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We consider the non-equilibrium behavior of a central spin system where the central spin is period-
ically reset to its ground state. The quantum mechanical evolution under this effectively dissipative
dynamics is described by a discrete-time quantum map. Despite its simplicity this problem shows
surprisingly complex dynamical features. In particular, we identify several metastable time-crystal
resonances. Here the system does not relax rapidly to a stationary state but undergoes long-lived
oscillations with a period that is an integer multiple of the reset period. At these resonances the
evolution becomes restricted to a low-dimensional state space within which the system undergoes
a periodic motion. Generalizing the theory of metastability in open quantum systems, we develop
an effective description for the evolution within this long-lived metastable subspace and show that
in the long-time limit a non-equilibrium stationary state is approached. Our study links to timely
questions concerning emergent collective behavior in the “prethermal” stage of a dissipative quan-
tum many-body evolution and may establish an intriguing link to the phenomenon of quantum
synchronization.

I. INTRODUCTION

The interplay of coherent and incoherent processes in
interacting driven-dissipative quantum systems can lead
to non-equilibrium phases and symmetry breaking [1–7],
the emergence of long relaxation time scales [8–10] or dy-
namical hysteresis [13]. Time crystals are an example of
a genuine non-equilibrium phase [14–16], in which dis-
crete or continuous time-translation symmetry is spon-
taneously broken. Such phases were initially reported
for Hamiltonian systems subject to periodic driving [17–
19], and later also found in driven-dissipative scenarios
[20–26]. They have also been reported in a prethermal
[27–30] or in a prestationary [31–35] regime, manifesting
in long-lived subharmonic collective oscillations. Emer-
gent long time scales are also common in the dynamics of
open quantum systems [9, 36–41]. They occur typically
in the vicinity of dissipative phase transitions (DPTs),
as a finite-size manifestation of the closure of the Liou-
villian spectral gap [11, 12, 42]. Similarly, the emergence
of multistability and symmetry broken phases can be ac-
companied by such long-lived dynamical response [42].
Metastable dynamics, i.e. prestationary regimes charac-
terized by relaxation into long-lived states [9], may also
emerge independently of any stationary phase transition,
as a purely dynamical phenomenon. This is, e.g., the case
in constrained spin models [43, 44]. Such long-lived exci-
tations can impose their frequency to the system, leading
to quantum synhronization phenomena [39, 45–47].

In this paper, we consider an open quantum dynamics
realized by interrupting the coherent evolution of a sys-
tem with the periodic resetting of some of its degrees of
freedom [see Fig. 1 (a)]. By focussing on a central spin
system, we show that this dissipative discrete dynamics
can give rise to novel non-equilibrium phenomena. In
particular, we observe the emergence of metastable res-
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FIG. 1. Dissipative central spin model. (a) N system
spins interact with a central spin for a time period τ after
which the latter is reset to the ground state. (b) Long-time
dynamics of the magnetization of the central spin, ⟨σ̂z⟩, and

of the system spins, ⟨Ĵz⟩. In the normal response, both the
system spins and the central spin approach a steady state
that oscillates with the reset period τ (upper panels). In the
metastable time-crystal regime, the spins display long-lived
oscillations whose period is a multiple of τ ; in the present
case 3τ (lower panels). Parameters: N = 30, gτ = 0.2 and
ωτ = 1.5 (upper panels) or ωτ = 2π/3 (lower panels).

onances, in which the system displays long-lived oscilla-
tions, with a period that is locked to a multiple of the
reset period [see Figs. 1(b) and 2], and in which “heat-
ing” towards an infinite-temperature state is avoided. To
describe the dynamics at these resonances, we develop an
effective theory in which the time-translation symmetry
breaking is decoupled from an emergent classical non-
equilibrium dynamics accounting for the (slow) eventual
decay towards the stationary state. Our results demon-
strate the emergence of non-equilibrium behavior that
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is substantially different from conventional phase tran-
sitions and “prethermal” or metastable time-crystalline
phases. The observed behavior is metastable in the sense
that its manifestation requires large system sizes, and is
seemingly not related to a (standard) non-equilibrium
phase transition. Upon varying the system size, the
metastable resonances can become weaker or stronger,
and do not smoothly approach a well-determined ther-
modynamic limit.

II. DISSIPATIVE CENTRAL SPIN MODEL

We consider a central spin model in which N system
spins interact with a central one. Such models are rele-
vant in the description of hyperfine interactions between
quantum dots [48] or nitrogen-vacancy centers in dia-
mond [49] and their environment. Moreover, they are
known to display interesting dynamical phenomena both
in closed and driven-dissipative scenarios [8, 50–53]. Our
starting point is an XX-Hamiltonian (h̵ = 1) where all
system spins are resonantly driven with a Rabi frequency
ω and coupled with the same strength g to the central
spin [see Fig. 1(a)]:

Ĥ = ωĴx + g(Ĵ+σ̂− + Ĵ−σ̂+). (1)

Here Ĵα = 1
2 ∑

N
j=1 σ̂

(j)
α and Ĵ± = Ĵx±iĴy are collective spin

operators and raising/lowering operators, respectively,
representing the ensemble of system spins. They are con-
structed from the Pauli matrices σ̂α (α = x, y, z). The
central spin is represented through the raising/lowering
operators σ̂± = (σ̂x ± iσ̂y)/2. The dissipative dynam-
ics emerges from periodically (period τ) resetting to the
ground state (∣↓⟩ ⟨↓∣c) the central spin, as illustrated in
Fig. 1 (a). The reduced density matrix ρ̂ for the collec-
tive spin at multiples of τ is then given by [54]

ρ̂n+1 = E ρ̂n = Trc[Û ρ̂n⊗ ∣↓⟩⟨↓∣c Û �]. (2)

Here Û = e−iĤτ and ρ̂n is the short hand notation for
ρ̂(nτ). The map E is a trace-preserving and completely
positive quantum map. This kind of discrete quantum
dynamics also occurs in so-called collision models [54],
which in the short interaction time limit provide a dy-
namics that is equivalent to Lindblad master equation.

The action of the map E is conveniently studied in
terms of its right and left eigenmatrices, i.e., R̂j and L̂j ,
and the corresponding eigenvalues λj [9]:

ρ̂n = Enρ̂0 = ρ̂ss + ∑
j≥1

Tr[L̂j ρ̂0]R̂jλ
n
j . (3)

The eigenvalues satisfy ∣λj ∣ ≤ 1, and we arrange them
in order of decreasing absolute value ∣λ0∣ ≥ ∣λ1∣ ≥ ∣λ2∣ ≥
. . . . Those with unit absolute value correspond to non-
decaying modes, while there is at least one stationary
state that we denote as ρ̂ss = R̂0/Tr[R̂0] with λ0 = 1. It
is also useful to define the frequencies and decay rates
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FIG. 2. Dynamical regimes and metastable reso-
nances. (a) Purity of the stationary state as a function of g
and ω. Three (p, q) resonances are marked. (b) Initial relax-
ation dynamics of the system magnetization with initial state
∣J, J⟩, as a function of ω for gτ = 0.2. (c) Red solid line: decay
rate γ1 of the leading excitation mode of the map E [see Eq.
(2)] as a function of ω at gτ = 0.2. Blue dashed-dotted line:
ratio of the leading decay rate and the next (different) one, γ∗
(for the (p, q) = (2,3) resonance this is γ∗ = γ3). Inset: lead-
ing frequency, ν1τ , of the metastable resonance. The dotted
purple line corresponds to ν1τ = 2π/3. (d)-(f) Aitoff projec-
tion of the Husimi Q function for ρ̂ss and for the parameters
indicated by the markers in (a): (d) gτ = 0.25, ωτ = 0.1; (e)
gτ = 0.3, ωτ = 0.5; (f) gτ = 0.2, ωτ = 2π/3. North to south
pole: θ = π to θ = 0. West to east: ϕ = 0 to ϕ = 2π. In all
cases N = 30.

of the system as: γjτ = −ln[∣λj ∣], νjτ = arg[λj], in anal-
ogy to the Liouvillian formalism [9, 42]. Additionally,
we will make use of spin coherent states, which provide
the basis for a phase space representation of the sys-
tem state and operators. This representation provides
important insight on the different dynamical regimes of
the model. For a spin J , coherent states are defined as
∣θ, ϕ⟩ = exp[iθ(Ĵx sinϕ − Ĵy cosϕ)]∣J, J⟩, where θ ∈ [0, π]
and ϕ ∈ [0,2π] define the polar and azimutal angle re-
spectively [55]. Following [56], we will make use of the
spin analogous of the Husimi Q function, defined for
a spin operator Ô as: Q(θ, ϕ) = J ⟨θ, ϕ∣Ô∣θ, ϕ⟩, where
J = (2J + 1)/4π is a normalization constant.

III. RESULTS

A. Dynamical regimes and stationary purity

We find that for the study of the stationary state ρ̂ss
the purity is actually a good order parameter, noting that
the magnetization, which appears to be the natural or-
der parameter, is not sensitive to all dynamical regimes.
The stationary purity is shown in Fig. 2 (a) as a func-
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tion of the Rabi frequency and interaction strength. For
small ωτ , ρ̂ss is almost pure, which follows from the in-
teraction term dominating over the coherent driving, the
former enforcing a stationary state close to ∣J,−J⟩ [Fig.
2 (d)]. In contrast, increasing ωτ above a certain thresh-
old makes the Rabi term to dominate over the interaction
one, changing qualitatively the stationary state. In this
region, ρ̂ss is a highly entropic mixed state, close to the
infinite temperature state, and thus spreading out (quasi)
uniformly over the entire phase space [Fig. 2 (e)]. For
even larger ωτ , the interplay of coherent dynamics and
periodic interruptions gives rise to yet another kind of dy-
namics: for ωτ close to certain fractions of π, i.e. pπ/q,
purity islands emerge in which Tr[ρ̂2ss] ∼ 1/q. In panel
(a) these (p, q) resonances can be observed around 2π/5,
2π/3 and 4π/5, the most prominent one being the one
with q = 3. Near these metastable resonances the sta-
tionary state is a mixture of just q almost disjoint and
highly pure states. This is to be contrasted with what
happens generically outside these regions, where the sys-
tem actually converges to an almost fully mixed (infi-
nite temperature) stationary state. This suggests that
in the metastable islands, due to a mechanism akin to
ergodicity-breaking, the system avoids heating up to in-
finite temperature. This is illustrated in Fig. 2 (f) for
q = 3 and in Appendix B for q = 5. In order to get an
impression of the dynamics, we show in Fig. 2 (b) the

time evolution of the system spin magnetization ⟨Ĵz⟩ for
gτ = 0.2. Here one finds that the purity islands labeled by
(p, q) in panel (a) indeed correspond to metastable states,
which display long-lived oscillations with a period that is
approximately given by T ≈ qτ . This behavior is most
evident around (p, q) = (2,3), although it can also be
recognized near the other resonances [(2,5) and (4,5)].
In the following, we focus on the case (p, q) = (2,3), as
the most prominent resonance in Fig. 2.

B. Metastable period-locking resonances

The observed long-lived oscillations can be character-
ized studying the leading eigenvalues of E . In Fig. 2 (c)
we plot the leading decay rate of the system γ1τ (red solid
lines), observing that for the resonance around ωτ = 2π/3
this becomes several orders of magnitude smaller than
anywhere else. At this resonance the eigenvalue λ1 is
complex and its corresponding frequency is plotted in
the inset. This reveals a frequency locking to ν1τ ≈ 2π/3
across the entire (2,3) resonance, a behavior that is rem-
iniscent of the synchronization phenomenon of frequency
entrainment. Here, the dominant frequency of a system
also locks to a given one in a whole dynamical regime,
which has been observed both in classical [57] and quan-
tum systems in [39, 58, 59]. In Fig. 2 (c) we also plot the
ratio of the dominant decay rate with the next (different)
leading one (blue dotted-line) [60]. This ratio increases
by several orders of magnitude at the (2,3) resonance,
indicating the emergence of a huge separation of time

scales: the long-time dynamics is thus dominated only
by the two complex conjugated modes with frequency
∣ν1∣τ ≈ 2π/3. This separation of time scales is character-
istic of the emergence of metastability in open quantum
systems [9]. Moreover, we find it to be present in the
whole purity island, as shown in Fig. 3 (a), giving rise
to what we term as metastable period-locking resonances.
Similar results can be found for resonances with higher q
and different system sizes, in which more than two long-
lived modes can be involved (see Appendix B).
This huge separation of time scales allows the

metastable dynamics in the (2,3) resonance to be ap-
proximated by [9]:

ρ̂n ≈ ρ̂ss + (c1R̂1e
iν1nτ +H.c)e−γ1nτ = P ρ̂n, (4)

with c1 = Tr[L̂1ρ̂0]. The stationary state and these
two longest-lived modes define the metastable manifold
(MM), denoted by P ρ̂n, to which the state of the system
rapidly converges on a time scale given by γ−13 . Crucially,
while γ1τ ≪ 1, ν1τ is of order one. Therefore, in order
to unveil the structure of the MM, it is more convenient
to consider the period-tripled stroboscopic map Λ = E3,
which displays the same eigenmatrices but with eigen-
values δj = 3νj − 2π and Γj = 3γj . Thus, by switching
to Λ, we have Γ1τ ∼ δ1τ ≪ 1, as can be readily appre-
ciated in Fig. 3 (b). The metastable dynamics in this
stroboscopic picture is exemplified in Fig. 3 (c) and (d),
in which its multistep character is evident: the system
rapidly relaxes to the MM, in which the state appears
to settle to ρ̂3n ≈ P ρ̂0 displaying a metastable plateau for
intermediate times Γ−13 ≪ t ≪ Γ−11 , ∣δ−11 ∣, until eventually
reaching the true stationary state, described by Eq. (4).

C. Metastable symmetry broken states

The smallness of both Γ1 and δ1 shows that the
metastable resonance manifests in the map Λ as a (quasi-
)closure of the spectral gap, similarly to what is observed
for finite sizes with the Liouvillian gap in DPTs [8, 42].
As a consequence, the structure of the MM is analogous
to that of the emerging stationary manifold for DPTs,
analyzed in Ref. [42]. In fact, to a good approximation,
the stationary state and the Hermitian partners of the
leading eigenmodes [61] decompose in terms of the same
three extremal metastable states (EMSs) [9], that allow
us to write any state in the MM as a convex combination
of them [see Eq. (8)]. These EMSs are denoted by µ̂1,2,3

and given by:

ρ̂ss ≈
1

3
(µ̂1 + µ̂2 + µ̂3), (5)

R̂A ≈
cA
2
(2µ̂1 − µ̂2 − µ̂3), R̂B = cB(µ̂3 − µ̂2). (6)

Here cA,B are real constants corresponding to the sum of

positive eigenvalues of R̂A,B, and in the whole metastable
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FIG. 3. Metastable dynamics. (a) Ratio of the leading decay rate, Γ1, and the next (different) one, Γ∗, for the period-
tripled stroboscopic map Λ. (b) Ratio of the leading decay rate and its corresponding detuning, δ1, in the region in which

the leading mode is complex. The regions in which Γ1/∣δ1∣ <
√

3 are colored in red. (c) and (d) Stroboscopic dynamics of the
z- and y-component in the metastable regime considering the exact time evolution ρ̂3n (blue solid line), the projection on the
metastable manifold P ρ̂3n (yellow dashed line) and the classical stochastic model of Eq. (11) (red dotted line). Initial condition

∣J, J⟩, ωτ = 2π/3 and gτ = 0.25. Gray inset: the blue squares show the exact value of ⟨Ĵz(nτ)⟩/N , while the orange-dashed
lines show the values obtained from Eq. (10). Aitoff projection of the Husimi Q function for: (e) µ̂1/3; (f) µ̂2/3 (g) µ̂3/3; (h)

P̂1; (i) P̂2; (j) P̂3. Parameters: N = 30, ωτ = 2π/3, gτ = 0.2.

resonance their ratio is well approximated by cA/cB ≈
2/
√
3 (see Appendix A). In Fig. 3 (e)-(g) we show these

EMS, finding that they correspond to the different lobes
making up the stationary state. The accuracy of these
approximations is characterized in detail in Fig. 5 in Ap-
pendix A. Moreover, we observe the EMSs to be almost
disjoint, as they are tightly focused in non-overlapping
phase space regions. This can be better understood con-
sidering their left partners:

P̂1 =
1

3
+ cAL̂A,

P̂2 =
1

3
− cA

2
L̂A − cBL̂B,

P̂3 =
1

3
− cA

2
L̂A + cBL̂B.

(7)

These Hermitian operators satisfy the following proper-
ties (see Appendix A): (i) P̂1 + P̂2 + P̂3 = 1; (ii) they are
to a good approximation positive; (iii) they satisfy to a

good approximation Tr[P̂j µ̂k] = δjk. Accordingly, we can
rewrite the projection of ρ̂0 in the MM as a probabilistic
mixture of µ̂1,2,3:

P ρ̂0 ≈ p01µ̂1 + p02µ̂2 + p03µ̂3, (8)

with p0j = Tr[P̂j ρ̂0] which can be approximately regarded
as classical probabilities. Inspecting the Husimi represen-
tation of P̂j , we find them to partition the phase space
in three almost disjoint regions [Fig. 3 (h)-(j)]. These
different regions correspond to the basin of attraction of
each of the EMSs; any initial state contained in them will
rapidly converge to the corresponding EMS and remain
trapped in it for the long intermediate time scale.

The action of E on the EMSs unveils one of their most
interesting features: they break (approximately) the dis-
crete time-translation symmetry imposed by the periodic
resetting of the central spin. Indeed, they are connected
by E forming a period-tripled cyclic evolution:

Eµ̂1 ≈ µ̂2, Eµ̂2 ≈ µ̂3, Eµ̂3 ≈ µ̂1. (9)

These relations can be derived using Eqs. (5)-(6), and

making the approximation cA/cB ≈ 2/
√
3, Γ1 = δ1 ≈ 0,

valid in the metastable resonance and for times t≪ Γ−11 ∼
∣δ1∣−1 (i.e. in the metastable plateau) (see Appendix A).
Remarkably, the structure of Eq. (9) is analogous to
that of conventional symmetry breaking DPTs [42] re-
placing the superoperator describing the symmetry, as
e.g. parity, by E [see Appendix B for an example with
(p, q) = (4,5)]. Finally, combining Eqs. (8) and (9), we
see that in the metastable plateau the period-tripled dy-
namics is approximated by:

ρ̂3n+j ≈ p01µ̂1+j + p02µ̂2+j + p03µ̂3+j , (10)

where j = 0,1,2 and the index of the metastable states
follows periodic boundary conditions, i.e. µ̂4 = µ̂1. In the
inset of Fig. 3 (c) we consider the exact magnetization
dynamics (blue squares) in the plateau and compare it
with the three values predicted by this approximation
(orange dashed lines), finding excellent agreement.

D. Effective non-equilibrium classical relaxation

The period-tripled oscillation eventually fades away
due to the slow residual dynamics associated with the
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FIG. 4. Dependence on the system size. (a) Stationary
purity Tr[ρ̂2ss] varying gτ and ωτ for N = 70. (b) Decay rate
of the dominant oscillatory mode in the (2,3) metastable res-
onance varying the system size and for gτ = 0.2 (blue circles)
or gτ = 0.15 (orange squares) and ωτ = 2π/3.

small but non-vanishing values of Γ1 and δ1. By rewrit-
ing Eq. (4) in terms of the EMSs, we find that this
final relaxation (in the stroboscopic picture) follows a
classical stochastic process, i.e. not only P ρ̂0 can be
written as a classical probabilistic mixture of the EMSs,
but also P ρ̂3n. Hence, we can promote Eq. (8) to

P ρ̂3n ≈ ∑3
j=1 pj(nτ)µ̂j , where the probabilities pj(t) obey

(see Appendix A):

d

dt
pj = −

2Γ1

3
pj +(

Γ1

3
− δ1√

3
)pj+1 +(

Γ1

3
+ δ1√

3
)pj−1, (11)

with initial condition p0j and where the index j in (11) fol-
lows periodic boundary conditions. For the process (11)

to be physical we need Γ1/∣δ1∣ ≥
√
3, which is satisfied in

most of the metastable regime, except for the boundary
regions indicated in red in Fig. 3 (b). In Fig. 3 (c) and
(d) we exemplify these dynamics (red-dotted lines), find-
ing excellent agreement with the exact ones both in the
plateau and in the final decay. Inspection of Eq. (11)
reveals the stationary state to be p1 = p2 = p3 = 1/3 as
expected from Eq. (3). Interestingly, we find that sta-

tionary probability currents, given by Jj,j+1 = 2δ1/(3
√
2)

(see Appendix A), are generally present. This indicates
the non-equilibrium nature of the final relaxation pro-
cess of the metastable time-translation symmetry broken
states, that contrasts with what found for other quantum
systems effectively governed in the long-time by infinite-
temperature classical equilibrium process [9, 36, 39].

E. Dependence on the system size

We now analyze what happens to the metastable res-
onances when the size of the system is increased. As we
shall see, these are also resonances in the system size,
since their emergence strongly depends on the number
of spins and their position in the phase diagram does
not show a smooth behavior when this number is varied.
This is illustrated in Fig. 4 in two different ways: first,
by analyzing how the shape and the number of purity is-
lands (associated with the metastable resonances) change
with system size, and then by studying the behavior of
the lifetime of the dominant oscillatory mode when N is
increased. In particular, in Fig. 4 (a) we plot the same

map as in Fig. 2 (a) but considering a larger system
size, i.e. N = 70. Comparing both figures, we observe
that the number of islands as well as their shape change
with N in a non-trivial way: for N = 70 we observe an
increased number of purity islands, which however seem
to shrink with increasing N (see Appendix C for other
sizes). When considering the decay rate of the domi-
nant oscillatory mode [Fig. 4 (b)], i.e. that responsible
for the main oscillations, we observe a non-monotonic
behavior with strong dependence on N . Such a non-
monotonic behavior is also observed for other metastable
resonances with different p and q (see Appendix C). Thus,
in contrast to dissipative phase transitions [42], there is
no evidence for a closure of the spectral gap in the ther-
modynamic limit. The results of Fig. 4 rather suggest
that these metastable resonances should be considered
as many-body resonances, whose emergence necessitates
a large enough system size, and which may move in the
phase diagram or even disappear when increasing further
the number of particles.

IV. CONCLUSION

We have reported on an intrinsically metastable
counterpart of discrete time crystals, emerging in a
dissipative spin model that may be regarded as the
discrete-time generalization of the boundary time
crystal of Ref. [20]. Similarly to prethermal [27–30]
and metastable time crystals [31–35], these oscillations
emerge in a prestationary regime, while their lifetime
surpasses any intrinsic timescale of the model by orders
of magnitude. Compared to other many-body ergodicity
breaking dynamics, as due to dynamical symmetries [25]
or quantum scars [62], the reported dynamics is largely
independent on the initial conditions, as the EMSs act as
effective attractors with a combined basin of attraction
that spans all phase space. A further peculiarity is their
non-trivial dependence on system size, as the largest
lifetimes are attained for intermediate sizes resulting
in a non-monotonic behavior as the thermodynamic
limit is approached. In fact, each of these resonances
seem to display an optimal system size, as based on the
smallness of dominant decay rate and on the extension
of the purity island (see Figs. 4, 9 and 10), which
suggests that they they do not develop into a standard
non-equilibrium phase in the thermodynamic limit.
Nevertheless, the fact that this spectral gap does not
actually close does not preclude the emergence of a
robust MM with a structure analogous to the stationary
one found in symmetry breaking DPTs [42]. This points
to a connection between time-translation symmetry
breaking and other types of spontaneous symmetry
breaking in driven-dissipative systems.
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Appendix A: Period-tripled metastable oscillations

1. Long-time dynamics

We begin this section by writing down the long time
approximation for the dynamics in the period-tripled res-
onance:

ρ̂n ≈ ρ̂ss +Tr[L̂1ρ̂0]R̂1e
iν1nτ−γ1nτ +H.c = P ρ̂n. (A1)

Notice that we stick to the following criteria for the def-
inition of the eigenvalues and eigenmatrices: ν1 > 0 and
Tr[L̂1R̂1] = 1. We want to rewrite Eq. (A1) in terms of
the following Hermitian combinations of the long-lived
eigenmodes:

R̂A =
R̂1 + R̂�

1

2
, R̂B =

R̂1 − R̂�
1

2i
,

L̂A = L̂1 + L̂�
1, L̂B = i(L̂1 − L̂�

1),
(A2)

which satisfy Tr[L̂jR̂k] = δjk with j, k = A,B. We then
obtain:

P ρ̂n = ρ̂ss + [A cos(ν1nτ) +B sin(ν1nτ)]R̂Ae
−γ1nτ

+ [B cos(ν1nτ) −A sin(ν1nτ)]R̂Be
−γ1nτ ,

(A3)

where A = Tr[L̂Aρ̂0] and B = Tr[L̂Bρ̂0]. The advantage

of R̂A,B comes from the fact that they can be easily de-
composed in terms of physical states as they are both
Hermitian and traceless. Therefore, they are bound to
satisfy:

R̂A =
2J+1
∑
j=1

aj ∣Aj⟩⟨Aj ∣,
2J+1
∑
j=1

aj = 0,

R̂B =
2J+1
∑
j=1

bj ∣Bj⟩⟨Bj ∣,
2J+1
∑
j=1

bj = 0,
(A4)

where 2J+1 is the dimension of the Hilbert space in which
the collective spin J resides. It is also useful to write the
time evolution every three steps, i.e. in the stroboscopic
period-tripled picture:

P ρ̂3n = ρ̂ss + [A cos(δ1nτ) +B sin(δ1nτ)]R̂Ae
−Γ1nτ

+ [B cos(δ1nτ) −A sin(δ1nτ)]R̂Be
−Γ1nτ ,

(A5)

where δ1 = 3ν1 − 2π and Γ1 = 3γ1.

2. Formal decomposition in stationary
period-tripled lobes

In this subsection we will suppose that R̂1 and R̂�
1 ac-

tually become eigenmodes with unit eigenvalue of the
period-tripled map and explore the consequences of this.

More precisely, we are assuming that ΛR̂1 = R̂1, ΛR̂
�
1 =

R̂�
1 and thus ΛR̂A,B = R̂A,B (recall Λ = E3). Then, ρ̂ss and

R̂A,B all belong to the now degenerate stationary subp-

sace of Λ. Notice that while ρ̂ss and R̂A,B need not to be
orthogonal, they are required to be linearly independent
(in the vectorized representation). The other constrains
to be satisfied are their unit or null trace, their Hermitic-
ity, and the positvity of the stationary state. A possible
way to satisfy these constrains is that they are all differ-
ent linear combinations of a set of three stationary states.
This crucial idea is one of the core results of Ref. [42].
Indeed, based on our numerical observations, we propose
the following decomposition:

R̂A =
cA
2
(2µ̂1 − µ̂2 − µ̂3), R̂B = cB(µ̂3 − µ̂2),

ρ̂ss =
1

3
(µ̂1 + µ̂2 + µ̂3),

(A6)

where cA,B are real constants. Hence, µ̂1,2,3 are station-
ary states of Λ and linearly independent. This last prop-
erty is better appreciated inverting (A6):

µ̂1 = ρ̂ss +
2R̂A

3cA
,

µ̂2 = ρ̂ss −
R̂A

3cA
− R̂B

2cB
,

µ̂3 = ρ̂ss −
R̂A

3cA
+ R̂B

2cB
.

(A7)

which shows that they are an independent linear combi-
nation (non-zero determinant of the coefficients arranged
in columns) of linearly independent vectors (the linear

independence of ρ̂ss, R̂A/cA and R̂B/cB is guaranteed by
the assumption that they are eigenmatrices of Λ). We
can proceed in the same line for the left eigenmatrices,
obtaining:

P̂1 =
1

3
+cAL̂A, P̂2 =

1

3
− cAL̂A

2
− cBL̂B,

P̂3 =
1

3
− cAL̂A

2
+ cBL̂B,

(A8)

which satisfy:

P̂1 + P̂2 + P̂3 = 1, Tr[P̂j µ̂k] = δjk ∀j, k, (A9)

as follows by definition. Moreover, they must satisfy

P̂j ≥ 0 ∀j (A10)

to guarantee that, whatever is the initial condition, P ρ̂0
will be a positive semi-definite matrix. Indeed, from
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properties (A9)-(A10), it follows that:

P ρ̂0 = p01µ̂1 + p02µ̂2 + p03µ̂3, (A11)

with p0j = Tr[P̂j ρ̂0], and thus pj ≥ 0 and p01 + p02 + p03 =
1. Therefore, P ρ̂0 is a probability mixture of three
stationary states, which motivates the term extreme
metastable states (EMSs) [9]. We now address the ques-
tion of whether µ̂1,2,3 actually break the discrete time-
translation symmetry of E . Indeed, the result is that if:

r = cA
cB
= 2√

3
(A12)

then:

Eµ̂1 = µ̂2, Eµ̂2 = µ̂3, Eµ̂3 = µ̂1, (A13)

Notice that our initial assumption that ΛR̂1 = R̂1 im-
plies that ν1 = 2π/3. Then ER1 = (−1/2 + i

√
3/2)R̂1, and

together with (A12) we obtain:

E[ R̂A

cA
] = − R̂A

2cA
− 3R̂B

4cB
,

E[ R̂B

cB
] = R̂A

cA
− R̂B

2cB
,

(A14)

which can be used to obtain the cyclic relation (A13).

3. Approximate decomposition in metastable
period-tripled lobes

In our system δ1τ ≪ 1, Γ1τ ≪ 1, although they are
non-zero. This means that the results of the previous
subsection do not apply exactly but only in an approx-
imate way. The most straightforward way to obtain an
approximation for µ̂1,2,3 is to use the spectral decompo-

sition of R̂A,B. Indeed, we can choose:

µ̂2 =
1

cB
∑
bj<0

bj ∣Bj⟩⟨Bj ∣, cB = ∑
bj>0

bj ,

µ̂3 =
1

cB
∑
bj>0

bj ∣Bj⟩⟨Bj ∣,
(A15)

µ̂1 =
1

cA
∑
aj>0

aj ∣Aj⟩⟨Aj ∣, cA = ∑
aj>0

aj . (A16)

which ensures that µ̂1,2,3 are bona fide density matrices.
However, then we have that some of the following rela-
tions hold under the approximation sign:

R̂A ≈
cA
2
(2µ̂1−µ̂2 − µ̂3), R̂B = cB(µ̂3 − µ̂2),

ρ̂ss ≈
1

3
(µ̂1 + µ̂2 + µ̂3) = ξ,

(A17)

and their accuracy needs to be checked. Moreover, we
will also find that Eqs. (A11) and (A12) also apply

FIG. 5. Characterization of the main approximations in the
metastable period-tripled regime for N = 30. The plots are
restricted to the region in which the dominant eigenmodes
are the complex conjugate ones leading to period-tripling. All
plots are in logarithmic scale. (a) Trace distance between the
actual stationary state and its approximation given by Eq.
(A17). (b) Trace distance between Eµ̂1 and µ̂2. (c) Absolute

value of the largest negative eigenvalue of P̂1, denoted by λN .
(d) Absolute value of the difference between the actual value

of r and the theoretical one, i.e. 2/
√

3. Here ∆r = r − 2/
√

3.

only approximately, while Tr[P̂jµ̂k] ≈ δjk and they are
only approximately positive. Therefore, the accuracy
of such approximations need to be characterized for the
metastable region. This is done in Fig. 5, in which we
characterize the main approximations: (a) the trace dis-
tance between the actual stationary state and its approx-
imation; (b) the trace distance betweeen Eµ̂1 and µ̂2; (c)

the largest negative eigenvalue of P̂1 denoted by λN ; and
(d) the deviation of r from 2/

√
3, denoted by ∆r. Com-

paring these results with those of Fig. 3 (a) of the main
text, we observe that the larger is Γ∗/Γ1, the better are
these approximations. We conclude that these approxi-
mate results are in good agreement with the exact ones
for the relevant metastable region.

4. Classical relaxation dynamics

A remarkable result is that not only P ρ̂0 can be ap-
proximated as a probabilistic mixture of three metastable
states, but the entire relaxation dynamics of P ρ̂3n can be
described by a classical three state stochastic process. In
order to show this, we will make use of the rescaled Her-
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mitian modes and their left partners which we define as:

R̂′A,B =
R̂A,B

cA,B
, L̂′A,B = cA,BL̂A,B. (A18)

Rewriting the stroboscopic dynamics given by Eq. (A5)
in terms of the rescaled Hermitian modes we obtain:

P ρ̂3n = ρ̂ss + [A′ cos(δ1nτ) + rB′ sin(δ1nτ)]R̂′Ae−Γ1nτ

+ [B′ cos(δ1nτ) −
A′

r
sin(δ1nτ)]R̂′Be−Γ1nτ ,

(A19)

where A′ = Tr[L̂′Aρ̂0] and B′ = Tr[L̂′Bρ̂0]. Then, we make
use of the expression of the eigenmodes in terms of the
EMSs given in Eq. (A17) to obtain:

P ρ̂(3nτ) ≈ p1(nτ)µ̂1 + p2(nτ)µ̂2 + p3(nτ)µ̂3 (A20)

where the pj(nτ) are given in terms of only the initial
conditions p0j and the rates Γ1 and δ1:

p1(nτ) =
p01
3
(1 + 2 cos(δ1nτ)e−Γ1nτ)

+ p03
3
(1 − [cos(δ1nτ) −

√
3 sin(δ1nτ)]e−Γ1nτ)

+ p02
3
(1 − [cos(δ1nτ) +

√
3 sin(δ1nτ)]e−Γ1nτ),

(A21)

p2(nτ) =
p02
3
(1 + 2 cos(δ1nτ)e−Γ1nτ)

+ p01
3
(1 − [cos(δ1nτ) −

√
3 sin(δ1nτ)]e−Γ1nτ)

+ p03
3
(1 − [cos(δ1nτ) +

√
3 sin(δ1nτ)]e−Γ1nτ),

(A22)

p3(nτ) =
p03
3
(1 + 2 cos(δ1nτ)e−Γ1nτ)

+ p02
3
(1 − [cos(δ1nτ) −

√
3 sin(δ1nτ)]e−Γ1nτ)

+ p01
3
(1 − [cos(δ1nτ) +

√
3 sin(δ1nτ)]e−Γ1nτ).

(A23)

Notice that here we have used the approximations
cA/cB ≈ 2/

√
3, Eq. (A17), and the expression of p0j in

terms of A′ and B′, which can be obtained from their
definition p0j = Tr[P̂j ρ̂0] and read:

p01 =
1

3
+A′, p02 =

1

3
− A

′

2
−B′, p03 =

1

3
− A

′

2
+B′. (A24)

The use of these approximations is the reason why we
write Eq. (A20) under the approximate sign. Finally, we

recognize (i.e. we can check) that Eqs. (A21)-(A23) are
indeed the solution at discrete time steps t = nτ of the
classical stochastic process given by:

d

dt
p1 = −

2Γ1

3
p1 + (

Γ1

3
− δ1√

3
)p2 + (

Γ1

3
+ δ1√

3
)p3, (A25)

d

dt
p2 = −

2Γ1

3
p2 + (

Γ1

3
− δ1√

3
)p3 + (

Γ1

3
+ δ1√

3
)p1, (A26)

d

dt
p3 = −

2Γ1

3
p3 + (

Γ1

3
− δ1√

3
)p1 + (

Γ1

3
+ δ1√

3
)p2, (A27)

with initial contitions p0j . Notice that the condition for
these equations to represent a classical stochastic process
is that:

Γ1

∣δ1∣
≥
√
3, (A28)

since the off-diagonal rates need to be positive. From
Fig. 3 (b) of the main text, we see that this condition is
widely satisfied. Then, Eqs. (A25)-(A27) guarantee that
pj(t) can be regarded as probabilities at all times. This
process generalizes to three states the effective classical
dynamics disclosed in Refs. [9, 36]. We observe that
when considering three states, there is the possibility to
have a very slow oscillation in the long-time relaxation
as described by the terms proportional to δ1.

5. Stationary current

The classical stochastic process given by Eqs. (A25)-
(A27) can be written in matrix form:

d

dt
p⃗ =Wp⃗ (A29)

where p⃗ = (p1, p2, p3)T and

W =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

− 2Γ1

3
Γ1

3
− δ1√

3

Γ1

3
+ δ1√

3

Γ1

3
+ δ1√

3
− 2Γ1

3
Γ1

3
− δ1√

3

Γ1

3
− δ1√

3

Γ1

3
+ δ1√

3
− 2Γ1

3

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (A30)

The matrix W satisfies the following properties that
guarantee it to be a classical stochastic process: (i) the

sum of each of the columns is zero, i.e. ∑3
i=1Wij = 0

∀j, which guarantees conservation of probability; (ii)
the off-diagonal elements are positive semi-definite (if

Γ1 ≥
√
3∣δ1∣), i.e. Wij ≥ 0 if i ≠ j, which guarantees the

pj ’s to remain positive. Moreover, a third property (iii)
is that the sum of the elements of the same row is zero,
i.e. ∑3

j=1Wij = 0 ∀i, which indicates that the stationary
state is uniform, i.e. p∞1 = p∞2 = p∞3 = 1/3. Despite the
stationary state is uniform, it displays non-zero currents
and thus it is a non-equilibrium stationary state. The
stationary current from state i to state j is given by:

Jij = p∞i Wji − p∞j Wij . (A31)
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(2,5)(2,7) (4,7) (2,3) (4,5)

FIG. 6. (a) Magnetization dynamics varying the Rabi fre-
quency and for an exemplary cut at gτ = 0.18, with the initial
condition ∣J, J⟩ and system size N = 70. In the horizontal axis
we have marked the most prominent metastable resonances,
where the notation (p,q) resonance stands for a resonance
around the frequency ω = pπ/q. (b) Aitoff projection of the
Husimi Q function for the stationary state in the (4,5) reso-
nance. The parameters are ωτ = 4π/5, gτ = 0.18 and N = 70.

From which we find that

J = J12 = J23 = J31 =
2δ1

3
√
3
. (A32)

Thus if δ1 > 0 there is a stationary clockwise probability
current, while if δ1 < 0 there is a stationary anti-clockwise
probability current.

Appendix B: Period-5 metastable oscillations

1. Long-time dynamics

Besides the prominent p = 2, q = 3 region in which we
have focused, we can also find other types of metastable
resonances. In particular, a second important one is that
occurring for p = 4 and q = 5. While signatures of this
resonance in the stationary state are already evident for
N = 30, i.e. Tr[ρ̂2ss] ∼ 1/5 and ρ̂ss made of 5 disjoint lobes,
this becomes more important in systems with larger sizes.
For instance, in Fig. 6 (a), we exemplify the dynamics for
N = 70 varying ωτ and for a cut at gτ = 0.18, similarly to
what we have done in the main text. We can appreciate
both the transition from overdamped to underdamped
dynamics as well as the presence of metastable resonances
for several combinations of (p, q), the (4,5) resonance be-
ing particularly clear. In panel (b) we plot the stationary
state for a point inside the (4,5) resonance, finding that
it displays five almost disjoint lobes, as anticipated in the
main text.

In the (4,5) resonance we find the long-time dynamics
to be accurately described by:

ρ̂n ≈ρ̂ss +Tr[L̂1ρ̂0]R̂1e
iν1nτ−γ1nτ

+Tr[L̂2ρ̂0]R̂2e
iν2nτ−γ2nτ +H.c = P5ρ̂n

(B1)

Notice that we stick to the following criteria for the defini-
tion of the eigenvalues and eigenmatrices: ν1 > 0, ν2 > 0,
Tr[L̂1R̂1] = 1 and Tr[L̂2R̂2] = 1. Moreover, in this res-
onance, we typically find that γ1 ∼ γ2, while ν1τ ∼ 4π/5
and ν2τ ∼ 2π/5. As in the period-tripled case, we will

work with the Hermitian counterparts of the long-lived
eigenmodes:

R̂A =
R̂1 + R̂�

1

2
, R̂B =

R̂1 − R̂�
1

2i
,

R̂C =
R̂2 + R̂�

2

2
, R̂D =

R̂2 − R̂�
2

2i
,

(B2)

L̂A = L̂1 + L̂�
1, L̂B = i(L̂1 − L̂�

1),

L̂C = L̂2 + L̂�
2, L̂D = i(L̂2 − L̂�

2),
(B3)

which satisfy Tr[L̂jR̂k] = δjk with j, k ∈ {A,B,C,D}.
Since they are Hermitian and traceless, we can decom-
pose them as the substraction of two physical states:

R̂X =
2J+1
∑
j=1

xj ∣Xj⟩⟨Xj ∣,
2J+1
∑
j=1

xj = 0, with x = a, b, c, d.

(B4)
Importantly, this decomposition allows us to define the
following constants:

cX = ∑
xj>0

xj , with x = a, b, c, d. (B5)

2. Formal decomposition in period-5 lobes

We consider now the period-5 map Λ5 = E5, which
displays the same eigenmatrices but whose eigenvalues
are a factor five those of E . We suppose that this map
displays a gap closure in the region p = 4, q = 5, in which
Γ1,2 = 0 and δ1,2 = 0, and we propose a decomposition of
the involved modes in terms of a set of period-5 states.
Numerical observation leads us to propose the following
decomposition:

ρ̂ss =
1

5
(µ̂1 + µ̂2 + µ̂3 + µ̂4 + µ̂5), (B6)

R̂A =
cA
5
(3µ̂1 + µ̂2 + µ̂5) −

cA
2
(µ̂3 + µ̂4), (B7)

R̂B =
cB
5
(3µ̂5 + 2µ̂4 − 3µ̂2 − 2µ̂3), (B8)

R̂C =
cC
5
(3µ̂1 + µ̂3 + µ̂4) −

cC
2
(µ̂2 + µ̂5), (B9)

R̂D =
cD
5
(2µ̂2 + 3µ̂4 − 3µ̂3 − 2µ̂5). (B10)

We then obtain the following expressions for the different
lobes:

µ̂1 = ρ̂ss +
2

3
(R̂′A + R̂′C), (B11)
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(a) (b) (c) (d)

(f) (h) (i)(g) (j)

(e)

FIG. 7. Aitoff projection of the Husimi Q function of the period-5 lobes and their left partners for N=70, gτ = 0.18, ωτ = 4π/5.

(a)-(e) Metastable lobes: µ̂1/5 to µ̂5/5, respectively. (f)-(j) Left projectors: P̂1 to P̂5, respectively. For these parameters the
leading decay rates and frequencies are given by: γ1τ = 1.3 ⋅ 10

−5, ν1τ = 0.25133; γ2τ = 3.2 ⋅ 10
−5, ν2τ = 1.2566; while the next

mode has γ∗τ = 3.9 ⋅10
−4, ν∗τ = 0, with ∗ = 5 as there are two pairs of long-lived metastable modes. In this case we have a ratio

of γ∗/γ2 = 12.2 between the largest rate of the metastable manifold and the next one. Moreover, we obtain the following values

for the figures of merit: T (Eµ̂j , µ̂j+2) ≈ 0.033, while the smallest eigenvalue of P̂j takes values around λN ≈ −0.02. Finally due
to the way in which we have defined the metastable lobes and projectors, we have that the definitions in Eqs. (B6) to (B10)

and Tr[P̂j µ̂k] = δjk are satisfied exactly (and thus the corresponding trace distances are zero).

µ̂2 = ρ̂ss +
1

546
(104R̂′A −315R̂′B −286R̂′C +210R̂′D), (B12)

µ̂3 = ρ̂ss+
1

546
(−286R̂′A−210R̂′B+104R̂′C−315R̂′D), (B13)

µ̂4 = ρ̂ss+
1

546
(−286R̂′A+210R̂′B+104R̂′C+315R̂′D), (B14)

µ̂5 = ρ̂ss +
1

546
(104R̂′A +315R̂′B −286R̂′C −210R̂′D), (B15)

where we have defined R̂′X = R̂X/cX, with X = A,B,C,D.
Similarly as in the period-tripled case, we also define their
left partners as:

P̂1 =
1

5
(1 + 3L̂′A + 3L̂′C), (B16)

P̂2 =
1

5
(1 + L̂′A − 3L̂′B + 2L̂′D) −

L̂′C
2

, (B17)

P̂3 =
1

5
(1 − 2L̂′B + L̂′C − 3L̂′D) −

L̂′A
2

, (B18)

P̂4 =
1

5
(1 + 2L̂′B + L̂′C + 3L̂′D) −

L̂′A
2

, (B19)

P̂5 =
1

5
(1 + L̂′A + 3L̂′B − 2L̂′D) −

L̂′C
2

, (B20)

where we have defined L̂′X = cXL̂X, with X = A,B,C,D.
These operators satisfy:

5

∑
j=1

P̂j = 1, Tr[P̂iµ̂j] = δij . (B21)

Here we notice that the positivity of P̂i and µ̂i is interre-
lated. If there was an actual gap closure and thus µ̂i were
true stationary states we would necessarily have P̂i ≥ 0.

3. Approximate decomposition in period-5 lobes

For the period-5 case we follow a slightly different
strategy to define the approximate EMSs than in the
period-tripled case. Instead of defining them from the
spectral decomposition of the Hermitian partners of the
eigenmodes, we define them through the relations given
in Eqs. (B6) to (B10). In principle, if there was an actual
gap closure both ways would provide equivalent results.
However, in practice this means that instead of µ̂j being
bona fide states and equations (A17) holding approxi-
mately, we now have it in the other way around: equa-
tions (B6) to (B10) hold exactly, however µ̂j and their
left partners display small corrections to positivity. The
reason why here we proceed in this different way is that,
due to the increased complexity of the MM, this is the
most straightforward manner of isolating the metastable
lobes. Nevertheless, we recall that if the approximation
is good such differences remain small. As we will show
now, these metastable approximations also work well for
the period-5 case.

In Fig. 7 we exemplify this lobe decomposition, from
which we can appreciate that the EMSs correspond to
the lobes making up the stationary state shown in Fig. 6
(b). Here, we also check for the period-5 cyclic relation
connecting the EMSs, which we numerically find to be:

Eµ̂1 ≈ µ̂3, Eµ̂2 ≈ µ̂4, Eµ̂3 ≈ µ̂5, Eµ̂4 ≈ µ̂1 Eµ̂5 ≈ µ̂2.
(B22)

Regarding the corrections to these approximations, we
find the smallest eigenvalue of the P̂j to take values
around λN ≈ −0.02, while trace distances for the cyclic
relation take values around T (Eµ̂j , µ̂j+2) ≈ 0.033. Com-
paring this with the results for the period-tripled case
shown in Fig. 5, we see that the corrections in the period-
5 case are generally larger. This is in agreement with the
fact that the spectral gap between the eigenvalues of the
MM and the smallest ones outside it is smaller compared
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FIG. 8. (a)-(b) Stroboscopic period-5 dynamics for the mag-
netization in the z and y direction. Exact results in blue
solid lines. In golden dashed lines, results according to the
projection onto the MM as given by Eq. (B1). In red dotted
lines, initial incoherent mixture as given by Eq. (B23). Initial
condition ∣J, J⟩. Parameters: N = 70, gτ = 0.18, ωτ = 4π/5.
(c)-(f) Zoom in of the oscillatory dynamics for an interval of
time in the metastable plateau. (c)-(d) Comparison of the ap-
proximation given by Eq. (B1) (golden down triangles) with
the exact results (blue circles). (e)-(f) Comparison of the ap-
proximation given by Eq. (B24) (red up triangles) with the
exact results (blue circles). Same parameters and initial con-
dition as in (a) and (b).

to the period-tripled case, taking the value γ∗/γ2 = 12.2
for the chosen parameters. As we shall see, although
the corrections for these approximations are larger, we
still find good agreement when looking at the dynam-
ics (see next subsection). This good agreement can be
in part attributed to the immediate leading eigenmodes
outside the MM not playing an important role for the z-
y-components of the magnetization dynamics.

4. Approximate metastable dynamics

In this subsection we want to compare the exact dy-
namics with the approximate ones for the (4,5) reso-
nance. In particular, a first level of approximation is
given by Eq. (B1), in which we have neglected the con-
tributions of modes outside the MM for long times. In
Fig. 8 (a)-(d) we compare this approximation (in golden
dashed lines and triangles) with the exact dynamics (blue
solid lines and circles), finding that after a short ini-
tial transient both display excellent agreement. A fur-
ther level of approximation consists in approximating the

20 40 60 80 100 120
N

10−2

10−3

10−4

γ
p,
qτ

(a)

gτ = 0.2

gτ = 0.15

20 40 60 80 100 120
N

10−2

10−3

10−4

10−5

10−6

10−7 (b)

gτ = 0.2

gτ = 0.15

FIG. 9. Decay rate of the dominant oscillatory mode in the
(p, q) metastable resonance, γp,q, varying the system size and
for gτ = 0.2 (blue circles) or gτ = 0.15 (orange squares). (a)
ωτ = 2π/5. (b) ωτ = 4π/5.

state of the system in the metastable plateau by the ini-
tial probabilistic mixture of EMSs:

P5ρ̂0 ≈ p01µ̂1 + p02µ̂2 + p03µ̂3 + p04µ̂4 + p05µ̂5. (B23)

where p0j = Tr[P̂j ρ̂0]. Indeed, the z and y components
of the magnetization according to Eq. (B23) are shown
in Fig. 8 (a), (b) in red-dotted lines, finding excellent
agreement within the metastable plateau, that is after
an initial short transient and before the final decay takes
place. Moreover, making use of Eq. (B22) we can ap-
proximate the period-5 dynamics inside the plateau as:

ρ̂5n+j ≈ p01µ̂1+2j + p02µ̂2+2j + p03µ̂3+2j + p04µ̂4+2j + p05µ̂5+2j ,
(B24)

where j = 0,1,2,3,4 and the index of the metastable
states follows periodic bounary conditions, i.e. µ̂5+k =
µ̂mod(5+k,5) with k ≥ 1. In Fig. 8 (e) and (f) we compare
the exact oscillatory dynamics (blue circles) with the ap-
proximation given in Eq. (B24) (red triangles). We no-
tice that the agreement is not so good as for the same ap-
proximation done in the period-tripled case (main text),
although differences between exact dynamics and this ap-
proximation are still reasonably small. The fact that this
kind of approximation does not work so well as in the
period-tripled case can be traced back to Eq. (B22) also
not working so well (see also caption of Fig. 7), which
as we have already commented it can in turn be traced
back to the spectral gap between the MM and the rest
of eigenmodes being not so accentuated as in the (2,3)
resonance studied in the main text.

In conclusion, besides quantitative differences in the
level of precision of these approximations, we find our
main results to apply also for this case. The only result
that we have not generalized to this higher-order reso-
nance is a (possible) classical stochastic process describ-
ing the final relaxation in a stroboscopic picture.

Appendix C: Additional results for different system
sizes

In this appendix we present additional results comple-
menting those of the main text regarding the effect of
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FIG. 10. Comparison of the stationary purity Tr[ρ̂2ss] varying gτ and ωτ for different system sizes: (a) N = 10, (b) N = 30, (c)
N = 50, (d) N = 70.

increasing the system size. In particular, in Fig. 9 we
consider two values of gτ and we plot γp,q for a Rabi fre-
quency ω in: (a) the (2,5) resonance and (b) the (4,5)
resonance. In both the cases the results are qualitatively
the same as those displayed in the main text: the decay
rate of the dominant oscillatory mode displays a non-
monotonic behavior and oscillations with system size. As
a second complementary result, in Fig. 10 we reproduce
in the same plot the purity maps for: (a) N = 10; (b)
N = 30; (c) N = 50; (d) N = 70, in order to ease the vi-
sualization of how the purity islands change with system

size. Notice how the background color becomes clearer
progressively, as the minimum attainable purity is 1/N .
For N = 10, we can observe that the region for larger
Rabi frequencies is almost uniform, not displaying purity
islands. In the rest of the cases, purity islands are clearly
visible. As commented in the main text, the number of
islands increases with system size while at the same time
they change position and seem to shrink or span smaller
regions of parameter space. These results further illus-
trate how the metastable resonances do not smoothly
approach a thermodynamic limit, but that they rather
are also resonances in system size.
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[59] S. Sonar, M. Hajdušek, M. Mukherjee, R. Fazio, V. Ve-
dral, and S. Vinjanampathy, Squeezing enhances quan-
tum synchronization, Phys. Rev. Lett. 120, 163601
(2018).

[60] We denote the next (different) leading rate as γ∗. In the
(2,3) resonance γ∗ = γ3 as λ2 = λ

∗
1.

[61] We define R̂A = (R̂1 + R̂
�
1)/2, R̂B = (R̂1 − R̂

�
1)/(2i), L̂A =

L̂1 + L̂
�
1, L̂B = i(L̂1 − L̂

�
1).

[62] M. Serbyn, D. A. Abanin, Z. Papić, Quantum many-body
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