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a b s t r a c t 

In favorable climates and building types, employing natural ventilation can lead to significant energy savings and 

health benefits. However, in cold climates or conditions, the use of natural ventilation could result in significant 

heat loss and, consequently, excessive heating bills. This is further exacerbated when windows are left uninten- 

tionally open by occupants during the heating season, causing unnecessary energy consumption and wastage, 

which compromises the heating, ventilation and air-conditioning (HVAC) efficiency. Occupant behavior influ- 

ences and shapes the building’s energy use and indoor environment quality. In particular, the occupant’s inter- 

action with the building and its elements, such as window openings, has a considerable effect on the air change 

rate and the thermal load for ventilation. Studies have shown that real-time occupancy information can improve 

the operation of HVAC, lighting and utilization of building zones or spaces by coupling it with demand-driven 

control and occupant-centric strategies. The present study introduces a computer vision and deep learning-based 

detection approach for the real-time monitoring and recognition of the opening and closing of windows. The 

study aims to use the detection approach to reduce the energy demand by correctly controlling the HVAC or 

alerting the building users/operators during periods when windows are left open, minimizing the unwanted air 

change rates and heating or cooling loads. The study will take an in-depth look into the performance of the detec- 

tion model, in particular, the influence of data curation, labelling and training employed. Four types of window 

detectors were configured and evaluated based on the detection of a set of windows within a case study building, 

which will help seek the most accurate detection and recognition of window opening status. The impact of the 

detection method on building energy demand was investigated through a series of building energy simulation 

(BES) scenarios. Simulations were conducted using predefined fixed profiles, along with the window detection 

and ‘actual’ profiles. The study has shown that the detection and recognition ability of the models ultimately 

influenced the prediction of the ventilation heat loss and heating energy demand. 
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. Introduction and literature review 

The built environment sector is responsible for a significant part

f global energy consumption and energy-related carbon emissions

 Abergel, Dean and Dulac, 2017 ). One of the largest energy consumers

n buildings is the heating, ventilation, and air conditioning (HVAC) sys-

em ( Amin, Hossain and Fernandez, 2020 ). Hence minimizing HVAC’s

nergy usage and enhancing its efficiency will be crucial for reducing

missions and achieving the climate change targets set by Governments

round the world ( Chen et al., 2020 ). An alternative strategy to me-

hanical HVACs is using natural ventilation in buildings ( Bienvenido-

uertas et al., 2020 ), which reduces energy consumption by relying on

atural wind forces and temperature differences to circulate airflow in

uildings. Natural ventilation can be achieved by fully or partly opening
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indows, air vents, trickle vents, chimneys, etc. ( Zhang et al., 2021 ). In

ddition, natural ventilation provides fresh air and removes stale air,

nhancing the indoor air quality of buildings ( Calautit et al., 2020 ).

ecently due to the COVID-19 pandemic, it has been recommended

 GOV.UK, 2021 ) and established that natural ventilation strategies could

educe the chance of spreading the virus indoors ( Park et al., 2021 ). 

In favorable climates and building types, employing natural ven-

ilation can lead to significant energy savings and health benefits

 Jomehzadeh et al., 2017 ). However, in cold climates or conditions,

he use of natural ventilation could result in significant heat loss and,

onsequently, excessive heating bills ( Liu, Jimenez-Bescos and Calautit,

022 ). Building heat loss occurs in buildings through fabric and venti-

ation heat loss. Introducing fresh and cold air into the space via oper-

ble windows could lead to significant ventilation heat loss during the

eating season ( Najjar et al., 2019 ). Furthermore, it could cause ther-
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Nomenclature and Abbreviations 

AI Artificial Intelligence 

API Application Programming Interface 

BES Building Energy Simulation 

CNN Convolutional Neural Network 

COCO Common Objects in Context 

CO2 Carbon Dioxide 

DL Deep Learning 

DLIP Deep Learning Influenced Profile 

HVAC Heating, Ventilation and Air-conditioning 

IoU Intersection of Union 

mAP mean Average Precision 

R-CNN Region-based Convolutional Neural Network 

UK United Kingdom 

al discomfort and, in some cases, lead to occupants using personal or

ortable heaters ( Shahzad et al. 2018 ), which further increases the en-

rgy demand ( Shahzad et al., 2016 ). This is further exacerbated when

indows are left unintentionally open by occupants ( Tien et al., 2021a )

uring the heating season, causing unnecessary energy consumption and

astage, compromising the HVAC efficiency. 

Occupant behavior influences and shapes the building’s energy use

nd indoor environment quality ( Zhang et al., 2022 ). In particular, the

ccupant’s interaction with the building and its elements, such as win-

ow openings ( Fabi et al. 2012 ), has a considerable effect on the air

hange rate and the thermal load for ventilation. Building designers and

perators run the risk of putting unpredictable loads on the HVAC and

nwanted or unreliable air change rates ( Ackerly et al., 2011 ) if oper-

ble windows are left up to the control of the occupants. The degree

f opening, how often and for how long windows are opened by the

ccupants will affect the air change rate. Hence, different behavior pat-

erns will result in differences in energy consumption and the indoor

nvironment quality of the buildings. This makes predicting the energy

erformance of buildings more challenging, which is a critical process

uring the design stage. The study ( Delzendeh et al., 2017 ) highlighted

hat the occupants’ behavior impact had been overlooked in the analysis

f building energy performance, and hence there is an alarming perfor-

ance gap between actual and predicted building energy consumption.

Furthermore, HVAC systems designed and operated using fixed

chedules, predefined by building designers and operators based on as-

umed occupancy levels or patterns, can lead to spaces being unneces-

arily over-or under-conditioned ( Tien et al., 2020a ). There has been

 rise in studies on occupant- or human-centred control strategies for

VAC systems to address such issues ( Choi et al., 2021a ). Such strate-

ies actively reflect occupancy information and behavior in the con-

rol of building systems. The work ( Pang et al. 2020 ) suggested that

uch strategies can achieve a reduction of 20-45% in building energy

onsumption. Central to the effective implementation of such control

trategies is accurate information on the occupancy, such as location,

umber, presence, and activities. This can be achieved by employing

ccupancy detection methods such as motion sensors, CO2 sensors, Wi-

i, Bluetooth, and cameras ( Park et al., 2019 ). A comparison of sensors

or obtaining occupancy information is reviewed in ( Tien et al., 2022b ).

Unlike other sensors, cameras can work like human eyes, which can

etect changes in occupancy without delay, and at the same time, recog-

ize occupants performing sedentary activities or minimal movements.

he study ( Tien et al., 2020a ) recently highlighted the potential of us-

ng a vision-based approach that integrates camera and computer vision

pproaches to detect occupancy information and activities in real time.

he study showed the impact of using the proposed approach on the

uilding energy demand as compared to the use of static or fixed oc-

upancy profiles. The proposed approach can predict the internal heat

ains and feed the data into demand-driven control to help minimize
2 
nnecessary heating or cooling energy loads and effectively manage in-

oor conditions. 

The study mainly focused on office buildings and evaluated the ap-

roach based on activities such as sitting, standing and walking. A sim-

lar approach can be used to detect other occupancy behavior or activ-

ties, such as the opening and closing of windows (see Fig. 1 ). It is en-

isaged that a significant reduction in energy and cost can be achieved

f the building services are correctly controlled during periods when

indows are left open, minimizing the unwanted air change rates and

eating or cooling loads. The control and coordination of an HVAC sys-

em with occupancy and natural ventilation can play a significant role

n reducing energy consumption and improving comfort and indoor air

uality. 

.1. Novelty, research gaps and the aims and objectives 

Many studies have shown that real-time and detailed information on

ccupancy can improve the operation of HVAC, lighting and utilization

f building zones or spaces by coupling it with demand-driven control

nd occupant-centric strategies ( Tien et al., 2020b ). Occupancy informa-

ion such as presence, location, number, and activities can be detected

sing different occupancy measurements or sensor systems, as detailed

n the study ( Labeodan et al., 2015 ). The use of cameras coupled with

ision-based occupancy detection and recognition technology has gar-

ered interest. The use of cameras and computer vision is not exactly

ew and has been studied for a long time for detecting objects, includ-

ng occupants ( Zhang et al., 2022 ). However, the computer vision field

as been a subject of increased interest due to the increased accessibil-

ty to larger computational power and the rise of artificial intelligence

AI), specifically the success of convolutional neural networks (CNN)

 Tien et al., 2022b ). 

Recently, there has been a spike in research employing a camera,

omputer vision and deep learning to detect occupants in buildings

 Tien et al., 2020c ). Many earlier research focused on occupancy count-

ng and presence ( Choi et al., 2021b ). While the others focused on en-

ancing the performance of the occupancy detection model or algorithm

y increasing the accuracy or speed of detection. The recent works of

ien et al. (2022a) and Wei et al. (2020) highlighted a lack of research

nvestigating the impact of such an approach on the building energy de-

and. The study by Wei et al. (2020) employed a computer vision ap-

roach to detect and predict the internal heat gains in office buildings

ased on the detected activities. Recently, the approach was also used to

redict internal heat gains from equipment such as computers and mon-

tors in office spaces ( Wei et al., 2022 ). The predicted information can

e used to adjust the control and operation of the HVAC to reduce the

nergy demand. In addition, it can generate realistic occupancy profiles

or building energy models, which can reduce the performance gap. 

The present study will use the same approach to detect the window

tatus or condition in real time. An integrated approach or tool that can

etect occupancy, equipment usage and window simultaneously in real-

ime is desirable and will be further developed in our study. The pro-

osed approach can be an alternative to using window sensors, which

ust be installed on every building window. Although several window

etection methods are available, there are limited studies on their ap-

lication and integration with demand-driven controls for managing en-

rgy and comfort in buildings ( Park, 2020 ). More studies on its imple-

entation in real-world environments are necessary to provide more

nsight into its capabilities. This is particularly evident in the context of

ighly populated spaces such as university lecture rooms, classrooms,

ecreational spaces, etc. 

To date, only limited studies attempted to demonstrate the usage of

he detected window opening information to control the HVAC opera-

ion. For example, Tien et al. (2021a) showed the potential of a vision-

ased framework for detecting and recognizing manual window oper-

tions in buildings. The initial results showed that the approach could

educe the over-or under-estimation of ventilation heat loss. The work
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ntroduced a system that can help alert building users or operators when

indows are left open and prevent unwanted air change rates. However,

he study did not take an in-depth look into the performance of the de-

ection model, in particular, the influence of data curation, labelling

nd training employed. Furthermore, the impact on the detection per-

ormance of changing environments, such as the lighting conditions and

ccupants blocking the target object, was not evaluated. 

Therefore, the present study will focus on investigating the perfor-

ance of window detection model, in particular, the influence of data

uration, labelling and training employed. Four types of window detec-

ors will be configured and evaluated based on the detection of a set of

indows within a case study building, which will help seek the most

ccurate detection and recognition of window opening status. Building

nergy simulation is used to evaluate the impact of the detection method

n ventilation heat loss and energy consumption. 

. Method 

The present work will develop an accurate window detector for con-

rolling the operation of building energy systems or alerting the building

sers/operators during periods when windows are left open, as shown

n Fig. 1 . Several detection model configurations will be evaluated based

n real-time detection and recognition experiment tests. Particular fo-

us will be given to the data set used and the labelling of the training

ata. For each detection model, a series of evaluation metrics were used

o assess the performance of the trained models on the detection of the

ame window in the selected case study building. Profiles, also called

ere the deep learning influenced profiles (DLIP), are generated from

he real-time detection and compared with the ground truth. Building

nergy simulation (BES) was also performed to predict the potential im-

act of the detection performance on the ventilation heat loss and build-

ng energy demands. 
Fig. 1. The proposed approach for the detection of window status a

3 
.1. Development of the deep learning window detector 

Convolutional Neural Networks (CNN) is a classification-based

lgorithm suitable for developing computer vision-based detectors

 Yamashita, Nishio and Togashi, 2018 ). It has been extensively used

o provide accurate detection frameworks, including object detection

 Galvex et al., 2018 ), face recognition ( Hu et al. 2015 ), and speech

ecognition. Previous works focusing on the initial development of in-

ividual detectors for occupancy activities ( Tien et al., 2021a ) and win-

ows ( Tien et al., 2022a ) both employed CNN models. These studies

howed the potential of such an approach and highlighted the require-

ent for further development to increase detection accuracy and reduce

he number of no/missed detections and incorrect detections. 

Four different window detection model configurations were estab-

ished and compared in the present study. Table 1 summarises the

pecification of each model with varying types (opened and/or closed)

nd several datasets. Model 1 and 2 (Windows M1.0 and 2.0) consisted

f two response categories: ‘Open’ and ‘Closed’ windows, while Model 3

nd 4 (Windows M3.0 and 4.0) consisted of only one detection response

Open’ windows. Model 1 represents the base model trained with the

owest number of images within the dataset. This will show the capa-

ilities of the model to detect and recognize window openings with a

imited amount of data. The number of images in Model 2 is increased

hile having the same types of categories and images. This will allow

he evaluation of the influence of the number of images in the training

atasets on detection performance. Models 3 and 4, which only detect

open’ windows, will have a lower number of training and testing im-

ges. 

Pre-processing was conducted, which involved the preparation of the

ata for the model training. The main tasks include manual labelling

ach image within the training and testing datasets using the software
nd occupants in coordination with the HVAC control system. 
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Table 1 

Description of the training and testing image dataset for the different window 

detection models. 

Model 

Name Category 

Dataset Size 

No. of Images No. of Labels 

Training Testing Total Training Testing Total 

Window 

M1.0 

Closed 100 25 125 164 36 200 

Open 100 25 125 108 27 135 

Total 200 50 - 272 63 - 

Window 

M2.0 

Closed 1000 250 1250 2185 576 2761 

Open 1000 250 1250 899 157 1056 

Total 2000 500 - 3084 733 - 

Window 

M3.0 

Open 500 125 625 865 191 1056 

Total 500 125 - 865 191 - 

Window 

M4.0 

Open 666 160 826 1398 318 1716 

Total 666 160 - 1398 318 - 
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abelImg ( Tzutalin, 2019 ). Different methods of labelling were used for

1.0, M2.0, M3.0 and M4.0. Fig. 2 presents example images indicat-

ng the types of images collected and how they were labelled. Bounding

oxes were drawn manually around each image’s selected region of in-

erest. As shown in Fig. 2 , Models 1 and 2 labelling method consists of
Fig. 2. Example images of windows obtained from Google Images that were used t

4 
electing the regions around the full area of the windows for both open

nd closed windows. For Models 3 and 4, only open windows were con-

idered for detection and recognition. Model 3 followed the same la-

elling method for open windows as Models 1 and 2. While for Model

, bounding box regions were assigned around the opening gaps of the

indows. In most cases, multiple numbers of labels were assigned to

ach image. The justification for only detecting open windows in Mod-

ls 3 and 4 and opening gaps in Model 4 will be further discussed when

valuating the results in Section 3 . 

Fig. 3 presents the CNN-based model used to develop the detec-

ion approach, following the process in Tien et al. (2021a) . The Ten-

orFlow Object Detection API was used for the model training. This

ramework platform provides pre-trained models to be used through a

ransfer learning approach that enables the development of an effec-

ive vision-based detector ( GitHub, 2020 ). Existing models provided in

he TensorFlow Detection Model were explored to establish the model

onfiguration, as highlighted in Fig. 3 . Through the assessment of the

ifferent models available, the Faster R-CNN (With Inception V2) was

elected. The time required for the training of the models would vary

ue to the differences in the input data and the desired detection output

esponses, and each of these trained detectors can be deployed to an

I-powered camera. 
o form the different image datasets for the various window detection models. 
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Fig. 3. CNN-based model configuration used to develop the four window detectors. 
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.2. Real-time application in a case study building 

To evaluate the performance of the different window detector con-

gurations, a lecture room within a case study building was selected

o perform experimental tests, which allowed real-time-based detection

nd recognition. This is the Marmont Centre at the University of Notting-

am (University Park Campus, UK) ( Fig. 4 a). Details about the building

onstruction, materials and features are detailed by Tien et al. (2021a) .
ig. 4. (a) Marmont centre at the University of Nottingham, UK. (b) Set up for the e

5 
his building is used mainly for teaching architecture and engineering

tudents. It has several teaching spaces, a laboratory and a café. The

eaching spaces include a lecture and seminar room, each with 30-40

tudents. Students also use both rooms as workspaces during non-lecture

ours and can have variable occupancy throughout the day. Both rooms

ave large openable windows and are often used by the students to ven-

ilate the space. Some windows are left open in some cases, which leads

o a significant waste of heating energy during cold periods. Like most
xperimental test, with the floor plan of the first floor of the building in Fig. (c). 
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Fig. 5. Example of the process of real-time detection, recognition and formation of the deep learning influenced profiles (DLIP) using different window detectors 

(Models 1, 2, 3, and 4). 

b  

d  

c  

t  

w  

d  

o  

 

d  

w  

s  

i  

fi  

s  

i  

c

 

e  

t  

c  

t  

o  

a  

a  

t

2

 

m  

T  

u  

n  

t  

d  

c  

m  

t  

e

2

 

i  

e  

t  

t  

o  

w  

a

uildings in the University, the windows are manually operated and

o not have any sensors to detect and prevent such issues. Such a space

ould benefit from the installation of a window detector. Fig. 4 b presents

he setup for the experimental tests. A 90-degree field of view camera

as used for the detection, positioned towards the ‘South Facing Win-

ows 1’ located near the room’s ceiling. Fig. 4c c presents the floor plan

f the first floor, along with the arrangement of the experimental setup.

To assist in the performance evaluation of all the trained window

etectors, a scenario where an occupant would operate the windows

ithin the selected building space was recorded. This ensured that the

ame scene or segment of occupancy actions towards the opening/ clos-

ng of the windows were used to evaluate each detection model con-

guration. Furthermore, it also ensured that other factors, such as the

light variations in the actions performed by the occupant, indoor light-

ng conditions and glare, did not influence the results, providing a fair

omparison between the model’s detection and recognition abilities. 

The detection and recognition responses were obtained and recorded

very two seconds, generating the DLIP. Fig. 5 presents an example of

he process of generating the DLIP using the different detection model

onfigurations for the selected case study building and experimental

est. Models 1 and 2 would generate 2 profiles based on two responses,

pen and closed windows, whereas Models 3 and 4 would only generate

 profile for open windows only. The formed DLIPs would be assessed

nd compared with the true ‘actual observation’ of the window condi-
ions. a  

6 
.3. Detection performance evaluation 

A three-step evaluation was performed to assess each generated

odel’s performance and application based on the experimental test.

his includes the assessment based on the average intersection over

nion (IoU), the percentage of the time achieving correct, incorrect and

o detections, and the detection performance in the form of classifica-

ion using a confusion matrix that generates results based on the stan-

ard evaluation metrics. Utilising the results presented in the form of the

onfusion matrix, further evaluation based on the common evaluation

etrics of precision, recall and F 1 score was performed. Details about

hese evaluation metrics are detailed in ( Goutte and Gaussier, 2005 ) and

mployed in similar studies ( Tien et al., 2021b ). 

.4. Building energy simulation (BES) 

Building energy simulation (BES) was used to predict the potential

mpact of the detection method on ventilation heat loss and building

nergy demands. The case study building model was set to operate be-

ween 09:00 – 17:00. The base building model employed an HVAC sys-

em operating with a conventional control system, which used a fixed

peration schedule ( Figs. 6 d). Additionally, scheduled-based profiles for

indows (fully opened and closed), occupancy, and lighting were set,

s shown in Figs. 6 a-c. The occupancy was assumed to be 40 people , 

nd the lighting was 10 W/m 

2 during the building operation period.
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Fig. 6. Predefined profiles for (a) windows, (b) occupancy, (c) lighting, and (d) heating. 
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cenario-based simulations were carried out to evaluate the impact of

he vision-based detector on the ventilation heat loss and heating energy

emand. While it is ideal that the profiles generated using the detection

ethod are directly inputted into the BES model, the minimum simu-

ation time step in IES VE is 10 min. Hence, smaller time steps would

e necessary for the direct input of these profiles. This is because the

etection and recognition responses were obtained and recorded every

wo seconds. Future works should consider employing other methods

hich can capture the detail of the detection operation in simulations.

owever, for the purpose of comparison, the generated profiles were

xtended to an entire class period. This means every detection is now

quivalent to 1 min in the simulation. While this does not directly corre-

pond to the real-time detections, it would still allow us to evaluate the

mpact of detections (correct, incorrect and missed detections) on the

redicted ventilation heat loss. While occupancy can also be detected

sing a similar approach as the window detector ( Tien et al. 2021a ),
7 
his was not evaluated in this study. Table 2 summarises all the differ-

nt combinations of assigned profiles used for all the simulation cases. 

. Results and discussion 

All models were trained until converged, as detailed in Table 3 , and

he duration varied across the different detection model configurations.

his is due to the differences in the pre-processing approach and size of

he model’s training datasets of the different window detectors. 

Table 4 presents the models’ performances based on the detection

nd recognition ability on still images from the testing dataset ( Table 1 ).

he results were presented in the form of a confusion matrix and

ssessed in terms of the common classification metrics. The different

abelling techniques and data set size clearly influence the detection

erformance, as observed from the results in Table 4 . Models 1 and 2,

hich predicted if the windows were ‘Open’ or ‘Closed’, had an overall
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Table 2 

Summary of the profiles assigned to the different simulation cases. 

Simulation Cases 

Assigned Profiles 

Window ( Fig. 6 a) Occupancy ( Fig. 6 b) Lighting ( Fig. 6 c) Heating ( Fig. 6 d) 

Fixed Profiles 1 Constant open Constant sitting during operational 

hours 

Standard typical 

2 Constant closed 

Deep Learning 

Influenced Profiles 

1, 2, 3, 4 DLIP profiles (extended to full class period) Actual (extended to full class period) Actual (extended to full class period) 

Actual Actual (extended to full class period) Actual (extended to full class period) 

Table 3 

Results of the training of different window detection models. 

Training Conditions and Results 

Model 

(a) 1 (b) 2 (c) 3 (d) 4 

Pre-trained Model Used Faster RCNN with InceptionV2 

Total Steps 91,842 104,396 86,523 199,630 

Training Duration 6 hours, 1 minute, 

49 seconds 

7 hours, 19 minutes, 

2 seconds 

5 hours, 29 minutes, 

49 seconds 

11 hours, 29 

minutes, 46 seconds 

Maximum Loss 2.876961 2.037059 1.821876 1.236806 

Minimum Loss 0.005654 0.000113 0.010038 0.01519 

Total loss versus the number of training steps 

8 
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Table 4 

Detection performance results based on the still images from the test dataset, assessed in terms of common evaluation metrics. 

Confusion Matrix 

Classification Accuracy Precision Recall F1 Score 

(a) Model 1 

Open 80.95% 0.8572 0.9167 0.7500 

Closed 80.95% 0.7857 0.7857 0.8461 

Average for both types 80.95% 0.8215 0.8512 0.7981 

(a) Model 2 

Open 73.67% 0.4401 0.7861 0.5643 

Closed 73.67% 0.9243 0.723 0.8113 

Average for both types 73.67% 0.6822 0.7546 0.6878 

(a) Model 3 

Open 78.01% 0.8142 0.9490 0.8765 

(a) Model 4 

Open 87.73% 0.9621 0.9088 0.9346 
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current data set must be considered. 
1 score of 0.7981 and 0.6878, indicating the occurrence of false posi-

ives and false negatives was high when detecting the window condition.

his suggests that requiring the detector to recognize both conditions

an increase the probability of incorrect detections. It can also be ob-

erved that the addition of more images to the training dataset did not

ead to an improved detection performance which was unanticipated.

his will be further evaluated when testing the detector in the actual

ase study building. 

Due to the detection performance achieved by Models 1 and 2, we

ecided to consider and test a different approach that could help sim-

lify the detection method. While we initially planned to develop a de-

ector which can recognize both window conditions ‘Open’ and ‘Closed’,

etecting only one condition may be adequate for the required task or

pplication in this project. This modification led to a higher F1 score of

.8765 for Model 3, which was configured and trained to only recognize

Open’ windows. We attempted to further improve the detector’s perfor-

ance based on these results. Model 4 was configured and trained to

ecognize only the opening gaps of windows instead of the entire win-

ow. This adjustment led to a higher overall F1 score of 0.9346. To

urther evaluate the performance of each configuration, all models will

e applied to detect and recognize window conditions in a selected case

tudy building, with an occupant moving around the space and manu-

lly opening/closing the windows. 

Video 1 shows the real-time detection and recognition of the window

onditions in the case study lecture room, comparing the different model

onfigurations. 

Video 1 Comparison of the detection of open windows using the dif-

erent models. 

Fig. 7 shows examples of the detection and recognition made by each

odel configuration on the recorded video. Clear variations can be seen

mong them when looking at the bounding boxes generated around the

etected windows, which corresponds to the labelling method employed

y each model configuration. The sizes and shapes of these bounding

oxes varied between each detection interval. For most of the detec-

ion period, Model 1 recognized all four windows as one individual

indow, and in many instances, the entire window was detected as

pen and closed simultaneously. Furthermore, it also detected random

bjects such as walls, desks, drawing board and the occupant as win-
9 
ows. Clearly, this model was highly inaccurate and not well suited for

he required application. Whereas Model 2, which was trained with a

arger number of images, could recognize windows separately and had

ewer false/incorrect detections; however, the model was still not ac-

urate and reliable in identifying all four windows and their actual

onditions. Like Model 1, it also detected other objects as a window

ut less frequently. Contrary to the initial evaluation of the models us-

ng still testing images ( Table 4 ), the larger training data set improved

he model’s overall detection performance when applied in the actual

uilding. 

As mentioned, a different approach was taken when configuring

odels 3 and 4 window detectors. Both approaches only detected and

ecognized open windows, and hence only open windows are required to

e labelled. This simplified the data set preparation procedure. Although

he detection of close/closing of windows could potentially be useful in

ome applications, detecting the open windows only could be adequate

or notifying/alerting users or automatically adjusting the HVAC due to

nintentionally open windows. For most instances, Model 3 provided

etection responses similar to Model 2 with correct identification of the

our separate windows. However, the person and objects outside the

indow region were frequently detected as open windows. To address

his issue, we configured Model 4 to only detect the opening gaps of

indows instead of the entire window 

As observed, Model 4 was able to detect open windows more accu-

ately and reliably by focusing only on the openings or gaps of the win-

ows. In some cases, two bounding boxes were assigned to a detected

pen window, increasing the chances of each window being detected

nd recognized. As observed, bounding boxes could be assigned to the

ertical or the horizontal opening gaps. Since the size of the windows

ould be larger compared to objects, such as occupancy body size and

ize of objects/furniture within a room, this approach could reduce the

ccurrence of obstruction, impacting detection performance and leading

o incorrect and no detection. This also raises the possibility of estimat-

ng the window opening size, which can be developed in future works.

hile Model 4 was the most accurate, objects outside the window region

ere occasionally detected as open windows; hence, further model im-

rovement is required. Perhaps different techniques for enhancing the
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Fig. 7. Snapshots of window detection and recognition during various key stages of the experimental test using the different window detectors. 

Table 5 

Comparison of Models 1 and 2 performances in terms of the percentage of time achieving correct, incorrect, and no detections. 

Percentage of Time Achieving (%) 

Open and Closed Windows 

Window A Window B Window C Window D All Windows 

Open Closed Open Closed Open Closed Open Closed Open Closed Combination of Both 

Model 1 

Correct Detections 29.14% 28.48% 27.15% 29.14% 29.80% 28.48% 28.48% 29.14% 28.64% 28.81% 57.45% 

Incorrect Detections 16.56% 0.00% 15.23% 3.97% 17.88% 0.00% 14.57% 3.97% 16.06% 1.99% 18.05% 

No/Missed Detections 20.53% 5.30% 15.89% 8.61% 20.53% 3.31% 17.22% 6.62% 18.54% 5.96% 24.50% 

Model 2 

Correct Detections 3.31% 1.99% 2.65% 2.65% 22.52% 15.89% 43.05% 39.07% 17.88% 14.90% 32.78% 

Incorrect Detections 0.00% 0.00% 0.00% 0.00% 11.26% 0.00% 1.32% 0.66% 3.15% 0.17% 3.31% 

No/Missed Detections 62.91% 31.79% 55.63% 39.07% 34.44% 15.89% 15.89% 0.00% 42.22% 21.69% 63.91% 
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The following section further examines the detection and recognition

erformance of the different model configurations. Tables 5 and 6 com-

ares the different models in terms of the percentage of time achieving

orrect, incorrect, and no detections. The window was split into 4 sec-

ions: top left window is Window A, top right is Window B, bottom left

s Window C, and the bottom right is Window D. As observed, Models 1

nd 2 did not perform well in terms of the correct detection of both open

nd closed windows. As observed in Video 1 , while Model 2 correctly

etected 1 or 2 of the bottom windows during the detection period, it

lso frequently missed or did not detect the other windows (Windows

 and B). Hence, it can be seen that Model 2 had a high number of

o/missed detections, up to 63.91% of the time. This shows that both
10 
odel configurations will not be suitable for the required detection of

he windows in the lecture room, as it will lead to many incorrect notifi-

ations/alerts and incorrectly adjust the heating of the room. Although

he model could potentially be improved by using a larger dataset for

raining, the detection method in Models 3 and 4 led to higher detection

erformance, while using a small dataset for training. A significantly

igher average correct detections were achieved ( Table 6 ), 80.63% for

odel 3 and 85.93% for Model 4. 

Figs. 8 and 9 present the case study test results in the form of a confu-

ion matrix. As discussed previously, Model 1 was not able to adequately

dentify each of the individual windows, and as expected, it led to rela-

ively low percentages for true positives compared to false positives and
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Fig. 8. Detection performance results for Models 1 and 2 in the form of confusion matrix, based on the case study building test. 

11 
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Table 6 

Comparison of Models 3 and 4 performances in terms of the percentage of time achieving correct, incorrect, and no detections. 

Percentage of Time Achieving (%) 

Open Windows 

Window A Window B Window C Window D All windows 

Model 3 

Correct Detections 98.68% 62.25% 93.38% 68.21% 80.63% 

Incorrect Detections 1.32% 37.75% 6.62% 31.79% 19.37% 

No/Missed Detections 0.00% 0.00% 0.00% 0.00% 0.00% 

Model 4 

Correct Detections 82.12% 100.00% 63.58% 98.01% 85.93% 

Incorrect Detections 2.65% 0.00% 4.64% 0.00% 1.82% 

No/Missed Detections 15.23% 0.00% 31.79% 1.99% 12.25% 

Table 7 

Model 1 detection performance evaluated based on common classification evaluation metrics. 

Window Class Window Accuracy Precision Recall F1 Score 

A 1 Open 62.91% 1.0000 0.4400 0.6111 

2 Closed 78.14% 0.6323 0.8431 0.7227 

Average for both types 70.53% 0.8162 0.6416 0.6669 

B 1 Open 64.91% 0.8724 0.4659 0.6075 

2 Closed 72.19% 0.6568 0.6985 0.6770 

Average for both types 68.55% 0.7646 0.5822 0.6423 

C 1 Open 61.59% 1.0000 0.4369 0.6081 

2 Closed 78.81% 0.6143 0.8959 0.7289 

Average for both types 70.20% 0.8072 0.6664 0.6685 

D 1 Open 64.24% 0.8777 0.4725 0.6143 

2 Closed 74.84% 0.6667 0.7335 0.6985 

Average for both types 69.54% 0.7722 0.6030 0.6564 
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alse negative results (shown in Figs. 8 a-e). For Model 2, similar results

ere achieved specifically for Windows A and B. 

Model 3 indicated good performance, in particular, the detection of

indows A and C with relatively high true positive results of up to

2.08%. However, it indicated lower performance for Windows B and

 with false positive values of 41.3% and 34.53%, giving an overall

ercentage of 76.17% for true positives on all four windows. Model 4

resented the best performance with the highest number of true posi-

ives (up to 100%), and only a lower value was achieved for Window

 (50%), which may have been affected by the occupant obstructing

he window openings. An overall value of 78.43% was achieved for true

ositives for Model 4. 

The following tables ( Tables 7 —10 ) present the results in terms of

he common evaluation metrics, including the accuracy, precision, re-

all, and the associated F1 score that was based on the occurence of

abelled instances for each of the windows (as shown in Video 1 ). Over-

ll, Model 4 provided the best performance with the highest overall

ccuracy of 78.43% and an F1 score of 0.8791. Model 1 ( Table 7 had

he poorest performance based on quantitative and qualitative results.

t could not detect the four windows separately, whereby the windows

ere assumed as one in most instances. Unanticipated results were ob-

ained with Model 2 as given by the results in Table 8 , the addition

f more images to the training dataset did not lead to improved detec-

ion performance. Yet overall, it had a better performance compared

o Model 1 in detecting and recognizing the individual windows, but it

id not perform well in terms of detecting all windows. As for Model

 ( Table 9 ), having only one selected response outcome enabled better

dentification of the separate windows. However, this model was limited

nd, in some cases, identified other objects as opened windows, such as

he drawing board. Model 4 ( Table 10 ) was able to detect open win-

ows more accurately by focusing only on the openings or gaps of the

indows. 

Table 9 Model 3 detection performance evaluated based on common

lassification evaluation metrics. 

Table 10 Model 4 detection performance evaluated based on com-
on classification evaluation metrics. o  

12 
Fig. 10 presents the generated DLIP of the opening patterns for the

elected windows in the lecture room during the experimental tests us-

ng the different models. The Actual Observation Profile defined the

actual’ window condition and was used to assess the performance of

ach model. For all models, the generated DLIP still alternates between

he values of the window profile schedule, indicating prediction error.

herefore, further improvements are required to enhance the detection

odel’s accuracy, reliability, and stability. Comparing the results based

n these four models applied to the experiment test indicates that Model

 provides the least amount of variation in terms of errors in predictions,

roviding the most accurate results compared to the actual observation

rofile. 

Fig. 10 Deep learning-influenced profiles (DLIP) generated from the

pplication of the different models during the experimental test com-

ared against the Actual Observation Profile. 

The following section analyses the impact of the application of the

indow detection model on the building energy performance, specifi-

ally evaluating the heating load and the ventilation heat losses through

he window openings. While Model 1 and, to some extent, Model 2 were

ighly inaccurate and not well suited for the required application, both

odels are still evaluated here to show their impact on energy perfor-

ance. As mentioned previously, the generated profiles were extended

o an entire class period in the simulation. This was due to the limitation

f the BES tool. While this does not directly correspond to the real-time

etections, it would still allow us to evaluate the impact of detections

correct, incorrect and missed detections) on the predicted ventilation

eat loss. 

Fig. 11 presents the predicted hourly ventilation heat loss for all the

imulated scenario cases during a typical winter/heating day in the se-

ected case study building. The results were related to the simulated win-

ow opening profiles and the airflow conditions across the four windows

uring the selected time and day. The maximum and minimum venti-

ation heat losses were obtained in the simulations, which assumed the

indow to be either constantly open or closed. These were used for com-

arison purposes. Compared with the “actual ” profile results, using fixed

r static profiles to simulate the window conditions is insufficient and
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Fig. 9. Detection performance results for Models 3 and 4 in the form of a confusion matrix, based on the case study building test. 
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an lead to inaccurate prediction of ventilation heat loss. As observed

n Fig. 11 , higher detection accuracy led to better prediction of the ven-

ilation heat losses. The percentage differences between the results of

odels 1, 2, 3 and 4 and the actual profile were 22.83%, 105.38%,

2.07% and 19.60%. While Model 1’s performance as a detector was

oor, it could still provide a reasonable prediction of heat loss, partic-

larly during the occupancy period. While Model 2, which had diffi-
13 
ulties detecting all the open windows, did not perform as well as the

thers. 

Fig. 11 Ventilation heat loss predictions based on the simulation of

he predefined fixed profiles, along with the window detection and ‘ac-

ual’ profiles. 

Fig. 12 shows the results of the heating energy load in the simu-

ated space. To maintain the room within the setpoint temperature of
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Table 8 

Model 2 detection performance evaluated based on common classification evalua- 

tion metrics. 

Window Class Window Accuracy Precision Recall F1 Score 

A 1 Open 36.43% 1.0000 0.0400 0.0770 

2 Closed 72.98% 0.9244 0.2353 0.3752 

Average for both types 54.71% 54.71% 0.9622 0.13765 

B 1 Open 44.37% 1.0000 0.0455 0.0870 

2 Closed 60.93% 1.0000 0.0635 0.1195 

Average for both types 68.55% 52.65% 1.0000 0.0545 

C 1 Open 54.30% 1.0000 0.3301 0.4964 

2 Closed 72.85% 0.5853 0.5 0.5393 

Average for both types 63.58% 0.7927 0.4151 0.5179 

D 1 Open 82.81% 0.9849 0.7144 0.8281 

2 Closed 98.02% 0.9673 0.9834 0.9753 

Average for both types 90.42% 0.9761 0.8489 0.9017 

Fig. 10. Deep learning-influenced profiles (DLIP) generated from the application of the different models during the experimental test compared against the Actual 

Observation Profile. 

Table 9 

Model 3 detection performance evaluated based on common classification eval- 

uation metrics. 

Window Class Window Accuracy Precision Recall F1 Score 

A 1 Open 98.02% 0.9802 1.0000 0.9900 

B 58.70% 0.5870 1.0000 0.7398 

C 91.15% 0.9115 1.0000 0.9537 

D 65.47% 0.6547 1.0000 0.6547 

Table 10 

Model 4 detection performance evaluated based on common classification eval- 

uation metrics. 

Window Class Window Accuracy Precision Recall F1 Score 

A 1 Open 100.00% 1.0000 1.0000 1.0000 

B 100.00% 1.0000 1.0000 1.0000 

C 50.00% 0.8872 0.5340 0.5000 

D 96.74% 1.0000 0.9674 0.9834 
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1 °C during occupancy period, a high amount of heating energy would

e required at the start of the class during the heating period at 10:00.

his immediately decreased once the occupants start to go into the room
14 
nd generate the internal heat gains. In line with the results shown in

igure 11 , Model 4 achieved the closest prediction of heating energy

oad (as compared to the actual profile), while Model 2 had the worst

erformance. As observed, Model 2 underpredicted the heating energy

emand as it mostly recognizes only one of the four windows open dur-

ng the occupancy period. 

Fig. 12 Building heating load prediction based on the simulation of

redefined fixed profiles, along with the window detection and ‘actual’

rofiles. 

Based on these results, the detection and recognition ability of the

odels ultimately influenced the prediction of the ventilation heat loss

nd heating demand. While the model configuration clearly had a sig-

ificant impact on the detection performance, other factors, such as the

ighting conditions and obstructions, also affected the performance. This

ed to variations in the detection performance and predictions thought

he detection period. The results highlighted the importance of the data

et size and labelling method on the performance of the window detec-

or. Model 4 provided the best detection performance, resulting in the

ost accurate prediction of ventilation heat loss. However, further eval-

ation and validation of the detection method should be conducted. The

odel’s performance under different room settings and environmental

onditions should be explored. Practical aspects, including people block-

ng the detector view and/or windows within the selected room, lead-
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Fig. 11. Ventilation heat loss predictions based on the simulation of the predefined fixed profiles, along with the window detection and ‘actual’ profiles 

Fig. 12. Building heating load prediction based on the simulation of predefined fixed profiles, along with the window detection and ‘actual’ profiles. 
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ng to inaccurate detection and recognition, should be addressed. For

xample, the device can provide alerts or sound notifications when the

etector view is obstructed. 

. Conclusions and future works 

The present work employed a computer vision and deep learning-

ased detection approach for the real-time monitoring of the opening

nd closing of windows to reduce the energy demand by correctly con-

rolling the HVAC or alerting the building users/operators during peri-

ds, there is a demand for a detector that could provide accurate detec-

ion and recognition. This present study focuses on developing the deep

earning framework via the investigation into the performance of dif-
15 
erent window detection models. Various modifications to the window

etection models based on data curation, labelling, and training were

xplored. This includes exploring the impact of the types of detection

esponses selected, the types of images used, the dataset size and how

he images were proposed prior to the training of the window detection

odels. 

Four models were developed and tested through the application via

 video feed test of a selected case study building. Models 1 and 2 con-

isted of selecting two response categories of both ‘open’ and ‘closed’

indows, with Model 1 as the initial dataset and Model 2 as an en-

anced version. Models 3 and 4 focused on one detection response of

Open’ with Model 3 compromising of the same labelling techniques as

odels 1 and 2. While Model 4 employed a different labelling process,



P.W. Tien, S. Wei, J.K. Calautit et al. Cleaner Energy Systems 3 (2022) 100038 

Video 1. Video Still Comparison of the detection of open windows using the different models. 

w  

w  

c  

t

 

v  

t  

w  

c  

T  

w  

i  

p

 

i  

c  

u  

a  

e  

o  

w  

d  

w  

d  

i  

a  

o  

l

 

w  

d  

r  

i  

l  

i  

h  

t  

t  

e  

c  

t  

d  

s  

w

D

 

i  

t

C

 

V  

i  

t  

e  

C

D

A

 

B  

f  

p  

E  
ith the bounding boxes explicitly assigned to the opening gaps of the

indows. All models were trained using the same CNN-based model

onfiguration and evaluated based on the application of an experimen-

al test performed within a selected case study building space. 

The detection performance evaluation suggests that Model 1 pro-

ided the lowest detection ability. For most instances, it could not de-

ect each of the windows separately. Model 2 was able to detect the

indows individually at times. Having only one selected-response out-

ome for Model 3 enabled better identification of the separate windows.

his model had the limitation of identifying other objects as opened

indows. Using a different labelling technique for Model 4 aided the

mprovement of the detection and recognition ability, giving the best

erformance for Model 4. 

The impact of the detection method on building energy demand was

nvestigated through a series of building energy simulation scenario

ases. Ventilation heat loss and heating energy demand were simulated

sing the predefined fixed profiles, along with the window detection

nd ‘actual’ profiles. It should be noted that the generated profiles were

xtended to an entire class period in the simulation due to the limitation

f the BES tool requiring a minimum simulation time step of 10 minutes

ithin the inputted window profile. Hence, the recordings of window

etection at 2 second intervals achieved during the experimental tests

ere converted. While this does not directly correspond to the real-time

etections, it allowed us to evaluate the impact of detections (correct,

ncorrect and missed detections) on the predicted ventilation heat loss

nd heating energy demand. Future works should consider employing

ther methods to capture the detail of the detection operation in simu-

ations along with longer duration of experimental tests. 

The predicted ventilation heat losses were related to the simulated

indow opening profiles and the airflow conditions across the windows

uring the selected time and day. Compared with the “actual ” profile

esults, using fixed or static profiles to simulate the window conditions

s insufficient and can lead to inaccurate prediction of ventilation heat

oss. The results have shown that the detection and recognition abil-

ty of the models ultimately influenced the prediction of the ventilation

eat loss and heating energy demand. Model 4 provided the best detec-

ion performance, resulting in the most accurate prediction of ventila-
 D

16 
ion heat loss. However, further validation of such models is required to

nsure that such methods can provide accurate detections in different

onditions. Further developments include a series of tests and evalua-

ions of the application of the window detector on various types of win-

ow designs in different indoor spaces. The impact on other parameters,

uch as thermal comfort and air quality, should be considered in future

orks. 
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