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We introduce a discrete-time quantum dynamics on a two-dimensional lattice that describes the
evolution of a 1 + 1-dimensional spin system. The underlying quantum map is constructed such
that the reduced state at each time step is separable. We show that for long times this state
becomes stationary and displays a continuous phase transition in the density of excited spins. This
phenomenon can be understood through a connection to the so-called Domany-Kinzel automaton,
which implements a classical non-equilibrium process that features a transition to an absorbing state.
Near the transition density-density correlations become long-ranged, and interestingly the same is
the case for quantum correlations despite the separability of the stationary state. We quantify
quantum correlations through the local quantum uncertainty and show that in some cases they
may be determined experimentally solely by measuring expectation values of classical observables.
This work is inspired by recent experimental progress in the realization of Rydberg lattice quantum
simulators, which — in a rather natural way — permit the realization of conditional quantum gates
underlying the discrete-time dynamics discussed here.

I. INTRODUCTION

Recent years have witnessed breakthroughs in the re-
alization of quantum simulator platforms based on cold
atomic systems [1–5]. One of the most recent genera-
tions of these quantum simulators is based on Rydberg
atoms and offers freely programmable and addressable
spin arrays [2–4, 6]. When excited to (high-lying) Ry-
dberg states atoms interact strongly, thereby offering a
versatile platform for the study of quantum matter in an
out of equilibrium.

Strong interactions between Rydberg atoms are more-
over at the heart of implementations of quantum infor-
mation processing protocols [7] where they allow the real-
ization of conditional gates [8, 9] that generate entangling
operations. Digital quantum simulators [10] employ such
gates — similar to the circuit-based approach to quantum
computing — and represent a route towards emulating
quantum dynamics with exotic interactions. The possi-
bility of digitally simulating open and closed many-body
systems with Rydberg lattice systems was theoretically
explored in Ref. [11] and the capability of this platform
for preparing exotic many-body systems and states was
highlighted. While their experimental realization has not
yet been achieved, first proof-of-principle demonstrations
of the feasibility of this idea were demonstrated within a
trapped ion quantum simulator [12] and superconducting
circuits [13, 14].

Here we introduce a class of spin models with discrete-
time quantum dynamics that lends itself rather naturally
to the implementation on a Rydberg quantum simula-
tor. The dynamics takes place within a 1+1-dimensional
lattice in which the directions can be thought of repre-
senting time and space, respectively. Propagation be-
tween time slices proceeds via the successive applica-
tion of three-body gates that perform conditional uni-

FIG. 1. Two-dimensional (1 + 1) lattice system in which
the horizontal (vertical) direction can be thought of as space
(time). Each lattice site contains a single spin degree of free-
dom (for example encoded in an atom) which is initialized in
the state |↓〉. An initial state is prepared on the first time
slice and propagated towards future times, i.e. lower rows, by
a sequence of gates that connect subsequent time slices. In

the example here we use three-body gates G
(t)
m which can be

implemented for example in Rydberg lattice quantum simu-
lators, where the spin degree of freedoms are encoded in two
electronic levels.

tary rotations. Despite the fact that the dynamics of
the whole system is unitary, entanglement between time
slices leads to the convergence of the reduced state on the
final time slice. This stationary state may display a non-
equilibrium phase transition and features non-classical
correlations that become long-ranged in the vicinity of
the transition point. We illustrate our idea using an ex-
ample that is efficiently solvable in the sense that it per-
mits the mapping onto the non-equilibrium process of a
classical cellular automaton for site percolation.

Our work highlights the emergence of stationary be-
havior in closed quantum systems and introduces a new
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aspect in extending the concept of a cellular automaton
into the quantum domain — for a few examples see Refs.
[15–21]. Moreover, it connects to quantum generaliza-
tions of perceptrons in neural networks [22, 23]. Our
proposed setting provides a natural test bed for assess-
ing the capabilities of current Rydberg lattice quantum
simulators: it possesses non-trivial features, such as a
phase transition and long-ranged quantum correlations,
but yet can be efficiently solved. It can thus be used
for the certification of a Rydberg simulator in a regime
(two dimensions, strong interactions, long times) which
is usually numerically intractable.

II. THE SETTING

The two-dimensional lattice system we are considering
is depicted in Fig. 1. Each row consists of N sites, with
a spin-1/2 degree of freedom per site. The horizontal
and vertical directions we consider as space and time,
respectively. The dynamics starts from a state where
all spins are in the state |↓〉 except for the first time
slice (first row) which is prepared in the desired initial
configuration. The evolution then proceeds by applying
a sequence of elementary gates linking the time slice at
time t to the time slice at time t+ 1.

For the case we are mainly interested in this work these
elementary gates are unitary operators that act on three
spins simultaneously — two consecutive ones on time
slice t (control spins) and one on time slice t+ 1 (target
spin), as shown in Fig. 1. These gates perform a rota-
tion of the state of the target spin, conditioned on the
presence or absence of excited spins (in state |↑〉) among
the two-control spins. We consider this type of gate here
because it can be rather naturally implemented in Ry-
dberg lattice quantum simulators as is discussed further
below. Formally, we can write the gate as

G(t)
m = P

(t−1)
m,m+1 ⊗ U (t)

m +Q
(t−1)
m,m+1 ⊗ Im. (1)

Here P
(t−1)
m,m+1 and Q

(t−1)
m,m+1 are projection operators,

which act on the control spins on time slice t − 1 (with

indices m and m + 1) and obey P
(t−1)
m,m+1 + Q

(t−1)
m,m+1 = I.

To be specific we use for now

Pm,m+1 = 1− (1− nm) (1− nm+1) , (2)

where nm = (1+σmz )/2, projects onto the excited state of
the m-th spin on time slice t−1 and σmz is a Pauli matrix.
The projector Pm,m+1 returns a non-zero value only if at
least one of the control spins is in the excited state. When
this is the case the unitary operator U (t) acts on the
target atom on time slice t and performs a spin rotation
about the y-axis by an angle α: U = exp

(
−iα2 σy

)
. Note,

that we dropped the time slice index t in the explicit
forms of both the projectors and the unitary in order not
to make the notation too contrived.

The rule (1) can be considered as imposing a kinetic
constraint in the dynamics, reminiscent of facilitated

models of glasses [24]. Constrained dynamics — which
has been experimentally shown to take place e.g. in in-
teracting Rydberg gases [25] — can give rise to complex
evolution both in classical [26] and closed and open quan-
tum systems [21, 27–32]. In particular, a rule akin to (1),
of at least one nearest neighbour in the excited state re-
quired to allow for local evolution, is known in classical
facilitated models to lead to an effective dynamics of the
reaction-diffusion kind [33, 34].

In our model the propagation from time slice t− 1 to t

is achieved via the concatenation of gates, G
(t)
N ...G

(t)
2 G

(t)
1 ,

where we assume periodic boundary conditions when ap-

plying G
(t)
N . Note, that due to the specific choice made

in Eq. (2) the actual order of the gates is not important
since the projectors commute. The successive applica-
tion of the gate G(t) to subsequent time slices propagates
the initial state and creates a pure state (provided that
the initial state has been pure) on the entire lattice.

The reduced state ρt on time slice t is linked to the
reduced state of the previous time slice by a recurrence
relation:

ρt =
∑

i1,...iN=0,1

Tr
[
X

(i1)
1 ... X

(iN )
N ρt−1

]
ρ(i1) ⊗ ...⊗ ρ(iN ), (3)

with X
(0)
m = Pm,m+1 and X

(1)
m = Qm,m+1 as well as

ρ(0) = U |↓〉 〈↓|U† and ρ(1) = |↓〉 〈↓|. The state ρt is sepa-
rable as it is formed by a convex superposition of product
states of the form ρ(i1) ⊗ ... ⊗ ρ(iN ). The weight of each
state is given by the expectation value of the product of
projection operators taken in the state of the previous
time slice, ρt−1. In our protocol local quantum opera-

tions, such as U
(t)
m , are conditioned by a measurement

result im, that can be communicated ”classically”. Such
scheme cannot produce an entangled state on time slice
t. Nevertheless, ρt can exhibit non-classical correlations
as we show later.

III. MEAN FIELD APPROXIMATION

For a first understanding of the discrete-time dynamics
we conduct a mean field study. To this end we consider
the evolution of the local density on site m under the
gate (1), which yields

〈n(t)m 〉t = 〈↓| G(t)
m

†
n(t)m G(t)

m |↓〉t = xP
(t−1)
m,m+1,

with x = 〈↓| U (t)
m

†
n
(t)
m U

(t)
m |↓〉t = sin2

(
α
2

)
ε [0, 1]. We

take the expectation value over the t−1-time slice, make
use of the form (2) of the projector Pm,m+1 and perform
the mean field approximation (decoupling of pair corre-
lators and assumption of homogeneity). This yields a
recurrence relation, connecting the mean field densities ν
at time slices t and t− 1:

ν(t) = x ν(t−1)
(

2− ν(t−1)
)
. (4)
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To make progress we turn the recurrence relation into a
differential equation [ν(t) → ν(t), ν(t)− ν(t−1) → ∂tν(t)].
Choosing the initial condition n(0) = 1, we obtain the
solution

ν(t) =
2x− 1

x+ exp (t [1− 2x]) (x− 1)
, (5)

which has an interesting limiting behavior at long times:
for x < xcrit = 1/2 we find limt→∞ ν(t) = 0, while for
x > xcrit the excitation density assumes the non-zero sta-
tionary value limt→∞ ν(t) = (x− xcrit)/(2x). Thus, xcrit
defines a critical rotation angle αcrit = π/4 which in the
limit t → ∞ separates two qualitatively different states.
At x = xcrit we find ν(t) = 2/(2+ t) and thus the density
displays an algebraic approach to stationarity. This re-
sult is reminiscent of mean field calculations of classical
reaction-diffusion problems that feature absorbing state
phase transitions [35].

IV. MAPPING TO A CLASSICAL
NON-EQUILIBRIUM PROCESS

Further insight into this phase transition behavior is
obtained by exploiting a link to a classical stochastic
process: due to the separability of the reduced density
matrices ρt and the structure of the projectors (2), the

probabilities Tr
[
X

(i1)
1 ...X

(iN )
N ρt−1

]
, which appear in the

reduced state (3), can be generated via a classical dis-
crete time dynamics. This process takes place on a two-
dimensional lattice, as depicted in Fig. 1, that contains
classical spins (either up or down), initially prepared in
the state ‖↓〉〉. The discrete time evolution proceeds via
the classical maps

W (t)
m = P

(t−1)
m,m+1 ⊗

(
1− x x
x 1− x

)
m

+Q
(t−1)
m,m+1 ⊗ Im (6)

which are applied on a probability vector in order to
propagate the system between time slices. This dynamics
implements an instance of the so-called Domany-Kinzel
(DK) cellular automaton [35, 36] and it performs a flip of
the target spin (time slice t) with probability x, provided

that the projection operator P
(t−1)
m,m+1 yields a non-zero

value when applied to the control spin on time slice t−1.
Under this dynamics the reduced probability vector ‖p〉〉t
of time slice t evolves according to

‖p〉〉t =
∑

i1,...iN=0,1

〈〈+‖X(i1)
1 ... X

(iN )
N ‖p〉〉t−1‖si1〉〉 ⊗ ...⊗ ‖siN 〉〉

(7)

with ‖s0〉〉 = ‖↑〉〉 and ‖s1〉〉 = (1− x)‖↓〉〉+ x‖↑〉〉. Note,
that instead of taking the trace, expectation values in
this classical description are calculated by applying the
desired operator to the probability vector and multiply-
ing from the left with a (flat) reference state: for N spins

this is ‖+〉〉 =
⊗N

m=1 [‖↓〉〉m + ‖↑〉〉m].

FIG. 2. Density, fluctuations and quantum correlations (nu-
merical simulations for N = 1000, 7000 time steps and 5000
averages). (a) The mean density 〈n〉 = 1

N

∑
m 〈nm〉 displays a

phase transition at xcrit ≈ 0.7, from an inactive (zero density)
to an active phase (finite density). This transition belongs to
the directed percolation universality class. (b) At the critical

point the fluctuations, (∆N)2

N
= 1

N

[∑
ij 〈ninj〉 −N

2 〈n〉
]
, ex-

hibit a pronounced peak. (c) At the phase transition the (con-
nected) density-density correlations Cij = c2ij − 〈n〉2 become
long-ranged. The density plot shows the natural logarithm of
Cij as a function of the distance |i − j|. (d) Quantum cor-
relations, quantified through the local quantum uncertainty
(LQU), also become long-range ranged in the vicinity of the
critical point. The density plot shows the natural logarithm
of the LQU of the reduced two-spin density matrix ρij , as a
function of the distance |i− j|.

The structural resemblance between the reduced state
(3) and the probability vector (7) is evident. The local
quantum states ρ(k) and classical states ‖sk〉〉 are con-
structed such that they yield the same expectation values
for classical observables, e.g. Tr

(
nρ(m)

)
= 〈〈+‖n‖sm〉〉 =

x δm,1. Thus, also the states (3) and (7) yield identical ex-
pectation values of classical observables, and in this sense
the discrete time quantum dynamics is mapped onto a
classical process.

The connection to the DK cellular automaton provides
an explanation for the phase transition behavior observed
in the mean field calculation: it is known that the cellu-
lar automaton dynamics (6) leads to a non-equilibrium
stationary state which displays a continuous (absorbing
state) phase transition between a so-called inactive phase
— in which the expectation value of the average density

〈n〉 = 1
N

∑N
m〈nm〉 is zero — and an active phase in which

〈n〉 6= 1. This transition occurs at x ≈ 0.7 and is in the
directed percolation universality class. The correspond-
ing numerical data is shown in Fig. 2(a-c).

V. QUANTUM CORRELATIONS

Despite being separable and related to a classical dy-
namics, the state (3) possesses non-classical correlations,
as we show now. Furthermore, by exploiting the map-
ping to the DK cellular automaton dynamics we find that
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it is possible to extract quantum correlations from the
measurement of classical observables, which are straight-
forwardly accessible on Rydberg quantum simulators [3].

As a measure for quantum correlations we employ the
local quantum uncertainty (LQU) put forward in Ref.
[37] which is a variant of bipartite quantum discord [38–
40]. It quantifies how much of the fluctuations of a local
measurement is due to the non-commutativity between
the state and the measured local observable, which is
caused only by the states coherence, not its mixedness.
By minimising over the choice of the local observable,
only non-local coherences — necessarily corresponding
to quantum correlations — are captured. In our model,
the non-local coherence in the state (3) can be thought
of as being a result of an effectively classical communi-
cation of a measurement outcome on time slice t− 1 and
conditioned local coherent preparation, via U

(t)
m or I

(t)
m ,

of atoms on time slice t, cf. (1) and (3).
For the reduced state ρij of two spins the LQU is de-

fined as `ij = 1− λmax

{
W ij

}
, where λmax

{
W ij

}
is the

largest eigenvalue of the matrix W ij with components

W ij
αβ = Tr

(
ρ
1/2
ij σiαρ

1/2
ij σiβ

)
. The reduced density matrix

ρij can be obtained entirely from measuring the local
density and density-density correlations between sites i
and j. To see this we exploit the special structure of the
reduced state (3): each term of the sum contains a prod-
uct of pure states which allows to relate expectation val-
ues of off-diagonal operators to those of diagonal observ-

ables, e.g. Tr
(
σ±i ρt

)
=
√

1−x
x Tr (niρt) =

√
1−x
x 〈ni〉.

Using this property, and assuming translation invariance
(〈n〉 = 〈ni〉 = 〈nj〉), one obtains

ρij =

(
cij x cij
x cij 1− cij

)
⊗
(

cij x cij
x cij 1− cij

)

+ [〈n〉 − cij ]

 0 0 0 0
0 1 0 x
0 0 1 x
0 x x −2

 , (8)

with cij =
√
〈ninj〉 being the square root of the density-

density correlation function.
In the absence of correlations one has cij = 〈n〉. Here,

the second term in Eq. (8) vanishes and ρij becomes
a product state without quantum correlations. This is
the case away from a phase transition where correlations
between two sites are decaying rapidly as a function of
their distance. Near a phase transition, however, correla-
tions are long-ranged, as is shown in Fig. 2(c), where we
display the connected density-density correlation func-
tion Cij = c2ij − 〈n〉

2
. Here also finite and long-ranged

quantum correlations, characterized through the LQU,
emerge, as can be seen in Fig. 2(d).

Note, that the entries of the density matrix (8) can
be determined experimentally via state tomography, i.e.
the measurement of the expectation values of products of
the three Pauli matrices and the identity matrix for the
atoms on sites i and j. The LQU can thus be inferred di-
rectly from experimental measurements, and its scaling,

FIG. 3. (a) Implementation of 1 + 1-discrete-time dynam-
ics with two spin chains. For further details see main text.
(b) A generalization of the underlying gate operation to four
source atoms [Eq. (9) with K = 4] allows to implement non-
equilibrium processes which features a variety of absorbing
state phase transitions. Shown are cuts through the sta-
tionary mean field excitation density, calculated from Eq.
(10). The dashed lines correspond to continuous phase tran-
sitions which terminate in the multi-critical point (MCP)
at {xcrit

1 , xcrit
2 , xcrit

3 } = {1/4, 1/2, 3/4}. Upon crossing the
dashed lines the mean field density shows scaling behavior
of the form ν ∼ (xα − xcrit

α )β with β being the static critical
exponent. Solid lines demarcate regions in which an active
and inactive phase coexist.

cf. Fig. 2(d), requires a number of measurements which
scales only linearly in the system size, as it is exactly the
case when measuring classical correlations.

VI. IMPLEMENTATION WITH RYDBERG
ATOMS

The open cellular automaton model discussed here can
be implemented on Rydberg quantum simulators [3, 4].
The three-body gates underlying the gate (1) are imple-
mented by employing the blockade interaction [8] which
yields conditional unitaries [41] discriminating between
the cases in which at least one or none of the source atom
is excited, in direct analogy with gate (1). For the exper-
imental investigation of the non-equilibrium dynamics it
is moreover not necessary to have a two-dimensional lat-
tice. Two parallel one-dimensional arrays (or concentric
rings if periodic boundary conditions are required) are
sufficient for the following protocol [see also Fig. 3(a)]:
(i) The initial state is prepared on the first chain (ring)
and all sites of the second chain (ring) are prepared in the
state |↓〉. (ii) The discrete-time propagation is performed
from the first to the second chain (ring). (iii) The first
chain (ring) is reset, so that all sites are in state |↓〉. (iv)
The process is repeated but the role of the chains (rings)
is interchanged.

An interesting practical aspect of this protocol might
be that it allows to investigate collective phenomena —
such as absorbing-state phase transitions — that are
commonly explored in the context of open quantum sys-
tems, see e.g. Ref. [42]. The discrete-time propagation
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presented is fully coherent, it does not involve processes
such as radiative decay photon scattering. This removes
typically detrimental sources of heating and thus may
facilitate the observation of dynamical processes of long
times.

VII. GENERALIZATIONS

Generalizations of the dynamics presented here can be
achieved by extending the fundamental gate (1) to more
source/target atoms and/or by introducing more condi-
tional spin rotations. One possible extension of the gate
to K source atoms and one target atom is given by

F (t)
m =

K∑
k=0

Π(t−1)
m (k,K)⊗ U (t)

m (αk). (9)

Here the operators Πm(k,K) project on the subspace
containing k excitations among the K source atoms
whose state conditions the state change of the m-th tar-
get atom. The latter is rotated by the unitary U(αk) =
exp

(
−iαk

2 σy
)
. We anticipate two interesting cases here:

(i) K = 2 source sites and rotation angles are given
by α2 = π, α1 = α and α0 = 0: The corresponding non-
equilibrium process has the two absorbing states |↓↓ ... ↓〉
and |↑↑ ... ↑〉. At α = π/2 the stationary state switches
between these two possibilities and displays a phase tran-
sition that is in the directed compact percolation univer-
sality class [43].

(ii) α0 = 0, which ensures the presence of the absorbing
state |↓↓ ... ↓〉: Here the mean field density follows the
recurrence relation

ν(t) =

K∑
k=1

xk

(
K

k

)(
ν(t−1)

)k (
1− ν(t−1)

)K−k
, (10)

where xk = sin2
(
αk

2

)
. This process features a host of ab-

sorbing state phase transitions, coexistence regions and
critical lines. Moreover, a suitable choice of the rotation
angles αk allows to set all terms of order smaller than
K to zero which tunes the system to a multi-critical

point (similar to tri-critical directed percolation [44]):

ν(t) − ν(t−1) ∝ −
(
ν(t−1)

)K
. Here the mean field density

displays a power-law behavior on approach to stationar-
ity: ν(t) ∼ t1/(1−K). In Fig. 3(b) we illustrate the case
K = 4.

VIII. SUMMARY AND OUTLOOK

We studied examples of quantum non-equilibrium pro-
cesses that can be mapped onto classical cellular au-
tomata and therefore efficiently solved. Beyond being of
conceptual interesting these findings can be applied for
scrutinizing current quantum simulation platforms under
challenging, yet numerically tractable, conditions. An in-
teresting subject for future investigations is the realiza-
tion of non-equilibrium processes with absorbing (dark)
states [45] that feature entanglement and/or phase co-
herence between different sites. Those can be achieved
by employing projectors in the fundamental gate (9) that
project for example on two-site entangled states, in con-
junction with unitary operations acting on two and more
target sites. Future studies may also investigate the role
of imperfections in the fundamental gates and how they
influence the statics and dynamics of the absorbing-state
phase transition discussed here.
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Büchler, Nature Physics 6, 382 (2010).
[12] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Ger-

ritsma, F. Zähringer, P. Schindler, J. Barreiro, M. Ram-
bach, G. Kirchmair, et al., Science 334, 57 (2011).
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[44] S. Lübeck, Journal of Statistical Physics 123, 193 (2006).
[45] D. Roscher, S. Diehl, and M. Buchhold,

arXiv:1803.08514 (2018).


