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ABSTRACT: Perylene diimides (PDIs) are promising candidates for n-type semiconductor materials and, thus, for use in
organic electronics. Thionation of the imide moiety provides an efficient strategy to control the donor−acceptor gap of these
types of compounds, although the degree and selectivity of thionation can be hard to achieve. Through the design of a sterically
encumbered PDI−phenothiazine dyad, a previously unattained geminal thionation pattern has been realized, providing the first
example of a perylene-monoimide-monothioimide. The electrochemical and solid-state structural properties of this uniquely
thionated dyad are reported and compared to those of the nonthionated parent molecule. It is found that thionation enhances
the electron affinity of the PDI core, affecting electrochemical and spectroelectochemcial behavior of the dyad without
significantly affecting the solid-state packing of the molecules.

■ INTRODUCTION

Perylene diimides (PDIs) tend to have intense colors, high
electron affinities, and excellent photochemical and thermal
stabilities.1−3 PDIs are excellent candidates for n-type semi-
conductor materials for organic electronic applications
including organic field-effect transistors,4 organic light-emitting
diodes5,6 and dye-sensitized solar cells,7−9 and when suitably
functionalized can be used as photoelectric materials10 and
show nonlinear optical properties.11

Straightforward synthetic modification of PDIs allows for the
tuning of electronic12 and photochemical13 properties,
solubility1 and solid state,14 and supramolecular15,16 organ-
ization. Recently, chalcogen substitutions to the carbonyl
positions of the PDI scaffold have been employed as a means
of affecting the frontier orbitals without significant perturba-
tion to the molecular structure. Studies into thionated
PDIs17−19 and their smaller analogues, naphthalene diimides
(NDIs)20−26 and pyromellitic diimides,27 have shown an
enhancement in electron mobility in organic transistors, as well
as providing a straightforward means of accessing the triplet
manifold of PDI without the need for heavy atom substitutions
or an additional sensitizer.
Synthetic strategies targeting thionated rylene diimides

employ Lawesson’s reagent as the source of sulfur atoms and
tend to be nonselective, resulting in a series of compounds
bearing between one and four substituted carbonyls.17−27 In
the case of dithionated PDIs and NDIs, three regioisomers are
possible with sulfur substituents cis, trans, and geminate to
each other, although the current literature contains no reports

of isolated geminate thionation products of PDIs.12 In the case
of NDIs, Welford et al.25 were able to isolate a geminately
thionated product, albeit in very low yield when compared to
the other dithionated isomers. The geminate compound was
only one-eighth as prevalent as the cis and trans variants and
was produced in lower quantity than the trithionated NDI
product, suggesting that thionation usually occurs on opposite
imide groups before adjacent imide carbonyls can be
substituted.
Recent work has shown that it is possible to selectively

produce either cis20 or trans21,22 dithionated regioisomers
through steric influence of core substituents. Indeed, our
earlier work with asymmetric NDI compounds indicated that
geminate dithionation can readily occur adjacent to an aryl-
imide substituent, but dithionation next to aliphatic imides is
hampered, selectively producing only one of the two possible
trithionated regioisomers of a mixed N-aryl/N-alkyl NDI.26

Although no similar examples exist for PDI compounds, likely
because of the difficulty of controlling levels of orthosub-
stitution, it is assumed that the principle of sterically selecting
which carbonyls can be thionated will hold.
Herein, we describe a steric approach to the synthesis of an

unprecedented geminately dithionated PDI−phenothiazine
dyad, using a bulky aromatic substituent on one imide
terminus of the PDI to limit access to one pair of carbonyls.
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The electrochemical and optical properties of this thionated
PDI are compared to those of its nonthionated parent.

■ RESULTS AND DISCUSSION
Synthesis and Crystallography of Nonaggregating

Asymmetric PDIs. PDIs are often prone to aggregation as a
result of intermolecular interactions between their extended
aromatic cores, potentially limiting solubility in common
organic solvents. In this study, solubility of the target PDIs was
essential for characterization and is also desirable for future
device fabrication: prohibition of aggregation aides charge
separation in donor−acceptor films,28 which are commonly
produced from spin coating. To this end, we have developed a
very sterically hindering tecton, 2,6-(bis)diphenylmethyl-4-
methylphenyl (BDPA), whose structure is based upon an
elaboration of 2,6-diisopropylaniline, a commonly used
solubilizing group in PDI chemistry. In this study, the BDPA
moiety was used to functionalize one of the imide groups in
the synthesis of asymmetric PDIs, providing both steric
inhibition to substitution at one imide and solubility for the
target molecule.
The synthesis of the PDI-phenothiazine dyad (PDIS0-PTZ)

followed a synthetic strategy described by Xue et al.29 to
prepare asymmetric PDIs (Scheme 1). Commercially available
perylene-3,4,9,10-dianhydride was first esterified with four n-
decyl chains. An acid-catalyzed hydrolysis of the resultant
tetraester selectively formed a perylene monoanhydride diester
which was then condensed with 2,6-(bis)diphenylmethyl-4-
methylphenylaniline to produce a mixed monoimide diester.
The remaining two ester groups were subsequently cleaved
giving a perylene-monoimide-monoanhydride (PMI-BDPA)
capable of reaction with a second amine, thereby forming an
asymmetric PDI. The effectiveness of the 2,6-(bis)-
diphenylmethyl-4-methylphenyl tecton as a solubilizing group
for PDIs is demonstrated upon production of PMI-BDPA,
which despite only containing a single imide functionality (and

no bay-region substitution) is sufficiently soluble for character-
ization by 13C NMR spectroscopy.
An X-ray crystallography study of single crystals of PMI-

BDPA revealed that although π-stacking is present in the solid
state, it is limited to antiparallel pairs of molecules (Figure 1A).
The perylene planes of these pairs of molecules are separated
by 3.36 Å, typical for π-stacked compounds,30 extending to a
substantial 6.84 Å between the aromatic cores of adjacent
nonstacked molecules. A slight twisting of the perylene plane is
also observable: the torsion angle between the two

Scheme 1. Synthesis of PMI-BDPA and PDI-BDPA2

Figure 1. (A) Crystal packing of PMI-BDPA with selected
intermolecular distances shown. (B) Crystal packing of PDI-BDPA2
showing distance between centroids of adjacent molecules. Atom
colorsC: gray, H: white, Cl: green, N: blue, and O: red.
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naphthalene rings that comprise a single perylene core is 7.2°.
The ability of the bulky 2,6-bis(diphenylmethyl-4-methyl-
phenyl) group to interfere with the π-stacking normally
observed for PDIs is apparent, showcasing the power of this
new group for imide functionalization, particularly in
asymmetric PDI synthesis, allowing for an unrestricted choice
of second imide group without solubility concerns.
In addition to PMI-BDPA, the symmetric diimide analogue

with 2,6-(bis)diphenylmethyl-4-methylphenyl substituents at
both imide termini, PDI-BDPA2, was prepared, and single
crystals were grown by vapor diffusion of hexane into a CHCl3
solution of the compound. The compound crystallized in the
space group I2/a, with the asymmetric unit containing half a
molecule of PDI-BDPA2 and two CHCl3 molecules. The
imide-substituted phenyl ring lies almost perpendicular to the
perylene plane, with an angle between the phenyl plane and
the perylene core of 81.1°. The diphenylmethyl branches
protrude from the aromatic backbone of the molecule,
blocking any potential π−π interactions. Examination of the
intermolecular packing reveals this to be the case: the distance
between centroids of adjacent PDI-BDPA2 molecules is 11.47
Å (Figure 1B), over three times greater than the typical
separation observed for PDIs of 3.40 Å.1 This represents a
huge translational offset and allows solvent CHCl3 molecules
to comfortably fit between adjacent PDI molecules. The
absence of π−π interactions extends to solution measurements.
The UV/vis spectrum of PDI-BDPA2 shows S0 to S1 electronic
transitions of the PDI core, with well-defined vibrational
structure and relative intensities characteristic of discrete
molecules in solution. Furthermore, a solution-phase fluo-
rescence quantum yield of 1.00 for PDI-BDPA2 is consistent
with the absence of aggregation.
Synthesis and Thionation of PDI-Dyads. In line with

our previous work using NDIs,26 a phenothiazine electron
donor group was condensed with PMI-BDPA to produce
PDIS0-PTZ (Scheme 2). The photophysics of a series of
phenylene-spaced phenothiazine−PDI dyads has been inves-
tigated by the Wasielewski and co-workers,31 noting efficient
charge separation between the two chromophores to form a
PDI•−-Ph-PTZ•+ radical pair. Thus, PDIS0-PTZ was prepared
by reaction of PMI-BDPA with 10-(4-aminophenyl)-10-H-
phenothiazine.31 PDIS0-PTZ was thionated with Lawesson’s
reagent26 (Scheme 2) affording a blue compound, in contrast

to the red color of PDIS0-PTZ, that was identified as PDIS2-
PTZ by mass spectrometry and NMR spectroscopy. The mass
spectrum was consistent with two sulfur substitutions,
indicating that the product could exist as one of the four
isomers. The 1H NMR spectrum of the blue product revealed
four pairs of doublets for the aromatic protons of the perylene
core (as was the case for the nonthionated PDIS0-PTZ) and
the 13C NMR spectrum contained only one CO and one
CS peak, excluding the possibility of a mixture of cis- or
trans-isomers. Thus, both sulfur atoms must be contained
within the same imide group, implying a monoimide
monothioimide structure. Two such geminately substituted
isomers are possible: one with the thioimide located at the
phenothiazine terminus and the other with the thioimide at the
2,6-bis(diphenylmethyl-4-methylphenyl) end. NMR spectros-
copy implies the former because the protons of the phenylene
spacer between the perylene and phenothiazine chromophores
are strongly affected by the thionation, splitting from a single
peak corresponding to all four phenylene protons of PDIS0-
PTZ to two smaller multiplets for each pair of protons for
PDIS2-PTZ. No substantial shift was detected for protons of
the BDPA group. Additionally, the X-ray crystal structure (see
below) of PDIS2-PTZ confirms that the thionation occurred at
the phenothiazine terminus. This result was expected because
of the steric hindrance provided by the aromatic features of the
BDPA moiety, and our previous work indicating thionation
can readily occur proximal to the phenothiazine-substituted
terminus.
Single crystals of suitable quality for X-ray diffraction studies

were obtained for both PDIS0-PTZ and PDIS2-PTZ by vapor
diffusion of pentane into a CHCl3 solution of the target
compound (Figure 2). Both molecules crystallized in the space

Scheme 2. Synthesis of PDI Dyads PDIS0-PTZ and PDIS2-PTZ

Figure 2. Single-crystal structures of PDI-dyads. (A) PDIS0-PTZ and
(B) PDIS2-PTZ. Atom colorsC: gray, O: red, N: blue, H: white,
and S: yellow.
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group P21/c, with one molecule in the asymmetric unit. Both
molecules pack similarly: when viewed along the crystallo-
graphic b-axis, it can be seen that the phenothiazine group of
one molecule lies close to the perylene core of its neighbor
(see the Supporting Information for the figure). An additional
polymorph of PDIS2-PTZ was obtained by slow evaporation
from CHCl3 that contains a π-stacked pair of molecules and
two crystallographically resolved CHCl3 molecules, this time in
the space group P21/n. The crystal structure of PDIS2-PTZ
unambiguously confirms the sulfur substitution positions with
the CS bond lengths averaging 1.64 Å versus 1.22 Å for the
same two CO bonds of PDIS0-PTZ.
Spectroscopy and Electrochemistry. In line with the

data from Tilley et al.,17 the dithionated PDI forms intense
blue solutions in CH2Cl2. PDIS0-PTZ, similar to most PDIs
without core substitution, is orange in solution but
distinguishes itself through a lack of observable fluorescence,
signifying that the presence of the phenothiazine chromophore
acts to quench fluorescence. In contrast to our previously
reported NDI-phenothiazine dyads,26 the PDI homologues do
not change color from the solution to the solid state. In the
UV/visible spectra, PDIS0-PTZ displays a distinctive band at
λmax = 533 nm, resulting from S0 to S1 electronic transition,
with well-defined vibrational structure, the relative intensity of
which is indicative of a nonaggregated PDI core in solution.
Thionation bathochromically shifts the absorption maximum
of PDIS2-PTZ to 633 nm, a difference of 100 nm compared
with PDIS0-PTZ. Both molecules’ spectra display an additional
band at 259 nm, attributed to the phenothiazine chromophore
(see below for further discussion of UV/visible spectra of the
neutral species).
Both dyads were probed by cyclic voltammetry to investigate

their electrochemical behavior. Each compound was found to
exhibit two-reversible one-electron reduction processes and
one-reversible one-electron oxidation, along with a second
oxidation process, that was not reversible under the
experimental conditions (Figure 3, Table 1). PDIS0-PTZ
was reduced at −0.94 and −1.16 V (vs Fc+/Fc), consistent
with typical PDIs.32 As expected, an anodic shift in the
reduction potentials occurred following thionation,19 with
PDIS2-PTZ being reduced at −0.68 and −0.93 V (vs Fc+/Fc).

Although the thionation-induced shift in reduction potential is
a substantial 260 mV, the effect of thionation is less prominent
for the PDI systems than their NDI counterparts (for a
comparable pair of NDI-dyads, the reduction potential
increased by 360 mV).24 Thionation lowers the lowest
unoccupied molecular orbital (LUMO) energy of the PDI
core, improving its power as an electron acceptor.17,18 The
oxidation potentials for the PDI dyads are 0.33 and 0.32 V (vs
Fc+/Fc) for PDIS0-PTZ and PDIS2-PTZ, respectively,
virtually identical to each other and to those of previously
reported NDI−phenothiazine.26 It is notable that the
phenothiazine oxidation is unaffected by thionation of the PDI.
The optical absorbance of PDIS0-PTZ and PDIS2-PTZ was

probed using spectroelectrochemical techniques to investigate
the change in absorbance profiles upon each reduction and
oxidation of the compounds. Upon reduction of PDIS0-PTZ
to [PDIS0-PTZ]

•−, the absorbance bands of the neutral
species were replaced by intense bands at lower energy (Figure
4), consistent with results for other PDIs.12,19,32 A similar
transformation occurs upon reduction of PDIS2-PTZ (Figure
5), although the emergent band at 768 nm is less structured
and more intense ([PDIS0-PTZ] λmax = 716 nm, ε = 72 800
mol−1 dm3 cm−1; and [PDIS2-PTZ] λmax = 768 nm, ε = 142
100 mol−1 dm3 cm−1). The progress of reduction from
[PDIS0-PTZ]

− to [PDIS0-PTZ]
2− gave changes in the UV/vis

profile that were typical of a PDI, with depletion of the newly
formed low-energy bands associated with [PDIS0-PTZ]

− and
an emergence of new peaks for [PDIS0-PTZ]

2− of a similar
intensity and energy to those of the neutral compound (Figure
4). A similar result is obtained for the reduction of [PDIS2-
PTZ]•− to [PDIS2-PTZ]

2− (Figure 5). Oxidation of the two
PDI dyad compounds saw an emergent band at ∼515 nm
corresponding to the oxidized phenothiazine chromophore
which overlapped with transitions of the PDI core. All process
studies were reversible under the conditions of the experiment.
See Table 2 for a summary of the UV/visible spectral data.
As mentioned above, PDIS0-PTZ is essentially nonemissive

indicating that the normally strong fluorescence associated
with a nonaggregated PDI is quenched by the addition of the
phenothiazine group. The emission process for a very similar
phenothiazine−PDI system, recently reported by Shoer et al.,33

was also quenched, attributed to complete charge transfer as
determined by the results of femtosecond transient absorption
spectroscopy. PDIS2-PTZ is also nonemissive: in addition to
the charge-transfer-induced quenching, intersystem crossing to
a triplet state is also possible, as reported for thionated PDIs by
Tilley et al.17

EPR measurements were recorded for the reduced, [PDIS0-
PTZ]− and [PDIS2-PTZ]

−, and oxidized, [PDIS0-PTZ]
+ and

[PDIS2-PTZ]
+, dyad species (Figure 6). As expected, the

LUMO of the dyads lies on the PDI moiety, evidenced by the
complex EPR spectrum for the reduced molecules which

Figure 3. Cyclic voltammograms of PDI−phenothiazine dyads in
CH2Cl2 containing 0.4 M [nBu4N][BF4] as the supporting electrolyte,
with a scan rate of 100 mV s−1. Red: PDIS0-PTZ and blue: PDIS2-
PTZ. Dotted lines represent experiments investigating only the
oxidative processes.

Table 1. Redox Potentials of PDI−Phenothiazine
Compoundsa

Compound
1st reduction

E1/2/V
2nd reduction

E1/2/V
1st oxidation

E1/2/V

PDIS0-PTZ −0.94 −1.16 0.33
PDIS2-PTZ −0.68 −0.93 0.32
aPotentials quoted against E1/2 Fc+/Fc at 100 mV s−1 used as the
internal standard. Recorded in dichloromethane at ambient temper-
ature containing [nBu4N][BF4] (0.4 M) as the supporting electrolyte.
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signifies coupling of the radical electron to many sets of
nonequivalent nuclei (i.e., the four pairs of hydrogen atoms
and two nitrogen atoms that comprise the PDI core, where the
radical electron is assumed to reside). The molecules’ highest
occupied molecular orbital (HOMO) is phenothiazine-based
with similar EPR spectra recorded for both PDI dyads and
analogous to those of our NDI−phenothiazine compounds.26

The experimentally determined giso values for the two oxidized
PDI dyads are identical to each other and to those of the NDI
dyads at 2.0055. Such a consistency across this range of
molecules is further evidence that the phenothiazine HOMO is
fully separated from various acceptor orbitals. The giso values
for PDIS0-PTZ and PDIS2-PTZ are 2.0033 and 2.0063,
respectively: the increase in value is attributed to the “heavy
atom effect” as seen for other thionated molecules
discussed.19,26

■ CONCLUSIONS

Through the introduction of a large aromatic 2,6-bis-
(diphenylmethyl-4-methylphenyl) moiety that limits π−π
interactions and, thus, aggregation, we have demonstrated
that the solubility of PDIs can be greatly improved while still
maintaining a rigid conformation. This bulky solubilizing group
was used in the synthesis of asymmetric PDI−phenothiazine
dyads and enabled solution-phase electrochemical and
spectroelectrochemical characterization. The steric encumber-
ment of one terminus of the PDI allows access to an
unprecedented geminate sulfur substitution pattern upon
thionation with Lawesson’s reagent. Cyclic voltammetry
revealed that geminate dithionation resulted in a decrease of

the HOMO−LUMO gap. Our studies indicate that mod-
ification of the frontier orbitals through thionation is readily
achieved in PDI-based donor−acceptor dyads, allowing tuning
of the HOMO−LUMO energy gap in such systems. It is also
evident that the use of steric inhibition of imide groups
prohibitsthionation in asymmetric PDI systems facilitating
geminate dithionation strategies.

■ METHODS

All of the reagents were purchased from commercial suppliers
and used without further purification. 1H and 13C NMR
spectra were recorded using a Bruker AV(III)400HD
spectrometer. MALDI-TOF MS spectra were recorded on a
Bruker Ultraflex III spectrometer using trans-2-[3-(4-tert-
butylphenyl)-2-methyl-2-propenylidene]-malononitrile as the
matrix. EI M/S spectra were taken using a Bruker Apex IV 4.7
T mass spectrometer. Elemental analyses were recorded on a
CE-440 Elemental Analyzer. Standard UV/vis spectra were
collected on a PerkinElmer Lambda 25 spectrophotometer
using either a 1 or 10 cm pathlength quartz cuvette.
Fluorescence spectra were recorded as aerated solutions
using a Jobin Yvon Horiba FluoroMax-3 spectrometer at
ambient temperatures in a 1 cm pathlength quartz cuvette.
Quantum yields were calculated in comparison with the
fluorescence observed for perylene orange (Φ = 0.99 in
CHCl3) under identical conditions of irradiation.

34

Electrochemical Measurements. Cyclic voltammetry
was carried out using an Autolab PGSTAT20 potentiostat
under an argon atmosphere using a three-electrode arrange-
ment in a single compartment cell. Glassy carbon was used as

Figure 4. UV/vis absorption spectra showing the interconversion between the various charge states of PDIS0-PTZ, arrows indicate the progress of
oxidation/reduction. (a) From neutral (blue) to monocationic (purple), (b) from neutral (blue) to monoanionic (red), and (c) from monoanionic
(red) to dianionic (green) species. Spectra were recorded in dichloromethane containing [nBu4N][BF4] (0.4 M) as the supporting electrolyte at
243 K.

ACS Omega Article

DOI: 10.1021/acsomega.8b02457
ACS Omega 2018, 3, 14236−14244

14240

http://dx.doi.org/10.1021/acsomega.8b02457


the working electrode, platinum wire as the secondary
electrode, and a saturated calomel reference electrode,
chemically isolated from the test solution via a fritted bridge
tube containing electrolyte solution, in the cell. An analyte
concentration of 1 mM was used with [nBu4N][BF4] (400
mM) as the supporting electrolyte. Redox potentials are
referenced to the ferrocenium/ferrocene couple, which was
implemented as an internal reference.35 No compensation was
applied for the internal resistance.

UV/vis spectroelectrochemical measurements were per-
formed using an optically transparent quartz electrochemical
cell, with a 0.5 mm path length. A three-electrode
configuration of a platinum/rhodium gauze working electrode,
platinum wire secondary electrode, and a saturated calomel
reference electrode (chemically isolated via a fritted bridge
tube) were used in the cell. The potential at the working
electrode was regulated with a Sycopel Scientific Ltd DD10M
potentiostat, and the spectra were recorded with a PerkinElmer
16 spectrophotometer. Temperature control was achieved with
a stream of chilled nitrogen gas (cooled by passing through a
tube submerged in liquid nitrogen) across the surface of the
cell, adjusting the flow rate as necessary in response to a
temperature sensor (±0.3 °C). [nBu4N][BF4] (400 mM) was
used as the supporting electrolyte for the experiments.
Bulk electrolysis was performed under an argon atmosphere

at 0 °C in a two-component cell: a platinum/rhodium gauze
working electrode and secondary electrode are separated by a
glass frit. A saturated calomel reference was bridged to the test
solution through a vycor frit, oriented at the center of the
working electrode. The working electrode compartment,
containing analyte (1 mM), was stirred rapidly with a magnetic
stir bar during electrolysis. [nBu4N][BF4] (400 mM) was used
as the supporting electrolyte for the experiments. After the
electrolysis was completed, the prepared solution was trans-
ferred by cannula to a Schlenk-adapted quartz EPR tube for
analysis at ambient temperature on a Bruker EMX
spectrometer at X-band.

Synthesis. Reactions sensitive to air and moisture were
performed using a standard Schlenk line, with nitrogen as the
inert atmosphere. Glassware used was flame-dried under

Figure 5. UV/vis absorption spectra showing the interconversion between the various charge states of PDIS2-PTZ, arrows indicate the progress of
the oxidation/reduction. (a) From neutral (blue) to monocationic (purple), (b) from neutral (blue) to monoanionic (red), (c) from monoanionic
(red) to dianionic (green) species. Spectra were recorded in dichloromethane containing [nBu4N][BF4] (0.4 M) as the supporting electrolyte at
243 K.

Table 2. Summary of Optical Spectroscopy for PDI-
Phenothiazine Compounds

λmax/nm (ε/103 mol−1 dm3 cm−1)

compound neutral monoanionic dianionic monocationic

PDIS0-PTZ 533 (88.0) 798 (49.1) 652 (16.0) 534 (90.9)
496 (50.1) 768 (20.8) 601 (34.5) 497 (54.7)
465 (17.7) 716 (72.8) 575 (85.1) 464 (20.6)
259 (61.4) 704 (67.4) 535 (41.8) 277 (46.2)

681 (40.9) 297 (55.6) 261 (45.5)
296 (26.6) 283 (54.7)
280 (36.8) 258 (67.1)
258 (67.9)

PDIS2-PTZ 633 (92.3) 883 (25.4) 643 (146.0) 786 (3.7)
592 (59.5) 768 (142.1) 589 (69.8) 633 (96.9)
318 (18.9) 447 (9.0) 451 (8.7) 593 (61.3)
256 (106.1) 296 (40.8) 325 (40.4) 520 (25.6)

257 (110.9) 301 (57.1) 318 (16.9)
281 (52.7) 277 (95.3)
259 (102.9) 247 (87.6)
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vacuum and backfilled with nitrogen. Compounds 2,6-
bis(diphenylmethyl)-4-methylaniline,36 10-(4-aminophenyl)-
10H-phenothiazine,31 3,4,9,10-tetra(decyloxycarbonyl)-
pery l ene , 2 9 and pery l ene -3 ,4 -anhydr ide -9 ,10 -d i -
(decyloxycarbonyl)27 were prepared according to literature
methods.
Synthesis of N-(2,6-Bis(diphenylmethyl)-4-methylphenyl)-

N′-(10-phenyl-10H-4.4.1.11.phenothiazine)-perylene-
3,4,9,10-tetracarboxylic Diimide (PDIS0-PTZ). A mixture of
N-(2,6-bis(diphenylmethyl)-4-methylphenyl)-perylene-3,4-di-
carboximide-9,10-anhydride (141 mg, 173 μmol), 10-(4-
aminophenyl)-10H-phenothiazine (70 mg, 243 μmol), and
imidazole (5.00 g, 73.4 mmol) were heated to 130 °C under
dinitrogen for 3 h. The reaction was then cooled to 100 °C,
and then hydrochloric acid (50 mL, 2 M) was added. After 10
min, the reaction mixture was allowed to cool to room
temperature and extracted with CHCl3 (2 × 100 mL). The
combined organics were washed with hydrochloric acid (100
mL), water (100 mL), and brine (100 mL) and dried over
MgSO4. The orange solution was concentrated under reduced
pressure, and the crude product was purified by column
chromatography (silica, 99:1 chloroform/acetone) to give the
product as a red solid (140 mg, 76%, mp = 276 °C). λmax (abs)
= 530 nm. Fluorescence quantum yield Φf < 0.01. 1H NMR
(400 MHz, CDCl3): δ ppm 8.81 (d, J = 8.0 Hz, 2H), 8.74 (d, J
= 8.2 Hz, 2H), 8.64 (d, J = 8.2 Hz, 2H), 8.38 (d, J = 8.0 Hz,
2H), 7.57 (s, 4 H), 7.17−7.09 (m, 14H), 7.04−6.96 (m, 10H),
6.91 (dt, J = 1.3, 7.4 Hz, 2H), 6.79 (s, 2H), 6.53 (dd, J = 1.1,
8.2 Hz, 2H), 5.35 (s, 2H), 2.25 (s, 3H). 13C NMR (125 MHz,
CDCl3): δ ppm 163.63, 162.24, 143.76, 142.20, 142.11,

141.89, 138.10, 135.53, 134.43, 133.90, 132.02, 131.35, 131.28,
130.98, 130.00, 129.93, 129.64, 129.55, 129.49, 128.14, 127.05,
127.01, 126.84, 126.49, 126.27, 123.55, 123.29, 123.20, 123.13,
123.07, 121.91, 117.58, 52.60, 21.78. IR (ATR): 3056, 3022,
1702, 1665, 1592, 1576, 1340 cm−1. HRMS (MALDI)+ m/z:
1085.3298 (C75H47N3O4S1 [M]+ requires, 1085.3282).

Synthesis of N-(2,6-Bis(diphenylmethyl)-4-methylphenyl)-
N′-(10-phenyl-10H-4.4.1.12.phenothiazine)-perylene-3,4-
imide-9,10-dithioimide (PDIS2-PTZ). PDIS0-PTZ (140 mg,
129 μmol) and Lawesson’s reagent (261 mg, 645 μmol) were
dissolved in anhydrous toluene (25 mL) and heated to reflux
for 20 h. The solution was cooled to room temperature and
washed with sat. aq NaHCO3 (100 mL), water (100 mL), and
sat. aq NaCl (100 mL); dried over MgSO4; filtered; and the
solvent removed to give a blue solid. The product was purified
by column chromatography (silica, gradient elution from
chloroform to 19:1 chloroform/acetone) to give PDIS2-PTZ
as a blue microcrystalline powder (73 mg, 51%, mp = 277 °C).
λmax (abs) = 633 nm. 1H NMR (400 MHz, CDCl3): δ ppm
9.03 (d, J = 8.4 Hz, 2H), 8.61 (d, J = 8.2 Hz, 2H), 8.56 (d, J =
8.7 Hz, 2H), 8.37 (d, J = 8.0 Hz, 2H), 7.57−7.50 (m, 2H),
7.43−7.37 (m, 2H), 7.19−7.09 (m, 14H), 7.06−6.98 (m,
10H), 6.91 (dt, J = 1.1, 7.4 Hz, 2H), 6.80 (s, 2H), 6.58 (dd, J =
1.1, 8.2 Hz, 2H), 5.37 (s, 2H), 2.26 (s, 3H). 13C NMR (100
MHz, CDCl3): δ ppm 190.18, 162.29, 144.43, 143.70, 142.19,
142.14, 141.18, 138.10, 137.46, 137.41, 134.72, 134.12, 131.42,
131.30, 130.68, 130.28, 129.66, 129.61, 129.57, 129.50, 128.15,
127.08, 127.01, 126.53, 126.29, 126.12, 124.95, 123.52, 123.48,
123.06, 121.93, 117.59, 52.59, 21.79. IR (ATR): 3056, 3021,

Figure 6. Experimentally measured EPR spectra of PDI-phenothiazine dyads. (A) [PDIS0-PTZ]
−, (B) [PDIS0-PTZ]

+, (C) [PDIS2-PTZ]
−, and

(D) [PDIS2-PTZ]
+.
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1706, 1665, 1588, 1567, 1220, 1163 cm−1. HRMS (MALDI)+

m/z: 1117.2822 (C75H47N3O2S3 [M]+ requires, 1117.2825).
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