this surface (19). The strong easy-axis anisotropy
of Fe evidently stabilizes the two Néel states as
observable magnetic states.

The stability of the magnetic states was not
affected by imaging them using an applied voltage
of <2 mV, but voltages in excess of ~7 mV
caused switching. To intentionally switch the mag-
netic state of the entire antiferromagnet, the tip
was held stationary over any Fe atom of the struc-
ture, and tunnel current was passed through it at
>7 mV until a step, indicating a change in mag-
netic state, was observed in the current (Fig. 2A).
Subsequently, the voltage was lowered to prevent
further switching. Near the 7-mV switching thresh-
old, the Néel state in which the spin of the atom
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Fig. 1. Bistable AFM array of Fe atoms. (A) Schematic of atoms on a surface
coupled antiferromagnetically with exchange energy J. Surface-induced
magnetic anisotropy fields cause the spins of the atoms to align parallel to the easy magnetic axis, D. A spin-polarized STM tip reads
the magnetic state of the structure by magnetoresistive tunneling. A magnetic field applied parallel to D polarizes the tip. (B) Spin-
polarized STM image of a linear chain of eight Fe atoms assembled on a Cu2N overlayer on Cu(100). This is a constant-current image using 2 mV and 1 pA. Spins
are in Néel state 0. (C) Section through center of chain in (B) with the spin orientation of each Fe atom indicated by colored arrows. (D and E) Same as (B) and (C)
but in Néel state 1.
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Fig. 2. Electrical switching of the AFM CuMnAs. (A) Scanning transmission electron 
microscopy image of CuMnAs/GaP in the [100]–[001] plane. (B) Magnetization versus applied 
field of an unpatterned piece of the CuMnAs/GaP wafer measured by SQUID magnetometer.  
(C) XMLD-PEEM image of the CuMnAs film with x-rays at the Mn L3 absorption edge incident at 
16° from the surface along the [100] axis. (D) Optical microscopy image of the device and 
schematic of the measurement geometry. (E) Change in the transverse resistance after applying 
three successive 50 ms writing pulses of amplitude 64 10writeJ  u  Acm 2 �  alternatively along the 
[100] crystal direction of CuMnAs (black arrow in panel D and black points in panel E) and along 
the [010] axis (red arrow in panel D and red points in panel E). The reading current readJ  is 

applied along the [ 1 10] axis and transverse resistance signals RA  are recorded 10 s after each 
writing pulse. A constant offset is subtracted from RA . Measurements were done at sample 
temperature of 273 K. 
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current. To reverse l vector back to l !pcur configuration, one
needs to apply an external field H0!Hs-f parallel to l "spin-
flop transition#. "2# In the FM/FM bilayer the direction of
current "from fixed to free layer or opposite# is important,
P→AP and AP→P transitions take place at opposite direc-
tions of current $Fig, 4"a#%. In contrast, in the FM/AFM bi-
layer destabilization of l !pcur state takes place irrespective of
the current direction $Fig. 4"b#%. However, an external mag-
netic field removes such a degeneracy. "3# The bilayers with
AFM should show exchange reduction in the critical current
compared to FM/FM bilayers providing that the free FM and
AFM layers have the same magnetic resonance frequencies
"or anisotropy field of FM is close to spin-flop field of AFM#
and the same quality factor "=" /#AFM#, as can be seen from
Eq. "18#.

VI. DYNAMICS IN OVERCRITICAL REGIME

A FM layer subjected to the direct spin-polarized current
shows one interesting effect, stable precession of magnetiza-
tion with the angular frequency close to the frequency of
spin-wave mode.4,5 To find out whether such an effect could
be observed in AFM, we consider in details the dynamics of
AFM vector in overcritical regime "&J&$ &Jcr&# assuming that
pcur!H0!Z.

We use the standard parametrization of AFM vector with
the spherical angles % and &, lX=2M0 sin % cos &, lY
=2M0 sin % sin &, lZ=2M0 cos %, to deduce the following
dynamic equations:

%̈ + 2#AFM%̇ + sin % cos %'"Y
2 − "&̇ − "H#2

+
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2
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2

2
sin 2& +

"Y
2 − "H

2

4
sin2%sin 4&( = 0. "19#

As it was already mentioned, an AFM under consideration is
an oscillator with the high quality factor ""X,Y (#AFM#. In
other words, energy dissipation takes place on the time scale
much greater than the characteristic period of free oscilla-
tions. In this case for analytical treatment of Eq. "19# one can
apply the asymptotic method of rapidly rotating phase origi-
nated by Bogolyubov and Mitropolskii.28

According to this method, the motion of AFM vector is
decomposed into rapid rotation with the frequency )*"X,Y
and slow variation in amplitude and frequency with the char-
acteristic time scale *1 /#AFM. In the simplest case of isotro-
pic AFM "Han!=0 or "X="Y# the only rapid variable is &

=)"t#t. Equations for slow variables )"t# and %"t# ")̇ , %̇
+)# are obtained from Eq. "19# by averaging over the pe-
riod of rotation,

%̈ + 2#AFM%̇ + sin % cos %'"0
2 − ") − "H#2 −

7
4

"0
2 sin2 %( = 0,

d

dt
$") − "H#sin2 %% + sin2 %"2#AFM) − #HEJ'# = 0.

"20#

If, in addition, )̇+%̇, the first of Eq. "20# describes one-
dimensional motion "dynamic variable %# in a potential well
"see Fig. 5#

U"%;)# =
1
2

sin2 %'"0
2 − ") − "H#2 −

7
4

"0
2 sin2 %( "21#

with the friction defined by coefficient #AFM. The second of
Eq. "20# describes the current-induced variation in both vari-
ables % and ).

Equation "20# have two interesting solutions. The first
one, corresponds to the circular polarized free oscillations of
AFM vector with an amplitude %=%0+1 and eigenfrequency
)0)"X+"H. However, in overcritical regime an amplitude
%0 growth with an increment proportional to the offset from
the critical current value,

1
,

) #AFM* J − Jcr

Jcr
*+1 +

H0

Hs-f
, . "22#

The second solution with %=- /2 corresponds to steady
rotation of AFM vector in XY plane "lZ=0# with the angular
frequency ).= "J /Jcr#)0. Energy dissipation per period of
rotation is zero due to the pretty balance between the mag-
netic damping and current-induced pumping. This solution is

J H0

J H0

J
H0

H0

(a)

(b)

FIG. 4. "Color online# Switching between the different configu-
rations of "a# FM/FM and "b# FM/AFM bilayers. Magnetization of
the fixed layer is shown with magenta "thick# arrow, that of the free
layer with violet "thin arrow#, double arrow shows orientation of
AFM vector. "a# Switching between P and AP states can be
achieved by the field or current applied in two opposite directions.
"b# Transition from parallel to perpendicular configuration can be
induced by current "arbitrary direction# and field applied along ini-
tial orientation of AFM vector. Transition from perpendicular to
parallel configuration can be induced by the field only.

HELEN V. GOMONAY AND VADIM M. LOKTEV PHYSICAL REVIEW B 81, 144427 "2010#

144427-6

current. To reverse l vector back to l !pcur configuration, one
needs to apply an external field H0!Hs-f parallel to l "spin-
flop transition#. "2# In the FM/FM bilayer the direction of
current "from fixed to free layer or opposite# is important,
P→AP and AP→P transitions take place at opposite direc-
tions of current $Fig, 4"a#%. In contrast, in the FM/AFM bi-
layer destabilization of l !pcur state takes place irrespective of
the current direction $Fig. 4"b#%. However, an external mag-
netic field removes such a degeneracy. "3# The bilayers with
AFM should show exchange reduction in the critical current
compared to FM/FM bilayers providing that the free FM and
AFM layers have the same magnetic resonance frequencies
"or anisotropy field of FM is close to spin-flop field of AFM#
and the same quality factor "=" /#AFM#, as can be seen from
Eq. "18#.

VI. DYNAMICS IN OVERCRITICAL REGIME

A FM layer subjected to the direct spin-polarized current
shows one interesting effect, stable precession of magnetiza-
tion with the angular frequency close to the frequency of
spin-wave mode.4,5 To find out whether such an effect could
be observed in AFM, we consider in details the dynamics of
AFM vector in overcritical regime "&J&$ &Jcr&# assuming that
pcur!H0!Z.

We use the standard parametrization of AFM vector with
the spherical angles % and &, lX=2M0 sin % cos &, lY
=2M0 sin % sin &, lZ=2M0 cos %, to deduce the following
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other words, energy dissipation takes place on the time scale
much greater than the characteristic period of free oscilla-
tions. In this case for analytical treatment of Eq. "19# one can
apply the asymptotic method of rapidly rotating phase origi-
nated by Bogolyubov and Mitropolskii.28

According to this method, the motion of AFM vector is
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and slow variation in amplitude and frequency with the char-
acteristic time scale *1 /#AFM. In the simplest case of isotro-
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Eq. "20# describes the current-induced variation in both vari-
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Equation "20# have two interesting solutions. The first
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AFM vector with an amplitude %=%0+1 and eigenfrequency
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the critical current value,
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layer with violet "thin arrow#, double arrow shows orientation of
AFM vector. "a# Switching between P and AP states can be
achieved by the field or current applied in two opposite directions.
"b# Transition from parallel to perpendicular configuration can be
induced by current "arbitrary direction# and field applied along ini-
tial orientation of AFM vector. Transition from perpendicular to
parallel configuration can be induced by the field only.
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current. To reverse l vector back to l !pcur configuration, one
needs to apply an external field H0!Hs-f parallel to l "spin-
flop transition#. "2# In the FM/FM bilayer the direction of
current "from fixed to free layer or opposite# is important,
P→AP and AP→P transitions take place at opposite direc-
tions of current $Fig, 4"a#%. In contrast, in the FM/AFM bi-
layer destabilization of l !pcur state takes place irrespective of
the current direction $Fig. 4"b#%. However, an external mag-
netic field removes such a degeneracy. "3# The bilayers with
AFM should show exchange reduction in the critical current
compared to FM/FM bilayers providing that the free FM and
AFM layers have the same magnetic resonance frequencies
"or anisotropy field of FM is close to spin-flop field of AFM#
and the same quality factor "=" /#AFM#, as can be seen from
Eq. "18#.

VI. DYNAMICS IN OVERCRITICAL REGIME

A FM layer subjected to the direct spin-polarized current
shows one interesting effect, stable precession of magnetiza-
tion with the angular frequency close to the frequency of
spin-wave mode.4,5 To find out whether such an effect could
be observed in AFM, we consider in details the dynamics of
AFM vector in overcritical regime "&J&$ &Jcr&# assuming that
pcur!H0!Z.

We use the standard parametrization of AFM vector with
the spherical angles % and &, lX=2M0 sin % cos &, lY
=2M0 sin % sin &, lZ=2M0 cos %, to deduce the following
dynamic equations:

%̈ + 2#AFM%̇ + sin % cos %'"Y
2 − "&̇ − "H#2

+
"X

2 − "Y
2

2
"1 + cos 2&# −

"Y
2 − "H

2

4
sin2 %"7 + cos 4&#(

= 0,
d

dt
$"&̇ − "H#sin2%% + sin2%'2#AFM&̇ − #HEJ'

+
"Y

2 − "X
2

2
sin 2& +

"Y
2 − "H

2

4
sin2%sin 4&( = 0. "19#

As it was already mentioned, an AFM under consideration is
an oscillator with the high quality factor ""X,Y (#AFM#. In
other words, energy dissipation takes place on the time scale
much greater than the characteristic period of free oscilla-
tions. In this case for analytical treatment of Eq. "19# one can
apply the asymptotic method of rapidly rotating phase origi-
nated by Bogolyubov and Mitropolskii.28

According to this method, the motion of AFM vector is
decomposed into rapid rotation with the frequency )*"X,Y
and slow variation in amplitude and frequency with the char-
acteristic time scale *1 /#AFM. In the simplest case of isotro-
pic AFM "Han!=0 or "X="Y# the only rapid variable is &

=)"t#t. Equations for slow variables )"t# and %"t# ")̇ , %̇
+)# are obtained from Eq. "19# by averaging over the pe-
riod of rotation,

%̈ + 2#AFM%̇ + sin % cos %'"0
2 − ") − "H#2 −

7
4

"0
2 sin2 %( = 0,

d

dt
$") − "H#sin2 %% + sin2 %"2#AFM) − #HEJ'# = 0.

"20#

If, in addition, )̇+%̇, the first of Eq. "20# describes one-
dimensional motion "dynamic variable %# in a potential well
"see Fig. 5#

U"%;)# =
1
2

sin2 %'"0
2 − ") − "H#2 −

7
4

"0
2 sin2 %( "21#

with the friction defined by coefficient #AFM. The second of
Eq. "20# describes the current-induced variation in both vari-
ables % and ).

Equation "20# have two interesting solutions. The first
one, corresponds to the circular polarized free oscillations of
AFM vector with an amplitude %=%0+1 and eigenfrequency
)0)"X+"H. However, in overcritical regime an amplitude
%0 growth with an increment proportional to the offset from
the critical current value,

1
,

) #AFM* J − Jcr

Jcr
*+1 +

H0

Hs-f
, . "22#

The second solution with %=- /2 corresponds to steady
rotation of AFM vector in XY plane "lZ=0# with the angular
frequency ).= "J /Jcr#)0. Energy dissipation per period of
rotation is zero due to the pretty balance between the mag-
netic damping and current-induced pumping. This solution is

J H0

J H0

J
H0

H0

(a)

(b)

FIG. 4. "Color online# Switching between the different configu-
rations of "a# FM/FM and "b# FM/AFM bilayers. Magnetization of
the fixed layer is shown with magenta "thick# arrow, that of the free
layer with violet "thin arrow#, double arrow shows orientation of
AFM vector. "a# Switching between P and AP states can be
achieved by the field or current applied in two opposite directions.
"b# Transition from parallel to perpendicular configuration can be
induced by current "arbitrary direction# and field applied along ini-
tial orientation of AFM vector. Transition from perpendicular to
parallel configuration can be induced by the field only.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw

dt
= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
'G

2M0
#!m " ṁ" + !l " l̇"$

+
!J

2M0
*#m " !m " pcur"$ + #l " !l " pcur"$+ , !4"

l̇ = %#!HM " l" + !HL " m"$ +
'G

2M0
#!m " l̇" + !l " ṁ"$

+
!J

2M0
*#m " !l " pcur"$ + #l " !m " pcur"$+ . !5"

Here HM =−!w /!m is an effective magnetic field within an
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw

dt
= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
'G

2M0
#!m " ṁ" + !l " l̇"$

+
!J

2M0
*#m " !m " pcur"$ + #l " !l " pcur"$+ , !4"

l̇ = %#!HM " l" + !HL " m"$ +
'G

2M0
#!m " l̇" + !l " ṁ"$

+
!J

2M0
*#m " !l " pcur"$ + #l " !m " pcur"$+ . !5"

Here HM =−!w /!m is an effective magnetic field within an
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw

dt
= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
'G

2M0
#!m " ṁ" + !l " l̇"$

+
!J

2M0
*#m " !m " pcur"$ + #l " !l " pcur"$+ , !4"

l̇ = %#!HM " l" + !HL " m"$ +
'G

2M0
#!m " l̇" + !l " ṁ"$

+
!J

2M0
*#m " !l " pcur"$ + #l " !m " pcur"$+ . !5"

Here HM =−!w /!m is an effective magnetic field within an
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw

dt
= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
'G

2M0
#!m " ṁ" + !l " l̇"$

+
!J

2M0
*#m " !m " pcur"$ + #l " !l " pcur"$+ , !4"

l̇ = %#!HM " l" + !HL " m"$ +
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2M0
#!m " l̇" + !l " ṁ"$

+
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2M0
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Here HM =−!w /!m is an effective magnetic field within an
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,
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= − '

j
!H j · Ṁ j"

= − '
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( 'G
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Ṁ j
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In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
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2M0
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw
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= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
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2M0
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+
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,
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= − '
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!H j · Ṁ j"

= − '
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2 −
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!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
'G

2M0
#!m " ṁ" + !l " l̇"$

+
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Here HM =−!w /!m is an effective magnetic field within an
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw
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= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
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2M0
#!m " ṁ" + !l " l̇"$

+
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,
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In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
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2M0
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,
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!H j · Ṁ j"
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j
( 'G
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2 −
! jJ
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In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,
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+
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*#m " !l " pcur"$ + #l " !m " pcur"$+ . !5"

Here HM =−!w /!m is an effective magnetic field within an

EA

EA

X

Y

Z

l

H0

EA

EA

X

Y

Z

l H0

pcur pcur

M1 M2

J e-e-(b)

pcur

J

FM

AFM

(a)

(c) (d)

T2T1 m

FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.

HELEN V. GOMONAY AND VADIM M. LOKTEV PHYSICAL REVIEW B 81, 144427 !2010"

144427-2

s1 

s2 



ARTICLES NATUREMATERIALS DOI: 10.1038/NMAT3861

Figure 1 | AFM-AMRmemory functionality in a FeRh resistor. a, Schematic illustration of the AFM FeRh/MgO structure and of the memory writing and
reading set-up. For writing, the sample is cooled in a field HFC from a temperature above the AFM–ferromagnetic transition in FeRh (we used maximum
field of 9 T and temperature of 400K allowed in our transport measurement set-up) to below the transition temperature (200K). Black arrows denote the
orientation of the magnetic moments in the ferromagnetic phase whereas either red or blue arrows denote two distinct configurations of the magnetic
moments in the AFM phase. The resulting AFM spin axis in the low-temperature memory state depends on the direction of HFC, which is either along the
[100] or [010] crystal axis. For reading, electrical current j is driven between electrical contacts (yellow bars) along the [100] direction and the resistance
is detected. b, Resistance measured at 200K and zero magnetic field after field-cooling the sample with HFC parallel (blue) and perpendicular (red) to the
current direction. The two resistance states are clearly distinct and many successive measurement steps demonstrate the stability of the distinct memory
states. c, The same as in b, but at room temperature. d, Stability of the two memory states at room temperature tested by measuring the resistance while
sweeping a magnetic field H between±1 T applied along the [100] direction. e, The same as in d, while rotating a 1 T magnetic field. f, AMR values
calculated for the Rh-rich (Fe1�xRhx)Rh random alloy using the Kubo formula CPA-TB-LMTO formalism. The AMR is defined as a relative di�erence
between the resistivity for the spin axis parallel and perpendicular to the current, AMR = (Rskj � Rs?j)/RskI. Results are shown for the AFM ground state
(filled symbols) and for a hypothetical zero-temperature ferromagnetic state (open symbols) of FeRh.

FeRh close to 400K; at this temperature, we have applied amagnetic
fieldHFC to align itsmagnetization and the correspondingmagnetic
moments of FM FeRh along the applied magnetic field. The sample
is then field-cooled below room temperature (200K) and HFC is
then removed. In this AFM state with no applied magnetic field
we perform a series of four-probe resistance measurements with
the current j applied along the [100] substrate crystal direction.
The same protocol is repeated several times with HFC applied
during field-cooling either along the [100] or [010] substrate crystal
directions (Fig. 1a). The resulting resistances in the AFM state are
stable and fully reproducible in the successive write–read cycles,
and the two cooling-field directions define two distinct resistance
states of the AFM. They remain distinct not only on removing
the magnetic field but also when warming the AFM up to room
temperature, as shown in Fig. 1b,c.

In Fig. 1d,e we demonstrate that the two AFMmemory states are
robust against strong magnetic field perturbations. After preparing
one of the states by the above cooling-in-field procedure, we rotate
the sample at room temperature in a magnetic field H of 1 T and
observe a negligible e�ect on the resistance in either of the two
AFM memory states (Fig. 1e). As in the rotation experiment, the

states are not disturbed by sweeping the magnitude of H at a fixed
applied field angle (Fig. 1d). In the detailed discussion below we
show that the retention in our AFM memory is not disturbed up to
the highest fields (9 T) available in our transport measurement set-
up.However, before resuming the detailed experimental analysis, we
focus in the following paragraphs on themicroscopic physics behind
the observed distinct resistance states in our FeRh AFM.

Theory of the AFM-AMR
In this theoretical section, we first recall the fundamentals of the
AMR relevant to our experiments and then discuss our quantitative
modelling of the e�ect based on a relativistic density-functional
transport theory16–20. As already mentioned in the introduction,
conceptually the AMR phenomena are equally present in AFMs as
in ferromagnets. As AMR is an even function of the microscopic
magneticmoment vector, it is the direction of the spin axis (s) rather
than the direction of the macroscopic magnetization (M) relative
to the current direction that primarily determines the e�ect. In
collinear ferromagnets the two directions are equivalent. For the
staggered spin configuration of compensated AFMs only the spin
axis can be defined while the macroscopic magnetization is zero.
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robust against strong magnetic field perturbations. After preparing
one of the states by the above cooling-in-field procedure, we rotate
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observe a negligible e�ect on the resistance in either of the two
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show that the retention in our AFM memory is not disturbed up to
the highest fields (9 T) available in our transport measurement set-
up.However, before resuming the detailed experimental analysis, we
focus in the following paragraphs on themicroscopic physics behind
the observed distinct resistance states in our FeRh AFM.

Theory of the AFM-AMR
In this theoretical section, we first recall the fundamentals of the
AMR relevant to our experiments and then discuss our quantitative
modelling of the e�ect based on a relativistic density-functional
transport theory16–20. As already mentioned in the introduction,
conceptually the AMR phenomena are equally present in AFMs as
in ferromagnets. As AMR is an even function of the microscopic
magneticmoment vector, it is the direction of the spin axis (s) rather
than the direction of the macroscopic magnetization (M) relative
to the current direction that primarily determines the e�ect. In
collinear ferromagnets the two directions are equivalent. For the
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then removed. In this AFM state with no applied magnetic field
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during field-cooling either along the [100] or [010] substrate crystal
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states of the AFM. They remain distinct not only on removing
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Figure 1 |A spin-valve-like signal in the NiFe/IrMn(1.5 nm)/MgO/Pt AFM tunnel device compared with the weak magnetoresistance of an FM
NiFe/MgO/Pt tunnel junction. a, 130% magnetoresistance signal recorded in the range of �1 to +1 T field on a tunnelling device fabricated in the depicted
multilayer structure with the NiFe/IrMn(1.5 nm)/MgO/Pt tunnel junction. The direction of the in-plane magnetic field corresponds to the direction of the
magnetic field applied during the film growth. The insets illustrate the rotation of AFM moments in IrMn through the exchange-spring effect of the
adjacent NiFe ferromagnet. The external magnetic field is sensed by the NiFe ferromagnet whereas the tunnelling transport is governed by the IrMn
antiferromagnet. b, Hysteretic magnetoresistance of the NiFe/IrMn(1.5 nm)/MgO/Pt tunnel-junction device plotted from �50 to +50 mT. c, Field-cooled
magnetization loops measured on the same wafer containing the NiFe/IrMn(1.5 nm)/MgO/Pt tunnel junction. d, The same as b measured on a control
NiFe/MgO/Pt tunnel-junction device; the inset shows the magnetoresistance of the device rotated in a 50 mT field. e, Magnetization loop of the control
wafer without IrMn. All data in the figure were recorded at 4 K.

exchange coupling between the NiFe ferromagnet and the IrMn
antiferromagnet. (SQUID data in Fig. 1c have been collected
after a field-cooled procedure from room temperature with
a magnetic field of +0.3 T (green curve) and �0.3 T (blue
curve).) The broadened hysteresis loops of the measured NiFe
magnetization, compared with measurements on NiFe without
the IrMn antiferromagnet in the stack (compare Fig. 1c,e), and
the opposite horizontal shifts of the positive and negative field-
cooled loops, demonstrate the exchange-bias effect4,5 of IrMn
on NiFe. Note that the NiFe FM exchange biased by the IrMn
antiferromagnet represents a common magnetic electrode used in
conventional giant or tunnelling magnetoresistance devices. In our
structure, however, the order of FM and AFM layers is reversed
so that the AFM layer is placed next to the tunnel barrier and
governs the transport signal. Similar widths of hysteresis loops of
R(B) andM (B), together with the confirmed NiFe–IrMn exchange
coupling, provide the evidence that our structure responds to the
applied magnetic field through FM moments in NiFe, that these
moments during reversal trigger a tilt of the AFM moments in
IrMn (as illustrated in the insets of Fig. 1a), and that the tilt
of AFM moments results in the strong asymmetric tunnelling
magnetoresistance signal (Fig. 1a,b).

Experiments on a control structure without the IrMn
layer, presented in Fig. 1d,e, highlight the crucial role of the
antiferromagnet in our study. We emphasize that the control
sample has identical structure to that shown in the sketch in
Fig. 1a, except for the missing IrMn layer, and that the samples
with and without IrMn have the same saturation magnetization
Ms = 880 e.m.u. cm�3. The hysteretic reversal in the control sample
with the pure NiFe magnetic electrode occurs on an order-of-
magnitude-smaller scale of applied magnetic fields because NiFe
without the exchange-biasing antiferromagnet is magnetically very
soft. We still observe a magnetoresistance signal associated with
the switching of magnetization in NiFe; however, it persists only
near the small coercive fields and the amplitude is two orders of
magnitude smaller than in the structure with IrMn. The inset of
Fig. 1d shows that the amplitude of the low-field magnetoresistance
in the field-sweep experiment is the same as the amplitude
measured by rotating the sample in a saturatingmagnetic field. This
is a manifestation of the TAMR origin of the measured transport
signals in the devicewith the pureNiFemagnetic electrode13–15.

In Fig. 2 we show that in the structure with IrMn placed
between NiFe and the MgO tunnel barrier the magnetoresistance
effect we observe is also of the TAMR origin. However, as in
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FIG. 1. (Color online) Sketches showing the YIG/IrMn or
YIG/Pt structures and the electrodes used to measure the dc voltage
due to the ISHE charge current in the metallic layer resulting from the
spin currents generated in two configurations: (a) microwave FMR
spin pumping and (b) longitudinal spin Seebeck effect. The static field
H is applied in the film plane at an arbitrary angle with the sample
edge.

spin current that results in a spin-pumped spin current across
the FMI/ML interface proportional to the temperature gradient
and to the spin-mixing conductance. The LSSE in FMI/NM
bilayers is not contaminated by the Nernst effect [13,31–34].

In a spin-pumping experiment with a bilayer of a FMI layer
in contact with a ML, a rf magnetic field with microwave
frequency applied perpendicularly to the static field drives the
magnetization precession of the excitation modes, the spin
waves, or magnons. At the interface the precessing spins in
the FM generate a spin-pumping spin current that flows into
the ML producing two effects: (1) Increased damping of the
magnetic excitation due to the flow of spin angular momentum
out of the FM [4,5,36]; and (2) generation of a charge current
by means of the ISHE that produces a voltage at the ends of the
ML [6,7,25–30]. These two independent phenomena make it
possible to extract material parameters from the measurements
of the FMR absorption and the spin-pumping voltage.

The results of the measurement of the microwave FMR ab-
sorption are shown in Fig. 2. The sample is introduced through
a small hole in the back wall of a rectangular microwave
waveguide in a position of maximum microwave field h and
zero rf electric field. This precaution avoids the generation of
galvanic effects in the ML driven by the rf electric field. The
waveguide is placed between the poles of an electromagnet of
a homemade ferromagnetic resonance (FMR) spectrometer
so that the static magnetic field with intensity H and the
microwave field are in the film plane and kept perpendicular to
each other as the sample is rotated. With this configuration we
can investigate the angular dependence of the spectra. We use a
shortened waveguide instead of a resonating microwave cavity
to avoid detuning produced by the strong resonance of YIG
and also nonlinear effects. By modulating the field at 1.2 kHz
with a pair of Helmholtz coils and using lock-in detection,
we obtain field scan spectra of the field derivative dP/dH of
the microwave absorption lines. We have used two identical
samples of single-crystal YIG films with thickness 6.0 µm,
grown by liquid-phase epitaxy on 0.5 mm thick (111) gallium
gadolinium garnet (GGG) substrate and cut in the form of
rectangles with lateral dimensions 1.5 × 3.0 mm2. Figure 2(a)
shows the spectrum of one of the samples, measured with
the static field in-plane and normal to the long direction, at a
frequency f = 9.4 GHz and input microwave power 32 mW,
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FIG. 2. (Color online) (a), (b), and (c) Field scan microwave
FMR absorption derivative spectra at a frequency 9.4 GHz of 6 µm
thick YIG film with lateral dimensions 1.5 × 3.0 mm2 with the
magnetic field applied in the film plane normal to the long dimension.
In (a) the YIG film is bare while in (b) and (c) it is covered,
respectively, with Pt (4 nm) and IrMn (5 nm). (d) Magneto-optical
Kerr Effect (MOKE) magnetometry hysteresis loop of Py measured
in Si(100)/Cu(8 nm)/Py(4 nm)/IrMn(4 nm) exhibiting the exchange
bias effect produced by the AF arrangement of IrMn.

low enough to avoid nonlinear effects with the shortened
waveguide setup. The spectrum in Fig. 2(a) obtained before
deposition of a metallic layer on the YIG film allows a clear
identification of the absorption lines. They correspond to
standing spin-wave modes that have quantized in-plane wave
numbers k due to the boundary conditions at the edges of
the film [38–40]. The strongest line corresponds to the FMR
mode that has frequency close to the spin wave with k =
0, given by ω0 = γ (H + HA)1/2(H + HA + 4πM + HS)1/2,
where γ = 2π × 2.8 GHz/kOe for YIG, 4πM is the saturation
magnetization (1.76 kG at room temperature), and HA and HS

are, respectively, the in-plane and the out-of-plane (surface)
anisotropy fields. The lines to the left of the FMR mode
correspond to hybridized standing spin-wave surface modes,
whereas those to the right are volume modes. All modes have a
very similar peak-to-peak linewidth of 0.5 Oe, corresponding
to a half-width at half-maximum (HWHM) of $H ≈ 0.43 Oe.

The bilayer samples were prepared by deposition of Pt
(4 nm) and IrMn (5 nm) layers on the same two YIG film strips
used for the FMR measurements by means of dc magnetron
sputtering. In the deposition of the IrMn layer a field of 60 Oe
was applied in the film plane and perpendicularly to the long
strip dimension in order to orient the polycrystalline grains
and produce the macroscopic AF arrangement. In attempts
to characterize the AF arrangement of the IrMn layer by
magnetometry in high fields, the much larger moment of the
thick YIG film precludes any clear conclusion. So we have
prepared a test sample of Si(100)/Cu(8 nm)/Py(4 nm)/IrMn(4
nm) under the same conditions of the YIG/IrMn bilayer
in order to test the exchange bias of Py in contact with
IrMn. Figure 2(d) shows the hysteresis loop of Py displaced
in the field axis characterizing the exchange bias [19] and
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